forked from werner-duvaud/muzero-general
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathself_play.py
506 lines (439 loc) · 17.9 KB
/
self_play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import copy
import math
import time
import numpy
import ray
import torch
import models
@ray.remote(num_cpus=1)
class SelfPlay:
"""
Class which run in a dedicated thread to play games and save them to the replay-buffer.
"""
def __init__(self, initial_weights, game, config):
self.config = config
self.game = game
self.sum_reward = 0
self.num_game_played = 0
# Fix random generator seed
numpy.random.seed(self.config.seed)
torch.manual_seed(self.config.seed)
# Initialize the network
self.model = models.MuZeroNetwork(self.config)
self.model.set_weights(initial_weights)
self.model.to(torch.device("cpu"))
self.model.eval()
def continuous_self_play(self, shared_storage, replay_buffer, test_mode=False):
while True:
self.model.set_weights(
copy.deepcopy(ray.get(shared_storage.get_target_network_weights.remote()))
)
# Take the best action (no exploration) in test mode
temperature = (
0
if test_mode
else self.config.visit_softmax_temperature_fn(
trained_steps=ray.get(shared_storage.get_infos.remote())[
"training_step"
]
)
)
game_history = self.play_game(
temperature,
self.config.temperature_threshold,
False,
"self" if not test_mode else "random",
0,
)
self.num_game_played += 1
# Save to the shared storage
if test_mode:
total_reward = sum(game_history.reward_history)
shared_storage.set_infos.remote(
"total_reward", total_reward
)
self.sum_reward += total_reward
shared_storage.set_infos.remote(
"average_reward", self.sum_reward / self.num_game_played
)
shared_storage.set_infos.remote(
"test_games", self.num_game_played
)
shared_storage.set_infos.remote(
"episode_length", len(game_history.action_history)
)
if 1 < len(self.config.players):
shared_storage.set_infos.remote(
"player_0_reward",
sum(
[
reward
for i, reward in enumerate(game_history.reward_history)
if game_history.to_play_history[i] == 1
]
),
)
shared_storage.set_infos.remote(
"player_1_reward",
sum(
[
reward
for i, reward in enumerate(game_history.reward_history)
if game_history.to_play_history[i] == 0
]
),
)
if not test_mode:
replay_buffer.save_game.remote(game_history)
shared_storage.update_infos.remote("samples_count", len(game_history.priorities))
# Managing the self-play / training ratio
if not test_mode and self.config.self_play_delay:
time.sleep(self.config.self_play_delay)
if not test_mode and self.config.ratio:
while (
ray.get(shared_storage.get_infos.remote())["samples_count"]
/ max(
1, ray.get(shared_storage.get_infos.remote())["training_step"]
)
> self.config.ratio
):
time.sleep(0.5)
def play_game(
self, temperature, temperature_threshold, render, opponent, muzero_player
):
"""
Play one game with actions based on the Monte Carlo tree search at each moves.
"""
game_history = GameHistory()
observation = self.game.reset()
game_history.action_history.append(0)
game_history.observation_history.append(observation)
game_history.reward_history.append(0)
game_history.to_play_history.append(self.game.to_play())
game_history.legal_actions.append(self.game.legal_actions())
done = False
if render:
self.game.render()
with torch.no_grad():
while (
not done and len(game_history.action_history) <= self.config.max_moves
):
stacked_observations = game_history.get_stacked_observations(
-1, self.config.stacked_observations,
)
root, priority, tree_depth = MCTS(self.config).run(
self.model,
stacked_observations,
self.game.legal_actions(),
self.game.to_play(),
False if temperature == 0 else True,
)
if render:
print("Tree depth: {}".format(tree_depth))
print(
"Root value for player {0}: {1:.2f}".format(
self.game.to_play(), root.value()
)
)
# Choose the action
if opponent == "self" or muzero_player == self.game.to_play():
action = self.select_action(
root,
temperature
if not temperature_threshold
or len(game_history.action_history) < temperature_threshold
else 0,
)
elif opponent == "human":
print(
"Player {} turn. MuZero suggests {}".format(
self.game.to_play(),
self.game.action_to_string(self.select_action(root, 0)),
)
)
action = self.game.human_to_action()
elif opponent == "random":
action = numpy.random.choice(self.game.legal_actions())
else:
raise ValueError(
'Wrong argument: "opponent" argument should be "self", "human" or "random"'
)
observation, reward, done = self.game.step(action)
if render:
print(
"Played action: {}".format(self.game.action_to_string(action))
)
self.game.render()
game_history.store_search_statistics(root, self.config.action_space)
game_history.priorities.append(priority)
# Next batch
game_history.action_history.append(action)
game_history.observation_history.append(observation)
game_history.reward_history.append(reward)
game_history.to_play_history.append(self.game.to_play())
game_history.legal_actions.append(self.game.legal_actions())
self.game.close()
return game_history
@staticmethod
def select_action(node, temperature):
"""
Select action according to the visit count distribution and the temperature.
