forked from achlipala/frap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLambdaCalculusAndTypeSoundness_template.v
526 lines (441 loc) · 12.8 KB
/
LambdaCalculusAndTypeSoundness_template.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
* Chapter 11: Lambda Calculus and Simple Type Soundness
* Author: Adam Chlipala
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
Require Import Frap.
(* The last few chapters have focused on small programming languages that are
* representative of the essence of the imperative languages. We now turn to
* lambda-calculus, the usual representative of functional languages. *)
Module Ulc.
Inductive exp : Set :=
| Var (x : var)
| Abs (x : var) (body : exp)
| App (e1 e2 : exp).
Fixpoint subst (rep : exp) (x : var) (e : exp) : exp :=
match e with
| Var y => if y ==v x then rep else Var y
| Abs y e1 => Abs y (if y ==v x then e1 else subst rep x e1)
| App e1 e2 => App (subst rep x e1) (subst rep x e2)
end.
(** * Big-step semantics *)
Inductive eval : exp -> exp -> Prop :=
| BigAbs : forall x e,
eval (Abs x e) (Abs x e)
| BigApp : forall e1 x e1' e2 v2 v,
eval e1 (Abs x e1')
-> eval e2 v2
-> eval (subst v2 x e1') v
-> eval (App e1 e2) v.
Inductive value : exp -> Prop :=
| Value : forall x e, value (Abs x e).
Local Hint Constructors eval value : core.
Theorem value_eval : forall v,
value v
-> eval v v.
Proof.
invert 1; eauto.
Qed.
Local Hint Resolve value_eval : core.
Theorem eval_value : forall e v,
eval e v
-> value v.
Proof.
induct 1; eauto.
Qed.
Local Hint Resolve eval_value : core.
(* Some notations, to let us write more normal-looking lambda terms *)
Coercion Var : var >-> exp.
Notation "\ x , e" := (Abs x e) (at level 50).
Infix "@" := App (at level 49, left associativity).
(* Believe it or not, this is a Turing-complete language! Here's an example
* nonterminating program. *)
Example omega := (\"x", "x" @ "x") @ (\"x", "x" @ "x").
(** * Church Numerals, everyone's favorite example of lambda terms in
* action *)
(* Here are two curious definitions. *)
Definition zero := \"f", \"x", "x".
Definition plus1 := \"n", \"f", \"x", "f" @ ("n" @ "f" @ "x").
(* We can build up any natural number [n] as [plus1^n @ zero]. Let's prove
* that, in fact, these definitions constitute a workable embedding of the
* natural numbers in lambda-calculus. *)
(* A term [plus^n @ zero] evaluates to something very close to what this
* function returns. *)
Fixpoint canonical' (n : nat) : exp :=
match n with
| O => "x"
| S n' => "f" @ ((\"f", \"x", canonical' n') @ "f" @ "x")
end.
(* This missing piece is this wrapper. *)
Definition canonical n := \"f", \"x", canonical' n.
(* Let's formalize our definition of what it means to represent a number. *)
Definition represents (e : exp) (n : nat) :=
eval e (canonical n).
(* Zero passes the test. *)
Theorem zero_ok : represents zero 0.
Proof.
unfold zero, represents, canonical.
simplify.
econstructor.
Qed.
(* So does our successor operation. *)
Theorem plus1_ok : forall e n, represents e n
-> represents (plus1 @ e) (S n).
Proof.
unfold plus1, represents, canonical; simplify.
econstructor.
econstructor.
eassumption.
simplify.
econstructor.
Qed.
(* What's basically going on here? The representation of number [n] is [N]
* such that, for any function [f]:
* N(f) = f^n
* That is, we represent a number as its repeated-composition operator.
* So, given a number, we can use it to repeat any operation. In particular,
* to implement addition, we can just repeat [plus1]! *)
Definition add := \"n", \"m", "n" @ plus1 @ "m".
(* Our addition works properly on this test case. *)
Example add_1_2 : exists v,
eval (add @ (plus1 @ zero) @ (plus1 @ (plus1 @ zero))) v
/\ eval (plus1 @ (plus1 @ (plus1 @ zero))) v.
Proof.
eexists; propositional.
repeat (econstructor; simplify).
repeat econstructor.
Qed.
(* By the way: since [canonical'] doesn't mention variable "m", substituting
* for "m" has no effect. This fact will come in handy shortly. *)
Lemma subst_m_canonical' : forall m n,
subst m "m" (canonical' n) = canonical' n.
Proof.
induct n; simplify; equality.
Qed.
