-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathDali.cpp
511 lines (388 loc) · 10.7 KB
/
Dali.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
#include "Dali.h"
#include <SoftwareSerial.h>
Dali::Dali() //constructor
{
applyWorkAround1Mhz = 0;
}
void Dali::setTxPin(uint8_t pin)
{
TxPin = pin; // user sets the digital pin as output
pinMode(TxPin, OUTPUT);
digitalWrite(TxPin, HIGH);
}
void Dali::setRxAnalogPin(uint8_t pin)
{
RxAnalogPin = pin; // user sets the digital pin as output
}
void Dali::workAround1MhzTinyCore(uint8_t a)
{
applyWorkAround1Mhz = a;
}
void Dali::setupAnalogReceive(uint8_t pin)
{
setRxAnalogPin(pin); // user sets the analog pin as input
}
void Dali::setupTransmit(uint8_t pin)
{
setTxPin(pin);
speedFactor = 2;
//we don't use exact calculation of passed time spent outside of transmitter
//because of high ovehead associated with it, instead we use this
//emprirically determined values to compensate for the time loss
#if F_CPU == 1000000UL
uint16_t compensationFactor = 88; //must be divisible by 8 for workaround
#elif F_CPU == 8000000UL
uint16_t compensationFactor = 12;
#else //16000000Mhz
uint16_t compensationFactor = 4;
#endif
#if (F_CPU == 80000000UL) || (F_CPU == 160000000) // ESP8266 80MHz or 160 MHz
delay1 = delay2 = (HALF_BIT_INTERVAL >> speedFactor) - 2;
#else
delay1 = (HALF_BIT_INTERVAL >> speedFactor) - compensationFactor;
delay2 = (HALF_BIT_INTERVAL >> speedFactor) - 2;
period = delay1 + delay2;
#if F_CPU == 1000000UL
delay2 -= 22; //22+2 = 24 is divisible by 8
if (applyWorkAround1Mhz) { //definition of micro delay is broken for 1MHz speed in tiny cores as of now (May 2013)
//this is a workaround that will allow us to transmit on 1Mhz
//divide the wait time by 8
delay1 >>= 3;
delay2 >>= 3;
}
#endif
#endif
}
void Dali::transmit(uint8_t cmd1, uint8_t cmd2) // transmit commands to DALI bus (address byte, command byte)
{
sendBit(1);
sendByte(cmd1);
sendByte(cmd2);
digitalWrite(TxPin, HIGH);
}
void Dali::sendByte(uint8_t b)
{
for (int i = 7; i >= 0; i--)
{
sendBit((b >> i) & 1);
}
}
void Dali::sendBit(int b)
{
if (b) {
sendOne();
}
else {
sendZero();
}
}
void Dali::sendZero(void)
{
digitalWrite(TxPin, HIGH);
delayMicroseconds(delay2);
digitalWrite(TxPin, LOW);
delayMicroseconds(delay1);
}
void Dali::sendOne(void)
{
digitalWrite(TxPin, LOW);
delayMicroseconds(delay2);
digitalWrite(TxPin, HIGH);
delayMicroseconds(delay1);
}
void Dali::busTest() //DALI bus test
{
int maxLevel;
int minLevel;
//Luminaries must turn on and turn off. If not, check connection.
