forked from wbhart/nemoweb
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfeatures.txt
76 lines (61 loc) · 2.64 KB
/
features.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
<h2>Features</h2>
<p>Nemo is a Julia package which contains wrappers of C/C++ libraries. It also
reexports all the functionality of AbstractAlgebra.jl, which provides generic
structures and algorithms. Below we describe some of the features.</p>
<h3>AbstractAlgebra.jl generics</h3>
<ul>
<li>Power series and Laurent series</li>
<li>Univariate and multivariate Polynomials</li>
<li>Residue rings</li>
<li>Matrices</li>
<li>Fraction fields</li>
</ul>
<h3>Nemo wrappers</h3>
<h4>Flint</h4>
<ul>
<li>fmpz - Integers</li>
<li>fmpq - Rationals</li>
<li>padic - Padics</li>
<li>fmpz_mat - matrices over the integers</li>
<li>fmpq_mat - matrices over the rationals</li>
<li>nmod_mat - matrices over Z/nZ for small n</li>
<li>fmpz_poly - polynomials over the integers</li>
<li>fmpq_poly - polynomials over the rationals</li>
<li>nmod_poly - polynomials over Z/nZ for small n</li>
<li>fmpz_mod_poly - polynomials over Z/nZ for large n</li>
<li>fmpz_series - power series over the integers</li>
<li>fmpq_series - power series over the rationals</li>
<li>nmod_series - power series over Z/nZ for small n</li>
<li>fmpz_mod_series - power series over Z/nZ for small n</li>
<li>fq - finite fields for multiprecision characteristic</li>
<li>fq_nmod - finite fields for small characteristic</li>
<li>fq_poly - polynomials over finite fields for multiprecision characteristic</li>
<li>fq_nmod_poly - polynomials over finite fields for small characteristic</li>
<li>fq_series - power series over finite fields for multiprecision characteristic</li>
<li>fq_nmod_series - power series over finite fields for small characteristic</li>
</ul>
<h4>Antic</h4>
<ul>
<li>nf_elem - number fields</li>
</ul>
<h4>Arb</h4>
<ul>
<li>arb - arbitrary precision real balls</li>
<li>acb - arbitrary precision complex balls</li>
<li>arb_poly - polynomials over arbitrary precision real balls</li>
<li>acb_poly - polynomials over arbitrary precision complex balls</li>
<li>arb_mat - matrices over arbitrary precision real balls</li>
<li>acb_mat - matrices over arbitrary precision complex balls</li>
</ul>
<h3>Libraries that use Nemo</h3>
<h4>Hecke.jl</h4>
<p>Hecke.jl provides ideals, orders, class groups, sparse linear algebra, class
field theory and various other things related to algebraic number theory.</p>
<a
href="https://github.com/thofma/Hecke.jl">https://github.com/thofma/Hecke.jl</a>
<h4>Singular.jl</h4>
<p>Singular.jl provides a wrapper of the Singular kernel, providing access to
fast Groebner basis code, multivariates designed for GB's and ideals, modules
and the like, over such polynomial rings.</p>
<a
href="https://github.com/oscar-system/Singular.jl/">https://github.com/oscar-system/Singular.jl/</a>