-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsat_with_meta.py
2516 lines (2319 loc) · 109 KB
/
sat_with_meta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
import re
import argparse
import random
import subprocess
import time
import matplotlib.pyplot as plt
import numpy
from graphviz import Digraph
from deap import base
from deap import creator
from deap import tools
from source import *
from copy import deepcopy
#from deap.benchmarks.tools import hypervolume
from pygmo import hypervolume
import configparser
scenario = None
random.seed(124)
def gen_opt(opt_path,num_task,seed_value):
print("Generating tgffopt file")
num_graphs=4
task_count=num_task
task_type_cnt=40
with open(opt_path, 'w') as f:
f.write(f"seed {seed_value}\n")
f.write("tg_label TASK_GRAPH\n")
f.write(f"tg_cnt {num_graphs}\n")
f.write(f"task_cnt {task_count} 0.5\n")
f.write(f"task_type_cnt {task_type_cnt}\n")
f.write(f"period_mul 1\n")
f.write(f"task_trans_time 1\n")
f.write(f"task_degree 2 3\n")
#Important to keep each task unique in our DSE
f.write(f"task_unique false\n")
f.write(f"tg_write\n")
f.write(f"eps_write\n")
def extend_tg(tg_path,template):
print("adding template to end of generated file")
with open(template, 'r') as f:
contents=f.readlines()
with open(tg_path, 'a') as f:
f.writelines(contents)
def get_blocks(input_file):
buf=[]
for line in input_file:
if line and line.strip() and line.startswith("@"):
buf =[]
buf.append(line.strip())
if not line.strip().endswith("{"):
yield buf
buf = []
elif line and line.strip() and line.startswith("}"):
yield buf
elif line and line.strip():
buf.append(line.strip())
def process_block(block):
global scenario
if "TASK_GRAPH" in block[0]:
tg_name = None
period = None
for line in block:
if line.startswith("@"):
tg_name = line.strip('@').strip('{')
#print(tg_name)
elif line.startswith("PERIOD"):
period = float(line.strip(' PERIOD'))
scenario.graphs[tg_name]=Graph(tg_name,period)
#print(period)
break
for line in block:
if line.startswith("TASK"):
scenario.graphs[tg_name].add_task(line.strip('TASK '))
elif line.startswith("ARC"):
scenario.graphs[tg_name].add_arc(line.strip('ARC '))
elif line.startswith("SOFT_DEADLINE"):
scenario.graphs[tg_name].add_soft_deadline(line.strip('SOFT_DEADLINE '))
elif line.startswith("HARD_DEADLINE"):
scenario.graphs[tg_name].add_hard_deadline(line.strip('HARD_DEADLINE '))
elif "CLIENT_PE" in block[0] or "PROC" in block[0] or "CORE" in block[0]:
# or " 6 " in block[0] or " 14 " in block[0]
if " 0 " in block[0] or " 2 " in block[0] or " 3 " in block[0] or " 4 " in block[0] or " 6 " in block[0] or " 7 " in block[0] or " 14 " in block[0]:
core_name = None
i = 0
core_name= block[0].strip('@').strip('{').replace(" ","")
print(core_name)
scenario.all_tables[core_name]=Table(core_name,block[1].strip('#'),block[2].strip('#'),block[4].strip('#'))
for i in range(5, len(block)):
if not block[i].startswith('#'):
scenario.all_tables[core_name].add_row(block[i])
elif "HYPERPERIOD" in block[0]:
scenario.hyperperiod= float(block[0].strip('@HYPERPERIOD '))
elif "COMMUN_QUANT" in block[0]:
for i in range(len(block)):
if(i==0):
continue
vals=block[i].split()
scenario.communication[vals[0]]=float(vals[1])
def assign_priorities():
global scenario
for graph in scenario.graphs:
#Assigning the task priorities
for task in scenario.graphs[graph].tasks:
for arc in scenario.graphs[graph].arcs:
task_to=scenario.graphs[graph].arcs[arc].task_to
task_from=(scenario.graphs[graph].arcs[arc].task_from)
if scenario.graphs[graph].tasks[task_to].priority<(scenario.graphs[graph].tasks[task_from].priority+1):
scenario.graphs[graph].tasks[task_to].priority=(scenario.graphs[graph].tasks[task_from].priority+1)
def populate_message_params():
global scenario
for graph in scenario.graphs:
for arc in scenario.graphs[graph].arcs:
type=scenario.graphs[graph].arcs[arc].type
if type in scenario.communication.keys():
scenario.graphs[graph].arcs[arc].quant=scenario.communication[type]
def populate_task_params():
global scenario
for graph in scenario.graphs:
for task in scenario.graphs[graph].tasks:
task_feasible=False
scenario.graphs[graph].tasks[task].pe_list=[]
scenario.graphs[graph].tasks[task].wcet={}
scenario.graphs[graph].tasks[task].power={}
