You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
#Replace with your data classification tool's API client
data_class_api_client = data_classification_tool_api.ApiClient()
#Replace with your PostgreSQL connection settings
conn = psycopg2.connect(database="your_db", user="your_user", password="your_password", host="your_host", port="your_port")
def get_data_sources():
"""
Get a list of data sources (e.g., databases, file storage) in your organization.
"""
# Implement logic to fetch data sources from your organization
return data_sources
def classify_data(data_sources):
"""
Use the data classification tool's API to classify data across your organization.
"""
classification_results = {}
for data_source in data_sources:
classification_result = data_class_api_client.classify_data(data_source)
classification_results[data_source] = classification_result
return classification_results
def analyze_classification_results(classification_results, data_classification_policy):
"""
Analyze classification results to check for compliance with the data classification policy and ensure that sensitive data is properly identified and protected.
"""
non_compliant_data_sources = []
for data_source, result in classification_results.items():
if not result['compliant']:
non_compliant_data_sources.append({
'data_source': data_source,
'violations': result['violations']
})
return non_compliant_data_sources
def generate_reports_and_notifications(non_compliant_data_sources):
"""
Generate reports and notifications based on the analysis of data classification results.
"""
# Implement report generation and notification logic here
def save_results_to_database(non_compliant_data_sources):
"""
Save the analysis results to a PostgreSQL database.
"""
cur = conn.cursor()
for data_source in non_compliant_data_sources:
# Insert non-compliant data source data into your database table
insert_query = """INSERT INTO your_non_compliant_table (data_source, violations) VALUES (%s, %s)"""
cur.execute(insert_query, (data_source['data_source'], json.dumps(data_source['violations'])))
conn.commit()
cur.close()
Pseudo Code
import data_classification_tool_api
import psycopg2
import json
#Replace with your data classification tool's API client
data_class_api_client = data_classification_tool_api.ApiClient()
#Replace with your PostgreSQL connection settings
conn = psycopg2.connect(database="your_db", user="your_user", password="your_password", host="your_host", port="your_port")
def get_data_sources():
"""
Get a list of data sources (e.g., databases, file storage) in your organization.
"""
# Implement logic to fetch data sources from your organization
return data_sources
def classify_data(data_sources):
"""
Use the data classification tool's API to classify data across your organization.
"""
classification_results = {}
for data_source in data_sources:
classification_result = data_class_api_client.classify_data(data_source)
classification_results[data_source] = classification_result
def analyze_classification_results(classification_results, data_classification_policy):
"""
Analyze classification results to check for compliance with the data classification policy and ensure that sensitive data is properly identified and protected.
"""
non_compliant_data_sources = []
for data_source, result in classification_results.items():
if not result['compliant']:
non_compliant_data_sources.append({
'data_source': data_source,
'violations': result['violations']
})
def generate_reports_and_notifications(non_compliant_data_sources):
"""
Generate reports and notifications based on the analysis of data classification results.
"""
# Implement report generation and notification logic here
def save_results_to_database(non_compliant_data_sources):
"""
Save the analysis results to a PostgreSQL database.
"""
cur = conn.cursor()
def main():
data_sources = get_data_sources()
classification_results = classify_data(data_sources)
if name == "main":
main()
The text was updated successfully, but these errors were encountered: