diff --git a/sessions/cxr-tf/Building_a_Simple_CXR_Classification_Model_with_TensorFlow.ipynb b/sessions/cxr-tf/Building_a_Simple_CXR_Classification_Model_with_TensorFlow.ipynb
new file mode 100644
index 0000000..085a5f1
--- /dev/null
+++ b/sessions/cxr-tf/Building_a_Simple_CXR_Classification_Model_with_TensorFlow.ipynb
@@ -0,0 +1,2761 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "provenance": [],
+ "include_colab_link": true
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "jTEzoMx6CasV"
+ },
+ "source": [
+ "*Authors:*\n",
+ "*Jason Adleberg [@pixels2patients](https://twitter.com/pixels2patients), [LinkedIn](https://www.linkedin.com/in/jason-adleberg-6b444b52) and\n",
+ "Nicholas Primiano, [LinkedIn](https://www.linkedin.com/in/nicholas-j-primiano-47077792/)*"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "YHK6DyunSbs4"
+ },
+ "source": [
+ "#NIH CXR8 **Classification** Tutorial\n",
+ "**_Estimated completion time: 30 minutes_**\n",
+ "\n",
+ "Welcome!\n",
+ "In this presentation, we will break down the process into five steps:\n",
+ "\n",
+ "1. **Defining a problem**: what do we want our model to look for? For this we'll need to think of pathology we might find in a chest x-ray.\n",
+ "2. **Data preparation**: we'll talk about how to manipulate our data in a way the classification model can understand.\n",
+ "3. **Training a model**: we'll use a technology called [TensorFlow](\n",
+ "https://wwww.tensorflow.org) to create our model.\n",
+ "4. **Evaluating model performace**: we'll talk about some important considerations when creating a model like this.\n",
+ "5. **Deployment**: we'll send our model to a website where we can then test it in the wild and send to others."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "KyPnBhk8ATaL"
+ },
+ "source": [
+ "##i. Using Google Colab\n",
+ "\n",
+ "This demonstration will take place in Google Colab. Please first sign in with your Google account, and click **File -> Save a copy** in Drive.\n",
+ "\n",
+ "When you get into the draft environment, please ensure that you see \"GPU on\" and \"Internet on\" under Settings so you can utilize the cloud GPU for faster model training.\n",
+ "\n",
+ "In this Notebook editing environment, each block of text is referred to as a cell. Cells containing formatted text are Markdown cells, as they use the Markdown formatting language. Similarly, cells containing code are code cells.\n",
+ "\n",
+ "Clicking within a cell will allow you to edit the content of that cell (a.k.a. enter edit mode). You can also navigate between cells with the arrow keys. Note that the appearance of Markdown cells will change when you enter edit mode.\n",
+ "\n",
+ "You can run code cells (and format Markdown cells) as you go along by clicking within the cell and then clicking the blue button with one arrow next to the cell or at the bottom of the window. You can also use the keyboard shortcut SHIFT + ENTER (press both keys at the same time).\n",
+ "\n",
+ "Let's try this out by running the cell below. This will help us load the technologies we need to power our model."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "sfaVRZ1Z3_3M",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "a3dec1b8-e41d-4963-ea45-b59f8d02a79f"
+ },
+ "source": [
+ "%matplotlib inline\n",
+ "\n",
+ "import sklearn.metrics\n",
+ "import random\n",
+ "import tensorflow as tf\n",
+ "import matplotlib.pyplot as plt\n",
+ "import os\n",
+ "import io\n",
+ "import glob\n",
+ "import scipy.misc\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "from six import BytesIO\n",
+ "from PIL import Image, ImageDraw, ImageFont\n",
+ "import shutil\n",
+ "from tensorflow.keras.applications.inception_v3 import InceptionV3\n",
+ "from tensorflow.keras import layers\n",
+ "from tensorflow.keras import Model\n",
+ "import matplotlib\n",
+ "from tensorflow.keras.optimizers import RMSprop\n",
+ "import os\n",
+ "import zipfile\n",
+ "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
+ "import matplotlib.image as mpimg\n",
+ "from matplotlib.ticker import FormatStrFormatter\n",
+ "from tensorflow.keras.utils import plot_model\n",
+ "\n",
+ "\n",
+ "LEARNING_RATE = 0.0001\n",
+ "repo_url = 'https://github.com/adleberg/medical-ai'\n",
+ "IMAGE_HEIGHT, IMAGE_WIDTH = 299, 299\n",
+ "\n",
+ "def load_image_into_numpy_array(image):\n",
+ " image = image.convert('RGB')\n",
+ " (im_width, im_height) = image.size\n",
+ " return np.array(image.getdata()).reshape(\n",
+ " (im_height, im_width, 3)).astype(np.uint8)\n",
+ "\n",
+ "print(\"Welcome! Downloading some things... this will take a minute.\")\n",
+ "\n",
+ "%cd -q /content\n",
+ "repo_dir_path = os.path.abspath(os.path.join('.', os.path.basename(repo_url)))\n",
+ "!git clone {repo_url} --quiet\n",
+ "%cd -q {repo_dir_path}\n",
+ "!git pull -q\n",
+ "\n",
+ "!apt-get install graphviz -y\n",
+ "!pip install pydot\n",
+ "\n",
+ "print(\"Great! You clicked on it correctly. Now let's get started.\")"
+ ],
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Welcome! Downloading some things... this will take a minute.\n",
+ "Reading package lists... Done\n",
+ "Building dependency tree... Done\n",
+ "Reading state information... Done\n",
+ "graphviz is already the newest version (2.42.2-6ubuntu0.1).\n",
+ "0 upgraded, 0 newly installed, 0 to remove and 49 not upgraded.\n",
+ "Requirement already satisfied: pydot in /usr/local/lib/python3.10/dist-packages (3.0.2)\n",
+ "Requirement already satisfied: pyparsing>=3.0.9 in /usr/local/lib/python3.10/dist-packages (from pydot) (3.2.0)\n",
+ "Great! You clicked on it correctly. Now let's get started.\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Kast6Rs7A4bk"
+ },
+ "source": [
+ "##1. Defining a Problem\n",
+ "Great! Let's start by thinking of something we can look for in a chest xray.\n",
+ "\n",