scenario.graphs[graph].tasks[task].code_bits={}
scenario.graphs[graph].tasks[task].preempt_time={}
type_of_task=scenario.graphs[graph].tasks[task].type
for table in scenario.tables:
if scenario.tables[table].values[type_of_task][0]==type_of_task:
if int(scenario.tables[table].values[type_of_task][2])==1:
task_feasible=True
#adding the PE to the pe_list of each task
scenario.graphs[graph].tasks[task].pe_list.append(table)
scenario.graphs[graph].tasks[task].num_of_pe+=1
#adding the WCET on the PE for each task
scenario.graphs[graph].tasks[task].wcet[table]=float(scenario.tables[table].values[type_of_task][3])*(1e6)
#adding the task_power on the PE to the task arc_details
scenario.graphs[graph].tasks[task].power[table]=float(scenario.tables[table].values[type_of_task][6])
#adding code bits to the task details
scenario.graphs[graph].tasks[task].code_bits[table]=float(scenario.tables[table].values[type_of_task][5])
#adding preemeption_time
scenario.graphs[graph].tasks[task].preempt_time[table]=float(scenario.tables[table].values[type_of_task][4])
if(task_feasible==False):
return False
return True
def generate_noc(length,breadth,PE_matrix):
global scenario
isAssigned=False
i=0
j=0
all_tables={}
for core in scenario.all_tables:
i+=1
all_tables[i]=core
i=0
for val in PE_matrix:
if(i<length and j<breadth):
name=f"PE_{i}_{j}"
scenario.tables[name]=scenario.all_tables[all_tables[val]]
scenario.tables[name].name=all_tables[val]
print(all_tables[val],"is assigned to",name)
i+=1
elif(j<(breadth-1)):
j+=1
i=0
name=f"PE_{i}_{j}"
scenario.tables[name]=scenario.all_tables[all_tables[val]]
scenario.tables[name].name=all_tables[val]
print(all_tables[val],"is assigned to",name)
i+=1
else:
print("Matrix overflowed. Continuing metaheuristic with lesser values")
isAssigned=True
break
if isAssigned==False:
print("Too few PEs in NOC")
# while(isAssigned==False):
# for core in scenario.all_tables:
# if(i<length and j<breadth):
# name=f"PE_{i}_{j}"
# scenario.tables[name]=scenario.all_tables[core]
# scenario.tables[name].name=core
# print(core,"is assigned to",name)
# i+=1
# elif(j<(breadth-1)):
# j+=1
# i=0
# name=f"PE_{i}_{j}"
# scenario.tables[name]=scenario.all_tables[core]
# scenario.tables[name].name=core
# print(core,"is assigned to",name)
# i+=1
# else:
# isAssigned=True
# break
def gen_dvfslevel(num_levels):
global scenario
scenario.dvfs_level = []
if num_levels == None or num_levels < 3:
scenario.dvfs_level = [1]
else:
#assuming the given frequency is 500 Mhz and the voltage at the given frequency is 1.1 Volt
freq=500
volt=1.1
#ARM processors including A7,A15 all generally have DVFS levels between 200Mhz to 1600 Mhz
f_up=1600.0/500;
f_down=200.0/500;
#The size of each frequency step.
step_size=(f_up-f_down)/(num_levels-1)
for i in range(num_levels):
scenario.dvfs_level.append(f_down+(i*step_size))
#this creates a list of size dvfs_num_levels
#the contents of this list will range from [1600/500 to 200/500]
#now dvfs_level*freq=dvfs_mode_frequency and dvfs_level*volt=dvfs_mode_voltage
def print_app_graph(name):
global scenario
graph=scenario.graphs[name]
print("Graph name is ", name)
print("Number of tasks in Graph is", graph.num_of_tasks)
i=0
for task in graph.tasks:
i+=1
print("Task", i ," is", task)
print("List of PEs it can be scheduled on is:")
for pe in graph.tasks[task].pe_list:
print("---", pe)
print("WCET", graph.tasks[task].wcet[pe])
print("Power", graph.tasks[task].power[pe])
print("Code_bits", graph.tasks[task].code_bits[pe])
print("Number of Messages in Graph is ", graph.num_of_arcs)
i=0
for arc in graph.arcs:
i+=1
print("Arc", i ,"is", arc, "between :")
print(graph.arcs[arc].task_from, "--->" ,graph.arcs[arc].task_to)
def plot_app_graph(graph,phase,file_name,dir):
app_g = Digraph(comment = graph,format='png')
for task in scenario.graphs[graph].tasks:
app_g.node(str(task),label=task)
for m in scenario.graphs[graph].arcs:
app_g.node(m,label=m)
app_g.edge(scenario.graphs[graph].arcs[m].task_from,m)
app_g.edge(m,scenario.graphs[graph].arcs[m].task_to)
app_g.render(f"{dir}/{file_name}_{phase}_appgraph",view=False)
#imp
def gen_phenotype(individual,graph):
global scenario
individual.task_cluster={}
individual.pe_list={}
for task in scenario.graphs[graph].tasks:
