forked from Xiarain/Rain_IMU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAHRSESKF.cpp
415 lines (309 loc) · 11.5 KB
/
AHRSESKF.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#include "AHRSESKF.h"
#include <iostream>
#include <fstream>
#include <math.h>
#include <Eigen/core>
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include "Converter.h"
namespace RAIN_IMU
{
/**
* local angular error
*
**/
AHRSESKF::AHRSESKF()
{
}
AHRSESKF::~AHRSESKF()
{
}
void AHRSESKF::ReadSensorData()
{
std::cout << "read the sensor raw data" << std::endl;
const unsigned long int ROW = 36, VOL = DataLength;
double d[VOL][ROW];
std::ifstream in("RawData.txt");
for (unsigned long int i = 0; i < VOL; i++)
{
for (int j = 0; j < ROW; j++)
{
in >> d[i][j];
}
}
in.close();
SensorData sensordata;
for (unsigned long int i = 0; i < VOL; i++)
{
sensordata.nId = i;
sensordata.Acc.X = d[i][8];
sensordata.Acc.Y = d[i][9];
sensordata.Acc.Z = d[i][10];
sensordata.Gyro.X = d[i][26];
sensordata.Gyro.Y = d[i][27];
sensordata.Gyro.Z = d[i][28];
sensordata.Mag.X = d[i][14];
sensordata.Mag.Y = d[i][15];
sensordata.Mag.Z = d[i][16];
sensordata.EulerGroundTruth.Roll = d[i][29];
sensordata.EulerGroundTruth.Pitch = d[i][30];
sensordata.EulerGroundTruth.Yaw = d[i][31];
vSensorData.push_back(sensordata);
}
std::cout << "finish loading the dataset" << std::endl;
}
SensorData AHRSESKF::GetSensordatabyID(const long unsigned int nId, bool flagnorm)
{
SensorData sensordata = vSensorData.at(nId);
sensordata.nId = nId;
if (flagnorm == true)
{
double norm = std::sqrt(sensordata.Acc.X*sensordata.Acc.X + sensordata.Acc.Y*sensordata.Acc.Y + sensordata.Acc.Z*sensordata.Acc.Z);
sensordata.Acc.X /= norm;
sensordata.Acc.Y /= norm;
sensordata.Acc.Z /= norm;
norm = std::sqrt(sensordata.Gyro.X*sensordata.Gyro.X + sensordata.Gyro.Y*sensordata.Gyro.Y + sensordata.Gyro.Z*sensordata.Gyro.Z);
sensordata.Gyro.X /= norm;
sensordata.Gyro.Y /= norm;
sensordata.Gyro.Z /= norm;
norm = std::sqrt(sensordata.Mag.X*sensordata.Mag.X + sensordata.Mag.Y*sensordata.Mag.Y + sensordata.Mag.Z*sensordata.Mag.Z);
sensordata.Mag.X /= norm;
sensordata.Mag.Y /= norm;
sensordata.Mag.Z /= norm;
}
else;
return sensordata;
}
Eigen::Vector3d AHRSESKF::Initialize(const SensorData &sensordata)
{
double pitch, roll, yaw;
pitch = atan2(sensordata.Acc.X, sqrt(sensordata.Acc.Y*sensordata.Acc.Y + sensordata.Acc.Z*sensordata.Acc.Z));
roll = atan2(-sensordata.Acc.Y, -sensordata.Acc.Z);
double r1 = -sensordata.Mag.Y*cos(roll) + sensordata.Mag.Z*sin(roll);
double r2 = sensordata.Mag.X*cos(pitch) + sensordata.Mag.Y*sin(pitch)*sin(roll) + sensordata.Mag.Z*sin(pitch)*cos(roll);
yaw = atan2(r1, r2) - 8.3 * DEG_RAD;
return Eigen::Vector3d(yaw, pitch, roll);
}
void AHRSESKF::InitializeVarMatrix(Eigen::Matrix<double, 6, 6> &Q, Eigen::Matrix<double, 6, 6> &R, Eigen::Matrix<double, 6, 6> &P)
{
// it is very important, the MatrixXd::Identity can not initialize the whole matrix.
