-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathyolo.py
256 lines (192 loc) · 8.68 KB
/
yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from utility import *
def parse_cfg(cfgfile):
"""
Take a configuration file as a input and return a dictionary containing
all the blocks as an output.
"""
with open(cfgfile, "r") as file:
lines = [x.rstrip().lstrip() for x in file.read().split("\n")
if len(x) > 0 and x[0] != "#"]
blocks = [] # storing block in a this list
temp = {} # storing informations of a block in this dict
for line in lines:
if line.startswith("["): # block starting
if len(temp) != 0:
blocks.append(temp)
temp = {}
temp["type"] = line[1:-1].rstrip()
else:
key, value = line.split("=")
temp[key.rstrip()] = value.lstrip()
blocks.append(temp)
return blocks
def create_modules(blocks):
network_info = blocks[0]
module_list = nn.ModuleList()
inp_filter = 3
output_filter = []
for index, x in enumerate(blocks[1:]):
module = nn.Sequential()
if x["type"] == "convolutional":
try:
batch_normalize = int(x["batch_normalize"])
bias = False
except:
batch_normalize = 0
bias = True
filters = int(x["filters"])
kernel_size = int(x["size"])
stride = int(x["stride"])
padding = int(x["pad"])
activation = x["activation"]
if padding:
pad = (kernel_size - 1) // 2
else:
pad = 0
conv = nn.Conv2d(inp_filter, filters, kernel_size,
stride, pad, bias=bias)
module.add_module("conv_{0}".format(index), conv)
if batch_normalize:
module.add_module("batch_norm_{0}".format(index),
nn.BatchNorm2d(filters))
if activation == "leaky":
module.add_module("leaky_{0}".format(index),
nn.LeakyReLU(0.1, True))
elif x["type"] == "upsample":
stride = int(x["stride"])
module.add_module("upsample_{0}".format(index),
nn.Upsample(scale_factor=2, mode="nearest"))
elif x["type"] == "route":
x["layers"] = x["layers"].split(",")
start = int(x["layers"][0])
try:
end = int(x["layers"][1])
except:
end = 0
if start > 0:
start -= index
if end > 0:
end -= index
if end < 0:
filters = output_filter[index + start] + output_filter[index + end]
else:
filters = output_filter[index + start]
route = EmptyLayer()
module.add_module("route_{0}".format(index), route)
elif x["type"] == "shortcut":
shortcut = EmptyLayer()
module.add_module("shortcut_{0}".format(index), shortcut)
elif x["type"] == "yolo":
mask = [int(x) for x in x["mask"].split(",")]
anchors = [int(x) for x in x["anchors"].split(",")]
anchors = [(anchors[i], anchors[i+1]) for i in range(0, len(anchors), 2)]
anchors = [anchors[i] for i in mask] # Only use those anchors that define in mask
detection = DetectionLayer(anchors)
module.add_module("Detection_{0}".format(index), detection)
module_list.append(module)
inp_filter = filters
output_filter.append(filters)
return network_info, module_list
class Darknet(nn.Module):
"""Class to define our Network"""
def __init__(self, cfg_file):
super(Darknet, self).__init__()
self.blocks = parse_cfg(cfg_file)
self.network_info, self.module_list = create_modules(self.blocks)
def forward(self, x):
modules = self.blocks[1:]
outputs = {}
flag = 0
for index, module in enumerate(modules):
module_type = module["type"]
if module_type == "convolutional" or module_type == "upsample":
x = self.module_list[index](x)
elif module_type == "route":
layers = [int(i) for i in module["layers"]]
if (layers[0]) > 0:
layers[0] -= index
if len(layers) == 1:
x = outputs[index + layers[0]]
else:
if (layers[1]) > 0:
layers[1] -= index
layer1 = outputs[index + layers[0]]
layer2 = outputs[index + layers[1]]
x = torch.cat((layer1, layer2), 1)
elif module_type == "shortcut":
prev = int(module["from"])
x = outputs[index - 1] + outputs[index + prev]
elif module_type == "yolo":
anchors = self.module_list[index][0].anchors
input_dim = int(self.network_info["height"])
classes = int(module["classes"])
x = transform_tensor(x.data, input_dim, anchors, classes)
if not flag:
detections = x
flag = 1
else:
detections = torch.cat((detections, x), 1)
outputs[index] = x
return detections
def load_weights(self, weightfile):
#Open the weights file
fp = open(weightfile, "rb")
# First 5 values is header
header = np.fromfile(fp, dtype = np.int32, count = 5)
self.header = torch.from_numpy(header)
self.seen = self.header[3]
weights = np.fromfile(fp, dtype = np.float32)
ptr = 0
for i in range(len(self.module_list)):
module_type = self.blocks[i + 1]["type"]
if module_type == "convolutional":
model = self.module_list[i]
try:
batch_normalize = int(self.blocks[i+1]["batch_normalize"])
except:
batch_normalize = 0
conv = model[0]
if batch_normalize:
bn = model[1]
#Get the number of weights of Batch Norm Layer
num_bn_biases = bn.bias.numel()
#Load the weights
bn_biases = torch.from_numpy(weights[ptr:ptr + num_bn_biases])
ptr += num_bn_biases
bn_weights = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
ptr += num_bn_biases
bn_running_mean = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
ptr += num_bn_biases
bn_running_var = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
ptr += num_bn_biases
#Cast the loaded weights into dims of model weights.
bn_biases = bn_biases.view_as(bn.bias.data)
bn_weights = bn_weights.view_as(bn.weight.data)
bn_running_mean = bn_running_mean.view_as(bn.running_mean)
bn_running_var = bn_running_var.view_as(bn.running_var)
#Copy the data to model
bn.bias.data.copy_(bn_biases)
bn.weight.data.copy_(bn_weights)
bn.running_mean.copy_(bn_running_mean)
bn.running_var.copy_(bn_running_var)
else:
#Number of biases
num_biases = conv.bias.numel()
#Load the weights
conv_biases = torch.from_numpy(weights[ptr: ptr + num_biases])
ptr = ptr + num_biases
#reshape the loaded weights according to the dims of the model weights
conv_biases = conv_biases.view_as(conv.bias.data)
#Finally copy the data
conv.bias.data.copy_(conv_biases)
#Let us load the weights for the Convolutional layers
num_weights = conv.weight.numel()
#Do the same as above for weights
conv_weights = torch.from_numpy(weights[ptr:ptr+num_weights])
ptr = ptr + num_weights
conv_weights = conv_weights.view_as(conv.weight.data)
conv.weight.data.copy_(conv_weights)