-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtransformer_tricks.py
283 lines (233 loc) · 11.4 KB
/
transformer_tricks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# tricks and tools for speeding up LLMs
import gc, os, time, torch, datasets, glob
import torch.nn as nn
from tqdm import tqdm
from huggingface_hub import snapshot_download, repo_exists
from safetensors.torch import load_file, save_file, safe_open
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, logging, utils
try:
from flashNorm_modeling_llama import * # import local file if it exists
except ImportError:
pass
#-------------------------------------------------------------------------------------
# tools for working with safetensors and HuggingFace repos
#-------------------------------------------------------------------------------------
def quiet_hf():
"""reduce verbosity of HuggingFace"""
logging.set_verbosity_error()
utils.logging.disable_progress_bar()
datasets.disable_progress_bars()
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
os.environ['HF_HUB_VERBOSITY'] = 'error'
# for more env variables, see link below
# https://huggingface.co/docs/huggingface_hub/en/package_reference/environment_variables
def weight(name, layer=0):
"""get dictionary key of specific weight (such as Q from layer 0)"""
layer_str = 'model.layers.' + str(layer) + '.'
match name:
# weights of each layer
case 'Inorm': key = layer_str + 'input_layernorm.weight'
case 'Anorm': key = layer_str + 'post_attention_layernorm.weight'
case 'QKV' : key = layer_str + 'self_attn.qkv_proj.weight'
case 'Q' : key = layer_str + 'self_attn.q_proj.weight'
case 'K' : key = layer_str + 'self_attn.k_proj.weight'
case 'V' : key = layer_str + 'self_attn.v_proj.weight'
case 'O' : key = layer_str + 'self_attn.o_proj.weight'
case 'GU' : key = layer_str + 'mlp.gate_up_proj.weight'
case 'G' : key = layer_str + 'mlp.gate_proj.weight'
case 'U' : key = layer_str + 'mlp.up_proj.weight'
case 'D' : key = layer_str + 'mlp.down_proj.weight'
# embedding weights
case 'Hnorm': key = 'model.norm.weight' # normalization of lm_head
case 'H' : key = 'lm_head.weight' # output embeddings
case 'E' : key = 'model.embed_tokens.weight' # input embeddings
return key
def get_param(repo, get_meta=False):
"""download all *.safetensors files from repo (or local dir) and return a single
param dict, and optionally also return the metadata"""
# download and get list of files
if repo_exists(repo):
dir = 'get_param_tmp'
snapshot_download(repo_id=repo, allow_patterns='*.safetensors', local_dir=dir)
else: # if repo doesn't exist on HuggingFace, then 'repo' specifies local dir
dir = repo
files = glob.glob(dir + '/*.safetensors')
# get parameters
param = {}
for file in files:
param.update(load_file(file)) # concatenate all parameters into a single dict
# return param only, or param and metadata
if get_meta == False:
return param
else:
with safe_open(files[0], framework='pt') as f: # use the first file
return param, f.metadata()
def save_repo(repo, param, config, dir):
"""save tokenizer, config, and param in local dir"""
tok = AutoTokenizer.from_pretrained(repo)
tok.save_pretrained(dir, from_pt=True)
config.save_pretrained(dir, from_pt=True)
save_file(param, dir + '/model.safetensors', metadata={'format': 'pt'})
#-------------------------------------------------------------------------------------
# functions for flashNorm, see paper https://arxiv.org/abs/2407.09577
#-------------------------------------------------------------------------------------
def merge_norm_proj(param, norm, proj, layer=0):
"""merge norm weights into projection weights"""
n_key = weight(norm, layer)
p_key = weight(proj, layer)
