-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutilities.py
473 lines (399 loc) · 15.9 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
"""
Instance-Segmentation-Projects
Nick Kaparinos
2021
"""
import datetime
import errno
import json
import os
import random
import time
from collections import defaultdict, deque
import cv2
import numpy as np
import torch
import torch.distributed as dist
import torchvision
from PIL import Image, ImageDraw
from detectron2.data import Metadata
from detectron2.structures.instances import Instances
from detectron2.utils.visualizer import Visualizer, ColorMode
from torch.utils.data import DataLoader
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
class BalloonDataset(torch.utils.data.Dataset):
def __init__(self, data_path):
self.data_path = data_path
json_file = data_path + 'via_region_data.json'
image_list = os.listdir(data_path)
image_list = [i for i in image_list if '.jpg' in i]
self.image_list = image_list
with open(json_file) as f:
self.annotations = json.load(f)
def __len__(self):
return len(self.annotations)
def __getitem__(self, index):
for idx, image_dict in enumerate(self.annotations.values()):
if idx != index:
continue
img_array = cv2.imread(self.data_path + image_dict['filename'])
N = len(image_dict['regions'])
H = img_array.shape[0]
W = img_array.shape[1]
boxes = torch.ones((N, 4), dtype=torch.float32)
masks = torch.zeros((N, H, W), dtype=torch.uint8)
for index2, (_, instance_dict) in enumerate(image_dict['regions'].items()):
# Mask
x_points = instance_dict['shape_attributes']['all_points_x']
y_points = instance_dict['shape_attributes']['all_points_y']
points = [(i, j) for i, j in zip(x_points, y_points)]
img = Image.new('L', (W, H), 0)
ImageDraw.Draw(img).polygon(points, outline=1, fill=1)
mask = np.array(img)
masks[index2] = torch.tensor(mask)
# Bbox
bbox = [np.min(x_points), np.min(y_points), np.max(x_points), np.max(y_points)]
boxes[index2] = torch.tensor(bbox)
labels = torch.ones((N), dtype=torch.int64)
iscrowd = torch.zeros((N,), dtype=torch.int64)
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
image_id = torch.tensor([self.image_list.index(image_dict['filename'])])
target = {'boxes': boxes, 'labels': labels, 'masks': masks, 'image_id': image_id, 'area': area,
'iscrowd': iscrowd}
break
img_array = torch.tensor(img_array, dtype=torch.float32) / 255
img_array = img_array.permute(2, 0, 1)
return img_array, target
class PedestrianDataset(object):
def __init__(self, data_path):
self.data_path = data_path
self.images = list(sorted(os.listdir(os.path.join(data_path, "PNGImages"))))
self.masks = list(sorted(os.listdir(os.path.join(data_path, "PedMasks"))))
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
# Load images and masks
img_path = os.path.join(self.data_path, "PNGImages", self.images[idx])
mask_path = os.path.join(self.data_path, "PedMasks", self.masks[idx])
img = cv2.imread(img_path)
img = torch.tensor(img) / 255
img = img.permute(2, 0, 1)
mask = Image.open(mask_path)
mask = np.array(mask)
obj_ids = np.unique(mask)
obj_ids = obj_ids[1:]
masks = mask == obj_ids[:, None, None]
# Bbox
num_objs = len(obj_ids)
boxes = []
for i in range(num_objs):
pos = np.where(masks[i])
xmin = np.min(pos[1])
xmax = np.max(pos[1])
ymin = np.min(pos[0])
ymax = np.max(pos[0])
boxes.append([xmin, ymin, xmax, ymax])
boxes = torch.as_tensor(boxes, dtype=torch.float32)
labels = torch.ones((num_objs,), dtype=torch.int64)
masks = torch.as_tensor(masks, dtype=torch.uint8)
image_id = torch.tensor([idx])
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
iscrowd = torch.zeros((num_objs,), dtype=torch.int64)
target = {'boxes': boxes, 'labels': labels, 'masks': masks, 'image_id': image_id, 'area': area,
'iscrowd': iscrowd}
return img, target
def get_mask_rcnn_model(num_classes):
""" Build and return mask RCNN model """
model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True, box_detections_per_img=100)
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
hidden_layer = 256
model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask, hidden_layer, num_classes)
return model
def visualise(image, annotations, log_dir, image_num=0, mask_color=(0, 255, 0), thing_name='thing', score_threshold=0.5,
scale=1, ground_truth=False) -> None:
"""
Visualisation of maskRCNN instance segmentation predictions using detectron2
:param image: (H,W,C) image
:param annotations: pytorch maskRCNN output or ground truth
:param image_num: image number
:param mask_color: color of the segmentation mask tuple (int,int,int) or 'random'
