-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_epoch.py
143 lines (110 loc) · 4.9 KB
/
train_epoch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import sys
import json
import getopt
import numpy as np
import tensorflow as tf
from tensorflow import keras
from detection.datasets import coco, data_generator
from detection.models.detectors import faster_rcnn
from pycocotool.cocoeval import COCOeval
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')
tf.random.set_seed(22)
np.random.seed(22)
img_mean = (123.675, 116.28, 103.53)
# img_std = (58.395, 57.12, 57.375)
img_std = (1., 1., 1.)
epochs = 100
batch_size = 2
flip_ratio = 0
learning_rate = 1e-4
checkpoint = 1
finetune = 0
opts, args = getopt.getopt(sys.argv[1:], "-b:-f:-l:-e:-c:-n:", )
for opt, arg in opts:
if opt == '-b':
batch_size = int(arg)
elif opt == '-f':
finetune = int(arg)
elif opt == '-l':
learning_rate = float(arg)
elif opt == '-e':
epochs = int(arg)
elif opt == '-c':
checkpoint = int(arg)
elif opt == '-n':
if int(arg) == 0:
img_mean = (0., 0., 0.)
img_std = (1., 1., 1.)
elif int(arg) == 1:
# Company Articles Dataset
img_mean = (0.9684, 0.9683, 0.9683)
img_std = (0.1502, 0.1505, 0.1505)
train_dataset = coco.CocoDataSet(dataset_dir='dataset', subset='train',
flip_ratio=flip_ratio, pad_mode='fixed',
mean=img_mean, std=img_std,
scale=(800, 1216))
test_dataset = coco.CocoDataSet(dataset_dir='dataset', subset='val',
flip_ratio=flip_ratio, pad_mode='non-fixed',
mean=img_mean, std=img_std,
scale=(800, 1216))
train_generator = data_generator.DataGenerator(train_dataset)
train_tf_dataset = tf.data.Dataset.from_generator(
train_generator, (tf.float32, tf.float32, tf.float32, tf.int32))
train_tf_dataset = train_tf_dataset.batch(batch_size).prefetch(100).shuffle(100)
num_classes = len(train_dataset.get_categories())
model = faster_rcnn.FasterRCNN(num_classes=num_classes)
optimizer = keras.optimizers.SGD(learning_rate, momentum=0.9, nesterov=True)
if finetune:
model.load_weights('model/faster_rcnn.h5')
for epoch in range(1, epochs, 1):
for (batch, inputs) in enumerate(train_tf_dataset):
batch_imgs, batch_metas, batch_bboxes, batch_labels = inputs
with tf.GradientTape() as tape:
rpn_class_loss, rpn_bbox_loss, rcnn_class_loss, rcnn_bbox_loss = \
model((batch_imgs, batch_metas, batch_bboxes, batch_labels))
loss_value = rpn_class_loss + rpn_bbox_loss + rcnn_class_loss + rcnn_bbox_loss
grads = tape.gradient(loss_value, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
if batch % 10 == 0 and not batch == 0:
print('Epoch:', epoch, 'Batch:', batch, 'Loss:', loss_value.numpy(),
'RPN Class Loss:', rpn_class_loss.numpy(),
'RPN Bbox Loss:', rpn_bbox_loss.numpy(),
'RCNN Class Loss:', rcnn_class_loss.numpy(),
'RCNN Bbox Loss:', rcnn_bbox_loss.numpy())
if epoch % checkpoint == 0:
model.save_weights('./model/epoch_' + str(epoch) + '.h5')
dataset_results = []
imgIds = []
for idx in range(len(test_dataset)):
if idx % 10 == 9 or idx + 1 == len(test_dataset):
print(str(idx + 1) + ' / ' + str(len(test_dataset)))
img, img_meta, _, _ = test_dataset[idx]
proposals = model.simple_test_rpn(img, img_meta)
res = model.simple_test_bboxes(img, img_meta, proposals)
# visualize.display_instances(ori_img, res['rois'], res['class_ids'],
# test_dataset.get_categories(), scores=res['scores'])
image_id = test_dataset.img_ids[idx]
imgIds.append(image_id)
for pos in range(res['class_ids'].shape[0]):
results = dict()
results['score'] = float(res['scores'][pos])
results['category_id'] = test_dataset.label2cat[int(res['class_ids'][pos])]
y1, x1, y2, x2 = [float(num) for num in list(res['rois'][pos])]
results['bbox'] = [x1, y1, x2 - x1 + 1, y2 - y1 + 1]
results['image_id'] = image_id
dataset_results.append(results)
if not dataset_results == []:
with open('result/epoch_' + str(epoch) + '.json', 'w') as f:
f.write(json.dumps(dataset_results))
coco_dt = test_dataset.coco.loadRes('result/epoch_' + str(epoch) + '.json')
cocoEval = COCOeval(test_dataset.coco, coco_dt, 'bbox')
cocoEval.params.imgIds = imgIds
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
with open('result/evaluation.txt', 'a+') as f:
content = 'Epoch: ' + str(epoch) + '\n' + str(cocoEval.stats) + '\n'
f.write(content)