individual.task_list[task]=Task_data(task)
if scenario.dvfs!=None and scenario.dvfs>=3:
individual.task_list[task].dvfs_level=int(individual.pbp_data[task].dvfs)
mapped=scenario.graphs[graph].tasks[task].pe_list[individual.pbp_data[task].pe]
individual.task_list[task].mapped=mapped
if mapped in individual.pe_list.keys():
individual.pe_list[mapped].append(task)
else:
individual.pe_list[mapped]=[task]
# for parts in individual.assignment:
# if individual.assignment[parts]==1:
# # print(parts)
# if parts.startswith("dvfs_"):
# d=(parts[5:])
# vars=d.split("_",1)
# individual.task_list[vars[1]].dvfs_level=int(vars[0])
# else:
# ext_id = parts.find("_")
# task=parts[:ext_id]
# mapped=parts[(ext_id+1):]
# individual.task_list[task].mapped=mapped
# if mapped in individual.pe_list.keys():
# individual.pe_list[mapped].append(task)
# else:
# individual.pe_list[mapped]=[task]
for pe in individual.pe_list:
task1=None
for task in individual.pe_list[pe]:
task1=task
individual.task_cluster[task1]=[]
break
for task in individual.pe_list[pe]:
individual.task_to_cluster[task]=task1
individual.task_cluster[task1].append(task)
def gen_phenotype1(individual,graph):
global scenario
individual.task_cluster={}
individual.pe_list={}
for task in scenario.graphs[graph].tasks:
individual.task_list[task]=Task_data(task)
for parts in individual.assignment:
if individual.assignment[parts]==1:
# print(parts)
if parts.startswith("dvfs_"):
d=(parts[5:])
vars=d.split("_",1)
individual.task_list[vars[1]].dvfs_level=int(vars[0])
else:
ext_id = parts.find("_")
task=parts[:ext_id]
mapped=parts[(ext_id+1):]
individual.task_list[task].mapped=mapped
if mapped in individual.pe_list.keys():
individual.pe_list[mapped].append(task)
else:
individual.pe_list[mapped]=[task]
for pe in individual.pe_list:
task1=None
for task in individual.pe_list[pe]:
task1=task
individual.task_cluster[task1]=[]
break
for task in individual.pe_list[pe]:
individual.task_to_cluster[task]=task1
individual.task_cluster[task1].append(task)
#imp
def gen_genotype(individual,graph):
global scenario
num_of_vars=0
num_of_con=0
individual.pbp_data={}
for task in scenario.graphs[graph].tasks:
individual.pbp_data[task]=Gene_data()
individual.pbp_data[task].pe=random.randint(0,(scenario.graphs[graph].tasks[task].num_of_pe-1))
if scenario.dvfs!=None and scenario.dvfs>=3:
individual.pbp_data[task].dvfs=random.randint(0,(scenario.dvfs-1))
def gen_genotype1(individual,graph):
global scenario
individual.pbp_data={}
increment=(1.0)/(scenario.graphs[graph].num_of_vars)
start=1.0
for task in scenario.graphs[graph].tasks:
individual.pbp_data[task]=PB_data()
i=0
val=random.randint(0,(scenario.graphs[graph].tasks[task].num_of_pe-1))
for mapped in scenario.graphs[graph].tasks[task].pe_list:
temp=f"{task}_{mapped}"
individual.pbp_data[task].decision_strat[temp]=[start,bool(0)]
if i==val:
individual.pbp_data[task].decision_strat[temp]=[start,bool(1)]
start-=increment
i+=1
if scenario.dvfs!=None and scenario.dvfs>=3:
i=0
val=random.randint(0,(scenario.dvfs-1))
for level in range(scenario.dvfs):
temp=f"dvfs_{level}_{task}"
individual.pbp_data[task].decision_strat[temp]=[start,bool(0)]
if i==val:
individual.pbp_data[task].decision_strat[temp]=[start,bool(1)]
start-=increment
i+=1
def gen_basic_constraints(graph):
global scenario
num_of_con=0
try:
os.makedirs(scenario.graphs[graph].output_dir)
except FileExistsError:
print("")
with open(os.path.join(scenario.graphs[graph].output_dir,"cons.lp"), 'w') as f:
for task in scenario.graphs[graph].tasks:
temp=""
for mapped in scenario.graphs[graph].tasks[task].pe_list:
temp+=f" + 1 {task}_{mapped}"
scenario.graphs[graph].num_of_vars+=1
temp+=f" = 1\n"
f.write(temp)
if scenario.dvfs!=None and scenario.dvfs>=3:
temp=""
for level in range(scenario.dvfs):
temp+=f" + 1 dvfs_{level}_{task}"
scenario.graphs[graph].num_of_vars+=1
temp+=f" = 1\n"
f.write(temp)
# scenario.graphs[graph].constraints=[]
# for task in scenario.graphs[graph].tasks:
# l={}
# for mapped in scenario.graphs[graph].tasks[task].pe_list:
# temp=f"{task}_{mapped}"
# scenario.graphs[graph].num_of_vars+=1
# l[temp]=('+',1)
# num_of_con+=1
# scenario.graphs[graph].constraints.append([l,1,'='])
# if scenario.dvfs!=None and scenario.dvfs>=3:
# l={}
# for level in range(scenario.dvfs):
# temp=f"dvfs_{level}_{task}"
# scenario.graphs[graph].num_of_vars+=1
# l[temp]=('+',1)
# num_of_con+=1
# scenario.graphs[graph].constraints.append([l,1,'='])
#imp