P = Eigen::MatrixXd::Zero(6, 6);
Q = Eigen::MatrixXd::Zero(6, 6);
R = Eigen::MatrixXd::Zero(6, 6);
const double wn_var = 1e-5;
const double wbn_var = 1e-9;
const double an_var = 1e-3;
const double mn_var = 1e-4;
const double q_var = 1e-5;
const double wb_var = 1e-7;
Q.block<3, 3>(0, 0) = wn_var * Eigen::MatrixXd::Identity(3, 3);
Q.block<3, 3>(3, 3) = wbn_var * Eigen::MatrixXd::Identity(3, 3);
R.block<3, 3>(0, 0) = an_var * Eigen::MatrixXd::Identity(3, 3);
R.block<3, 3>(3, 3) = mn_var * Eigen::MatrixXd::Identity(3, 3);
P.block<3, 3>(0, 0) = q_var * Eigen::MatrixXd::Identity(3, 3);
P.block<3, 3>(3, 3) = wb_var * Eigen::MatrixXd::Identity(3, 3);
}
void AHRSESKF::PredictNominalState(const SensorData sensordata, const SensorData sensordata2, const double T)
{
// there are three methods that can calculate the nominal state, but no differece in those three methods.
//====================================== quaternion left product
//Eigen::Quaterniond qw;
//qw.w() = 1; // this value need to deep consider? TODO
//qw.x() = 0.5*T*((sensordata.Gyro.X + sensordata2.Gyro.X)/2 - NominalStates.wb[0]);
//qw.y() = 0.5*T*((sensordata.Gyro.Y + sensordata2.Gyro.Y)/2 - NominalStates.wb[1]);
//qw.z() = 0.5*T*((sensordata.Gyro.Z + sensordata2.Gyro.Z)/2 - NominalStates.wb[2]);
//NominalStates.q = Converter::vector4d2quat(Converter::quatleftproduct(NominalStates.q) * Converter::quat2vector4d(qw));
//====================================== capital omega matrix method
/*Eigen::Vector3d vqw;
vqw[0] = (sensordata.Gyro.X + sensordata2.Gyro.X)/2 - NominalStates.wb[0];
vqw[1] = (sensordata.Gyro.Y + sensordata2.Gyro.Y)/2 - NominalStates.wb[1];
vqw[2] = (sensordata.Gyro.Z + sensordata2.Gyro.Z)/2 - NominalStates.wb[2];
vqw = T*vqw;
Eigen::Matrix<double, 4, 4> BigOmegaMatrix = Converter::BigOmegaMatrix(vqw);
NominalStates.q = Converter::vector4d2quat(0.5*BigOmegaMatrix*Converter::quat2vector4d(NominalStates.q) + Converter::quat2vector4d(NominalStates.q));*/
//===================================== captial ksai matrix method
//Eigen::Vector3d vqw;
//vqw[0] = (sensordata.Gyro.X + sensordata2.Gyro.X)/2 - NominalStates.wb[0];
//vqw[1] = (sensordata.Gyro.Y + sensordata2.Gyro.Y)/2 - NominalStates.wb[1];
//vqw[2] = (sensordata.Gyro.Z + sensordata2.Gyro.Z)/2 - NominalStates.wb[2];
//vqw = T*vqw;
//Eigen::Matrix<double, 4, 3> CapKsaiMatrix = Converter::CapKsaiMatrix(NominalStates.q);
//NominalStates.q = Converter::vector4d2quat(0.5*CapKsaiMatrix*vqw + Converter::quat2vector4d(NominalStates.q));
//===================================== close solution method
Eigen::Vector3d omega;
omega[0] = (sensordata.Gyro.X + sensordata2.Gyro.X)/2 - NominalStates.wb[0];
omega[1] = (sensordata.Gyro.Y + sensordata2.Gyro.Y)/2 - NominalStates.wb[1];
omega[2] = (sensordata.Gyro.Z + sensordata2.Gyro.Z)/2 - NominalStates.wb[2];
double absomega = 0;
Eigen::Matrix<double, 4, 4> Captheta;
Eigen::Matrix<double, 4, 4> Capomega;
absomega = sqrt(omega.transpose()*omega);
Capomega = Converter::BigOmegaMatrix(omega);
Captheta = cos(0.5*T*absomega) * Eigen::MatrixXd::Identity(4, 4) + (1/absomega)*sin(0.5*T*absomega)*Capomega;
NominalStates.q = Converter::vector4d2quat(Captheta * Converter::quat2vector4d(NominalStates.q));
Converter::quatNormalize(NominalStates.q);
NominalStates.wb = NominalStates.wb;
}
Eigen::Matrix<double, 6, 6> AHRSESKF::CalcTransitionMatrix(const SensorData sensordata, const double T)
{
Eigen::Matrix<double, 6, 6> Fx = Eigen::MatrixXd::Zero(6, 6);
Eigen::Vector3d omega(sensordata.Gyro.X - NominalStates.wb[0], sensordata.Gyro.Y - NominalStates.wb[1], sensordata.Gyro.Z - NominalStates.wb[2]);
omega = omega * T;
// With the Rodrigues'formula, get the rorations matrix. reference: joan sola 3D algebra for vision system in robotics P14.