The temperature is changed dynamically with the visit_softmax_temperature function
in the config.
"""
visit_counts = numpy.array(
[child.visit_count for child in node.children.values()]
)
actions = [action for action in node.children.keys()]
if temperature == 0:
action = actions[numpy.argmax(visit_counts)]
elif temperature == float("inf"):
action = numpy.random.choice(actions)
else:
# See paper appendix Data Generation
visit_count_distribution = visit_counts ** (1 / temperature)
visit_count_distribution = visit_count_distribution / sum(
visit_count_distribution
)
action = numpy.random.choice(actions, p=visit_count_distribution)
return action
# Game independent
class MCTS:
"""
Core Monte Carlo Tree Search algorithm.
To decide on an action, we run N simulations, always starting at the root of
the search tree and traversing the tree according to the UCB formula until we
reach a leaf node.
"""
def __init__(self, config):
self.config = config
def run(self, model, observation, legal_actions, to_play, add_exploration_noise):
"""
At the root of the search tree we use the representation function to obtain a
hidden state given the current observation.
We then run a Monte Carlo Tree Search using only action sequences and the model
learned by the network.
"""
root = Node(0)
observation = (
torch.tensor(observation)
.float()
.unsqueeze(0)
.to(next(model.parameters()).device)
)
(
root_predicted_value,
reward,
policy_logits,
hidden_state,
) = model.initial_inference(observation)
root_predicted_value = models.support_to_scalar(
root_predicted_value, self.config.support_size
).item()
reward = models.support_to_scalar(reward, self.config.support_size).item()
root.expand(
legal_actions, to_play, reward, policy_logits, hidden_state,
)
if add_exploration_noise:
root.add_exploration_noise(
dirichlet_alpha=self.config.root_dirichlet_alpha,
exploration_fraction=self.config.root_exploration_fraction,
)
min_max_stats = MinMaxStats()
max_tree_depth = 0
for _ in range(self.config.num_simulations):
virtual_to_play = to_play
node = root
search_path = [node]
current_tree_depth = 0
while node.expanded():
current_tree_depth += 1
action, node = self.select_child(node, min_max_stats)
search_path.append(node)
# Players play turn by turn
if virtual_to_play + 1 < len(self.config.players):
virtual_to_play = self.config.players[virtual_to_play + 1]
else:
virtual_to_play = self.config.players[0]
# Inside the search tree we use the dynamics function to obtain the next hidden
# state given an action and the previous hidden state
parent = search_path[-2]
value, reward, policy_logits, hidden_state = model.recurrent_inference(
parent.hidden_state,
torch.tensor([[action]]).to(parent.hidden_state.device),
)
value = models.support_to_scalar(value, self.config.support_size).item()
reward = models.support_to_scalar(reward, self.config.support_size).item()
node.expand(
self.config.action_space,
virtual_to_play,
reward,
policy_logits,
hidden_state,
)
self.backpropagate(search_path, value, virtual_to_play, min_max_stats)
max_tree_depth = max(max_tree_depth, current_tree_depth)
priority = (
None
if self.config.use_max_priority
else numpy.abs(root_predicted_value - root.value()) ** self.config.PER_alpha
)
return root, priority, max_tree_depth
def select_child(self, node, min_max_stats):
"""
Select the child with the highest UCB score.
"""
_, action, child = max(
(self.ucb_score(node, child, min_max_stats), action, child)
for action, child in node.children.items()
)
return action, child
def ucb_score(self, parent, child, min_max_stats):
"""
The score for a node is based on its value, plus an exploration bonus based on the prior.