def process_pb_data(individual):
#sort decision strat by the increasing order of decision priority
global scenario
graph=individual.graph
decision_strats=OrderedDict()
for task in scenario.graphs[individual.graph].tasks:
for d in individual.pbp_data[task].decision_strat:
decision_strats[d]=deepcopy(individual.pbp_data[task].decision_strat[d])
decision_strat=OrderedDict(deepcopy(sorted(decision_strats.items() , key=lambda x : -x[1][0])))
with open(os.path.join(scenario.graphs[graph].output_dir,f"{individual.num}.lp"), 'w') as f:
for d in decision_strats:
f.write(f"{d} {decision_strat[d][1]} {decision_strat[d][0]}\n")
# Running the external Pbsolver
# run_output=subprocess.run(["java"],capture_output=True,shell=True)
# print(str(run_output.stdout))
# run_output=subprocess.run(["java","-jar","pbsolver",os.path.join(scenario.graphs[graph].output_dir,"cons.lp"),os.path.join(scenario.graphs[graph].output_dir,f"{individual.num}.lp"),os.path.join(scenario.graphs[graph].output_dir,f"assign_{individual.num}.txt")], capture_output=True,shell=True)
# print(str(run_output.stdout))
con_path=os.path.join(scenario.graphs[graph].output_dir,"cons.lp")
dp_path=os.path.join(scenario.graphs[graph].output_dir,f"{individual.num}.lp")
result_path=os.path.join(scenario.graphs[graph].output_dir,f"assign_{individual.num}.txt")
os.system(f"java pbsolver {con_path} {dp_path} {result_path}")
assignment={}
with open(os.path.join(scenario.graphs[graph].output_dir,f"assign_{individual.num}.txt"), 'r') as f:
for line in f:
temp=line.split();
if temp[1]=="true":
assignment[temp[0]]=True;
else:
assignment[temp[0]]=False;
return assignment
def process_pbp_data(individual):
#sort decision strat by the increasing order of decision priority
global scenario
graph=individual.graph
decision_strats=OrderedDict()
for task in scenario.graphs[individual.graph].tasks:
for d in individual.pbp_data[task].decision_strat:
decision_strats[d]=deepcopy(individual.pbp_data[task].decision_strat[d])
decision_strat=OrderedDict(deepcopy(sorted(decision_strats.items() , key=lambda x : -x[1][0])))
# for var in decision_strat:
# if "fp" in var:
# print(var)
#list of constraint details
con_dets={}
#list of constraints in which the given variable exists
var_list={}
for var in decision_strat:
var_list[var]=[]
posCons={}
var_list[var].append(posCons)
negCons={}
var_list[var].append(negCons)
i=0
for con in scenario.graphs[graph].constraints:
con_type=con[2]
n=con[1]
maxsum=0
for var in con[0]:
#update maximum possible sum of the constraints
maxsum+=con[0][var][1]
if con[0][var][0]=='-':
#update variable coefficient in constraints in which a variable is negative
var_list[var][1][i]=con[0][var][1]
#update the value of the constraint value to reflect the negation of the variable
n+=con[0][var][1]
else:
#update variable coefficient in constraints in which a variable is positive
var_list[var][0][i]=con[0][var][1]
#con_dets is a list of Constraint type(<=,>=,=) the current value of sum, maximum sum the constraint equation can reach and the objective goal
con_dets[i]=[con_type,0,maxsum,n]
i+=1
isAssigned, assignment= pbs_solver(decision_strat,scenario.graphs[graph].constraints,con_dets,var_list)
# for val in decision_strat:
# if val in assignment:
# if "idct" in val:
# print(assignment[val])
# print(val)
# else:
# print("MISSED OUT ON VARS")
if isAssigned==False:
print("Assignment was not successful")
print(assignment)
print_pb_strat(decision_strat)
return None
return assignment
def pbs_solver(decision_strat,constraints,con_dets,variables):
cur_var = None
var_val = None
assignment={}
var_list={}
infeasible_con_list={}
#pick the variable to assign a value using the decision_strat
for vars in decision_strat:
if decision_strat[vars][0]!=(-1):
cur_var=vars
var_val = decision_strat[cur_var][1]
decision_strat[cur_var][0]=-1
break
if cur_var==None:
return True,assignment
#print("The current value is ",cur_var,var_val)
#print(cur_var)
#print(var_val)
#variable to check if the assignment is feasible.