delay(100);
dali.transmit(BROADCAST_C, OFF_C); //Broadcast ON
delay(500);
dali.transmit(BROADCAST_C, ON_C); //Broadcast OFF
delay(100);
while (!Serial);
//Receive response from luminaries: max and min level
dali.transmit(BROADCAST_C, QUERY_STATUS);
maxLevel = dali.maxResponseLevel();
dali.transmit(BROADCAST_C, QUERY_STATUS);
minLevel = dali.minResponseLevel();
dali.analogLevel = (int)(maxLevel + minLevel) / 2;
}
void Dali::splitAdd(long input, uint8_t &highbyte, uint8_t &middlebyte, uint8_t &lowbyte)
{
highbyte = input >> 16;
middlebyte = input >> 8;
lowbyte = input;
}
// define min response level
int Dali::minResponseLevel()
{
const uint8_t dalistep = 40; //us
uint16_t rxmin = 1024;
uint16_t dalidata;
long idalistep;
for (idalistep = 0; idalistep < dali.daliTimeout; idalistep = idalistep + dalistep) {
dalidata = analogRead(RxAnalogPin);
if (dalidata < rxmin) {
rxmin = dalidata;
};
delayMicroseconds(dalistep);
}
return rxmin;
}
// define max response level
int Dali::maxResponseLevel()
{
const uint8_t dalistep = 40; //us
uint16_t rxmax = 0;
uint16_t dalidata;
long idalistep;
for (idalistep = 0; idalistep < dali.daliTimeout; idalistep = idalistep + dalistep) {
dalidata = analogRead(dali.RxAnalogPin);
if (dalidata > rxmax) {
rxmax = dalidata;
};
delayMicroseconds(dalistep);
}
return rxmax;
}
//scan for individual short address
void Dali::scanShortAdd()
{
const int delayTime = 10;
const uint8_t start_ind_adress = 0;
const uint8_t finish_ind_adress = 127;
uint8_t add_byte;
uint8_t device_short_add;
uint8_t response;
dali.transmit(BROADCAST_C, OFF_C); // Broadcast Off
delay(delayTime);
if (dali.msgMode) {
Serial.println("Short addresses:");
}
for (device_short_add = start_ind_adress; device_short_add <= 63; device_short_add++) {
add_byte = 1 + (device_short_add << 1); // convert short address to address byte
dali.transmit(add_byte, 0xA1);
response = dali.receive();
if (dali.getResponse) {
dali.transmit(add_byte, ON_C); // switch on
delay(1000);
dali.transmit(add_byte, OFF_C); // switch off
delay(1000);
}
else {
response = 0;
}
if (dali.msgMode) {
Serial.print("BIN: ");
Serial.print(device_short_add, BIN);
Serial.print(" ");
Serial.print("DEC: ");
Serial.print(device_short_add, DEC);
Serial.print(" ");
Serial.print("HEX: ");
Serial.print(device_short_add, HEX);
Serial.print(" ");
if (dali.getResponse) {
Serial.print("Get response");
}
else {
Serial.print("No response");
}
Serial.println();
}
else {
if (dali.getResponse) {
Serial.println(255, BIN);
}
else {
Serial.println(0, BIN);
}
}
}
dali.transmit(BROADCAST_C, ON_C); // Broadcast On
Serial.println();
delay(delayTime);
}
int Dali::readBinaryString(char *s)
{
int result = 0;
while (*s) {
result <<= 1;
if (*s++ == '1') result |= 1;
}
return result;
}
bool Dali::cmdCheck(String & input, int & cmd1, int & cmd2)
{
bool test = true;
input.replace(" ", ""); // Delete spaces
if (input.length() != 16) {
test = false; //check if command contain 16bit
}
else {
for (int i = 0; i <= input.length() - 1; i++) {
if ((int)input.charAt(i) == 49 or (int)input.charAt(i) == 48) {}
else {
test = false;
};
};
};
if (test) {
cmd1 = readBinaryString(input.substring(0, 8).c_str());
cmd2 = readBinaryString(input.substring(8, 16).c_str());
}
return test;
}
void Dali::initialisation() {
const int delaytime = 10; //ms
long low_longadd = 0x000000;
long high_longadd = 0xFFFFFF;
long longadd = (long)(low_longadd + high_longadd) / 2;
uint8_t highbyte;
uint8_t middlebyte;
uint8_t lowbyte;
uint8_t short_add = 0;
uint8_t cmd2;
delay(delaytime);
dali.transmit(BROADCAST_C, RESET);
delay(delaytime);
dali.transmit(BROADCAST_C, RESET);