double theta = sqrt(omega[0]*omega[0] + omega[1]*omega[1] + omega[2]*omega[2]);
Eigen::Vector3d u(omega[0]/theta, omega[1]/theta, omega[2]/theta);
Eigen::Matrix<double, 3, 3> omegaMatrix = Converter::CrossProductMatrix(u);
Eigen::Matrix<double, 3, 3> R = Eigen::MatrixXd::Identity(3, 3) + sin(theta)*omegaMatrix + omegaMatrix.transpose()*omegaMatrix*(1 - cos(theta));
Fx.block<3, 3>(0, 0) = R.transpose();
Fx.block<3, 3>(0, 3) = -T*Eigen::MatrixXd::Identity(3, 3);
Fx.block<3, 3>(3, 3) = Eigen::MatrixXd::Identity(3, 3);
Fx.block<3, 3>(3, 0) = Eigen::MatrixXd::Zero(3, 3);
return Fx;
}
void AHRSESKF::PredictErrorState(const Eigen::Matrix<double, 6, 6> &Fx)
{
Eigen::Matrix<double, 1, 6> det_x;
det_x.block<1,3>(0, 0) = ErrorStates.det_theta;
det_x.block<1,3>(0, 3) = ErrorStates.det_wb;
det_x = Fx * det_x.transpose();
ErrorStates.det_theta = det_x.block<1, 3>(0, 0);
ErrorStates.det_wb = det_x.block<1, 3>(0, 3);
}
void AHRSESKF::EnforcePSD(Eigen::Matrix<double, 6, 6> &P)
{
int i, j;
for (i = 0; i < P.rows(); i++)
{
for (j = 0; j < P.cols(); j++)
{
if (i == j)
{
P(i,j) = abs(P(i,j));
}
else
{
double meanvalue = 0.5*(P(i,j) + P(j,i));
P(i,j) = meanvalue;
P(j,i) = meanvalue;
}
}
}
}
void AHRSESKF::CalcObservationMatrix(Eigen::Matrix<double, 6, 6> &Hk,Eigen::Matrix<double, 1, 6> &hk, const SensorData sensordata, const double T)
{
Eigen::Quaterniond mk, hmk,q,qinv;
Eigen::Vector4d b;
// this assignment just for the code look more easy.
q = NominalStates.q;
mk.w() = 0;
mk.x() = sensordata.Mag.X;
mk.y() = sensordata.Mag.Y;
mk.z() = sensordata.Mag.Z;
qinv.w() = q.w();
qinv.x() = -q.x();
qinv.y() = -q.y();
qinv.z() = -q.z();
//hmk = NominalStates.q * mk * qinv;
hmk = Converter::quatMultiquat(q,Converter::quatMultiquat(mk, qinv));
b[1] = sqrt(hmk.x()*hmk.x() + hmk.y()*hmk.y());
b[3] = hmk.z();
// Hk
Eigen::Matrix<double, 3, 4> Hk1;
Eigen::Matrix<double, 3, 4> Hk2;
Eigen::Matrix<double, 6, 7> Hx;
Hk1 << 2*q.y(), -2*q.z(), 2*q.w(), -2*q.x(),
-2*q.x(), -2*q.w(), -2*q.z(), -2*q.y(),
0, 4*q.x(), 4*q.y(), 0;
Hk2 << -2*b[3]*q.y(), 2*b[3]*q.z(), -4*b[1]*q.y() - 2*b[3]*q.w(), -4*b[1]*q.z() + 2*b[3]*q.x(),
-2*b[1]*q.z() + 2*b[3]*q.x(), 2*b[1]*q.y() + 2*b[3]*q.w(), 2*b[1]*q.x() + 2*b[3]*q.z(), -2*b[1]*q.w() + 2*b[3]*q.y(),
2*b[1]*q.y(), 2*b[1]*q.z() - 4*b[3]*q.x(), 2*b[1]*q.w() - 4*b[3]*q.y(), 2*b[1]*q.x();
Hx = Eigen::MatrixXd::Zero(6, 7);
Hx.block<3, 4>(0, 0) = Hk1;
Hx.block<3, 4>(3, 0) = Hk2;
