-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathstft_loss.py
184 lines (139 loc) · 6.17 KB
/
stft_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Adapted from https://github.com/kan-bayashi/ParallelWaveGAN
# Original Copyright 2019 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
"""STFT-based Loss modules."""
import torch
import torch.nn.functional as F
from distutils.version import LooseVersion
is_pytorch_17plus = LooseVersion(torch.__version__) >= LooseVersion("1.7")
def stft(x, fft_size, hop_size, win_length, window):
"""Perform STFT and convert to magnitude spectrogram.
Args:
x (Tensor): Input signal tensor (B, T).
fft_size (int): FFT size.
hop_size (int): Hop size.
win_length (int): Window length.
window (str): Window function type.
Returns:
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
"""
if is_pytorch_17plus:
x_stft = torch.stft(
x, fft_size, hop_size, win_length, window, return_complex=False
)
else:
x_stft = torch.stft(x, fft_size, hop_size, win_length, window)
real = x_stft[..., 0]
imag = x_stft[..., 1]
# NOTE(kan-bayashi): clamp is needed to avoid nan or inf
return torch.sqrt(torch.clamp(real**2 + imag**2, min=1e-7)).transpose(2, 1)
class SpectralConvergenceLoss(torch.nn.Module):
"""Spectral convergence loss module."""
def __init__(self):
"""Initilize spectral convergence loss module."""
super(SpectralConvergenceLoss, self).__init__()
def forward(self, x_mag, y_mag):
"""Calculate forward propagation.
Args:
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
Returns:
Tensor: Spectral convergence loss value.
"""
return torch.norm(y_mag - x_mag, p="fro") / torch.norm(y_mag, p="fro")
class LogSTFTMagnitudeLoss(torch.nn.Module):
"""Log STFT magnitude loss module."""
def __init__(self):
"""Initilize los STFT magnitude loss module."""
super(LogSTFTMagnitudeLoss, self).__init__()
def forward(self, x_mag, y_mag):
"""Calculate forward propagation.
Args:
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
Returns:
Tensor: Log STFT magnitude loss value.
"""
return F.l1_loss(torch.log(y_mag), torch.log(x_mag))
class STFTLoss(torch.nn.Module):
"""STFT loss module."""
def __init__(
self, fft_size=1024, shift_size=120, win_length=600, window="hann_window",
band="full"
):
"""Initialize STFT loss module."""
super(STFTLoss, self).__init__()
self.fft_size = fft_size
self.shift_size = shift_size
self.win_length = win_length
self.band = band
self.spectral_convergence_loss = SpectralConvergenceLoss()
self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss()
# NOTE(kan-bayashi): Use register_buffer to fix #223
self.register_buffer("window", getattr(torch, window)(win_length))
def forward(self, x, y):
"""Calculate forward propagation.
Args:
x (Tensor): Predicted signal (B, T).
y (Tensor): Groundtruth signal (B, T).
Returns:
Tensor: Spectral convergence loss value.
Tensor: Log STFT magnitude loss value.
"""
x_mag = stft(x, self.fft_size, self.shift_size, self.win_length, self.window)
y_mag = stft(y, self.fft_size, self.shift_size, self.win_length, self.window)
if self.band == "high":
freq_mask_ind = x_mag.shape[1] // 2 # only select high frequency bands
sc_loss = self.spectral_convergence_loss(x_mag[:,freq_mask_ind:,:], y_mag[:,freq_mask_ind:,:])
mag_loss = self.log_stft_magnitude_loss(x_mag[:,freq_mask_ind:,:], y_mag[:,freq_mask_ind:,:])
elif self.band == "full":
sc_loss = self.spectral_convergence_loss(x_mag, y_mag)
mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)
else:
raise NotImplementedError
return sc_loss, mag_loss
class MultiResolutionSTFTLoss(torch.nn.Module):
"""Multi resolution STFT loss module."""
def __init__(
self, fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240],
window="hann_window", sc_lambda=0.1, mag_lambda=0.1, band="full"
):
"""Initialize Multi resolution STFT loss module.
Args:
fft_sizes (list): List of FFT sizes.
hop_sizes (list): List of hop sizes.
win_lengths (list): List of window lengths.
window (str): Window function type.
*_lambda (float): a balancing factor across different losses.
band (str): high-band or full-band loss
"""
super(MultiResolutionSTFTLoss, self).__init__()
self.sc_lambda = sc_lambda
self.mag_lambda = mag_lambda
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
self.stft_losses = torch.nn.ModuleList()
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
self.stft_losses += [STFTLoss(fs, ss, wl, window, band)]
def forward(self, x, y):
"""Calculate forward propagation.
Args:
x (Tensor): Predicted signal (B, T) or (B, #subband, T).
y (Tensor): Groundtruth signal (B, T) or (B, #subband, T).
Returns:
Tensor: Multi resolution spectral convergence loss value.
Tensor: Multi resolution log STFT magnitude loss value.
"""
if len(x.shape) == 3:
x = x.view(-1, x.size(2)) # (B, C, T) -> (B x C, T)
y = y.view(-1, y.size(2)) # (B, C, T) -> (B x C, T)
sc_loss = 0.0
mag_loss = 0.0
for f in self.stft_losses:
sc_l, mag_l = f(x, y)
sc_loss += sc_l
mag_loss += mag_l
sc_loss *= self.sc_lambda
sc_loss /= len(self.stft_losses)
mag_loss *= self.mag_lambda
mag_loss /= len(self.stft_losses)
return sc_loss, mag_loss