+ "Once we think of something, let's type it in below, in between the quotes `\"\"`, and run the cell. I'll put in `\"atelectasis\"` by default, but let's see if we can think of something else.\n",
+ "\n",
+ "We'll be using a subset of the [NIH CXR8 dataset](https://openaccess.thecvf.com/content_cvpr_2017/papers/Wang_ChestX-ray8_Hospital-Scale_Chest_CVPR_2017_paper.pdf) for this project, but this principles here apply to any project. The NIH CXR8 dataset only has a few selected findings within its dataset, but let's pretend that we're creating a dataset from scratch (using Montage, e.g.). Of note, this dataset also has bounding boxes available to us for another demonstration on object detection.\n",
+ "\n",
+ "We'll need to see how many examples there are of the finding we typed in. Let's run the cell below to see."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "MQTLUPzBEWj6"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "Above are the labels we have available to us in this dataset."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "E1RIh1j6A9m6"
+ },
+ "source": [
+ "finding = \"cardiomegaly\"\n",
+ "finding = finding.capitalize()"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df = pd.read_csv(\"/content/medical-ai/labels.csv\")\n",
+ "df.head()"
+ ],
+ "metadata": {
+ "id": "w3DUYGd8nVA9",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
+ },
+ "outputId": "bad31812-1f1c-4191-90e8-866de7d8dca9"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " filename height width label xmin ymin xmax ymax \\\n",
+ "0 00013118_008.jpg 2992 2991 Atelectasis 225.0 547.0 311.0 626.0 \n",
+ "1 00014716_007.jpg 3056 2544 Atelectasis 686.0 131.0 871.0 444.0 \n",
+ "2 00029817_009.jpg 3056 2544 Atelectasis 221.0 317.0 376.0 533.0 \n",
+ "3 00014687_001.jpg 2500 2048 Atelectasis 726.0 494.0 867.0 549.0 \n",
+ "4 00017877_001.jpg 2500 2048 Atelectasis 660.0 569.0 860.0 647.0 \n",
+ "\n",
+ " view \n",
+ "0 PA \n",
+ "1 AP \n",
+ "2 AP \n",
+ "3 AP \n",
+ "4 AP "
+ ],
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " filename \n",
+ " height \n",
+ " width \n",
+ " label \n",
+ " xmin \n",
+ " ymin \n",
+ " xmax \n",
+ " ymax \n",
+ " view \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 00013118_008.jpg \n",
+ " 2992 \n",
+ " 2991 \n",
+ " Atelectasis \n",
+ " 225.0 \n",
+ " 547.0 \n",
+ " 311.0 \n",
+ " 626.0 \n",
+ " PA \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 00014716_007.jpg \n",
+ " 3056 \n",
+ " 2544 \n",
+ " Atelectasis \n",
+ " 686.0 \n",
+ " 131.0 \n",
+ " 871.0 \n",
+ " 444.0 \n",
+ " AP \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 00029817_009.jpg \n",
+ " 3056 \n",
+ " 2544 \n",
+ " Atelectasis \n",
+ " 221.0 \n",
+ " 317.0 \n",
+ " 376.0 \n",
+ " 533.0 \n",
+ " AP \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 00014687_001.jpg \n",
+ " 2500 \n",
+ " 2048 \n",
+ " Atelectasis \n",
+ " 726.0 \n",
+ " 494.0 \n",
+ " 867.0 \n",
+ " 549.0 \n",
+ " AP \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 00017877_001.jpg \n",
+ " 2500 \n",
+ " 2048 \n",
+ " Atelectasis \n",
+ " 660.0 \n",
+ " 569.0 \n",
+ " 860.0 \n",
+ " 647.0 \n",
+ " AP \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 1964,\n \"fields\": [\n {\n \"column\": \"filename\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1860,\n \"samples\": [\n \"00005532_014.jpg\",\n \"00028208_005.jpg\",\n \"00000251_004.jpg\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"height\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 354,\n \"min\": 1456,\n \"max\": 3056,\n \"num_unique_values\": 210,\n \"samples\": [\n 2982,\n 2370,\n 2960\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"width\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 388,\n \"min\": 1555,\n \"max\": 3056,\n \"num_unique_values\": 181,\n \"samples\": [\n 2948,\n 2011,\n 2511\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"label\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 9,\n \"samples\": [\n \"Pneumothorax\",\n \"Cardiomegaly\",\n \"Nodule\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"xmin\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 222.7069952628944,\n \"min\": 5.0,\n \"max\": 905.0,\n \"num_unique_values\": 513,\n \"samples\": [\n 32.0,\n 134.0,\n 805.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ymin\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 166.29190944566673,\n \"min\": 12.0,\n \"max\": 876.0,\n \"num_unique_values\": 488,\n \"samples\": [\n 492.0,\n 510.0,\n 84.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"xmax\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 233.90798274548803,\n \"min\": 116.0,\n \"max\": 1011.0,\n \"num_unique_values\": 478,\n \"samples\": [\n 456.0,\n 262.0,\n 725.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ymax\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 166.18041345172068,\n \"min\": 33.0,\n \"max\": 1021.0,\n \"num_unique_values\": 486,\n \"samples\": [\n 779.0,\n 598.0,\n 323.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"view\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"AP\",\n \"PA\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 3
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "RbyXtTCvBFrN"
+ },
+ "source": [
+ "positives = df.loc[df[\"label\"] == finding]\n",
+ "negatives = df.loc[df[\"label\"] == \"No Finding\"]\n",
+ "n = len(positives)\n",
+ "\n",
+ "if n == 0:\n",
+ " print(\"No studies found! Maybe check your spelling?\")\n",
+ " assert (n > 0)"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "TRAIN_RATIO = 0.8\n",
+ "TEST_RATIO = 0.2\n",
+ "n = len(positives)\n",
+ "TRAIN_N = int(n*TRAIN_RATIO)\n",
+ "TEST_N = int(n*TEST_RATIO)\n",
+ "print(TRAIN_N, TEST_N)"
+ ],
+ "metadata": {