Eigen::Matrix<double, 4, 3> Qdettheta;
Eigen::Matrix<double, 7, 6> Xdetx = Eigen::MatrixXd::Zero(7, 6);
//Qdettheta << -q.x(), -q.y(), -q.z(),
// q.w(), -q.z(), q.y(),
// q.z(), q.w(), -q.x(),
// -q.y(), q.x(), q.w();
//Qdettheta = 0.5 * Qdettheta;
Qdettheta.block<3, 3>(1, 0) = Eigen::MatrixXd::Identity(3, 3);
Qdettheta.row(0) = Eigen::MatrixXd::Zero(1, 3);
Qdettheta = 0.5 * Converter::quatleftproduct(q) * Qdettheta;
Xdetx.block<4, 3>(0, 0) = Qdettheta;
Xdetx.block<3, 3>(4, 3) = Eigen::MatrixXd::Identity(3, 3);
Hk = Eigen::MatrixXd::Zero(6, 6);
Hk = Hx*Xdetx;
// hk
Eigen::Matrix<double, 1, 3> hk1, hk2;
hk1 << 2*(q.x()*q.z() - q.w()*q.y()), 2*(q.y()*q.z() + q.w()*q.x()), (q.w()*q.w() - q.x()*q.x() - q.y()*q.y() + q.z()*q.z());
hk2 << b[1]*(q.w()*q.w() + q.x()*q.x() - q.y()*q.y() - q.z()*q.z()) + 2*b[3]*(q.x()*q.z() - q.w()*q.y()),
2*b[1]*(q.x()*q.y() - q.w()*q.z()) + 2*b[3]*(q.w()*q.x() + q.y()*q.z()),
2*b[1]*(q.w()*q.y() + q.x()*q.z()) + b[3]*(q.w()*q.w() - q.x()*q.x() - q.y()*q.y() + q.z()*q.z());
hk.block<1, 3>(0, 0) = hk1;
hk.block<1, 3>(0, 3) = hk2;
}
void AHRSESKF::ObserveValue(Eigen::Matrix<double, 1, 6> &z, const SensorData sensordatanorm)
{
z[0] = sensordatanorm.Acc.X;
z[1] = sensordatanorm.Acc.Y;
z[2] = sensordatanorm.Acc.Z;
z[3] = sensordatanorm.Mag.X;
z[4] = sensordatanorm.Mag.Y;
z[5] = sensordatanorm.Mag.Z;
}
Eigen::Matrix<double, 1, 7> AHRSESKF::State2Vector(const State &state)
{
Eigen::Matrix<double, 1, 7> vx;
vx[0] = state.q.w();
vx[1] = state.q.x();
vx[2] = state.q.y();
vx[3] = state.q.z();
vx[4]= state.wb[0];
vx[5]= state.wb[1];
vx[6]= state.wb[2];
return vx;
}
State AHRSESKF::Vector2State(const Eigen::Matrix<double, 1, 7> &x)
{
State state;
state.q.w() = x[0];
state.q.x() = x[1];
state.q.y() = x[2];
state.q.z() = x[3];
state.wb[0] = x[4];
state.wb[1] = x[5];
state.wb[2] = x[6];
return state;
}
Eigen::Quaterniond AHRSESKF::BuildUpdateQuat(ErrorState errorstate)
{
Eigen::Vector3d deltaq;
Eigen::Vector4d vquat;
Eigen::Quaterniond quat;
double norm;
deltaq = 0.5 * errorstate.det_theta;
norm = deltaq.transpose()*deltaq;
if (norm > 1)
{
vquat[0] = 1;
vquat[1] = deltaq[0];
vquat[2] = deltaq[1];
vquat[3] = deltaq[2];
vquat = vquat / (sqrt(1 + norm));
}
else
{
vquat[0] = sqrt(1 - norm);
vquat[1] = deltaq[0];
vquat[2] = deltaq[1];
vquat[3] = deltaq[2];
}
quat.w() = vquat[0];
quat.x() = vquat[1];
quat.y() = vquat[2];
quat.z() = vquat[3];
Converter::quatNormalize(quat);
return quat;
}
}