isFeasible=True
#Updating the con_dets for the given assignment
#Iterating over the positive constraints associated with the current variable
for i in variables[cur_var][0]:
#update the constraints list based on the value of the current variable.
if var_val==1:
#make sure that it is feasible for the constraint to be assigned true or false.
if con_dets[i][0]!='>=':
#if current sum + coefficient>objective goal of constraint and coefficient is positive
if (con_dets[i][1]+variables[cur_var][0][i])>con_dets[i][3]:
isFeasible=False
infeasible_con_list[i]=1
#add value of coefficient to current sum of constraint
con_dets[i][1]+=variables[cur_var][0][i]
else:
#Make sure that assigning the value does not cause conflict
if con_dets[i][0]!='<=':
if (con_dets[i][2]-variables[cur_var][0][i])<con_dets[i][3]:
isFeasible=False
infeasible_con_list[i]=1
#subtract value of coefficient from maximum posible sum of constraints
con_dets[i][2]-=variables[cur_var][0][i]
#check for implications or conflicts caused due to this assignment in the given constraint.
for vars in constraints[i][0]:
if decision_strat[vars][0]!=-1:
if con_dets[i][0]!='>=':
#if current sum + coefficient>objective goal of constraint and coefficient is positive
if constraints[i][0][vars][0]=='+' and (con_dets[i][1]+variables[vars][0][i])>con_dets[i][3]:
if vars in var_list:
if var_list[vars]!=False:
isFeasible=False
infeasible_con_list[i]=1
var_list[vars]=False
elif constraints[i][0][vars][0]=='-' and (con_dets[i][1]+variables[vars][1][i])>con_dets[i][3]:
if vars in var_list:
if var_list[vars]!=True:
isFeasible=False
infeasible_con_list[i]=1
var_list[vars]=True
elif con_dets[i][0]!='<=':
#if the coefficient of vars is necessary, make sure it is true
if constraints[i][0][vars][0]=='+' and (con_dets[i][2]-variables[vars][0][i])<con_dets[i][3]:
if vars in var_list:
if var_list[vars]!=False:
isFeasible=False
infeasible_con_list[i]=1
var_list[vars]=False
#print("THIS",vars)
#if the sign of vars is negative in the constraint, then make sure it is false.
elif constraints[i][0][vars][0]=='-' and (con_dets[i][2]-variables[vars][1][i])<con_dets[i][3]:
if vars in var_list:
if var_list[vars]!=True:
isFeasible=False
infeasible_con_list[i]=1
var_list[vars]=True
for i in variables[cur_var][1]:
#update the constraints list based on the value of the current variable.
if var_val==0:
#make sure that it is feasible for the constraint to be assigned true or false.
if con_dets[i][0]!='>=':
#if current sum + coefficient>objective goal of constraint and coefficient is positive
if (con_dets[i][1]+variables[cur_var][1][i])>con_dets[i][3]:
isFeasible=False
infeasible_con_list[i]=1
con_dets[i][1]+=variables[cur_var][1][i]
else:
#Make sure that assigning the value does not cause conflict
if con_dets[i][0]!='<=':
if (con_dets[i][2]-variables[cur_var][1][i])<con_dets[i][3]:
isFeasible=False
infeasible_con_list[i]=1
con_dets[i][2]-=variables[cur_var][1][i]
#check for implications or conflicts caused due to this assignment in the given constraint.
for vars in constraints[i][0]:
if decision_strat[vars][0]!=-1:
if con_dets[i][0]!='>=':
#if current sum + coefficient>objective goal of constraint and coefficient is positive
if constraints[i][0][vars][0]=='+' and (con_dets[i][1]+variables[vars][0][i])>con_dets[i][3]:
if vars in var_list:
if var_list[vars]!=False:
isFeasible=False
infeasible_con_list[i]=1
var_list[vars]=False
elif constraints[i][0][vars][0]=='-' and (con_dets[i][1]+variables[vars][1][i])>con_dets[i][3]:
if vars in var_list:
if var_list[vars]!=True:
isFeasible=False
infeasible_con_list[i]=1
var_list[vars]=True
elif con_dets[i][0]!='<=':
if constraints[i][0][vars][0]=='+' and (con_dets[i][2]-variables[vars][0][i])<con_dets[i][3]:
if vars in var_list:
if var_list[vars]!=False:
isFeasible=False
infeasible_con_list[i]=1
var_list[vars]=False
elif constraints[i][0][vars][0]=='-' and (con_dets[i][2]-variables[vars][1][i])<con_dets[i][3]:
if vars in var_list:
if var_list[vars]!=True:
isFeasible=False
infeasible_con_list[i]=1
var_list[vars]=True
#Now the var_list should be updated, process the list
#The list contains the implications of the variable assignment
#print("The list of implications is:")
for val in var_list:
#print("Implication is", val, var_list[val])
#Iterating over the positive constraints associated with the current variable
decision_strat[val][0]=(-1)
for i in variables[val][0]:
#update the constraints list based on the value of the current variable.
