-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathtrain.py
234 lines (194 loc) · 9.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Adapted from https://github.com/NVIDIA/waveglow under the BSD 3-Clause License.
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import os
import time
import argparse
import json
import numpy as np
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
import random
random.seed(0)
torch.manual_seed(0)
np.random.seed(0)
from distributed import init_distributed, apply_gradient_allreduce, reduce_tensor
from dataset import load_CleanNoisyPairDataset
from stft_loss import MultiResolutionSTFTLoss
from util import rescale, find_max_epoch, print_size
from util import LinearWarmupCosineDecay, loss_fn
from network import CleanUNet
def train(num_gpus, rank, group_name,
exp_path, log, optimization, loss_config):
# setup local experiment path
if rank == 0:
print('exp_path:', exp_path)
# Create tensorboard logger.
log_directory = os.path.join(log["directory"], exp_path)
if rank == 0:
tb = SummaryWriter(os.path.join(log_directory, 'tensorboard'))
# distributed running initialization
if num_gpus > 1:
init_distributed(rank, num_gpus, group_name, **dist_config)
# Get shared ckpt_directory ready
ckpt_directory = os.path.join(log_directory, 'checkpoint')
if rank == 0:
if not os.path.isdir(ckpt_directory):
os.makedirs(ckpt_directory)
os.chmod(ckpt_directory, 0o775)
print("ckpt_directory: ", ckpt_directory, flush=True)
# load training data
trainloader = load_CleanNoisyPairDataset(**trainset_config,
subset='training',
batch_size=optimization["batch_size_per_gpu"],
num_gpus=num_gpus)
print('Data loaded')
# predefine model
net = CleanUNet(**network_config).cuda()
print_size(net)
# apply gradient all reduce
if num_gpus > 1:
net = apply_gradient_allreduce(net)
# define optimizer
optimizer = torch.optim.Adam(net.parameters(), lr=optimization["learning_rate"])
# load checkpoint
time0 = time.time()
if log["ckpt_iter"] == 'max':
ckpt_iter = find_max_epoch(ckpt_directory)
else:
ckpt_iter = log["ckpt_iter"]
if ckpt_iter >= 0:
try:
# load checkpoint file
model_path = os.path.join(ckpt_directory, '{}.pkl'.format(ckpt_iter))
checkpoint = torch.load(model_path, map_location='cpu')
# feed model dict and optimizer state
net.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# record training time based on elapsed time
time0 -= checkpoint['training_time_seconds']
print('Model at iteration %s has been trained for %s seconds' % (ckpt_iter, checkpoint['training_time_seconds']))
print('checkpoint model loaded successfully')
except:
ckpt_iter = -1
print('No valid checkpoint model found, start training from initialization.')
else:
ckpt_iter = -1
print('No valid checkpoint model found, start training from initialization.')
# training
n_iter = ckpt_iter + 1
# define learning rate scheduler and stft-loss
scheduler = LinearWarmupCosineDecay(
optimizer,
lr_max=optimization["learning_rate"],
n_iter=optimization["n_iters"],
iteration=n_iter,
divider=25,
warmup_proportion=0.05,
phase=('linear', 'cosine'),
)
if loss_config["stft_lambda"] > 0:
mrstftloss = MultiResolutionSTFTLoss(**loss_config["stft_config"]).cuda()
else:
mrstftloss = None
while n_iter < optimization["n_iters"] + 1:
# for each epoch
for clean_audio, noisy_audio, _ in trainloader:
clean_audio = clean_audio.cuda()
noisy_audio = noisy_audio.cuda()
# If you have a data augmentation function augment()
# noise = noisy_audio - clean_audio
# noise, clean_audio = augment((noise, clean_audio))
# noisy_audio = noise + clean_audio
# back-propagation
optimizer.zero_grad()
X = (clean_audio, noisy_audio)
loss, loss_dic = loss_fn(net, X, **loss_config, mrstftloss=mrstftloss)
if num_gpus > 1:
reduced_loss = reduce_tensor(loss.data, num_gpus).item()
else:
reduced_loss = loss.item()
loss.backward()
grad_norm = nn.utils.clip_grad_norm_(net.parameters(), 1e9)
scheduler.step()
optimizer.step()
# output to log
if n_iter % log["iters_per_valid"] == 0:
print("iteration: {} \treduced loss: {:.7f} \tloss: {:.7f}".format(
n_iter, reduced_loss, loss.item()), flush=True)
if rank == 0:
# save to tensorboard
tb.add_scalar("Train/Train-Loss", loss.item(), n_iter)
tb.add_scalar("Train/Train-Reduced-Loss", reduced_loss, n_iter)
tb.add_scalar("Train/Gradient-Norm", grad_norm, n_iter)
tb.add_scalar("Train/learning-rate", optimizer.param_groups[0]["lr"], n_iter)
# save checkpoint
if n_iter > 0 and n_iter % log["iters_per_ckpt"] == 0 and rank == 0:
checkpoint_name = '{}.pkl'.format(n_iter)
torch.save({'iter': n_iter,
'model_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'training_time_seconds': int(time.time()-time0)},
os.path.join(ckpt_directory, checkpoint_name))
print('model at iteration %s is saved' % n_iter)
n_iter += 1
# After training, close TensorBoard.
if rank == 0:
tb.close()
return 0
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default='config.json',
help='JSON file for configuration')
parser.add_argument('-r', '--rank', type=int, default=0,
help='rank of process for distributed')
parser.add_argument('-g', '--group_name', type=str, default='',
help='name of group for distributed')
args = parser.parse_args()
# Parse configs. Globals nicer in this case
with open(args.config) as f:
data = f.read()
config = json.loads(data)
train_config = config["train_config"] # training parameters
global dist_config
dist_config = config["dist_config"] # to initialize distributed training
global network_config
network_config = config["network_config"] # to define network
global trainset_config
trainset_config = config["trainset_config"] # to load trainset
num_gpus = torch.cuda.device_count()
if num_gpus > 1:
if args.group_name == '':
print("WARNING: Multiple GPUs detected but no distributed group set")
print("Only running 1 GPU. Use distributed.py for multiple GPUs")
num_gpus = 1
if num_gpus == 1 and args.rank != 0:
raise Exception("Doing single GPU training on rank > 0")
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
train(num_gpus, args.rank, args.group_name, **train_config)