:param thing_name: name of the thing class
:param score_threshold: threshold of the prediction score in order to be visualised
:param ground_truth: boolean, whether annotations are ground truth
"""
# Metadata
metadata = Metadata(name=thing_name, thing_classes=[thing_name])
if mask_color != 'random':
metadata.set(thing_colors=[mask_color])
# Convert pytorch output to detectron2 output
predictions = {}
predictions['pred_boxes'] = annotations[0]['boxes'].detach().to('cpu').numpy()
if ground_truth:
N = annotations[0]['boxes'].shape[0]
predictions['scores'] = torch.ones(N, )
else:
predictions['scores'] = annotations[0]['scores'].to('cpu')
predictions['pred_classes'] = annotations[0]['labels'].to(
'cpu') - 1 # -1 because detectron2 needs the thing class index
predictions['pred_masks'] = torch.squeeze(annotations[0]['masks'].to('cpu'), 1) > 0.5
# Remove instance predictions with score lower than threshold
predictions['pred_boxes'] = predictions['pred_boxes'][predictions['scores'].detach().numpy() > score_threshold]
predictions['pred_classes'] = predictions['pred_classes'][predictions['scores'] > score_threshold]
predictions['pred_masks'] = predictions['pred_masks'][predictions['scores'] > score_threshold]
predictions['scores'] = predictions['scores'][predictions['scores'] > score_threshold]
prediction_instances = Instances(image_size=(image.shape[0], image.shape[1]), **predictions)
# Visualise
image = image.detach().cpu().numpy()
image_cpy = image.copy()
visualizer = Visualizer(image[:, :, ::-1] * 255, metadata=metadata, scale=scale,
instance_mode=ColorMode.SEGMENTATION)
out = visualizer.draw_instance_predictions(prediction_instances)
image_segm = out.get_image()[:, :, ::-1]
image_name = f'image_{image_num}'
# cv2.imshow(image_name, image_cpy)
# cv2.waitKey(0)
cv2.imwrite(log_dir + image_name + '.jpg', image_cpy * 255)
if ground_truth:
image_name += '_ground_truth'
image_name += '_segmentation'
# cv2.imshow(image_name, image_segm)
# cv2.waitKey(0)
cv2.imwrite(log_dir + image_name + '.jpg', image_segm)
def set_all_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
def collate_fn(batch):
return tuple(zip(*batch))
class SmoothedValue:
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
)
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
data_list = [None] * world_size
dist.all_gather_object(data_list, data)
return data_list
def reduce_dict(input_dict, average=True):
"""
Args:
input_dict (dict): all the values will be reduced
average (bool): whether to do average or sum
Reduce the values in the dictionary from all processes so that all processes
have the averaged results. Returns a dict with the same fields as
input_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return input_dict
with torch.inference_mode():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
dist.all_reduce(values)
if average:
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values)}
return reduced_dict
class MetricLogger:
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'")
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(f"{name}: {str(meter)}")
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ""
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt="{avg:.4f}")
data_time = SmoothedValue(fmt="{avg:.4f}")
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
if torch.cuda.is_available():
log_msg = self.delimiter.join(
[
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
"max mem: {memory:.0f}",
]
)
else:
log_msg = self.delimiter.join(
[header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB,
)
)
else:
print(
log_msg.format(
i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
)
)
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(f"{header} Total time: {total_time_str} ({total_time / len(iterable):.4f} s / it)")
def mkdir(path):
try:
os.makedirs(path)
except OSError as e:
if e.errno != errno.EEXIST:
raise
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop("force", False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ["WORLD_SIZE"])
args.gpu = int(os.environ["LOCAL_RANK"])
elif "SLURM_PROCID" in os.environ:
args.rank = int(os.environ["SLURM_PROCID"])
args.gpu = args.rank % torch.cuda.device_count()
else:
print("Not using distributed mode")
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = "nccl"
print(f"| distributed init (rank {args.rank}): {args.dist_url}", flush=True)
torch.distributed.init_process_group(
backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
)
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)