(* This inductive proof is the workhorse for the next result, so let's skip
* ahead there. *)
Lemma add_ok' : forall m n,
eval
(subst (\ "f", (\ "x", canonical' m)) "x"
(subst (\ "n", (\ "f", (\ "x", "f" @ (("n" @ "f") @ "x")))) "f"
(canonical' n))) (canonical (n + m)).
Proof.
induct n; simplify.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
simplify.
econstructor.
econstructor.
simplify.
eassumption.
simplify.
econstructor.
Qed.
(* [add] properly encodes the usual addition. *)
Theorem add_ok : forall n ne m me,
represents ne n
-> represents me m
-> represents (add @ ne @ me) (n + m).
Proof.
unfold represents; simplify.
econstructor.
econstructor.
econstructor.
eassumption.
simplify.
econstructor.
eassumption.
simplify.
econstructor.
econstructor.
econstructor.
econstructor.
simplify.
econstructor.
econstructor.
rewrite subst_m_canonical'.
apply add_ok'.
Qed.
(* Let's repeat the same exercise for multiplication. *)
Definition mult := \"n", \"m", "n" @ (add @ "m") @ zero.
Example mult_1_2 : exists v,
eval (mult @ (plus1 @ zero) @ (plus1 @ (plus1 @ zero))) v
/\ eval (plus1 @ (plus1 @ zero)) v.
Proof.
eexists; propositional.
repeat (econstructor; simplify).
repeat econstructor.
Qed.
Lemma mult_ok' : forall m n,
eval
(subst (\ "f", (\ "x", "x")) "x"
(subst
(\ "m",
((\ "f", (\ "x", canonical' m)) @
(\ "n", (\ "f", (\ "x", "f" @ (("n" @ "f") @ "x"))))) @ "m")
"f" (canonical' n))) (canonical (n * m)).
Proof.
induct n; simplify.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
simplify.
econstructor.
econstructor.
simplify.
eassumption.
simplify.
econstructor.
econstructor.
econstructor.
econstructor.
simplify.
econstructor.
econstructor.
rewrite subst_m_canonical'.
apply add_ok'. (* Note the recursive appeal to correctness of [add]. *)
Qed.
Theorem mult_ok : forall n ne m me,
represents ne n
-> represents me m
-> represents (mult @ ne @ me) (n * m).
Proof.
unfold represents; simplify.
econstructor.
econstructor.
econstructor.
eassumption.
simplify.
econstructor.
eassumption.
simplify.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
simplify.
econstructor.
simplify.
econstructor.
econstructor.
simplify.
rewrite subst_m_canonical'.
apply mult_ok'.
Qed.
(** * Small-step semantics *)
Inductive step : exp -> exp -> Prop :=
| ContextBeta : forall x e v,
value v
-> step (App (Abs x e) v) (subst v x e)
(* However, we also need bureaucractic rules for pushing evaluation inside
* applications. *)
| App1 : forall e1 e1' e2,
step e1 e1'
-> step (App e1 e2) (App e1' e2)
| App2 : forall v e2 e2',
value v
-> step e2 e2'
-> step (App v e2) (App v e2').
Local Hint Constructors step : core.
(* Here we now go through a proof of equivalence between big- and small-step
* semantics, though we won't spend any further commentary on it. *)
Lemma step_eval' : forall e1 e2,
step e1 e2
-> forall v, eval e2 v
-> eval e1 v.
Proof.
induct 1; simplify; eauto.
invert H0.
econstructor.
apply IHstep.
eassumption.
eassumption.
assumption.
invert H1.
econstructor.
eassumption.
apply IHstep.
eassumption.
assumption.
Qed.
Local Hint Resolve step_eval' : core.
Theorem step_eval : forall e v,
step^* e v
-> value v
-> eval e v.
Proof.
induct 1; eauto.
Qed.
Local Hint Resolve eval_value : core.
Theorem step_app1 : forall e1 e1' e2,
step^* e1 e1'
-> step^* (App e1 e2) (App e1' e2).
Proof.
induct 1; eauto.
Qed.
Theorem step_app2 : forall e2 e2' v,
value v
-> step^* e2 e2'
-> step^* (App v e2) (App v e2').
Proof.
induct 2; eauto.
Qed.
Theorem eval_step : forall e v,
eval e v
-> step^* e v.
Proof.
induct 1; eauto.
eapply trc_trans.
apply step_app1.
eassumption.
eapply trc_trans.
eapply step_app2.
constructor.
eassumption.
econstructor.
constructor.
eauto.
assumption.
Qed.
End Ulc.
Module Stlc.
