-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEM_wave_simulator.m
62 lines (53 loc) · 1.97 KB
/
EM_wave_simulator.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
% One-Dimensional FDTD Simulation with Mur's Absorbing Boundary Conditions
% Code by Muujic
% Parameters
z = 500; % Number of points in the z direction
time = 300; % Number of time steps
zs = 250; % Position of the source in the domain
c = 3e8; % Speed of light (m/s)
Cs = 1; % Courant stability factor
dz = 1e-6; % Spatial step length (m)
dt = Cs * dz / c; % Time step (s)
f = 1e13; % Frequency of the source (Hz)
% Initialize electric and magnetic field intensity vectors
Ex = zeros(1, z);
Hy = zeros(1, z);
% Physical constants
u0 = 1.256e-6; % Magnetic permeability of free space (H/m)
e0 = 8.854e-12; % Electric permittivity of free space (F/m)
n0 = sqrt(u0 / e0); % Intrinsic impedance of free space
% Main loop for time-stepping
for m = 1:time
% Update Hy using FDTD update equation
for k = 1:z-1
Hy(k) = Hy(k) - (dt * c / dz) * (Ex(k + 1) - Ex(k));
end
% Update Ex using FDTD update equation
for k = 2:z
Ex(k) = Ex(k) - (dt * c / dz) * (Hy(k) - Hy(k - 1));
end
% Sinusoidal source
Ex(zs) = n0 * sin((2 * pi * f) * (m - 1) * dt);
% Apply Mur's absorbing boundary conditions
if m >= 2
Ex(1) = temp_left + ((c * dt - dz) / (c * dt + dz)) * (Ex(2) - Ex(1));
Ex(z) = temp_right + ((c * dt - dz) / (c * dt + dz)) * (Ex(z - 1) - Ex(z));
end
% Store boundary values for the next iteration
temp_left = Ex(2);
temp_right = Ex(z - 1);
% 3D Plotting of the fields
figure(1); clf;
plot3((1:z) * dz, Ex, zeros(1, z), 'b-', 'LineWidth', 2); hold on;
plot3((1:z) * dz, zeros(1, z), Hy, 'r-', 'LineWidth', 2);
grid on;
title('Ex (Blue), Hy (Red)', 'Color', 'black');
xlabel('z (meters)', 'FontSize', 13, 'Color', 'b');
ylabel('Ex (Volts/meter)', 'FontSize', 13, 'Color', 'b');
zlabel('Hy (Tesla)', 'FontSize', 13, 'Color', 'b');
set(gca, 'FontSize', 13, 'Color', 'c');
axis([0 z * dz -600 600 -600 600]);
view([45 45]);
drawnow;
end
% thankyou for reading