+ "id": "s_WY9IbNUU_z",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "f44dc93f-abc5-438b-b4b2-5e68f835acd9"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "116 29\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "train_labels = pd.concat([positives[:TRAIN_N], negatives[:TRAIN_N]])\n",
+ "test_labels = pd.concat([positives[TRAIN_N:], negatives[TRAIN_N:n]])"
+ ],
+ "metadata": {
+ "id": "PFbtUeDakgHH"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "nvkdXsWmXXNN"
+ },
+ "source": [
+ "## 2. Preparing the Data\n",
+ "\n",
+ "Now, we've figured out what we want our model to take a look at. Behind the scenes, we just need to sort the data into two folders: one with **negative** cases and one with **positive** cases."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "BxQcTplih9Dw"
+ },
+ "source": [
+ "rootdir = \"/content/medical-ai/images/\"\n",
+ "os.makedirs(rootdir+finding+\"/test/positive\", exist_ok=True)\n",
+ "os.makedirs(rootdir+finding+\"/test/negative\", exist_ok=True)\n",
+ "os.makedirs(rootdir+finding+\"/train/positive\", exist_ok=True)\n",
+ "os.makedirs(rootdir+finding+\"/train/negative\", exist_ok=True)"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# copy images to new directories for training purposes\n",
+ "for idx, image in positives[:TRAIN_N].iterrows():\n",
+ " source = rootdir+image[\"filename\"]\n",
+ " dst = rootdir+finding+\"/train/positive/\"+image[\"filename\"]\n",
+ " shutil.copy(source, dst)\n",
+ "\n",
+ "for idx, image in positives[TRAIN_N:].iterrows():\n",
+ " source = rootdir+image[\"filename\"]\n",
+ " dst = rootdir+finding+\"/test/positive/\"+image[\"filename\"]\n",
+ " shutil.copy(source, dst)\n",
+ "\n",
+ "for idx, image in negatives[:TRAIN_N].iterrows():\n",
+ " source = rootdir+image[\"filename\"]\n",
+ " dst = rootdir+finding+\"/train/negative/\"+image[\"filename\"]\n",
+ " shutil.copy(source, dst)\n",
+ "\n",
+ "for idx, image in negatives[TRAIN_N:n].iterrows():\n",
+ " source = rootdir+image[\"filename\"]\n",
+ " dst = rootdir+finding+\"/test/negative/\"+image[\"filename\"]\n",
+ " shutil.copy(source, dst)\n",
+ "\n",
+ "print(\"Done moving \"+str(n*2)+\" images to positive and negative folders.\")"
+ ],
+ "metadata": {
+ "id": "MJwv_fWxvPmR",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "b45113a4-2f8d-4f04-a869-fa69813b7ec0"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Done moving 292 images to positive and negative folders.\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "zhn86DLzTIus"
+ },
+ "source": [
+ "from PIL import Image, ImageDraw, ImageFont\n",
+ "\n",
+ "# load images into memory for visualization\n",
+ "positive_imgs, negative_imgs = [], []\n",
+ "IMAGE_HEIGHT, IMAGE_WIDTH = 299, 299\n",
+ "\n",
+ "for idx, row in positives[:6].iterrows():\n",
+ " image_path = rootdir+row[\"filename\"]\n",
+ " image = Image.open(image_path).resize((IMAGE_WIDTH, IMAGE_HEIGHT))\n",
+ " positive_imgs.append(load_image_into_numpy_array(image))\n",
+ "\n",
+ "for idx, row in negatives[:6].iterrows():\n",
+ " image_path = rootdir+row[\"filename\"]\n",
+ " image = Image.open(image_path).resize((IMAGE_WIDTH, IMAGE_HEIGHT))\n",
+ " negative_imgs.append(load_image_into_numpy_array(image))"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "for idx, img in enumerate(positive_imgs[:6]):\n",
+ " plt.subplot(2, 3, idx+1)\n",
+ " plt.title(finding)\n",
+ " plt.imshow(positive_imgs[idx])\n",
+ "plt.show()\n",
+ "\n",
+ "for idx, img in enumerate(negative_imgs[:6]):\n",
+ " plt.subplot(2, 3, idx+1)\n",
+ " plt.title(\"No Findings\")\n",
+ " plt.imshow(negative_imgs[idx])\n",
+ "plt.show()"
+ ],
+ "metadata": {
+ "id": "OZnn7Zbbnb3e",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 843
+ },
+ "outputId": "bd39eb3d-6444-4787-be25-836b3216c8c1"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e5Tsa1nf+a2q7q5b3/c++waHw+U4ChIwo4acISuCEvDGyGgycWIUjNEsFyRRXDFhxTHGXDBiBgw4xMSMOrNgMiFrhcRIEOWiiSIaDBGMo4CHc99nX3r3raq6+lK/+aPn89b39/T7q+4+57B7N6eftWpV1e/y/t7L8z7P97m8769WFEWhMzqjMzqjMzqjMzqjO4jqJ12BMzqjMzqjMzqjMzqjSGcA5YzO6IzO6IzO6IzuODoDKGd0Rmd0Rmd0Rmd0x9EZQDmjMzqjMzqjMzqjO47OAMoZndEZndEZndEZ3XF0BlDO6IzO6IzO6IzO6I6jM4ByRmd0Rmd0Rmd0RnccnQGUMzqjMzqjMzqjM7rj6AygnNEZndEZndEZndEdR2cA5YTpIx/5iGq1mj7ykY+kY6973ev07Gc/+8TqdFL0spe9TC972ctOuhpndEQ6490xnfHu6aIz3h3Tncy7ZwBF0mc/+1n9lb/yV/Tc5z5XrVZL8/PzeulLX6qf/Mmf1GAwOOnqndEZVdIZ757RaaUz3j2jw2jqpCtw0vSLv/iL+nN/7s+p2WzqO77jO/TCF75Q29vb+k//6T/pb/yNv6Hf+73f0z/7Z//sttbpn//zf67RaHRbn3lGp4/OePeMTiud8e4ZHYWe1gDl/vvv17d+67fqnnvu0Yc+9CFdvnw5nXv961+vz3zmM/rFX/zFJ/WMoii0tbWldrt95Hump6ef1DPP6Aufznj3jE4rnfHuGR2VntYhnh//8R/X5uam/sW/+BelSQLde++9+ut//a9Lkn72Z39WX/3VX60LFy6o2WzqBS94gd75znceuOfZz362vvEbv1G/9Eu/pK/4iq9Qu93WT//0T0uSHn74Yb3mNa9Rt9vVhQsX9P3f//0aDocHysjFQnu9nn7gB35Ad999t5rNpr74i79YP/ETP6H4MuparaY3vOENes973qMXvOAFarfbuu+++/TJT35SkvTTP/3Tuvfee9VqtfSyl71Mn/vc5w48/2Mf+5i+9mu/VgsLC+p0Ovqqr/oq/fqv//qB6z7ykY/oK77iK9RqtfS85z1PP/3TP60f+ZEfUa1WK1131L5z2tzcVLfbTf3v9PDDD6vRaOjNb37zxDK+kOmMd89497TSGe+e8e6RqXga0zOe8Yziuc997pGu/cqv/Mrida97XfHWt761ePvb31688pWvLCQV73jHO0rX3XPPPcW9995bLC0tFX/rb/2t4p/+039afPjDHy76/X7x3/13/13RarWKH/zBHyze9ra3FV/+5V9evOhFLyokFR/+8IdTGa997WuLe+65J/0fjUbFV3/1Vxe1Wq34y3/5LxfveMc7ile/+tWFpOL7vu/7Ss+XVLzoRS8q7r777uLHfuzHih/7sR8rFhYWimc961nFO97xjuIFL3hB8Y//8T8ufuiHfqiYmZkpXv7yl5fu/+AHP1jMzMwU9913X/GP//E/Lt761rcWL3rRi4qZmZniYx/7WLrud37nd4pms1k8+9nPLn7sx36s+Af/4B8UV65cKV784hcXka2O2ndf9VVfVXzVV31V+v9t3/ZtxcWLF4vd3d3SdT/+4z9e1Gq14oEHHjh03L5Q6Yx3z3j3tNIZ757x7lHpaQtQ1tbWCknFN33TNx3p+n6/f+DYq171qgMT7Z577ikkFe9///tLx9/2trcVkop/9a/+VTrW6/WKe++999CJ8t73vreQVPz9v//3S2X+2T/7Z4tarVZ85jOfScckFc1ms7j//vvTsZ/+6Z8uJBWXLl0q1tfX0/E3velNhaR07Wg0Kr7oi76oeNWrXlWMRqNS25/znOcUf+bP/Jl07NWvfnXR6XSKRx55JB379Kc/XUxNTR2YKEftuzhRfumXfqmQVPyH//AfSte96EUvKl33dKMz3j3j3dNKZ7x7xrvHoadtiGd9fV2SNDc3d6TrPZa5tramGzdu6Ku+6qv0R3/0R1pbWytd+5znPEevetWrSsfe97736fLly/qzf/bPpmOdTkff8z3fc+iz3/e+96nRaOiv/bW/Vjr+Az/wAyqKQv/hP/yH0vGv+ZqvKbkqX/KSl0iSvuVbvqXUXo7/0R/9kSTpE5/4hD796U/rL/yFv6CbN2/qxo0bunHjhnq9nr7ma75Gv/Zrv6bRaKS9vT39yq/8il7zmtfoypUrqbx7771XX/d1X3eg/sfpO6dXvOIVunLlit71rnelY5/61Kf0u7/7u/qLf/EvVt73hU5nvHvGu6eVznj3jHePQ0/bJNn5+XlJ0sbGxpGu//Vf/3X9nb/zd/TRj35U/X6/dG5tbU0LCwvp/3Oe85wD9z/wwAO69957D8QJv/iLv/jQZz/wwAO6cuXKgUn9/Oc/P513etaznlX6T93uvvvu7PFbt25Jkj796U9Lkl772tdW1mVtbU1bW1saDAa69957D5zPHTtO3znV63V927d9m975zneq3++r0+noXe96l1qtlv7cn/tzlXX8Qqcz3j3j3dNKZ7x7xrvHoac1QLly5Yo+9alPHXrtZz/7WX3N13yNvuRLvkT/2//2v+nuu+/WzMyM3ve+9+mtb33rgaVpx8kc/3xQo9E41vHi/0/4oh1vectb9GVf9mXZa2dnZ7W1tXXkuhy37yJ9x3d8h97ylrfove99r/6X/+V/0bvf/W594zd+Y+XkejrQGe+O6Yx3Txed8e6Yznj3cHraAhRJ+sZv/Eb9s3/2z/TRj35U9913X+V1v/ALv6DhcKh/9+/+XQklf/jDHz7ys+655x596lOfUlEUJTT/B3/wB0e691d+5Ve0sbFRQvP/7//7/6bzTwU973nPk7QvRF7xildUXnfhwgW1Wi195jOfOXAuHnuyfffCF75Qf/yP/3G9613v0jOf+Uw9+OCDevvb336ke7+Q6Yx3y3TGu6eHzni3TGe8W01P2xwUSfrBH/xBdbtd/eW//Jf1+OOPHzj/2c9+Vj/5kz+ZEHBhS8vW1tb0sz/7s0d+1td//dfr0Ucf1b/+1/86Hev3+0fajOjrv/7rtbe3p3e84x2l429961tVq9Wy8ccnQl/+5V+u5z3vefqJn/gJbW5uHjh//fp1SfsWwSte8Qq9973v1aOPPprOf+YznzkQl30q+u7bv/3b9YEPfEBve9vbdO7cuaesvaeZzni3TGe8e3rojHfLdMa71fS09qA873nP07vf/W79+T//5/X85z+/tKPhb/zGb+g973mPXve61+mNb3yjZmZm9OpXv1p/5a/8FW1ubuqf//N/rgsXLuixxx470rO++7u/W+94xzv0Hd/xHfr4xz+uy5cv6//6v/4vdTqdQ+999atfrZe//OX623/7b+tzn/ucXvziF+sDH/iA/u2//bf6vu/7voTAnyzV63X9zM/8jL7u675OX/qlX6rv/M7v1DOe8Qw98sgj+vCHP6z5+Xn9wi/8giTpR37kR/SBD3xAL33pS/W93/u9aSK/8IUv1Cc+8YlU5itf+con3Xd/4S/8Bf3gD/6g/s2/+Tf63u/93rMNlXTGu5HOePf00BnvlumMdyfQbV0zdIfSH/7hHxbf/d3fXTz72c8uZmZmirm5ueKlL31p8fa3v73Y2toqiqIo/t2/+3fFi170oqLVahXPfvazi3/0j/5R8X/8H/9HablYUewvd/uGb/iG7HMeeOCB4n/8H//HotPpFOfPny/++l//68X73//+Q5e7FUVRbGxsFN///d9fXLlypZieni6+6Iu+qHjLW95SWpZWFPvL3V7/+teXjt1///2FpOItb3lL6fiHP/zhQlLxnve8p3T8v/yX/1J88zd/c3Hu3Lmi2WwW99xzT/E//8//c/HBD36wdN0HP/jB4o//8T9ezMzMFM973vOKn/mZnyl+4Ad+oGi1WqXrjtp3cbmb09d//dcXkorf+I3fyJ5/utIZ757x7mmlM949493DqFYUYUu8MzqjJ0Gvec1r9Hu/93spM/2pov/pf/qf9MlPfjIbfz2jM3oq6Ix3z+i00hcq7z6tc1DO6MlRfOPopz/9ab3vfe97yl/d/dhjj+kXf/EX9e3f/u1Pabln9PSlM949o9NKTyfePfOgnNETpsuXL+t1r3udnvvc5+qBBx7QO9/5Tg2HQ/2X//Jf9EVf9EVPuvz7779fv/7rv66f+Zmf0W//9m/rs5/9rC5duvQU1PyMnu50xrtndFrp6cS7T+sk2TN6cvS1X/u1+r//7/9bV69eVbPZ1H333ad/+A//4VMySSTpV3/1V/Wd3/mdetaznqWf//mfPxPwZ/SU0RnvntFppacT756oB+Wnfuqn9Ja3vEVXr17Vi1/8Yr397W/Xn/gTf+KkqnNGZ3RkOuPdMzqtdMa7Z3Ra6MRyUP6f/+f/0Rvf+Eb9nb/zd/Q7v/M7evGLX6xXvepVunbt2klV6YzO6Eh0xrtndFrpjHfP6DTRiXlQXvKSl+grv/Ir0yY4o9FId999t/7qX/2r+lt/62+dRJXO6IyORGe8e0anlc5494xOE51IDsr29rY+/vGP601velM6Vq/X9YpXvEIf/ehHD1w/HA41HA7T/9FopJWVFZ07d+7AS6DO6IyOSkVRaGNjQ1euXFG9fjRn4hnvntGdQGe8e0anlY7DuycCUG7cuKG9vT1dvHixdPzixYvpPQdOb37zm/V3/+7fvV3VO6OnGT300EN65jOfeaRrz3j3jO4kOuPdMzqtdBTePRWreN70pjfpjW98Y/q/tramZz3rWarVagcQmEesiqLQlStX9MpXvlKj0Uij0Si9NKooCn3kIx/Rww8/rFqtdiyLoCgKFUWh+fl5/e2//bfV7Xb1L//lv9Tly5f1vOc9T5cuXdLc3Fx6DuXPzMyo0WikY/V6PT2Xb8752yY5V6/XVRRFOkf5e3t7qtVqmpqaSu308rhnZ2dHRVFod3dXu7u7Gg6H2t7eTud3d3c1Go20t7ennZ0dbWxs6Hd/93f16KOPHqiPf4qi0NTUlFqtVrqmXq+r0Wik89xH+4uiUL1e1/T0tPb29tRoNDQ/P6+dnZ1SPba3t7W3tydp//0S9Xpdg8FAjz/+uHZ3d7Wzs6OtrS0Nh8NSu73f/LvRaGhqakrT09MqikKrq6sHXqf+VFIV7+b6Rirzb+7Ycaler6vVamlqakr9fl+7u7sTr4/P4v5Go6Fut6tWq6VOp6NOp6NWq6WZmZn0abVaWlhYSHwxPT2t0WikRqOhdrudxppxajab2tvbS/NgZ2cn3QsfcL3PW/5LSr/39va0t7eX7pmenla73VatVtNwONRgMEhtX1hY0MLCQjo+GAx09erVxBfT09Oan5/X9PR0GgN4kflC2cwL+LkoitTura2tVC+XMRx77LHHtLm5qe3tbQ2Hw8THXtfD6CR41/n2dpPLHeSB922tVtPCwkKSv+12O/F/s9nU1NSUpqamVK/XNTU1lcpoNBpqNBqanp4ulcs85Z56vZ540sd+d3c36SL4r9FoaG9vTzMzM0meIXuRgfACH/gbvuY+7t3Z2Um8Aj+ura2l+bK9vZ3kPHW7k2hqakpf8iVfok996lNH4t0TASjnz59Xo9E48KKoxx9/PLukqdlsqtlsHjh+VGCBwIiKHeY7DkBxwDEYDHTz5k0997nP1ezsrDqdjrrdrtrtdhJgfj0TAKbx53u9IlhxgCIpMTICkWv55uP/9/b2EoCB0akDEw7wgHDc2dlRr9dLAMTrwX+ASavVKpXDJI91kcavF280Gul6FF6r1UpCuigKzczMpL5HaMzMzKjX66XJSD/G15F7v3rdHRj6dUehp4p3c3U87JonQrEPJpXlvAc1Go0k2GmLf2ZmZjQ9PZ0ASqvVSoodAcu909PTCXzW63U1m82SMPb7qAs86wAl8jjgezQaaXp6Wjs7O2o2m+l9K7R7d3dXjUZDi4uLSWk1Gg31+33NzMyo0+kkXux2u6X+G41GCVANBoMsAGd+crxeryfA5GCe+XvhwoWkzLjXDYjjjO9R6KmUu8dRfFU8mOP9qvMORKrKkZQMEPgSmTs9PZ34FdmFjPKxjKCF8w5c4GHGEn5GpyDTarWaWq1W4nMHuYAUnuMGooNwByzIOvqCZ3Y6nVT21NRUmgs8M4Kpk6Td3V2tra1JOhrvnghAmZmZ0Zd/+Zfrgx/8oF7zmtdI2hcAH/zgB/WGN7zhyOUcpYE+IAxSRN3HIZ+ce3t7uv/++/WiF70oWZfOUA4geD7WI9chmKomqwtiJxdoztA50OLP9k/0NtGm7e1t9ft9ra2taXt7O002qaywZmZmtLCwoJmZmTQRvG7udcErs729nSY8AkHaZ9x+v5/a4wAn1nE0GqnVapWsIPrKY+a5sZv0/yj0VPHuk63HUckFnjTuQ3/mJKE1NTWldrudQCcWqAtvVxhu8aF4sTodeDiP7u7upnv5znmS+O0AnjlUr9fT/a5c4DG8cAApr/vW1lZSXCgx+s49tHiFhsNhAvyxH92I8Hp4/8Ov586d02Aw0HA4TGXVarUEgp5qeqp4t4pf6HtX+rQ1GoPR+MqVxbOcX3L380EewHeACqkMGiPPxudE3nOvi6QEJOB1BwuAFp7rQDPqhQi0DwNy1J02YmQ2m83kwUE+uzfRQUoEP1X65fNJR82Zkk4wxPPGN75Rr33ta/UVX/EV+hN/4k/obW97m3q9nr7zO7/zKX0OAnBzc1PD4VD1el3z8/Mlhjtuef77oYce0urqarLOpINKAYKhXeF7mXEyRnJwEQFKjtGiG9zBkwtMdz+SGLe1taXBYFAKG9Xr9eTebzabWlxcTMKffo4TvV6vp1DS3t6e2u12mmSMgdcrttcnM1bG1tZWuhdF4f2xvb2dHbenAqBInx/efaqFhJcHz3n/HuV5gNC5ubmkcLFGHaB433uI0JWxNA77Ob9SNwcxXl5sU5V3kfZRHvUEmFB3AAhWLtYmQh/w4vyL8HflGHmO+tAfDrLpOwgvYLvd1vLysq5evaqdnR1tbm5qbW1N165d0/r6+oH58FTQU8G7rlDpaweuOc9l7lik3PyM8zYadO5NcAVO3RyYOEjy3+5RhYc5zjHko/OGgxc843g63Ah1vpHGhlsE4lUGWfTO5Dw1kffcexJBCnMigpYIXD5fdBy5e2IA5c//+T+v69ev64d/+Id19epVfdmXfZne//73H0jgmkQ5pZO7ZnV1VR/60IcSmv3SL/1SfemXfumTtlxrtZpu3LihlZWVZCU5MMlNoghMYBZnMs7lkLXf67+d6X2y+XmfaB7T9P+AAGLzU1NTCXy0Wi0tLy+r3W5rYWEhCW8XJF6v7e1tbW5uJtcknhcs8TjZabu7yhE2Ozs7GgwGCXzMzMwc8Lbw/I2NjaQgY589FZPvqeDdo3owngqC74+j8BqNhmZmZtRsNtVqtRL4jDH6yLcOwD2cE0HM7u6upqamktCHz6hnzHnybx9X5p17UTgOf2I4kA/gvILRQqjSAZSHP1FEw+Ew9YMTSg8ADtiivlGpNZtN1et1zczMpHnic/fhhx/OAu0nS08F7xI6gz+cH6TJ41X1XXUuekqcIgByj5kbL1Xevpz8j2PG7+jdg2dimdQXuei8V+W99vZUgXP3SiGPI+iKACV+qAe8GT0rbgjmfj9V8vNUABRJesMb3vCE3eJHpaLYz2N47nOfq+Xl5YRuXRg8EYIp8J4QX6/X6+p2u8lNHC1ZUK9bVFF4R0UfkXdO6cY2+++Inh2M5D47Ozvq9/vq9XpJMO/u7ur8+fNaXFxMyU07OzulHAFQ/Wg00mAwUK/XU61WK4UI3KLxieWTAUvXXaq4UomJozBdOaGg9vb2ksCfNHZPZvyfLO8+5znP0f3333+se6qE2qTzHKe/DiOEKuNO+C5nqfoYxnwMaewxie51D/e4Nef1pUyUAcfgXW+7l019CB36cUAXZTqAAZw4wXfu7cOtzjPdwEBZe2JvVADRSh6NRpqdndWNGzfU7/dTfsKTNZ4m0ZPl3bvvvlv9fl+SSvlmrmAdnERvV86zAuXanfOkRIq86LLDQWnOUIzPcu8HcodneMgu8r0DFwfeXj/ne+cD10lu7Hl9eD6yO4KVnMc5AqKc1yRe5/OzCpgcBlQi4HFgdypCPLeLHDmSMU+M8okoqYjAe72erl+/rmc/+9na3t7W4uKiJKVci8iEuUmas/SdJimeSef8msgs8X53zQ+HQ21ubmpra0vtdjsl/pIdD4hxoeRAiNUIJEYi+F1ZuCBzkIN1yTNcSXS7Xe3u7qrdbiePCgqGMh2EDQaDVO5hoO520/Lysh566KEDwCHy42H1PEo7jgpMHFB4sqF7tHwMpYOrtbxv3d1er9cT6IQHva1+DEHmisLnXAxXQYADByx4ZjxERZ3hq4WFheTdk8Y5BpJSAvDU1FRKyqbelMFzPAHeFUtOsONpgp9brVZKHqT/71Rqt9ulMEi04qWyNwCKALbqGMelg96XKqDi8tT5EW+GpBLfVgEBf2aUm8g5jFEAs/MmMtDzr1wueb9523N87vrD60ddoocGXndjz8Ex91Z5SuI9VWV4f0UjgfNeroeYZmdn9exnP1uf/exnD+Uz6WkAUKR9sPDZz35WU1NT6vV6+lN/6k8dG8lBLvygj33sY/qmb/omfcmXfImazabW1taS0s2Rx8r92CSwdBzQ4r9hknguWnbUaXt7W1tbW1pfX1etVlO329XFixe1uLio6enp7LLf0Wik4XCYQAOrKJrNZrIMnFxQeBId5fnSZ38O1jzhpna7rV6vp36/X1IIhK6oV7TO7wSAsri4qHvvvVef+cxnklUuHQSrUXA6HbcNOWXggDGuWnBw6ZZplbUslePqPq4AFXgn1t+9i5QXE6+5nmu8LMgBEfV0zyP/8X6wmsetYffyTE9PpxU9w+Ew5VzgjfFQgveze3089ORjQN/s7OxoeXlZKysrKbk4hpDuJJqZmUlAzXkCcv7IGYE50AZFEJIDDzmq8s4wDltbW2q1WlkgkjMOoyEaed+Bb61WS+C70Wik1YS00729HIv1dOUf25MDvQ4Mve54VWK6gdcnZ7RWeUtyeSkOsrz/vV8d9Dg463a7mp+fz45hjr6gAEoV82IlvfSlL9Vv/uZvamNjo+QGPIoXxSecT8iiKPTYY4/pP/2n/6RnPvOZuueee7S0tJSEoN/v9fTkPRdk8fpJeQPRSxIVkHs1/JoY54SJUOy9Xk87OztaXFzUxYsXdenSJbVareR+doVD/NyBQLvd1szMTKoPlqIzeVTCKEJyAmJf8D9n5ddq+0u+XQHt7OyktgNWvK9OGqB88Rd/sf7YH/tjeuc736nt7e2SR8IFe5UQixZN/O9UBXgi2PDllSQ+8twYy4+eFK9HDiDEVTx+vfOnJxtGilaypAPhEG9H7Bs8L4CbwWBQEui7u7tJ0XAMIIKnhPwLnuUJtznQFK1h6uUKTtr31Fy8eFGPPPJI8trcqYS3KII6NzKcfMzdM8E5v86vgarks8s8V95VPDgcDg8sZY/lRZ7O8bfzJ2ClVqulUD/7QblXOj6HOjpPxnlB+VEOoFt8dZq3iXbn5EOVAVslS3xcoo7JAUsoZ/yORiO12+2J2y5EOvUA5SiKpt1u6+6779bCwoK+8iu/UlevXi0Ji8PImT0K5qIoUr5Fv9/XrVu31Ol0UhIg9+co7o8QGZXyfYJPansU6gjA3KTyWKajXDaNWlpa0vnz5xM4oTwS43Z3d3Xr1i1tbGyU4ou4w32/Acr2pElJpc2PRqNRUtSeQMsExBKRxis2aMvCwoIkpSXG7AtAeEhSafMiynsiHrSnii5fvqxf+IVf0NbW1gHhHt3k7smA6BtAZS4p06nK4omgG4XsicwRvLhFSfJzrLNbcChu31jPx9fd1fV6vRT2cgHtYy6VV+5IZbBPP7inkOt9ZZrnjPiHfp+dnS15WLif58ewEPX0+gOCJB3gZweL586d0+bmpm7evHksIX67iZwc9y74niMuJyWlcY9j499RwUEOQKKizHmdXYZ66Il6xDIg+CNntLrspPwYhsOjhEx33o8bFMZ2A1bJXYne7TgXHEj53HB+jzlhVQAketervquASexPH3c3Dhn/px1AOYxwv/73//1/L2l/W+cLFy6kXfcOowhKcgBlNBrp1q1bunLlSkkQS2UB6wzNgMZQTzxfhWZz3pL4nbNQcxYGioLrZmdnU74JKN1DLMPhUGtra9ra2krlYVUxcWFCBDLnHcz48xEeKEVXhA5eYl2lcaKhL3MmX8WFEpMkZyXcbnrwwQf1iU98orRMMS7hRdh0Op0D1qE0BilYaVtbW6XNnpwcjFCGfzy0g7fEf0fPBILVd+WMViDj5t627e3tpOQpI5ejFC3iqPR5jgMEjiEQfb8T2sP9o9EoeT/wnnCtrzrDMnbF4/kHAHHmRQS90QDhmJ8DXDYaDV2+fFm9Xu+OBigkFRPGpV8jKGX+4nViHySUlvOhlPe05EAnfJDzkjlfREDuij8agjFcQrluUMV5Q7kxbOl8C297n/hcjO1qNBrJ0PK+pM2eTwMQIcyYA2zerpyOyIX/q6hKdjJvPMzJ9YPBIOkPwpfxukn0BQ9QNjY29Hu/93t64QtfmJDqzs6OHnzwQT3yyCOV90XB7QwVAUpRFFpbW1O/3y9ZYwgyZ0QX8HGQI0WwUeVZyU1eaexizDGi3+urNlqtVtrmmzKoG14XQkC1Wq2kBGgXDOjPxpKIYKxeH+eccB9CBIXNaqFoibkAk8Zuc2k/Tt7tdksWKwo9tusk6Jd+6Zck7Xt7zp8/r+Xl5dJGf4zL5uZmaf8Ftwx3dnZK4avRaD9BmaXdUejk3Nf+iUvAPZTGx/mY8XHQE8NztAchRR4A5zyplXIcoLmHxd3Z/ozINw7cCDU62KLvfLklCszbRn6INOblaNFvbW2lsFRUEu6+j2Enn4/uyWk2m7r77rv14IMPPmke+3zRc5/7XNXr9QRO8HoBDNn3CAMBQMprEmgz85mxgGIfO/CUDsrFSLnwo3tRcrlVUbFzLobH3XPigIx5GD2h8LPvF8Xccm+Jt8uTXSnXwSxtdB0SQYqXCd/lDGv37sW2Q24Ici5GFOBfX/VEyJR54p62o9IXNEBhQD/+8Y/rkUce0ZUrV1Sr1XT9+nU98sgjyYMSlb97S6LXxJW6K5Pt7W3dunVLz3jGMySVk1653hmU4wg2jkdA4+QM4tfE/Ap+IyB8aXFEwC6Mvc0xXET4Z3t7OzEdK5VQEA563HMRwYBPLtrvLkk/7iuufEzjOCEEAYWsBup2uyUhABhysHIS9Nhjj6V311y+fDm9z0Yae3p4JwzgV1Lawtv7cGtrS1tbW8lrsLCwoI2NDW1sbJRCPxEkQy54Xbi654Tfzv+SSkLOgUEcI8AB1/r7ljjmwGM4HGaX23rYifKZOxGU8Ty32uAfNx6od/S0EIqKisqtXQ9ZuXWObIihEPoszg08No1GQxcuXNAzn/lMffKTnzySZXu7CbnS7/fTvMXA8SRf+hrFGZfWYkTQv4AVAEs0vGIYE3LZwLfLE+ehnZ2d9BoSNzi5Lyd7Xe66V8TffYO8J0eP9ruhBz8APBz4+Bx1vqRP3YOXm8cc57oc4HOZLynr8YjAhLH1zfgcYHv43uck13a73bTykyXf58+fr2KtA/QFDVCksUB6+OGH04sBo8D2a3Oektx3vL7RaOjWrVsl96UjXx9UPyYddK/lEGasa7w3WhW4/Vmq65YN9XWrElc8jCSNGTlu5FYURVKo7v6OFqMjeg/x+ASLSbEx/ooAj+EJVwYozxhWwxUdvU0OUk6K/AV7bl3Sb7SF5dztdluDwUA3btxI3qupqf1t6BcXF9VsNtMLxEajkZaWljQ/P6+VlZX0XiP6xvuI31UAxVfFeL86QHeQkgPdLrjgI653AOBjn/NwOQhwT4sLVgQ/QtIBOPeyUs0VqKS0/w4bFTpoce+NfzNXAfD0MwCoXq9rbm4u5elEpUs7O51OaY+Wu+++W1NTUwcSLO8EQo45fwA6mc8OovFiuQyjv9yD1m63NTs7q1qtVgLdkMs2QFLkZ+c5lxdRQbsHxfnH61kFhtwri6eIvDupPPZ+f61WK70nx41Ar7/XxYE7/AhIiHWNnhKXe7E9UZ9wH+d812WOw6+7u7taWFjQpUuX9MlPfjLJdHZHdl5mI0K2fDhu8vcXPECBfEDi7whIqgBKRNgusEHMt27dKgk9Z7wowL08By8IraiQOV8FbJyJPN4P0mfCe5Igz3JXrKTScmIUprsPo9dHGicKong5PhqNkiURQzTe1tg2VyA5QEE9XLAzXpTrFgzn6vW6tra2DniJbicBDkejUcrn6fV66TjAj7wSaV+A8Bbefr+fXkmwsbGh+fl5LS0tqd1uJ6DSbDb1zGc+U7du3dLa2toBqyrnpnXA7SER96bEJbD0Y1zi6+S86V4TBzkOUBhD5w/KiW2I3go8e9QZnvb9dhD4zBFySVzxuaHgSjnyrLfVvTi12r5Fvb6+rq2tLc3OziYB7QDH91oB1MMHdyJAIUzj3hHml89VD524h7Ze3w/18QoFvGWexwNg59UW/o4tns19Ts6nTi4/Y/Is5PlQ0bPhXmqfu/SBv1jRc7OgGI6lHtGwjAQ4pu8Aex5yjACMOsRcPSdvm/cDy+p9lZmHxQEv3W5X58+f18LCwgGvZlEU6SWzbiR7KOyo9LQBKJEi4MiBEJ9QEZw4AmdpWafT0fr6uvr9vmZnZ9N1MI8LU0elLmijd8CZxxmtynOCJYObFGvDX+OONwNLEdcbTIlQ56Vo7nJ1BUa5CFEEA8zI220RYHgD6Be3dr0tPuli9r+79F25+dLHOL6Mj/e1pANvP76d5ECElyTGkAa8EPlgenpac3Nzqf93d/ffEDoYDHTXXXelHZNp3+XLl9Vut3Xjxo0DwNlDOIwr4QZX7PB7jCE70HQedF7hfsCy5yZFXo/x9sj/Xi78Qt1zoUQ8F9zjb/EejcbLHhcXF0ueR/Ykcd6kr7we7nFEKfucHI1GyRuwubmpdrutpaWlkvcxygdW0h0nVn87aW1trTTnpHKSp3tVXMED2Nyr2mq11O1201zHywtQ4YWk5L45TzSbzdLrL6SD7+rxOnh+VSQHsj6+Lvu9XEkpjAwoIgxLcrWPa5x38HesNzzoKyB9dQ9yw43G6D2J/OSGAHVw0C/tz2vmQpS7gGgMWQ+/Xrp0KcmM+++/v9RevNpeDh7jo9IXPECJFldktipgEs854/un0WikF6p1u101m01tbGxobm4uvZejCiW7Ve/nc6Cmql1RGAIEQM9YIFjilItrElc371xx9yEJqjFXA9AT81p4Psf7/X7aiRaPDMLcXX1RKSO8vL/iODq5izEH6rB63Gsl6fPyrpOjkudk7O3t78lB2CcqxeiRQDG6FQYovXbtmvr9vi5duqTz588n8HPlyhW1221du3btgPXlnqcIWHx1FkI8N1fc2yKNeSR6YHzpdxxTr1McK6+zC2WUDgLUvYBxmTS8wHmASb1eV6/X08rKSvKg4Fmh3p5v5cIdEME88lBS9ATt7e1pY2ND29vbuuuuu9RqtZL3BBDdaDS0srKSDIY7kWg7lrHv2+KKUionBCNT6J+9vf3dvfv9fvJAzM7OJu8Ixg8G1OLiYjrOOM7MzCT5xvNiPSOfxvHzujqwicqfdsHryNjYTvJw/D/e3OiVcL6MoIjz8CEyDgDDhnnwlvczdY06JwKtWq2WDEmfW+g1tpjo9/va3NwsAZDd3V2dO3cu6RkfW+rt9cIojl6vSXRnzoCnkHLAIv4/DJzEe9x9PD09nd7wy+6me3t7WllZ0V133VVyh8MsuVwJXw3h9Y4o212Pbp147N5XJ/i7PbAgQd9MarwecQdYSUmxOxCJa/VpizOk58AMh0N1u93UJl8O7BZ0HC+f4NG7EscD68KVN+dQduzvwWd7e1sbGxtPBZsdm1CqvhKCMQNQubB3tzUCzgUQS2axPh999FE94xnP0Pz8vIbDoWq1mi5fvqypqalKTwrfnuToeSmeR8E5X/ETAb2DSwcl8FrcByTmlDi/uDeDertVLpW34vdwJOc8vARw3tnZ0a1bt9RqtbS1tVUCQs4rnjvgyoi24ZmMGxI6Ue5wONTjjz+uc+fOpW32eSHjwsJCaken09Hq6upTyndPBbkXUxorZ+ZXlAku1+i3CAoISXs+FgrYPU2AeMaqVqtpbm5OrVYrhYE8HOR8LankZfVcqihTqkIjjK0rXveieQKtk8spv45zDmZjKNYTfiNohf8x6NwAiNc5+KKsdrudgBO86zIAzx99T98MBgN98pOfLOki6uo84f1/XHAifQEBlKi4qr5zitDP5Vx6OWsRBYKLEkVDhvjOzo42NjYOZD7jyfA4JROB/y4knXLHIoL3exH6MJEDFixE+gJ33HA4TIia+4mtUr7Xgd9ej/iNV4ewF5PB2+DjEZW1KzhpHJeN4w+4GgwGB0Jokkp7jSD8Hn/88Qw3ff4J1zWCGL6DR/B8YFVHYOyKmPZL+14BvFU3btxIAJrw2pUrVzQ1NZXc9O61QMB4WIRP3K+EPnTQEJWRzyfnG4CZh414vt8brc0Y7nKBC4DBkvPQooeXELSzs7MJfG9vbyePJ++Z4Xq8J4Q7PX7uOQiEZPy8z0NXdozbysqKms2mLly4oH6/r9FopBs3bmh+fl7z8/Npi/07jVqtVim/wRV6DDE4MOS4Azxp7CmET3hJqY9H5CnyU3wDMEkpt8wBlMt0FHwMB8dwTgQpOU+7t8mXGfvzHXxQlntSpDFf5/LtkJXRE8k55iXABJAYlyd7X0sq5QkylhhxJLaur6+n+eTzk2/qxDzxsJSDk1qtVko6d5lxGJ16gBJBhbuZ/Zr4exIAqTpP5+KSnZmZUafTSVu7u6sTJdrr9ZKHZDAYJGsWcotDUmmQjzqYPvGjNeAhFw/1uHXq6B50TMgKKyNamFWuQz/uk5zJiMvQ4/bRYojt4ThKzieJpOTWbzT2N4Xi3TwIBQdiJLdhsZ4UoYDiZmiA3tnZWa2tranX66nb7abN2hx0MoaMG799ueaNGzd08eLFJNAbjYauXLmi6elp9Xq9JJiksbWGQCLWTaydZ8LrkkqWo3tRpDEv8FzuxYsBYOA8xP2ecOoCz6+BXClSdwf+9BH9hBfQPVO8qZtEd+pH3R1IU7Yv5Y/KgHscBPq9ktTr9fT444+n8aUe3W5XS0tLx2es20CEF1BOGDvMYxRw9ITRRyhy+NjH2ZOzuR/w4aAoKmfPa1lYWEjj50oa/qDukMt2qbwjtxtgrmukg9s6eJ4evOKePJ7hHmHnb0AwPOU8G3masjC4fDkyBgB9BsHLGJ/O474KiTCk5554XeEBxo45FPOzIEJy6MfjrOQ51QDFY8wMoGdox3heBB3OHK4IoZx16bE5kor43el00oB6XdbX17W6upomWw6Rer0QmNE6hmLdqWtsh3tNer1espo9rsm9CJqiKNJ3rVZL+xTQpioXNnV0q57jTDCYnudzjwt3BxTeBuoZQRH1ZNJ3u13dvHmzVEZ0rdL//l6V201xl9OYqIrQqdVq6vf7mpqa0vz8fJrgLsRZxudxbeK9hDC4DyF16dIl3bp160BYA+8gVrK//RvexwoFnLgQz1maXOMeljiWjLuDCRficU5RpnveaBuC3K8nBEjokfwPacyzU1NTpbCf18+9dpGnvB7RW+Ln4nH4kKXgCwsLqY6SjvVStZMgLO5ms5nCKp6s7uMHkHA5Cs/xagr6Lipof04EB/SjNA7tMHcIe1IWob0YKnRPIeDZn+E8BJ/6fc4XAIAcKAXQRQ85XlNybhyIRfkePcPD4fDAPiUOpEjGdjDj8hLQgJzBuPPVZp4M7f1JDl8Mzzq/s9s4S5CfVkmy0fKMyXx8IGcaJolbA3t7e8nL4O43R7+Eccg5AZxwzBUOzLK2tqY/+qM/Sm8tvXDhgubm5lIbfPljRPw5wOT/IxJ3JU+ooNfraX19Pe2B4hPDrRomG8lr9BOZ3W5V+7NiXSL5hHLvDXWIQDC2ycGXTwDq4IKNzZ/W1tYOWNWUxyQ9yReyRY9D/Jb2J/7y8rL29vbU7/e1vLyc9onwvgKMuGXpY7ezs6PV1VWdP38+WbdTU1NaXl5OS2AZAwQIfexLYF3hV71bBeHqfOxtRQHk2g4YdWEsjYVkztiIgAgh7ErH+a/VaqnX66nX66X24dXrdDra3NxMcxiAx3hFgyfWw49FBeXhHwQ24TjCwVtbW7p06ZIeffRRbWxspJDonUy0cW5uLq3u8NCONA4JNpvNA4aCtC8D+v1+Ck0ilxykcoxQes5AImyIR8fBvnvKogErHVxBGL2vtMOvcV5kzrEiCZACPztwjeWjd3y/Is653HPj1XUFc5H+8XCstP8uOgChg2rCQcPhMBvOoc2AOoA/xhBj7ADGdQuek1arVQpjP21CPB7HpiPdReg5Hu4ak8ZMgsAFZBCX29jYSNuMu9D02CihHbwolBVXaDz++OMpNvr4449rY2NDFy5c0F133VUSQtH740oVqgICznygW15iuLKykjw49Xpdm5ubqS2eT8Pz6DNiwZ7H4sI7en8cEHAugijcivGcW+M8LyZySmNvC/VlbFz4LC4uamNjI5uo5s84SYDi7YxK3o81m03Nz8+XwjGuKL0/3H3M+MKPo9H+fitLS0tJ0DQaDc3Pz6f9NjwJjucD4B1QeIw9p5g9lJIDlLndgbnW56nPpwhiuc+FnoMp5yv4wHO/ACnkoxRFoRs3biQQzxzytnhoLY6VC2bq7nOB+o9G++9WWl5e1srKSmk7gNXVVTUa++/jKYpCd911V1YG3AkUlRgAgdVMHtYhTOieQl86S+6bg2zvM8pyr0rMIeGb8UVu4znJ5ZzUarUSmHGKz46GYSzX5Z3LOJ+z7o1xAMa+RXExgM8lB1zSwXwvLw+QgsFMneMOvXhDarVa8tY5SHTjwsOYPnddzng9aYOHLuEVB0+H0akGKHNzcyWLTlJKfvMBduWaAyhunZHHwHa8g8EgbYpFGYAShDbuNQ818Z9NspxRR6ORNjY2VBSFhsOhZmdnU3KtuzHd+pLySYiSDjAySXv9fj+Fl9ioDWXEJEdw+P4WLnzYPwWLgPq4heQUrUsXrkxe+ohrHFhxDVZSFB6ufFyAcN/e3p46nY663W5pBYRbIIxZLtv9dhHCyi0ib4vzLGE2SWnDL5/oWDPwFoIH3pbGPNTr9TQ7O1uyfhYXF5OSoO8lJV73Jd85oRiBH/cyfljVuSXpLtzjJwJdd7/TJg+70n9uJRKmcsXgQhfXutfBQ5lxVQ/Pza2Ciu31+L0rA9p+77336qGHHkqyoCgKbWxsaGlpScvLyylZ+ST5dBI5MKaPWGrqnmxpnBjtnlSUpm+4Fg2XCEglJVDh/QtRPvzgSt/rzPjHZ7rXx73vUdbGMrnPDTfa6/wT5aZ7kJ2vohESjTB/JvVijjkY8z7Au0g4372ghGuYSw7SqZuD9Wg4uMe0Xh/v6k2omBDeccCJdMoBSrfbTbH14XCYwhKuuKSxsIxuZQbDY5ZxdUGr1dLS0lJC+r4Ui0FyN7OXyQZaWBAsoXPvyurqqnq9nubn57W4uFiyqgEbLjzdG8G3C3wEMuGdlZUV9Xq9pHyoO+0hycnBFy45noer2+PG1N8nSQQnOeuPOlIWx5zR3QuAsOMcvz251xVRrbbvxl9eXk4vzXMLmO/p6ekT3QfF+aXK5Ul/ehiC5ZjtdltFUSTviGfII/hzgLde33+9AKuHfL7gHqevPWbt3jJfsRC9BVGhuKXlyjnyMb9d2fsxeM2FKnFtB2Y+xx3gAtioa1xJ4cYJvBQT2qNQjuPEb+YMYM/7F/69dOmSXv7yl+sXf/EXE0AqiiJtwHf16tX0vDsNoEQQ6cobuUD+h79zhna4V8sBHf9z3jJ/Ns9iV+wIoP0az9Vy0MOGY7xh2WUZ88g9zDnw7DIOHqQtkc8djHs9Y+iaY76IAD6AF7wc6ulbKNRqtZSPQ84jzyH04rLPz7l3lOT42dlZTU1NlV4CWa/X00IDf8WDJ89i6FAnH7+j0qkGKOSBzMzMaGlpSevr6xoMBpKUrCPAgQtjhBGD7krZ43eu2DyWGVG+T1LczI3G/ptoJaW9URqNRmkLeGk8WW7duqV+v6+77rpLS0tLSShzLYI3Cm7/j0AgKfbq1ava3NxMzEiSJMrLd4BFgA8GAw0GA83OzqZljj5hHJnnmM3BYXSTcsytkKig3BNCH9B39BVj5MjcUTyTZ3l5WY899ljJ8+PA9E7ZRjxuMBc9UwhgxpGNrbgewQW4wBWOq9kTnflEUAiY4V00blG58IyeH/dKRqs5WsHOdyTvedjEwZoLtJ2dHW1ubpYsSeYq7fXnUF94yAGuJ9Z7DoS3FfCDYPck7chrDqhc+XiIw/kdTyVyh0R7SSmfjSRdjII7kXIAgnYTOsUz4h4rlyWj0SjlXbgsy/EA5OCQccBDBj9EOc/4+Lzo9Xrp1R++MtHvc6XtHhuvJ+0CiLmXwdsRARL86SEwPA8u/7xvnceYZ85PcUx8524858hP6eCqKO9r1yXD4VBLS0taWFhIcgg5TR/wG1nkoR/6Ij7jKHSqAQqTG8Y5f/68NjY2kkBzq43BceSL2xGB3Ol0ND8/nxIFfdJAMKHHyD1WDsN4si0CD3DiH5SIT+C9vT0tLS0dmKg+kX2iUicmymAwSCsDqKukpCA8N8PXzzO5qLcfR0h7ghqKzuuWsyyjgPHf7pHyEI+75T1cQT+5F8oBjIMOvCi3bt1K5bsQPUnLlDHxb1f07m6m7fAS4wzwdRcu3/AiStjDBfTz7u5umj8OOgDjlO085CEp7z/4MiptF1DuAWO+uNUX7+G5vV4vKe1Go1HycsYcHOrh4NvJrWoIjxB8hcWMbIiC1cfK6+39FOUG7cGyHQwGajQaOn/+fMoVazQaWl9fT/3BK+rvNHIPAv/9HBY8YJIVa3g0Y+jCxzuCFB+/6MFwpSeVDSIfl7g9Atd6yMRlHHKC/zHEHmWwg9YYwuZZ0aD1fBD3gvoznd8AsdHgcz2CHPUP3ipfWp0LcUXQ5/25u7urGzduJE9/u90ubQDKnAT0DwaDA4a+1+04dKoBSmQWkGittp/0QydGl6Erdtx7CMK1tTXNz8/r3LlzpTwT71wEURxYZ9T4NlTPZHY0j9D2Ae31eskLQPs8odNRNP8pa3t7W5ubm2njKJQSypx73RXJNt5MIJTTYDAobTYXcx2qAAm/c6DFz/mEpP6gduoY24vVCcBkaShjXxRFEo7dbleXL18urRBgMuPOPynKKU74ygU41/rHx4nr6vX9zavIM0J4UDYK0QECwseXGjIOPuaeP+EC3ucA5xwERvK5Er1n3g8OVj3Z0cNOnPMyfQ66wI7z3r0nHHPrHuWCC9v5zxUncXlXQK6EqqxmaWy9vuQlL9GlS5f0m7/5mylJFmMG2XAnkvOBlM+Hk8bLjtfW1pKB5NdEmeHAz8fUr8mdy8keVqd5HoqPCWPHvGDcGdvc82hXzP+oqqvzjYMm94JQnr9l3d+zQ395ONKf7/X3erLZI3LRV/MALBwQxTGJY0suJgm4vDTSE43RHQ42czrgqHSqAQqvg/Zlulj8THKUYLSoIvp39/L29nba/ppn+EqGKKjcPY3l48wE0IE58OZI5X0DHHB44hgKiHM+wRw04XnA88ESU69fZHy/148DiLa2trS6uqrRaJTi