-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
108 lines (75 loc) · 3.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import os
import cv2
import pickle
import numpy as np
from flask import Flask, request, render_template
from sklearn.feature_extraction.text import CountVectorizer
from keras.models import model_from_json
from keras.preprocessing import image
from flask import Flask, request, render_template
app = Flask(__name__)
@app.route('/')
def home():
return render_template('home.html')
@app.route('/height_weight', methods=['GET', 'POST'])
def predict_weight():
model = pickle.load(open('model.pkl', 'rb'))
if request.method == 'POST':
height = float(request.form['height'])
gender = float(request.form['gender'])
prediction = model.predict([[gender, height]])
weights = round(prediction[0], 2)
return render_template('height_weight.html', weights='Your Weight is: {}'.format(weights))
return render_template('height_weight.html')
@app.route('/spam_ham', methods=['GET', 'POST'])
def predict_message():
model = pickle.load(open('spam_ham.pkl','rb'))
if request.method == 'POST':
message = request.form['detect']
data = [message]
data = np.array(data)
prediction = model.predict(data)
if prediction == 1:
messages = "Spam"
else:
messages = "Ham"
if type(messages)==type('string'):
return render_template('spam_ham.html', message='Your Message is: {}'.format(messages))
else:
return render_template('spam_ham.html', message='Your Message is: {}'.format(messages))
return render_template('spam_ham.html')
@app.route('/face_emotion', methods=['GET', 'POST'])
def face_emotion():
#load model
model = model_from_json(open("fer.json", "r").read())
#load weights
model.load_weights('fer.h5')
face_haar_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
cap=cv2.VideoCapture(0)
while True:
ret,test_img=cap.read()# captures frame and returns boolean value and captured image
if not ret:
continue
gray_img= cv2.cvtColor(test_img, cv2.COLOR_BGR2GRAY)
faces_detected = face_haar_cascade.detectMultiScale(gray_img, 1.32, 5)
for (x,y,w,h) in faces_detected:
cv2.rectangle(test_img,(x,y),(x+w,y+h),(255,0,0),thickness=7)
roi_gray=gray_img[y:y+w,x:x+h]#cropping region of interest i.e. face area from image
roi_gray=cv2.resize(roi_gray,(48,48))
img_pixels = image.img_to_array(roi_gray)
img_pixels = np.expand_dims(img_pixels, axis = 0)
img_pixels /= 255
predictions = model.predict(img_pixels)
#find max indexed array
max_index = np.argmax(predictions[0])
emotions = ('angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral')
predicted_emotion = emotions[max_index]
cv2.putText(test_img, predicted_emotion, (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2)
resized_img = cv2.resize(test_img, (1000, 700))
cv2.imshow('Facial emotion analysis ',resized_img)
if cv2.waitKey(10) == ord('q'):#wait until 'q' key is pressed
break
cap.release()
cv2.destroyAllWindows
if __name__ == "__main__":
app.run()