-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
65 lines (54 loc) · 2.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""
Nick Kaparinos
Google Landmark Recognition 2021
Kaggle Competition
"""
from utilities import *
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
if __name__ == "__main__":
start = time.perf_counter()
IMG_SIZE = 200
classes = 81313
# Tensorboard
LOG_DIR = 'logs/pytorch'
writer = SummaryWriter(log_dir=LOG_DIR)
# Seeds
seed(0)
np.random.seed(0)
torch.manual_seed(0)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using: {device}")
# Read labels
path = "/home/nickkaparinos/Nikos/"
labels = pd.read_csv(filepath_or_buffer="/home/nickkaparinos/Nikos/train.csv")
unique_classes = np.unique(labels.iloc[:, 1])
# Dataloaders
validation_dataset = CustomDataset(batch_size=1, data_path=path + '/validation_set',
labels_dataframe_path=path + '/validation_dataframe.csv', IMG_SIZE=IMG_SIZE,
unique_classes=unique_classes, is_validation_dataset=True)
validation_dataloader = DataLoader(dataset=validation_dataset, batch_size=64, shuffle=True, num_workers=4,
prefetch_factor=4)
training_dataset = CustomDataset(batch_size=1, data_path=path + '/training_set',
labels_dataframe_path=path + '/training_dataframe.csv', IMG_SIZE=IMG_SIZE,
unique_classes=unique_classes, is_validation_dataset=False)
training_dataloader = DataLoader(dataset=training_dataset, batch_size=64, shuffle=True, num_workers=4,
prefetch_factor=4)
del labels
del unique_classes
# Model # tensorboard --logdir "Google Landmark Recognition 2021\logs"
model = PytorchTransferModel().to(device)
learning_rate = 1e-3
epochs = 3
loss_fn = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
# Training
for epoch in range(epochs):
print(f"-----------------Epoch {epoch + 1}-----------------")
pytorch_train_loop(training_dataloader, model, loss_fn, optimizer, writer, epoch, device)
pytorch_embedding_test(training_dataloader, validation_dataloader, model, writer, epoch, device)
# Save model
torch.save(model.state_dict(), 'model.pth')
# Execution Time
end = time.perf_counter()
print(f"\nExecution time = {end - start:.2f} second(s)")