delay(delaytime);
dali.transmit(BROADCAST_C, OFF_C);
delay(delaytime);
dali.transmit(0b10100101, 0b00000000); //initialise
delay(delaytime);
dali.transmit(0b10100101, 0b00000000); //initialise
delay(delaytime);
dali.transmit(0b10100111, 0b00000000); //randomise
delay(delaytime);
dali.transmit(0b10100111, 0b00000000); //randomise
if (dali.msgMode) {
Serial.println("Searching fo long addresses:");
}
while (longadd <= 0xFFFFFF - 2 and short_add <= 64) {
while ((high_longadd - low_longadd) > 1) {
dali.splitAdd(longadd, highbyte, middlebyte, lowbyte); //divide 24bit adress into three 8bit adresses
delay(delaytime);
dali.transmit(0b10110001, highbyte); //search HB
delay(delaytime);
dali.transmit(0b10110011, middlebyte); //search MB
delay(delaytime);
dali.transmit(0b10110101, lowbyte); //search LB
delay(delaytime);
dali.transmit(0b10101001, 0b00000000); //compare
if (minResponseLevel() > dali.analogLevel)
{
low_longadd = longadd;
}
else
{
high_longadd = longadd;
}
longadd = (low_longadd + high_longadd) / 2; //center
if (dali.msgMode) {
Serial.print("BIN: ");
Serial.print(longadd + 1, BIN);
Serial.print(" ");
Serial.print("DEC: ");
Serial.print(longadd + 1, DEC);
Serial.print(" ");
Serial.print("HEX: ");
Serial.print(longadd + 1, HEX);
Serial.println();
}
else {
Serial.println(longadd + 1);
}
} // second while
if (high_longadd != 0xFFFFFF)
{
splitAdd(longadd + 1, highbyte, middlebyte, lowbyte);
dali.transmit(0b10110001, highbyte); //search HB
delay(delaytime);
dali.transmit(0b10110011, middlebyte); //search MB
delay(delaytime);
dali.transmit(0b10110101, lowbyte); //search LB
delay(delaytime);
dali.transmit(0b10110111, 1 + (short_add << 1)); //program short adress
delay(delaytime);
dali.transmit(0b10101011, 0b00000000); //withdraw
delay(delaytime);
dali.transmit(1 + (short_add << 1), ON_C);
delay(1000);
dali.transmit(1 + (short_add << 1), OFF_C);
delay(delaytime);
short_add++;
if (dali.msgMode) {
Serial.println("Assigning a short address");
}
high_longadd = 0xFFFFFF;
longadd = (low_longadd + high_longadd) / 2;
}
else {
if (dali.msgMode) {
Serial.println("End");
}
}
} // first while
dali.transmit(0b10100001, 0b00000000); //terminate
dali.transmit(BROADCAST_C, ON_C); //broadcast on
}
uint8_t Dali::receive() {
unsigned long startFuncTime = 0;
bool previousLogicLevel = 1;
bool currentLogicLevel = 1;
uint8_t arrLength = 20;
int timeArray[arrLength];
int i = 0;
int k = 0;
bool logicLevelArray[arrLength];
int response = 0;
dali.getResponse = false;
startFuncTime = micros();
// add check for micros overlap here!!!
while (micros() - startFuncTime < dali.daliTimeout and i < arrLength)
{
// geting response
if (analogRead(dali.RxAnalogPin) > dali.analogLevel) {
currentLogicLevel = 1;
}
else {
currentLogicLevel = 0;
}
if (previousLogicLevel != currentLogicLevel) {
timeArray[i] = micros() - startFuncTime;
logicLevelArray[i] = currentLogicLevel;
previousLogicLevel = currentLogicLevel;
dali.getResponse = true;
i++;
}
}
arrLength = i;
//decoding to manchester
for (i = 0; i < arrLength - 1; i++) {
if ((timeArray[i + 1] - timeArray[i]) > 0.75 * dali.period) {
for (k = arrLength; k > i; k--) {
timeArray[k] = timeArray[k - 1];
logicLevelArray[k] = logicLevelArray[k - 1];
}
arrLength++;
timeArray[i + 1] = (timeArray[i] + timeArray[i + 2]) / 2;
logicLevelArray[i + 1] = logicLevelArray[i];
}
}
k = 8;
for (i = 1; i < arrLength; i++) {
if (logicLevelArray[i] == 1) {
if ((int)round((timeArray[i] - timeArray[0]) / (0.5 * dali.period)) & 1) {
response = response + (1 << k);
}
k--;
}
}
//remove start bit
response = (uint8_t)response;
return response;
}
Dali dali;