-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanimation.py
56 lines (44 loc) · 1.91 KB
/
animation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
import matplotlib.pyplot as plt
def create_connections(n, points, ax):
connections = []
for i in range(n):
for j in range(i + 1, n):
connections.append(ax.plot([points[i, 0], points[j, 0]], [points[i, 1], points[j, 1]], 'r-', alpha=0)[0])
return connections
def create_best_path(nodes, path, ax):
vertexes = []
for i in range(-1, len(path)-1):
vp, vn = path[i], path[i+1]
vertexes = vertexes + ax.plot([nodes[vp, 0], nodes[vn, 0]], [nodes[vp, 1], nodes[vn, 1]], 'g-')
return vertexes
def update_alpha(value_matrix, connections):
value_matrix = value_matrix / np.sum(value_matrix, axis=1)
k = 0
for i in range(value_matrix.shape[0]):
for j in range(i+1, value_matrix.shape[0]):
connections[k].set_alpha(value_matrix[i, j])
k += 1
return connections
def update_best_path(nodes, path, vertexes):
for i in range(-1, len(path)-1):
vp, vn = path[i], path[i+1]
vertexes[i+1].set_xdata([nodes[vp, 0], nodes[vn, 0]])
vertexes[i+1].set_ydata([nodes[vp, 1], nodes[vn, 1]])
return vertexes
def create_animation_figure(tsp, acs):
fig, axs = plt.subplots(1, 2, figsize=(20, 10))
nodes = tsp.get_nodes()
axs[0].scatter(nodes[:, 0], nodes[:, 1])
axs[0].set_title("Vertex Probabilities")
axs[1].scatter(nodes[:, 0], nodes[:, 1])
axs[1].set_title("Optimal Utility Path")
connections = create_connections(tsp.get_n_nodes(), nodes, axs[0])
best_path = create_best_path(nodes, acs.get_current_best_path()[0], axs[1])
return fig, axs, connections, best_path
def animate(connections, best_path, nodes, acs, steps_per_frame=1):
for k in range(steps_per_frame):
acs.step()
connections = update_alpha(acs.get_value_matrix(), connections)
vertexes = update_best_path(nodes, acs.get_current_best_path()[0], best_path)
return connections + vertexes