-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathZenith.m
130 lines (128 loc) · 3.22 KB
/
Zenith.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
function Chi=Zenith(Time)
%
%----------------------------------------------------------------------!
%
IMN=[31,28,31,30,31,30,31,31,30,31,30,31];
ONE=1;
TWO=2;
rTWO=ONE/TWO;
THREE=3;
FOUR=4;
rFOUR=ONE/FOUR;
FIVE=5;
HOUR=3600.0;
rlat=45.00; %50.65;
rlon=0; %10.77;
DR=pi/180.0;
iDate=010621;
% set GMT
GMT = Time / HOUR;
%
% convert to radians
RLT = rlat*DR;
RPHI = rlon*DR;
%
% parse date
IIYEAR = round(iDate/10000);
IYEAR = 19*100 + IIYEAR;
if IIYEAR <= 50
IYEAR = IYEAR + 100;
end
IMTH = round((iDate - IIYEAR*10000)/100);
IDAY = iDate - IIYEAR*10000 - IMTH*100;
%
% identify and correct leap years
IIY = round((IIYEAR/4))*4;
if IIY==IIYEAR
IMN(2) = 29;
end
%
% count days from Dec.31,1973 to Jan 1, YEAR, then add to 2,442,047.5
YREF = 2442047.5e0;
NYEARS = IYEAR - 1974;
LEAP = round((NYEARS+1)/4);
if NYEARS<=-1
LEAP = round((NYEARS-2)/4);
end
NOLEAP = NYEARS - LEAP;
YR = YREF + 365.0e0*NOLEAP + 366.0e0*LEAP;
%
IJD = 0;
IN = IMTH - 1;
if IN~=0
for I=1:IN
IJD=IJD+IMN(I);
end
IJD = IJD + IDAY;
else
IJD = IDAY;
end
IJ = IYEAR - 1973;
% IF(IN.EQ.0) GO TO 40
% DO 30 I=1,IN
% IJD = IJD + IMN(I)
% 30 CONTINUE
% IJD = IJD + IDAY
% GO TO 50
% 40 IJD = IDAY
% 50 IJ = IYEAR - 1973
%
% print julian days current "ijd"
JD = IJD + (YR - YREF);
D = JD + GMT/24.0e0;
%
% calc geom mean longitude
ML = 279.2801988e0 + .9856473354e0*D + 2.267e-13*D*D;
RML = ML*DR;
%
% calc equation of time in sec
% w = mean long of perigee
% e = eccentricity
% epsi = mean obliquity of ecliptic
W = 282.4932328e0 + 4.70684e-5*D + 3.39e-13*D*D;
WR = W*DR;
EC = 1.6720041e-2 - 1.1444e-9*D - 9.4e-17*D*D;
EPSI = 23.44266511 - 3.5626e-7*D - 1.23e-15*D*D;
PEPSI = EPSI*DR;
YT = (tan(PEPSI*rTWO))^2;
CW = cos(WR);
SW = sin(WR);
SSW = sin(TWO*WR);
EYT = TWO*EC*YT;
FEQT1 = sin(RML)*(-EYT*CW - TWO*EC*CW);
FEQT2 = cos(RML)*(TWO*EC*SW - EYT*SW);
FEQT3 = sin(TWO*RML)*(YT - (FIVE*EC*EC*rFOUR)*(CW*CW-SW*SW));
FEQT4 = cos(TWO*RML)*(FIVE*EC^2*SSW*rFOUR);
FEQT5 = sin(THREE*RML)*(EYT*CW);
FEQT6 = cos(THREE*RML)*(-EYT*SW);
FEQT7 = -sin(FOUR*RML)*(rTWO*YT*YT);
FEQT = FEQT1 + FEQT2 + FEQT3 + FEQT4 + FEQT5 + FEQT6 + FEQT7;
EQT = FEQT*13751.0e0;
%
% convert eq of time from sec to deg
REQT = EQT/240.0e0;
%
% calc right ascension in rads
RA = ML - REQT;
RRA = RA*DR;
%
% calc declination in rads, deg
TAB = 0.43360e0*sin(RRA);
RDECL = atan(TAB);
DECL = RDECL/DR;
%
% calc local hour angle
LBGMT = 12.0e0 - EQT/HOUR + rlon*24.0e0/360.0e0;
LZGMT = 15.0e0*(GMT - LBGMT);
ZPT = LZGMT*DR;
CSZ = sin(RLT)*sin(RDECL) + cos(RLT)*cos(RDECL)*cos(ZPT);
ZR = acos(CSZ);
%
% calc local solar azimuth
CAZ = (sin(RDECL) - sin(RLT)*cos(ZR))/(cos(RLT)*sin(ZR));
RAZ = acos(CAZ);
AZIMUTH = RAZ/DR;
%
%--- set Zenith Angle
Chi = 1.745329252e-02 * ZR/DR;
end