if var_list[val]==1:
#make sure that it is feasible for the constraint to be assigned true or false.
if con_dets[i][0]!='>=':
#if current sum + coefficient>objective goal of constraint and coefficient is positive
if (con_dets[i][1]+variables[val][0][i])>con_dets[i][3]:
isFeasible=False
infeasible_con_list[i]=1
#add value of coefficient to current sum of constraint
con_dets[i][1]+=variables[val][0][i]
else:
#subtract value of coefficient from maximum posible sum of constraints
#Make sure that assigning the value does not cause conflict
if con_dets[i][0]!='<=':
if (con_dets[i][2]-variables[val][0][i])<con_dets[i][3]:
isFeasible=False
infeasible_con_list[i]=1
con_dets[i][2]-=variables[val][0][i]
#Iterating over the negative constraints associated with the current variable
for i in variables[val][1]:
#update the constraints list based on the value of the current variable.
if var_list[val]==0:
#make sure that it is feasible for the constraint to be assigned true or false.
if con_dets[i][0]!='>=':
#if current sum + coefficient>objective goal of constraint and coefficient is positive
if (con_dets[i][1]+variables[val][1][i])>con_dets[i][3]:
isFeasible=False
infeasible_con_list[i]=1
#add value of coefficient to current sum of constraint
con_dets[i][1]+=variables[val][1][i]
else:
#Make sure that assigning the value does not cause conflict
if con_dets[i][0]!='<=':
if (con_dets[i][2]-variables[val][1][i])<con_dets[i][3]:
isFeasible=False
infeasible_con_list[i]=1
#subtract value of coefficient from maximum posible sum of constraints
con_dets[i][2]-=variables[val][1][i]
#after assigning the values of the assignment, lets check if the whole situation is feasible.
reprocess=False
val_return=infeasible_con_list
if isFeasible==True:
#print("____NEXT LEVEL___")
isAssigned, vals= pbs_solver(decision_strat,constraints,con_dets,variables)
if isAssigned:
vals[cur_var]=var_val
for val in var_list:
vals[val]=var_list[val]
return True, vals
else:
#print("recursed back to find source of infeasibility")
reprocess=True
val_return=vals
for i in vals:
infeasible_con_list[i]=1
for i in variables[cur_var][0]:
if i in val_return.keys():
reprocess=False
for i in variables[cur_var][1]:
if i in val_return.keys():
reprocess=False
for varrs in var_list:
for i in variables[varrs][0]:
if i in val_return.keys():
reprocess=False
for i in variables[varrs][1]:
if i in val_return.keys():
reprocess=False
#reset the values of con_dets to what they were before assignment and the implication
for i in variables[cur_var][0]:
if var_val==1:
con_dets[i][1]-=variables[cur_var][0][i]
else:
con_dets[i][2]+=variables[cur_var][0][i]
for i in variables[cur_var][1]:
if var_val==0:
con_dets[i][1]-=variables[cur_var][1][i]
else:
con_dets[i][2]+=variables[cur_var][1][i]
for val in var_list:
#revert the decision strategy.
decision_strat[val][0]=1
for i in variables[val][0]:
if var_list[val]==1:
con_dets[i][1]-=variables[val][0][i]
else:
con_dets[i][2]+=variables[val][0][i]
for i in variables[val][1]:
if var_list[val]==0:
con_dets[i][1]-=variables[val][1][i]
else:
con_dets[i][2]+=variables[val][1][i]
#clear var_list
var_list={}
if reprocess==True:
#print(cur_var,"isn't source of infeasibility")
decision_strat[cur_var][0]=1
return False,val_return
#Change the value if it is infeasible, repeat.
var_val=not var_val
#print(f"Swap decision variable for {cur_var}")
# print("The current value is ",cur_var,var_val)
#variable to check if the assignment is feasible.
isFeasible=True
#Updating the con_dets for the given assignment
#Iterating over the positive constraints associated with the current variable
for i in variables[cur_var][0]:
#update the constraints list based on the value of the current variable.
if var_val==1:
#make sure that it is feasible for the constraint to be assigned true or false.
