-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_train.py
57 lines (42 loc) · 1.82 KB
/
face_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import cv2
import numpy as np
from PIL import Image
import os
if __name__ == "__main__":
# Directory path where the face images are stored.
path = './images/'
recognizer = cv2.face.LBPHFaceRecognizer_create()
print("\n[INFO] Training...")
# Haar cascade file for face detection
detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
def getImagesAndLabels(path):
"""
Load face images and corresponding labels from the given directory path.
Parameters:
path (str): Directory path containing face images.
Returns:
list: List of face samples.
list: List of corresponding labels.
"""
imagePaths = [os.path.join(path, f) for f in os.listdir(path)]
faceSamples = []
ids = []
for imagePath in imagePaths:
# Convert image to grayscale
PIL_img = Image.open(imagePath).convert('L')
img_numpy = np.array(PIL_img, 'uint8')
# Extract the user ID from the image file name
id = int(os.path.split(imagePath)[-1].split("-")[1])
# Detect faces in the grayscale image
faces = detector.detectMultiScale(img_numpy)
for (x, y, w, h) in faces:
# Extract face region and append to the samples
faceSamples.append(img_numpy[y:y+h, x:x+w])
ids.append(id)
return faceSamples, ids
faces, ids = getImagesAndLabels(path)
# Train the recognizer with the face samples and corresponding labels
recognizer.train(faces, np.array(ids))
# Save the trained model into the current directory
recognizer.write('trainer.yml')
print("\n[INFO] {0} faces trained. Exiting Program".format(len(np.unique(ids))))