param[p_key] = nn.Parameter(param[p_key] @ torch.diag(param[n_key])).detach() # flipped order
# TODO: consider first converting to float64, then merge norm into projections,
# and then convert back to float32. Example: torch.ones(4, dtype=torch.float32)
def set_norm_one(param, norm, layer=0):
"""set all norm weights to 1.0"""
n_key = weight(norm, layer)
len = list(param[n_key].shape)[0]
param[n_key] = nn.Parameter(torch.ones(len)).detach()
def flashify(param, config, bars):
"""merge norm weights into projection weights as per flashNorm"""
with torch.no_grad(): # prevent autograd from tracking changes
# check if model uses fused projections (such as in Phi-3)
fused_proj = weight('QKV') in param
# perform flashNorm merging for each layer
for layer in tqdm(range(config.num_hidden_layers), disable=not bars):
# merge input-layernorm into QKV projections
if fused_proj:
merge_norm_proj(param, 'Inorm', 'QKV', layer)
else:
merge_norm_proj(param, 'Inorm', 'Q', layer)
merge_norm_proj(param, 'Inorm', 'K', layer)
merge_norm_proj(param, 'Inorm', 'V', layer)
set_norm_one(param, 'Inorm', layer)
# merge post-attention layernorm 'Anorm' into Gate and Up projections
if fused_proj:
merge_norm_proj(param, 'Anorm', 'GU', layer)
else:
merge_norm_proj(param, 'Anorm', 'G', layer)
merge_norm_proj(param, 'Anorm', 'U', layer)
set_norm_one(param, 'Anorm', layer)
# if the model has untied embeddings, then merge 'Hnorm' into 'lm_head'
# see also https://huggingface.co/HuggingFaceTB/SmolLM-135M/discussions/15
if config.tie_word_embeddings == False:
merge_norm_proj(param, 'Hnorm', 'H')
set_norm_one(param, 'Hnorm')
def flashify_repo(repo, dir=None, bars=False, test=True):
"""convert LLM repo to flashNorm, store the new model in local dir"""
with torch.no_grad(): # prevent autograd from tracking changes
if dir == None: # append '_flashNorm' if no output dir is defined
dir = os.path.basename(repo) + '_flashNorm'
# get config, download safetensors, and flashify params
config = AutoConfig.from_pretrained(repo)
param = get_param(repo)
flashify(param, config, bars)
if test: # optionally, save a test-repo in directory *_test
save_repo(repo, param, config, dir + '_test')
# delete norm weights from param
for layer in range(config.num_hidden_layers):
del param[weight('Inorm', layer)]
del param[weight('Anorm', layer)]
if config.tie_word_embeddings == False:
del param[weight('Hnorm')]
# TODO:
#config.architectures = ['LlamaForCausalLM_flashNorm']
#config.auto_map = {'AutoModelForCausalLM': 'flashNorm_modeling_llama.LlamaForCausalLM_flashNorm'}
#config.model_type = 'flashNorm'
save_repo(repo, param, config, dir)
del param; gc.collect() # run garbage collection
#-------------------------------------------------------------------------------------
# functions for testing
#-------------------------------------------------------------------------------------
def hello_world(repo, max_new_tok=4, arch='AutoModelForCausalLM', perf=False):
"""run example inference of an LLM from HuggingFace repo or local directory"""
tok = AutoTokenizer.from_pretrained(repo)
model = eval(f'{arch}.from_pretrained(repo, low_cpu_mem_usage=True)')
# to use FP16 or bfloaf: torch_dtype=torch.float16, torch_dtype=torch.bfloat
# note: FP16 is 30x slower than FP32 on my Mac M1, not sure why
prompt = 'Once upon a time there was'
start_time = time.perf_counter()
inp = tok.encode(prompt, return_tensors='pt').to('cpu')
out = model.generate(inp, pad_token_id=0, max_new_tokens=max_new_tok).ravel()
print(tok.decode(out),
f' (time: {time.perf_counter() - start_time:.2f}s)' if perf else '')
del tok, model; gc.collect() # run garbage collection
# TODO: especially for Phi-3, set verbosity to quiet as follows
# transformers.logging.set_verbosity_error()
def perplexity(repo, speedup=1, arch='AutoModelForCausalLM', bars=False, perf=False):
