-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgradio_test.py
56 lines (41 loc) · 1.28 KB
/
gradio_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from diffusers import (
UniPCMultistepScheduler,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
StableDiffusionControlNetSceneTextErasingPipeline,
)
import torch
import numpy as np
import cv2
from PIL import Image, ImageDraw
import math
import os
import gradio as gr
os.environ["CUDA_VISIBLE_DEVICES"]="1"
pipe = StableDiffusionControlNetSceneTextErasingPipeline.from_pretrained('controlnet_scenetext_eraser/')
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(torch.device('cuda:1'))
# pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
generator = torch.Generator(device="cuda:1").manual_seed(1)
def inf(image, mask_image):
image = Image.fromarray(image).resize((512, 512))
mask_image = Image.fromarray(mask_image).resize((512, 512))
image = pipe(
image,
mask_image,
[mask_image],
num_inference_steps=20,
generator=generator,
controlnet_conditioning_scale=1.0,
guidance_scale=1.0
).images[0]
return np.array(image)
if __name__ == "__main__":
demo = gr.Interface(
inf,
inputs=[gr.Image(), gr.Image()],
outputs="image",
title="Scene Text Erasing, IIT-Jodhpur",
)
demo.launch(share=True)