Skip to content

Latest commit

 

History

History
150 lines (122 loc) · 8.09 KB

README.md

File metadata and controls

150 lines (122 loc) · 8.09 KB

Keras AdamW

Build Status Coverage Status Codacy Badge PyPI version DOI License: MIT

Keras/TF implementation of AdamW, SGDW, NadamW, and Warm Restarts, based on paper Decoupled Weight Decay Regularization - plus Learning Rate Multipliers

Features

  • Weight decay fix: decoupling L2 penalty from gradient. Why use?
    • Weight decay via L2 penalty yields worse generalization, due to decay not working properly
    • Weight decay via L2 penalty leads to a hyperparameter coupling with lr, complicating search
  • Warm restarts (WR): cosine annealing learning rate schedule. Why use?
    • Better generalization and faster convergence was shown by authors for various data and model sizes
  • LR multipliers: per-layer learning rate multipliers. Why use?
    • Pretraining; if adding new layers to pretrained layers, using a global lr is prone to overfitting

Installation

pip install keras-adamw. Or, for latest version (most likely stable):

pip install git+https://github.com/OverLordGoldDragon/keras-adamw

Usage

If using tensorflow.keras imports, set import os; os.environ["TF_KERAS"]='1'.

Weight decay

AdamW(model=model)
Three methods to set weight_decays = {<weight matrix name>:<weight decay value>,}:

# 1. Automatically
Just pass in `model` (`AdamW(model=model)`), and decays will be automatically extracted.
Loss-based penalties (l1, l2, l1_l2) will be zeroed by default, but can be kept via
`zero_penalties=False` (NOT recommended, see Use guidelines).
# 2. Use keras_adamw.utils.py
Dense(.., kernel_regularizer=l2(0)) # set weight decays in layers as usual, but to ZERO
wd_dict = get_weight_decays(model)
# print(wd_dict) to see returned matrix names, note their order
# specify values as (l1, l2) tuples, both for l1_l2 decay
ordered_values = [(0, 1e-3), (1e-4, 2e-4), ..]
weight_decays = fill_dict_in_order(wd_dict, ordered_values)
# 3. Fill manually
model.layers[1].kernel.name # get name of kernel weight matrix of layer indexed 1
weight_decays.update({'conv1d_0/kernel:0': (1e-4, 0)}) # example

Warm restarts

AdamW(.., use_cosine_annealing=True, total_iterations=200) - refer to Use guidelines below

LR multipliers

AdamW(.., lr_multipliers=lr_multipliers) - to get, {<layer name>:<multiplier value>,}:

  1. (a) Name every layer to be modified (recommended), e.g. Dense(.., name='dense_1') - OR
    (b) Get every layer name, note which to modify: [print(idx,layer.name) for idx,layer in enumerate(model.layers)]
  2. (a) lr_multipliers = {'conv1d_0':0.1} # target layer by full name - OR
    (b) lr_multipliers = {'conv1d':0.1} # target all layers w/ name substring 'conv1d'

Example

import numpy as np
from keras.layers import Input, Dense, LSTM
from keras.models import Model
from keras.regularizers import l1, l2, l1_l2
from keras_adamw import AdamW

ipt   = Input(shape=(120, 4))
x     = LSTM(60, activation='relu', name='lstm_1',
             kernel_regularizer=l1(1e-4), recurrent_regularizer=l2(2e-4))(ipt)
out   = Dense(1, activation='sigmoid', kernel_regularizer=l1_l2(1e-4, 2e-4))(x)
model = Model(ipt, out)
lr_multipliers = {'lstm_1': 0.5}

optimizer = AdamW(lr=1e-4, model=model, lr_multipliers=lr_multipliers,
                  use_cosine_annealing=True, total_iterations=24)
model.compile(optimizer, loss='binary_crossentropy')
for epoch in range(3):
    for iteration in range(24):
        x = np.random.rand(10, 120, 4) # dummy data
        y = np.random.randint(0, 2, (10, 1)) # dummy labels
        loss = model.train_on_batch(x, y)
        print("Iter {} loss: {}".format(iteration + 1, "%.3f" % loss))
    print("EPOCH {} COMPLETED\n".format(epoch + 1))

(Full example + plot code, and explanation of lr_t vs. lr: example.py)

Use guidelines

Weight decay

  • Set L2 penalty to ZERO if regularizing a weight via weight_decays - else the purpose of the 'fix' is largely defeated, and weights will be over-decayed --My recommendation
  • lambda = lambda_norm * sqrt(1/total_iterations) --> can be changed; the intent is to scale λ to decouple it from other hyperparams - including (but not limited to), # of epochs & batch size. --Authors (Appendix, pg.1) (A-1)
  • total_iterations_wd --> set to normalize over all epochs (or other interval != total_iterations) instead of per-WR when using WR; may sometimes yield better results --My note

Warm restarts

  • Done automatically with autorestart=True, which is the default if use_cosine_annealing=True; internally sets t_cur=0 after total_iterations iterations.
  • Manually: set t_cur = -1 to restart schedule multiplier (see Example). Can be done at compilation or during training. Non--1 is also valid, and will start eta_t at another point on the cosine curve. Details in A-2,3
  • t_cur should be set at iter == total_iterations - 2; explanation here
  • Set total_iterations to the # of expected weight updates for the given restart --Authors (A-1,2)
  • eta_min=0, eta_max=1 are tunable hyperparameters; e.g., an exponential schedule can be used for eta_max. If unsure, the defaults were shown to work well in the paper. --Authors
  • Save/load optimizer state; WR relies on using the optimizer's update history for effective transitions --Authors (A-2)
# 'total_iterations' general purpose example
def get_total_iterations(restart_idx, num_epochs, iterations_per_epoch):
    return num_epochs[restart_idx] * iterations_per_epoch[restart_idx]
get_total_iterations(0, num_epochs=[1,3,5,8], iterations_per_epoch=[240,120,60,30])

Learning rate multipliers

  • Best used for pretrained layers - e.g. greedy layer-wise pretraining, or pretraining a feature extractor to a classifier network. Can be a better alternative to freezing layer weights. --My recommendation
  • It's often best not to pretrain layers fully (till convergence, or even best obtainable validation score) - as it may inhibit their ability to adapt to newly-added layers. --My recommendation
  • The more the layers are pretrained, the lower their fraction of new layers' lr should be. --My recommendation

How to cite

Short form:

John Muradeli, keras-adamw, 2019. GitHub repository, https://github.com/OverLordGoldDragon/keras-adamw/. DOI: 10.5281/zenodo.5080529

BibTeX:

@article{OverLordGoldDragon2019keras-adamw,
  title={Keras AdamW},
  author={John Muradeli},
  journal={GitHub. Note: https://github.com/OverLordGoldDragon/keras-adamw/},
  year={2019},
  doi={10.5281/zenodo.5080529},
}