"""
pb_c = (
math.log(
(parent.visit_count + self.config.pb_c_base + 1) / self.config.pb_c_base
)
+ self.config.pb_c_init
)
pb_c *= math.sqrt(parent.visit_count) / (child.visit_count + 1)
prior_score = pb_c * child.prior
if child.visit_count > 0:
# Mean value Q
value_score = min_max_stats.normalize(
child.reward + self.config.discount * child.value()
)
else:
value_score = 0
return prior_score + value_score
def backpropagate(self, search_path, value, to_play, min_max_stats):
"""
At the end of a simulation, we propagate the evaluation all the way up the tree
to the root.
"""
for node in reversed(search_path):
node.value_sum += value if node.to_play == to_play else -value
node.visit_count += 1
min_max_stats.update(node.reward + self.config.discount * node.value())
value = node.reward + self.config.discount * value
class Node:
def __init__(self, prior):
self.visit_count = 0
self.to_play = -1
self.prior = prior
self.value_sum = 0
self.children = {}
self.hidden_state = None
self.reward = 0
def expanded(self):
return len(self.children) > 0
def value(self):
if self.visit_count == 0:
return 0
return self.value_sum / self.visit_count
def expand(self, actions, to_play, reward, policy_logits, hidden_state):
"""
We expand a node using the value, reward and policy prediction obtained from the
neural network.
"""
self.to_play = to_play
self.reward = reward
self.hidden_state = hidden_state
policy = {}
for a in actions:
try:
policy[a] = 1 / sum(torch.exp(policy_logits[0] - policy_logits[0][a]))
except OverflowError:
print("Warning: prior has been approximated")
policy[a] = 0.0
for action, p in policy.items():
self.children[action] = Node(p)
def add_exploration_noise(self, dirichlet_alpha, exploration_fraction):
"""
At the start of each search, we add dirichlet noise to the prior of the root to
encourage the search to explore new actions.
"""
actions = list(self.children.keys())
noise = numpy.random.dirichlet([dirichlet_alpha] * len(actions))
frac = exploration_fraction
for a, n in zip(actions, noise):
self.children[a].prior = self.children[a].prior * (1 - frac) + n * frac
class GameHistory:
"""
Store only usefull information of a self-play game.
"""
def __init__(self):
self.observation_history = []
self.action_history = []
self.reward_history = []
self.to_play_history = []
self.child_visits = []
self.root_values = []
self.priorities = []
self.legal_actions = []
def store_search_statistics(self, root, action_space, idx=None):
# Turn visit count from root into a policy
sum_visits = sum(child.visit_count for child in root.children.values())
if idx is None:
self.child_visits.append(
[
root.children[a].visit_count / sum_visits if a in root.children else 0
for a in action_space
]
)
self.root_values.append(root.value())
else:
self.child_visits[idx] = [
root.children[a].visit_count / sum_visits if a in root.children else 0
for a in action_space
]
self.root_values[idx] = root.value()
def get_stacked_observations(self, index, num_stacked_observations):
"""
Generate a new observation with the observation at the index position
and num_stacked_observations past observations and actions stacked.
"""
# Convert to positive index
index = index % len(self.observation_history)
stacked_observations = self.observation_history[index].copy()
for past_observation_index in reversed(
range(index - num_stacked_observations, index)
):
if 0 <= past_observation_index:
previous_observation = numpy.concatenate(
(
self.observation_history[past_observation_index],
[
numpy.ones_like(stacked_observations[0])
* self.action_history[past_observation_index + 1]
],
)
)
else:
previous_observation = numpy.concatenate(
(
numpy.zeros_like(self.observation_history[index]),
[numpy.zeros_like(stacked_observations[0])],
)
)
stacked_observations = numpy.concatenate(
(stacked_observations, previous_observation)
)
return stacked_observations
class MinMaxStats:
"""
A class that holds the min-max values of the tree.
"""
def __init__(self):
self.maximum = -float("inf")
self.minimum = float("inf")
def update(self, value):
self.maximum = max(self.maximum, value)
self.minimum = min(self.minimum, value)
def normalize(self, value):
if self.maximum > self.minimum:
# We normalize only when we have set the maximum and minimum values
return (value - self.minimum) / (self.maximum - self.minimum)
return value