-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathops.py
40 lines (32 loc) · 1.63 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import tensorflow as tf
# Standard convolution layer
def conv2d(x, inputFeatures, outputFeatures, name):
with tf.variable_scope(name):
w = tf.get_variable("w", [5, 5, inputFeatures, outputFeatures],
initializer=tf.truncated_normal_initializer(stddev=0.02))
b = tf.get_variable("b", [outputFeatures], initializer=tf.constant_initializer(0.0))
conv = tf.nn.conv2d(x, w, strides=[1, 2, 2, 1], padding="SAME") + b
return conv
def conv_transpose(x, outputShape, name):
with tf.variable_scope(name):
w = tf.get_variable("w", [5, 5, outputShape[-1], x.get_shape()[-1]],
initializer=tf.truncated_normal_initializer(stddev=0.02))
b = tf.get_variable("b", [outputShape[-1]], initializer=tf.constant_initializer(0.0))
convt = tf.nn.conv2d_transpose(x, w, output_shape=outputShape, strides=[1, 2, 2, 1])
return convt
# leaky reLu unit
def lrelu(x, leak=0.2, name="lrelu"):
with tf.variable_scope(name):
f1 = 0.5 * (1 + leak)
f2 = 0.5 * (1 - leak)
return f1 * x + f2 * abs(x)
# fully-conected layer
def dense(x, inputFeatures, outputFeatures, scope=None, with_w=False):
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [inputFeatures, outputFeatures], tf.float32,
tf.random_normal_initializer(stddev=0.02))
bias = tf.get_variable("bias", [outputFeatures], initializer=tf.constant_initializer(0.0))
if with_w:
return tf.matmul(x, matrix) + bias, matrix, bias
else:
return tf.matmul(x, matrix) + bias