diff --git a/paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py b/paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py index d8bef818fb..998748c55f 100644 --- a/paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py +++ b/paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py @@ -16,7 +16,10 @@ from fastapi import FastAPI -from ...attribute_recognition import PedestrianAttributeRecPipeline +from ...attribute_recognition import ( + PedestrianAttributeRecPipeline, + VehicleAttributeRecPipeline, +) from ...base import BasePipeline from ...formula_recognition import FormulaRecognitionPipeline from ...layout_parsing import LayoutParsingPipeline @@ -52,6 +55,9 @@ from .pedestrian_attribute_recognition import ( create_pipeline_app as create_pedestrian_attribute_recognition_app, ) +from .vehicle_attribute_recognition import ( + create_pipeline_app as create_vehicle_attribute_recognition_app, +) from .ppchatocrv3 import create_pipeline_app as create_ppchatocrv3_app from .seal_recognition import create_pipeline_app as create_seal_recognition_app from .semantic_segmentation import ( @@ -168,6 +174,12 @@ def create_pipeline_app( "Expected `pipeline` to be an instance of `PedestrianAttributeRecPipeline`." ) return create_pedestrian_attribute_recognition_app(pipeline, app_config) + elif pipeline_name == "vehicle_attribute_recognition": + if not isinstance(pipeline, VehicleAttributeRecPipeline): + raise TypeError( + "Expected `pipeline` to be an instance of `VehicleAttributeRecPipeline`." + ) + return create_vehicle_attribute_recognition_app(pipeline, app_config) else: if BasePipeline.get(pipeline_name): raise ValueError( diff --git a/paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py b/paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py new file mode 100644 index 0000000000..db59313edb --- /dev/null +++ b/paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py @@ -0,0 +1,100 @@ +# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import List + +from fastapi import FastAPI, HTTPException +from pydantic import BaseModel, Field +from typing_extensions import Annotated, TypeAlias + +from .....utils import logging +from ...attribute_recognition import VehicleAttributeRecPipeline +from .. import utils as serving_utils +from ..app import AppConfig, create_app +from ..models import Response, ResultResponse + + +class InferRequest(BaseModel): + image: str + + +BoundingBox: TypeAlias = Annotated[List[float], Field(min_length=4, max_length=4)] + + +class Attribute(BaseModel): + label: str + score: float + + +class Vehicle(BaseModel): + bbox: BoundingBox + attributes: List[Attribute] + score: float + + +class InferResult(BaseModel): + vehicles: List[Vehicle] + image: str + + +def create_pipeline_app( + pipeline: VehicleAttributeRecPipeline, app_config: AppConfig +) -> FastAPI: + app, ctx = create_app( + pipeline=pipeline, app_config=app_config, app_aiohttp_session=True + ) + + @app.post( + "/vehicle-attribute-recognition", + operation_id="infer", + responses={422: {"model": Response}}, + ) + async def _infer(request: InferRequest) -> ResultResponse[InferResult]: + pipeline = ctx.pipeline + aiohttp_session = ctx.aiohttp_session + + try: + file_bytes = await serving_utils.get_raw_bytes( + request.image, aiohttp_session + ) + image = serving_utils.image_bytes_to_array(file_bytes) + + result = (await pipeline.infer(image))[0] + + vehicles: List[Vehicle] = [] + for obj in result["boxes"]: + vehicles.append( + Vehicle( + bbox=obj["coordinate"], + attributes=[ + Attribute(label=l, score=s) + for l, s in zip(obj["labels"], obj["cls_scores"]) + ], + score=obj["det_score"], + ) + ) + output_image_base64 = serving_utils.image_to_base64(result.img) + + return ResultResponse( + logId=serving_utils.generate_log_id(), + errorCode=0, + errorMsg="Success", + result=InferResult(vehicles=vehicles, image=output_image_base64), + ) + + except Exception as e: + logging.exception(e) + raise HTTPException(status_code=500, detail="Internal server error") + + return app