if con_dets[i][0]!='>=':
#if current sum + coefficient>objective goal of constraint and coefficient is positive
if (con_dets[i][1]+variables[cur_var][0][i])>con_dets[i][3]:
isFeasible=False
infeasible_con_list[i]=1
#add value of coefficient to current sum of constraint
con_dets[i][1]+=variables[cur_var][0][i]
else:
#Make sure that assigning the value does not cause conflict
if con_dets[i][0]!='<=':
if (con_dets[i][2]-variables[cur_var][0][i])<con_dets[i][3]:
isFeasible=False
infeasible_con_list[i]=1
#subtract value of coefficient from maximum posible sum of constraints
con_dets[i][2]-=variables[cur_var][0][i]
#check for implications or conflicts caused due to this assignment in the given constraint.
for vars in constraints[i][0]:
if decision_strat[vars][0]!=-1:
if con_dets[i][0]!='>=':
#if current sum + coefficient>objective goal of constraint and coefficient is positive
if constraints[i][0][vars][0]=='+' and (con_dets[i][1]+variables[vars][0][i])>con_dets[i][3]:
if vars in var_list:
if var_list[vars]!=False:
isFeasible=False
infeasible_con_list[i]=1
var_list[vars]=False
elif constraints[i][0][vars][0]=='-' and (con_dets[i][1]+variables[vars][1][i])>con_dets[i][3]:
if vars in var_list:
if var_list[vars]!=True:
isFeasible=False
infeasible_con_list[i]=1
var_list[vars]=True
elif con_dets[i][0]!='<=':
#if the coefficient of vars is necessary, make sure it is true
if constraints[i][0][vars][0]=='+' and (con_dets[i][2]-variables[vars][0][i])<con_dets[i][3]:
if vars in var_list:
if var_list[vars]!=False:
isFeasible=False
infeasible_con_list[i]=1
var_list[vars]=False
#print("THIS",vars)
#if the sign of vars is negative in the constraint, then make sure it is false.
elif constraints[i][0][vars][0]=='-' and (con_dets[i][2]-variables[vars][1][i])<con_dets[i][3]:
if vars in var_list:
if var_list[vars]!=True:
isFeasible=False
infeasible_con_list[i]=1
var_list[vars]=True
for i in variables[cur_var][1]:
#update the constraints list based on the value of the current variable.
if var_val==0:
#make sure that it is feasible for the constraint to be assigned true or false.
if con_dets[i][0]!='>=':
#if current sum + coefficient>objective goal of constraint and coefficient is positive
if (con_dets[i][1]+variables[cur_var][1][i])>con_dets[i][3]:
isFeasible=False
infeasible_con_list[i]=1
con_dets[i][1]+=variables[cur_var][1][i]
else:
#Make sure that assigning the value does not cause conflict
if con_dets[i][0]!='<=':
if (con_dets[i][2]-variables[cur_var][1][i])<con_dets[i][3]:
isFeasible=False
infeasible_con_list[i]=1
con_dets[i][2]-=variables[cur_var][1][i]
#check for implications or conflicts caused due to this assignment in the given constraint.
for vars in constraints[i][0]:
if decision_strat[vars][0]!=-1:
if con_dets[i][0]!='>=':
#if current sum + coefficient>objective goal of constraint and coefficient is positive
if constraints[i][0][vars][0]=='+' and (con_dets[i][1]+variables[vars][0][i])>con_dets[i][3]:
if vars in var_list:
if var_list[vars]!=False:
isFeasible=False
infeasible_con_list[i]=1
var_list[vars]=False
elif constraints[i][0][vars][0]=='-' and (con_dets[i][1]+variables[vars][1][i])>con_dets[i][3]:
if vars in var_list:
if var_list[vars]!=True:
isFeasible=False
infeasible_con_list[i]=1
var_list[vars]=True
elif con_dets[i][0]!='<=':
if constraints[i][0][vars][0]=='+' and (con_dets[i][2]-variables[vars][0][i])<con_dets[i][3]:
if vars in var_list:
if var_list[vars]!=False:
isFeasible=False
infeasible_con_list[i]=1
var_list[vars]=False
elif constraints[i][0][vars][0]=='-' and (con_dets[i][2]-variables[vars][1][i])<con_dets[i][3]:
if vars in var_list:
if var_list[vars]!=True:
isFeasible=False
infeasible_con_list[i]=1
var_list[vars]=True
#Now the var_list should be updated, process the list
#The list contains the implications of the variable assignment
#print("The list of implications is:")
for val in var_list:
#print("Implication is", val, var_list[val])
#Iterating over the positive constraints associated with the current variable
decision_strat[val][0]=(-1)
for i in variables[val][0]:
#update the constraints list based on the value of the current variable.
if var_list[val]==1:
#make sure that it is feasible for the constraint to be assigned true or false.