Inductive exp : Set :=
| Var (x : var)
| Const (n : nat)
| Plus (e1 e2 : exp)
| Abs (x : var) (e1 : exp)
| App (e1 e2 : exp).
Inductive value : exp -> Prop :=
| VConst : forall n, value (Const n)
| VAbs : forall x e1, value (Abs x e1).
Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp :=
match e2 with
| Var y => if y ==v x then e1 else Var y
| Const n => Const n
| Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'')
| Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2')
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
end.
Inductive step : exp -> exp -> Prop :=
| Beta : forall x e v,
value v
-> step (App (Abs x e) v) (subst v x e)
| Add : forall n1 n2,
step (Plus (Const n1) (Const n2)) (Const (n1 + n2))
| App1 : forall e1 e1' e2,
step e1 e1'
-> step (App e1 e2) (App e1' e2)
| App2 : forall v e2 e2',
value v
-> step e2 e2'
-> step (App v e2) (App v e2')
| Plus1 : forall e1 e1' e2,
step e1 e1'
-> step (Plus e1 e2) (Plus e1' e2)
| Plus2 : forall v e2 e2',
value v
-> step e2 e2'
-> step (Plus v e2) (Plus v e2').
Definition trsys_of (e : exp) := {|
Initial := {e};
Step := step
|}.
Inductive type :=
| Nat (* Numbers *)
| Fun (dom ran : type) (* Functions *).
Inductive hasty : fmap var type -> exp -> type -> Prop :=
| HtVar : forall G x t,
G $? x = Some t
-> hasty G (Var x) t
| HtConst : forall G n,
hasty G (Const n) Nat
| HtPlus : forall G e1 e2,
hasty G e1 Nat
-> hasty G e2 Nat
-> hasty G (Plus e1 e2) Nat
| HtAbs : forall G x e1 t1 t2,
hasty (G $+ (x, t1)) e1 t2
-> hasty G (Abs x e1) (Fun t1 t2)
| HtApp : forall G e1 e2 t1 t2,
hasty G e1 (Fun t1 t2)
-> hasty G e2 t1
-> hasty G (App e1 e2) t2.
Local Hint Constructors value step hasty : core.
(* Some notation to make it more pleasant to write programs *)
Infix "-->" := Fun (at level 60, right associativity).
Coercion Const : nat >-> exp.
Infix "^+^" := Plus (at level 50).
Coercion Var : var >-> exp.
Notation "\ x , e" := (Abs x e) (at level 51).
Infix "@" := App (at level 49, left associativity).
(* Some examples of typed programs *)
Example one_plus_one : hasty $0 (1 ^+^ 1) Nat.
Proof.
repeat (econstructor; simplify).
Qed.
Example add : hasty $0 (\"n", \"m", "n" ^+^ "m") (Nat --> Nat --> Nat).
Proof.
repeat (econstructor; simplify).
Qed.
Example eleven : hasty $0 ((\"n", \"m", "n" ^+^ "m") @ 7 @ 4) Nat.
Proof.
repeat (econstructor; simplify).
Qed.
Example seven_the_long_way : hasty $0 ((\"x", "x") @ (\"x", "x") @ 7) Nat.
Proof.
repeat (econstructor; simplify).
Qed.
(** * Let's prove type soundness. *)
Definition unstuck e := value e
\/ (exists e' : exp, step e e').
Lemma progress : forall e t,
hasty $0 e t
-> value e
\/ (exists e' : exp, step e e').
Proof.
Admitted.
(* Replacing a typing context with an equal one has no effect (useful to guide
* proof search as a hint). *)
Lemma hasty_change : forall G e t,
hasty G e t
-> forall G', G' = G
-> hasty G' e t.
Proof.
Admitted.
Local Hint Resolve hasty_change : core.
Lemma preservation : forall e1 e2,
step e1 e2
-> forall t, hasty $0 e1 t
-> hasty $0 e2 t.
Proof.
Admitted.
Theorem safety : forall e t, hasty $0 e t
-> invariantFor (trsys_of e) unstuck.
Proof.
simplify.
(* Step 1: strengthen the invariant. In particular, the typing relation is
* exactly the right stronger invariant! Our progress theorem proves the
* required invariant inclusion. *)
apply invariant_weaken with (invariant1 := fun e' => hasty $0 e' t).
(* Step 2: apply invariant induction, whose induction step turns out to match
* our preservation theorem exactly! *)
apply invariant_induction; simplify.
equality.
eapply preservation.
eassumption.
assumption.
simplify.
eapply progress.
eassumption.
Qed.
End Stlc.