This repository has been archived by the owner on Aug 5, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 209
/
Copy pathdarknet21.yaml
100 lines (95 loc) · 3.19 KB
/
darknet21.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
################################################################################
# training parameters
################################################################################
train:
loss: "xentropy" # must be either xentropy or iou
max_epochs: 150
lr: 0.01 # sgd learning rate
wup_epochs: 1 # warmup during first XX epochs (can be float)
momentum: 0.9 # sgd momentum
lr_decay: 0.995 # learning rate decay per epoch after initial cycle (from min lr)
w_decay: 0.0001 # weight decay
batch_size: 2 # batch size
report_batch: 1 # every x batches, report loss
report_epoch: 1 # every x epochs, report validation set
epsilon_w: 0.001 # class weight w = 1 / (content + epsilon_w)
save_summary: False # Summary of weight histograms for tensorboard
save_scans: True # False doesn't save anything, True saves some
# sample images (one per batch of the last calculated batch)
# in log folder
show_scans: False # show scans during training
workers: 12 # number of threads to get data
################################################################################
# backbone parameters
################################################################################
backbone:
name: "darknet" # ['squeezeseg', 'squeezesegV2', 'darknet']
input_depth:
range: True
xyz: True
remission: True
dropout: 0.01
bn_d: 0.01
OS: 32 # output stride (only horizontally)
train: True # train backbone?
extra:
layers: 21
################################################################################
# decoder parameters
################################################################################
decoder:
name: "darknet"
dropout: 0.01
bn_d: 0.01
train: True # train decoder?
extra: False # nothing to add for this decoder, otherwise this is a dict
################################################################################
# classification head parameters
################################################################################
head:
name: "segmentation"
train: True
dropout: 0.01
################################################################################
# postproc parameters
################################################################################
post:
CRF:
use: False
train: True
params: False # this should be a dict when in use
KNN:
use: False
params:
knn: 5
search: 5
sigma: 1.0
cutoff: 1.0
################################################################################
# classification head parameters
################################################################################
# dataset (to find parser)
dataset:
labels: "kitti"
scans: "kitti"
max_points: 150000 # max of any scan in dataset
sensor:
name: "HDL64"
type: "spherical" # projective
fov_up: 3
fov_down: -25
img_prop:
width: 2048
height: 64
img_means: #range,x,y,z,signal
- 12.12
- 10.88
- 0.23
- -1.04
- 0.21
img_stds: #range,x,y,z,signal
- 12.32
- 11.47
- 6.91
- 0.86
- 0.16