if con_dets[i][0]!='>=':
#if current sum + coefficient>objective goal of constraint and coefficient is positive
if (con_dets[i][1]+variables[val][0][i])>con_dets[i][3]:
isFeasible=False
infeasible_con_list[i]=1
#add value of coefficient to current sum of constraint
con_dets[i][1]+=variables[val][0][i]
else:
#subtract value of coefficient from maximum posible sum of constraints
#Make sure that assigning the value does not cause conflict
if con_dets[i][0]!='<=':
if (con_dets[i][2]-variables[val][0][i])<con_dets[i][3]:
isFeasible=False
infeasible_con_list[i]=1
con_dets[i][2]-=variables[val][0][i]
#Iterating over the negative constraints associated with the current variable
for i in variables[val][1]:
#update the constraints list based on the value of the current variable.
if var_list[val]==0:
#make sure that it is feasible for the constraint to be assigned true or false.
if con_dets[i][0]!='>=':
#if current sum + coefficient>objective goal of constraint and coefficient is positive
if (con_dets[i][1]+variables[val][1][i])>con_dets[i][3]:
isFeasible=False
infeasible_con_list[i]=1
#add value of coefficient to current sum of constraint
con_dets[i][1]+=variables[val][1][i]
else:
#Make sure that assigning the value does not cause conflict
if con_dets[i][0]!='<=':
if (con_dets[i][2]-variables[val][1][i])<con_dets[i][3]:
isFeasible=False
infeasible_con_list[i]=1
#subtract value of coefficient from maximum posible sum of constraints
con_dets[i][2]-=variables[val][1][i]
#after assigning the values of the assignment, lets check if the whole situation is feasible.
val_return=infeasible_con_list
if isFeasible==True:
#print("____NEXT LEVEL___")
isAssigned, vals= pbs_solver(decision_strat,constraints,con_dets,variables)
if isAssigned:
vals[cur_var]=var_val
for val in var_list:
vals[val]=var_list[val]
return True, vals
else:
for i in vals:
val_return[i]=1
#reset the values of con_dets to what they were before assignment and the implication
for i in variables[cur_var][0]:
if var_val==1:
con_dets[i][1]-=variables[cur_var][0][i]
else:
con_dets[i][2]+=variables[cur_var][0][i]
for i in variables[cur_var][1]:
if var_val==0:
con_dets[i][1]-=variables[cur_var][1][i]
else:
con_dets[i][2]+=variables[cur_var][1][i]
for val in var_list:
#revert the decision strategy.
decision_strat[val][0]=1
for i in variables[val][0]:
if var_list[val]==1:
con_dets[i][1]-=variables[val][0][i]
else:
con_dets[i][2]+=variables[val][0][i]
for i in variables[val][1]:
if var_list[val]==0:
con_dets[i][1]-=variables[val][1][i]
else:
con_dets[i][2]+=variables[val][1][i]
decision_strat[cur_var][0]=1
#print("----",cur_var,"lead to infeasibility, back-tracking to its source")
return False,val_return
def print_pb_strat(decision_strat):
print("\n\n\nTHE DECISION STRATEGY IS AS FOLLOWS\n")
for var in decision_strat:
print(" ------ Variable",var)
print("Decision Value",decision_strat[var][0])
print("Decision Priority",decision_strat[var][1])
print("\n\n\n")
def process_cons(individual):
#print_pb_strat(con_graph)
# individual.assignment=process_pbp_data(individual)
gen_phenotype(individual,individual.graph)
def process_cons1(individual):
#print_pb_strat(con_graph)
individual.assignment=process_pb_data(individual)
gen_phenotype1(individual,individual.graph)
def make_individual(name="la"):
individual=creator.Individual()
individual.graph=name
gen_genotype(individual,name)
#print_pb_strat(con_graph)
# individual.assignment=process_pbp_data(individual)
#print("Generated Individual")
gen_phenotype(individual,name)
#gen_comp_con_graph(individual,name)
#feasiblity_con_graph(individual,name)
return individual
def make_individual1(name="la",num=0):
individual=creator.Individual()
individual.graph=name
individual.num=num
gen_genotype1(individual,name)
#print_pb_strat(con_graph)
individual.assignment=process_pb_data(individual)
#print("Generated Individual")
gen_phenotype1(individual,name)
#gen_comp_con_graph(individual,name)
#feasiblity_con_graph(individual,name)
return individual
def makepop(graph_name="la", pop_size=5):
l = []
for i in range(pop_size):
l.append(toolbox.individual(name=graph_name))
print("Population Initiated")
return l
def makepop1(graph_name="la", pop_size=5):
l = []
for i in range(pop_size):
l.append(toolbox1.individual(name=graph_name,num=i))
print("Population Initiated")
return l
#imp
def matefunc(ind1,ind2):