"""calculate perplexity of an LLM with wikitext2
this def is copied from https://huggingface.co/docs/transformers/perplexity
I made the following changes to adapt it for SmolLM (was GPT2 before):
- changed model and tokenizer
- changed 'from transformers import' to point to 'Auto*' (was 'GTP2*' before)
- changed 'max_length' to 'config.max_position_embeddings'
- changed 'device' from 'cuda' to 'cpu'
- changed 'stride' to be 'max_length' (was 512 or 'max_length//2' before)
- removed 'with torch.no_grad()' and added global 'torch.set_grad_enabled(False)'
Perhaps a simpler and cleaner way is given here:
https://huggingface.co/spaces/evaluate-metric/perplexity"""
torch.set_grad_enabled(False) # speed up torch
# TODO: consider using instead 'with torch.no_grad():'
tok = AutoTokenizer.from_pretrained(repo)
model = eval(f'{arch}.from_pretrained(repo, low_cpu_mem_usage=True)')
# tokenize wikitext2
test = datasets.load_dataset('wikitext', 'wikitext-2-raw-v1', split='test')
encodings = tok('\n\n'.join(test['text']), return_tensors='pt')
del tok; gc.collect() # run garbage collection
max_length = model.config.max_position_embeddings
stride = max_length # before it was 512 or max_length // 2
seq_len = encodings.input_ids.size(1) // speedup
start_time = time.perf_counter()
nlls = []
prev_end_loc = 0
for begin_loc in tqdm(range(0, seq_len, stride), disable=not bars):
end_loc = min(begin_loc + max_length, seq_len)
trg_len = end_loc - prev_end_loc # may be different from stride on last loop
input_ids = encodings.input_ids[:, begin_loc:end_loc].to('cpu')
target_ids = input_ids.clone()
target_ids[:, :-trg_len] = -100
outputs = model(input_ids, labels=target_ids)
# loss is calculated using CrossEntropyLoss which averages over valid labels
# N.B. the model only calculates loss over trg_len - 1 labels, because it
# internally shifts the labels to the left by 1.
neg_log_likelihood = outputs.loss
nlls.append(neg_log_likelihood)
prev_end_loc = end_loc
if end_loc == seq_len:
break
ppl = torch.exp(torch.stack(nlls).mean())
print(f'perplexity = {ppl:.3f}',
f' (time: {time.perf_counter() - start_time:.2f}s)' if perf else '')
# print('nlls:', nlls)
del model; gc.collect() # run garbage collection
#-------------------------------------------------------------------------------------
# debug tools
#-------------------------------------------------------------------------------------
def diff_safetensors(repo1, repo2):
"""compare differences of safetensor file(s) between repo1 and repo2"""
param1, meta1 = get_param(repo1, get_meta=True)
param2, meta2 = get_param(repo2, get_meta=True)
set1, set2 = set(param1.keys()), set(param2.keys())
# diff keys
if set1 == set2:
print('>>> SAFE-DIFF: both repos have the same safetensor keys')
else:
if set1 - set2:
print(f'>>> SAFE-DIFF: these keys are only in repo {repo1}: {set1 - set2}')
if set2 - set1:
print(f'>>> SAFE-DIFF: these keys are only in repo {repo2}: {set2 - set1}')
# diff tensors
found_diff = False
for key in set1.intersection(set2):
if not torch.equal(param1[key], param2[key]):
found_diff = True
print(f'>>> SAFE-DIFF: tensors {key} are not equal')
if not found_diff:
print('>>> SAFE-DIFF: all intersecting tensors are equal')
# diff metadata
if meta1 == meta2:
print('>>> SAFE-DIFF: both repos have the same safetensor metadata')
else:
print(f'>>> SAFE-DIFF: metadata of repo {repo1}: {meta1}')
print(f'>>> SAFE-DIFF: metadata of repo {repo2}: {meta2}')
# misc TODOs:
# - do we really need 'with torch.no_grad():' everywhere?
# - do we really need garbage collection 'gc'?
# - would 'torch.set_grad_enabled(False)' speed up things?