80wGnu+KiTZPYk63dGkTyoFcGVeW/tnc3FSj0dDCwkLKQQKkuPAgv6bZbOrKlSt64IEHSrlAMXnuJAjhSFujcIvKyUMT3MP9CGKAF/3pXinGnvCFJ0n72Hl+EMIN3vGNybjP49ke+uH+6D1xclDh7XX3N2PvliR9EZW4h654lod66Hf419vIOUJQ0vj9IQ7O6U/GAi9onAexje4BvX79un77t387hXQeeeQRDYfD0i64yI47jRyMuRJ2ZUr/z8zMaDAYJHDi8z6W6YqR8ZoEUHwMHTD6ooZJK0zcA8s11I1nu8c4yjT3IDq4kZRWeDqQcN5xQ8H53OeXg32XV7Gf+B1ffupghed5zpbzfdQluTFy4L+2tqbt7e2Sp989hG5kxDKOQ6caoDgTRwvQJ4or4OhWdIsHpkdAI3idkRxQcJ8jV5IYGfC4/rvf75di6SgJSSWQw3N3dnbSRl3eRp7tbjSe6RttofS5lrCP19MVnKRS3g4Cm9dnz83NlVC5PzeOTdWEyjGpe1Rc0PmHc7u7u7p+/boGg4GWlpZSLpJv77y3N95+fGFhQXfddVda7u3XnhTBDw50c5Z+VAYQoTzPo2BFiofEvCwHA9zjYUV4JI6Xj4HH7BHwJMR53f0e+Cg+PydopfHul84DeM6YM8wrzyti3GNf+tx1kEKOCXLEAS5CHVAEL7lSc6uRuuY8Hu4Vop3Xrl3Thz70IZ07dy6FeJhrrMDzEN2dRHG8pLLHFKL//N04rrDcG+gAjvJ8fji4cWDIdY1GI22t4MvDGdtomDLWETQ57/hcyClw+IpkXXiD1AHyPjyfBHACvzj4cYPC65bztjrojS9i9fq7l5W8TMCTG6WuV7x/qKf3C//JHyI3BRnu+inK2Cr5X0WnGqD4Om86kHyU6OJ1AeaWYNzPw5e/wrgkQBGrdxTsz4cBUP4ocmmfMX2PABAs5MLUJw/X4nqOlpgrc+4hJri3t7/hGu9WwCqkb2gD7YDBfeM6LOepqamUgOxeI1+SKeVdv+6t4ZiTAyRXSpHpffKORqO0udC5c+c0Ozub2sk15BY1Gg1dvHgxgb2tra2SojwJck8IY+quYMj7wAUpoIJrefmj51MQuoM8POcgBgARk9sc6NH/eKAcsADk3SLz50YLFf6KnjRX4JwbjUYJcEeAC69HkI5gdqXkAAGvCGPgSZv0N9437nWgEIEYbcdYcfCbU7r0B7F8wAnXSOOQ00nu1XMYRevYFTjywcF1VIKxnDi2rhRd7sXwHHkPvV6vtGrIPbM8xwELvM+S2wiYmY8OJlz5RlDt7fD7nGgP9XQ+z8lRN1LcG8SKGjcQHST6fZ5bhY5iJ2UAjgMhB1NRbsfn0HetVuvAHipR9j8RmXuqAcrc3Fxp+2ppvBTQdw+Mrln3LBAKkHSA+aIiRok7iudadoOkPAcoDoY8ydOZ2NGmW4cu2KWDQiHntoSRiRciNGl/r9crvU6+0+mk6yiLvuE4gIcN586dO5dCBT6BXeF4vSKTxjZF74mDFf8PcW5jYyNdAz+4ux0w0ul09IxnPENXr14t5f+cFOE5cwHsQsKFrCc1OwFSABGMafR8RCHvc8C9Ib6kFf7096xEIeyhVU+K5BuKVnUUpA7MHEyQj8Ec5223DmJcYLqwpq7MW+9T6uHfgDHnCQeFrky43ueve1xqtfGW5oyTE57V6enpxL9ODmpYXn6nUfSWRE8EssjBSbwnAk4nN9gi0KQsxn93d1f9fr+0d40bNP5852GX4RyLhkC8171sbmDiacPLh9fNecT3wWGOuGfGc0JIC4D3kceUgwyjHx34upeD+Y8XnLzG4XBYeu1KLA9y3ozeLD7D4TC9/8hluBvUHg47Dp1qgIJixeJBkHvSkHs+ELQOEKanp9Pg+710viflMejRSiyKIu1MyWAgoLBqYSKvI25nn4j+TgVfSSEpCcE4yaWyO9BdiAAmn8S0Fabkmd1uN1nDHvrhOfTfcDjU2tqa7rrrrmSJVDG4C3T6LAoAAKZbPRGYRC+MH/N3p/C+mtFolND91tZWerHj5cuXdfPmzfTck6Kc4vOPh0iil88BCH2E8HIvgAt/D2E437qF6QoW75t7Jn0euDuZZcw+Jg4+pDHvelw+Kh63WN3z6WEr35DNrb8Izr2eXg+Iuezz2T0xsZ9dOUIoABfCyBsSlvE6UpYroF6vd2CVkCtkSelFeXcaRSDioTM8ry4nq0BYBCd+PHpRYggNeco8d8DtBpAvAXZ5hnKNq9/iPMzts0K9nTf29va0sbGR3sDsRqjLNvpNKm826KvpaAdeCfbkoQz6nefEPCy+HcQ5CKO+bpg6gIKiFySOl19PfaLXJPb9cbwopxqgeLKRJw5i8XPOLUOPW4Lw3GpzYMKmai6wvOMBAw5EuI4BJ6bsiJIlWTzP92aIn6iYfWI4A8KwnMPiJFeBN1RGq8KZknYjZPjtApgJMRgMtLW1lV6QGBWjCwInV7JMEleu/nHGjuXFY+vr66mP2VgIoOixV17Ixu66J0VVAovftdrYfSqNlx7H/qUsLzMKlChUc/WADwHGvLuJMhwYI0jhPedjz6tyQO1LEotivIoMS5L56OT84daaKxNvL+AFMBU9lK7sqAPhLUml8pwcZEd5ERWQKxVkEHu48IyXv/zl+uxnP6t7771X//E//sfShnBeP+nO9aDkAOj09HTyujJ2HgZ3yrn7XS5F0O7P5X/chdYVM2DFvSnetx4yQlGzAs6X3ktjEOFGgoMPrz/1IgyVMxZybQUkEPIDRETPqstHz6ekbPcYch/14h5pf5m7Gxe01fdO8T73dvhx2uKe/AgCq8byKHSqAQrM5UqbXAuPU/rgoow9VubJRB4e4jrvWH57Mi1JbY4SeQETApakKbfsUAjOEM6AUnlVBHVw8FI18Lu7u9rY2FCv10uJYyy748Mkw8viaNo9SV4HGHx3d1ebm5spD8hBivdTRM0+4bwvfKI7KJkEfLxsQAptmJ2dVafTSSE1rJB2u62lpSXNzMzokUceeTLs96TIx8vHmv7mFQO+yiZngVRZJ9Ead0Hh9zroINl4ZWVFN2/elKS0eg0PBsJdGoN9Nl2rAh1eF8+D8fJjOAAe96RuQHOcw/Cu51YBEBz4UHf3ErmL3ZdVQ9TNr/P+9P73uYgHyufP3t6elpeX9cxnPlO3bt1KwC0aIO69ZA+RkwxH5og+dA+Ce9h852lXklFeRaWWu4bzzIN6vV7aZA0gXBRFStyMnpQoy6mve93cGy/pwNuTPRwY6+nyjvZHw9aNW3jKyyftwLd94LmAP+71fvHfgHmAlhuXjBcyn3etzc7OHshny4EUb0sOdHrbmIO+35TrlKPSqQYoPtAevmF1g68xd/eTK1pnXJYUQy7geZ4jXsrxV92jDDc2NtTv91Wv11MuSK023kgMxZNzsTO40YKNVoCkA8zCBGFzK1/i5+5zt3qpA4qgKIrSVuj0Gy52z3vAMxGVqPehWy2uMOmvKkDi4R3GytuZI/aSmJ6e1sLCghqNRlp+BxDrdDrpTbInRS60YsgD/kEhu7CiL+lXB7NQBIMuFLws5k+r1dLc3Fx6m+/NmzfTsxcXF5OHkPwjH0fCe76aKOfBoQ7uDYm8EC0u38lya2vrgFUqKbn2AQUQSsL7ywGgywPvF54R821yRkr0uvr5yMP028zMjD7wgQ+o0Wjo4x//eEqcR+l4kj7X32kAxWWCW8fIvrh/UQ5gR4CSO+8fD7vHtx6z35Wk5AmRDuYQeVlOHiZ0Ge85g7nQJM9w/nLQ4d/uuaf/Yj04RvK0e4LwzMFTLrvcEKAP0CNEFDxp3D3UvV6vtGGp64Oo/7jXjeN4zvWROwCeljko29vb6fXzdBgTGuGGi9RDK5JKTEIcU1KyAh2tO9PWarXSah5QLxMUgMRqHq6bmppKS4yx8t17AkP5hM5ZwDl3WlTW1MGXhHJ/dB1SBpOICeHKPO674as+BoNB2jjNLdAqoOJCnf6LXpEIVPx8pJxyWF1dTSE6Xn/u4yvtW+4LCwtPmPeeKvI28sEjJ+1P8m63WxLy0ZsUgaH3hfOuj3mtVktbqzebzZR/dPPmTe3u7qrT6Wh2djbtyDwajVKuFktu2bAJ6w7F74DblULOMxjHz716nl/AtTkFEOP3Dn7hSQfpcT67FwBh7/OMORzrG+suqcTfPsYIfDaDZGWUNN60jb7zee8erDuJvL+k8Vtw2YU7GhcR3MX/Psej3HPlS9jcvQ1uoEr73kCUOQrarXpksIeg/OOhfz6UzXEHJQ5mPVzveTkodq8n7fPzDnJiyNu3BIA8fCWNd532Pneecp0DiB8MBiUgjHx3IONj7vI76iGXT1wb51SVcZmjUw1QvKEgPw9/INja7XZp9Q3hFqm8NBHmZVLE1TRx0EDzKGtAyWAwKFkR1I0NoGKZDiIi+oW5AEbRpZf79uXT7l71GDsT1IVBTDQjqRYF5hYsniaujwI7Z/HxHPrRs74jIKkCKU45QQfdvHlTzWZTz3jGM1Koh77e3d1NSv+kyNsYFdrW1lbJKwBg8PAJVAVUo4D1/vEcraLY38dgampKN27c0O7urmZnZzU7O6uVlRVtbm4mLwmgl82e2N8CpeT8Df87KPK55vWJHg4HJlFxMUfiXkT0BXMrAgr4LWftOnB3QR7f5Bo9WW5JRv5z4c1cICEfZR7nMvwZlfNJ8mmOokKv18ervdg40QFKBMbxUzXHXR66x4zlxD6u/u3hG8BhLNdBgK96lPZfQut86p6T2A7e6RUVOcAyzm9X3NJYZjca431cYt+54egy1PnEAc1gMEjzwHMxmVvoEuYQXkpeQCqNPaM5gMnz4zGOI9ekMTgibOR9eBQ61QDFs5hBw9JYEEpK8TyWyeLqqnJl+YSiDHfjOlMAgnC5sZKHc+TDwBgwhFvAWKUgXwc//myfADn3WpU17QCA6yIowEKLL87CanYg0e12k8BAeGKp5hA2dfJ6UraHd7wNOa/CJNQdQwV8X7t2Ta1WSxcvXkxuU1f6J73HhFtVPsbkCknllSoof+fVON5S+V0xTrXaeFdjH08XpLOzs5qbm9MDDzyg1dXVBO4Hg4H6/X5pDxMfS6ywWq2Wkst93BnvnCfHP4Br6geYYjdnBG+j0cjuTurWaBSGcd54H8EXXhc3enL1zXlVcnzqQn91dbU0zzjvgNL7lbbeSeQy03kRXnXF7oo2hsPi2EhlWeHW/tTUVJKveHejAeb18Wc7kPWkWfc2uEFF7oQDCa6PBhRg3A1j7vHn+thG4w094Hs40Vc+FzyvBy8K3iDK5jj9n8svdCBMHYk20Edx4YPXNeoeHwPXK/QfbfCE9KPSqQYo0lghO8PDOPzmPSTEEUGGxC4d5boLz13LUjnW5/f5ShmWFWJJMFBkhkv7VgAbqBHnpPwIhNxK8/b6ZI9EXgFLHX2vFwCFI2nfgdVDW85MxHUJObiV4iAjho5yYxXBSQRQOcsyV5Y/Iwo9nnX16lV1Oh2dP39enU6nBKJyXp7bRc6rbp3jiXMehhfpcx9/F4w54QHV6/XSHgjwHJbU9va2FhYWtLa2pna7nfiYUCmgyfmT0Arzyi3T3BbtHoJxQMtxT1D15fbNZjOtOnAByNxyoBF5pV6vl0AVPOv7AHEdfIlwpl/jM7yPo/zJWZoYAfSlry7hGmm8KtH7hvrf6UR7fbuB3Hl+54yWCA6Rn+SV9Pv9krciJsh6eNm9ClJ5ZY8T93mdMNYimHKZy3NGo1HplSJSOczjeiTXD0VRJI+hg4touMSwCu2Gn+l3l9/ebsANQN8BOSFQvEnwI7Ld6xqJ8ZHGoco4B3wMnpYhnthoR2+uEGdmZkrbLkfXYA7Zx4HxTkbR9/v90jJeBrwoCjWbTc3PzyfmwNOyvb2txcXFklJxFx7PdouKY34u57EgN2Bpaam0sgEGHo3GybCec+NWr/epvwCKZZ71ej3ldzgT5/owN27UKQdGJrW/iuKkQMjv7e3pscceU6fT0eLiYspDcuF1EuRKz9tIbD2ON0A45xmo4lu+p6amSi++c+VHDhfu+cFgoLW1tfRKA94rhecRJc83O1LSBudft8IAv/4ByHg+ioN6hHtRjLelpzzCkd5PPp48j/BTs9lMdZWUwDtzzmWGgxPqkwPEMcQTj3M9Ssw3coyrhXh2TM6l7ncSRSDssmeSC98VJ2U40OQaZKU03i8Kz4nzE/0ck3IdxOItdeXuhiBKGqXtAIn8FG+f19k9Eb76kbo7sIj3OShzvnZw74akGywOYJHNXrf4TJ9X8B4LBaTxe6+Gw2F6RYr3vZcf+SCOP/+pn78f6Ci6IdKpBii+6ZgLNTogoti4mZgrPrdCqzreiYEjJkoCrDOJx48RsEwYfsPMufrAWDEDPAdWICYJiau1Wk2zs7O6ceOGVlZWVKvtb7E9NTWV9hBwhVWrjWOSCHja6xsZsW28Jz+5JR0nSBTiOTDiv+NY0kf+O7q+vY887joYDPToo4+q1WppdnY2WR3HmShPNfmkd4vL37rsQkkaJ3C7q9Y9KW69SOOdMh2Y+zhjpRIG3dra0vLycknodrvd5IUD3PK2bV7W6PzoibIIfcbRPW6SSlYy4xmtRLduaa9bZNKYF6JFDRiZmZlJoSyva7vdTnPA+8/d5t6uKPzpT6+D18+T7wH3yCsHoVjgKMoYCrvTAEokn6eTZGa8NspZ+jXmF/nO1+4ZcDniPIGypexc6AePds4QIGwjKeVxuEfbFTDtcE8MxyJgjgCK8vl2/nT94osnPLcLDwrPo27Ug/1YarVaiackJS8t3nAMIOQ810e5nSPXnd7nGBBVcv4odKoBig86QkUaM2n0fMSth+M1kXKokONYQpubm6WdWbnW3cmS1Ov10r2ugIkPevkIbpgvrniIdYzWAYzughnGXF1dTQrRmd1fKsUkpVzfZMufy2oTj+U6U+eY0Rk2Z4lFZvd2+32MqQMZJmD0BknS2tqarl27poWFBc3Pz6tWqx14++ftpGhhMz6eGOqAgzb66wv83lz+EoDS3wEljfs5JrbCbyzrpR/ZiwQhtr29nbwo3W43gX8X5FFAOz97naW8NykaGYS+3EKPYIzn+kq17e1tzc/Pl3LOnLdZXun9Qv97Ii0AyJVT9LTAc9T1hS98YUk2zM7O6urVq1peXtbHPvYx/Q//w/+g3/qt39Kf+TN/Rr//+7+vT3ziE/qGb/gGfeADH0i5bICWO4mQnXG1SG6OTprHubkf524MfUT54bzim2I6mES5IwdZAAF/uk7g2/O0AAJuLDBfAKCUD+jxtkYdE41QD1lSf18kAWhw8EJbvP3wI+Xy9nkPMVFX+qvX62lubi71+fb2djJgmUfuTc/J9CrA6fMqgrWj0qkGKM5Q3onutvWPv8sj1+nRQneKgmk0GqXEQUfOktIqIRgh7nUA2vUX+Ln7HMXiSb/OeD4BvG5MLE8aBg03Gg3Nzc1pMBiUdraFPAyANR3DPNQJ5Yil4pOTesawU5ywLlyqPt5ffv8kQRgVuj/7xo0bWlxc1OLioubm5hJoPEmKXgFPlJN0wIMASAFUuLCj36XxCx/hPedf+rZer5eseiz+69evJwCOpdnv91POFtYdISHqCe+4R8JDJDlPioMT+iMaAw7Y3ENDmQ52PNyIEsXLs76+ntrE3j14WhzEeZ9SHwcr3o/S/nwHvOGR2d3d1dzcnB5++OH0zpPl5WU9+OCDuv/++7W3t6dnPetZunnzpjqdju655x59+tOfTsnc3p93mgclp3xzhlOcq1yXMwrduHBvB/PBQ3yUD3BlxZcrQWSXyyVkFgASxc9ccjkOOHFvgtfPv0ejUUnOeh9Exexzz70u1MuVOv3iq5BijiDez2jcUTfuicaLg4/BYFBaHu4LTjwKUUU+TxhfD29526vGv7LsI1/5/9Ov/dqv6dWvfrWuXLmiWq2m9773vaXzRVHoh3/4h3X58mW122294hWv0Kc//enSNSsrK/q2b/s2zc/Pa3FxUd/1Xd+lzc3N41blQKeD7KXyRPDJ5FnRkXJKPx5jUNkpluxrT2KcmZlRq9VKggsG9x1uHShxD1amo/9Y/1i36IbLeSU4zoRjMrdarbTiQlKKn+K6d4vDJ15kNpA4SsPd41X18NCEf2K/x3Nu6VAe5BMjAtBGo6GVlRW95z3v0Zve9Ca99rWvPcCXt5N3c4JbGgMUb58vM0QRxncXeV81m00VRZE8H5EnXLj2ej099thjeuihh/TQQw/p4YcfVr/fV6/X0+bmplZXVxOfsr8PodV+v69bt25pc3MzzS0Sat3yjePj/OyKPl7H/ZFH4EmABvF0B8o+z9yFTb096dfnYpUHMIJE+ps5vrW1lcAJVutHP/pRffKTn9Rjjz2mP/zDP9S73/1u/c7v/I7+83/+z3r44Yf1kz/5k/rEJz6hX/mVX9GHP/xhzc3N6eMf/3i6n/50Q6KKbifvem5GVV3oHyeXZ/G4lwfvx1wdD4VKSm+Nh08cFLXb7eQJcJ6MYFdS4mvnEa514O/zzEN+EKtg4KV4vX+og+fKoAsAJZ7TyBJ/yvTwCdfQD77Un+ubzaY6nU7ariCOJ/xbq403E42yN9IkfTlpLh2Hju1B6fV6evGLX6y/9Jf+kr75m7/5wPkf//Ef1z/5J/9EP//zP6/nPOc5+l//1/9Vr3rVq/Tf/tt/S/kM3/Zt36bHHntMv/zLv6ydnR1953d+p77ne75H7373u49Vl6jIfe8Pzjv5wOSQXE5Q+jl34SKYfU8D4pXstgp4wRXoqxJmZmbSfhKAEwYWZvOJJ6mEbN3K8/pWIVkX+M7ouL5B2W5x7u3tqd1up4lHG3lutAaie7DKNeh1p17+wi9fIZUDZS5kXNlFhRiVWlEUWlxc1Ite9CK9//3vPzDet5t3IxApiiJt4BVBp/O5pLTk18lDbYQzvRwUu4cevc9QjO4ZBIyQr+FJqwi1drt9YNdhxtHj6u61g9fc8uN+zjPuDvyZK7Q1t2okB8okJSu3KPaTf/F0eh/FsKH3XfzPvEaZxefxWvtr167p5s2bevDBB3X16tUUqnKwRfvwWJFDJo2NmUmW5+3m3QhAcu2f5OXMKTe/xnP1vN14nuO2CChheMhlKWW4DIv5iPQ///HeSEo7rVKWjwcyVBqvmHEDzWUybY0y2pW6J1FHuU+93UhG7tJ+5gSEvoKvfRWPzz3Koa1cj+eKelCmk8/7nLFcNe5HoWMDlK/7uq/T133d12XPFUWht73tbfqhH/ohfdM3fZMk6f/8P/9PXbx4Ue9973v1rd/6rfr93/99vf/979dv//Zv6yu+4iskSW9/+9v19V//9fqJn/gJXbly5ch1gZE8XgizRaDiAxKZ3surIke+w+FQq6uryWJC8MYdVdlDBKaGAQABeFTcKoBJo1XB+ZwQcNc+FCc/1h65BWwIxAZszWYzrXSo1/dXd0jjvBomnyspSektwfPz8wlkIGi5PyaPOfHGV+51gRJBiifPefw4AhXGK7pir1y5ouc973mpbR6bPQnezY2XLxdESDjRbvoK4eh83+/3kyDmAzjGlYsgQ0EifMgr8tcsAK55PYCDXTxojBNhS7fuvC0eKuF+hCTlupJhzpHcLKlkEDC3PZGcZ7tBwYojd6NHxeFufp9vUcDCiwCxqGx9bBuN/ZcFfu5zn9ODDz4oSekVGPRHfI+VVHabc13ccMx56XbyrlPVvI7HfW5Gz5SDP/rdwQnXk7xPP3john73lV30G4aPA5TodYzenahMKZsdnvHm8NwYBnGed4Mj8hJzslarld58Tf0BJ264Op9zHXMaI4NrPPeLsplXMdme0Jfnt9Vq460oOBYNd6+zj2OMVEzSr1V07BDPJLr//vt19epVveIVr0jHFhYW9JKXvEQf/ehHJUkf/ehHtbi4mCaJJL3iFa9QvV7Xxz72sWy5hFP8I5Wzp32nPReg0kFXVEw6zVkn8b8nbuE5Acmz2sWRNsf9PhgaCxBXNIIdyzVumBbrGidT/O3XM0l9Qrn1TKb37OyslpaW1Ol0tLOzo42NDd28efPA0kiUh+/02el0dPHiRS0sLJQsX9oMEIuJq8PhMAEeLG4sI//govV3CwFkctnuuTGnLkxkxhG63bzrgMotOW+Te1m83zjm+/TQNj8GH9Knce8e+sr7mXANYwYoHA6Hmp2dTeE/lrIDyh0YuDJgHNy7E60oxhLhh8BnjrRarZLl533F8zxU6uEdvFL854WIzFfmngv7aAn6nOKaRqORQFxUvD5u9Xo9hdHW19e1sbGR6gQ458P7jpgXyJg4byKdlNyN8inHp5PI+xkeceDn4YyYA+XXowyZM+gAZBTXuicAOVwURQr/MEfcw0zb3MhyWUU73AhwQyp6S+AfP1ar7Se0SuXEeOay75/lXhrmA7Ld31HkcxGvLMYJPO7zxpPIfWWbVM57iRR1UAQvsR+OS09pkuzVq1clSRcvXiwdv3jxYjp39epVXbhwoVyJqSktLy+nayK9+c1v1t/9u3/3wHF3gTmyzIUG+B3vjxMrdjAMz8AiVBDqIMwYW3QLD5SOZ8HzYNwNyYZytdp+DNXJvSy5tjhxjknjGeiAKRSRC1tWDvT7/eRhcYHvq3loG0KfFRwsR3XhT51i/wAq+LhyjqEujtVqtZL3yYWSbzKEwnOrCcFAX/gqntvNu5ALeg/HRSspKsxarVZ61xRbbkdB4LzvFie84J4Qz8vwejDOo9FIS0tLunXrVhKSbikioN2ydF50r0QUeK6kPPzh9aD+tVotKXN4zO+FT1E4HlbFbe2rFvA45erjlqDPoWgA5cAk/69fv67V1dWS148y/FPlbYhzP9JJ8S71o85SeRfvSV4V2uXjzpi4NxjvqgMW9yhAPk4x7OabUkrlxHOvL98eBkWRA67h8ejZ9bGLoXnqx7H4Qd63221tbm6WQimEcgBDpA/4HHEeon8imB6NRiks7HIAY8UNN4wVPDuuyw4z5r1fczxwXHpKPSifL3rTm96ktbW19HnooYcklRsPA8cdSiPSh6LAj9dExMuHJEGYCFQKymY1QNzu2ze1kpQsJLLJuc7d3D5xEfyx7pM8J+5G9t/NZjNZw7VaTWtra7px44Zu3Lihfr+fQj24R30jOmn8cjZWJzgiJx8heo8YGyYj1rev43dFjfWPW9fBjP+PcWYEhAv8nOKJ/PP5oire5fleb9qS86Q4wZtYTG79eBsjD8NDzm8IEwccLmT9PkD5/Px8Gjd4SlLJg+EKSCq/pTd6BBwwIShzXk43AuAN9xC5hU0uze7urjY3N1NCO8/Bi4HLHsAT35PjQMr7zMMtPj4+lozRQw89VAon0tfOl8wzEnjxqvhWALebqng38lcEZbkcIAcjlOHHHNhSLuAk7oHic5xn8R/5HxcheBrAzMyMZmdn08tEkYW+aIAyHWDTVk9ajvMsJ4847p/Ybxh6bhRIKr1qxAlQTn8Q2nJDELnv9+/s7CQ+p79d7jA3Mb6hw7aRiJ5zJz93XC/KU+pBuXTpkiTp8ccf1+XLl9Pxxx9/XF/2ZV+Wrrl27Vrpvt3dXa2srKT7I5EfEck9KI6wo6XoiN3/VwGSaIG6YMRKJacDtL23t6e1tbUUM+QtrwwO//EckMToAMcTVfnviYST6kp7ASKem0AMHrfg/Py8RqORrl27lgQgYIF8A5YcO0iAOWdnZxMIcUFBnJw8F5ieycN1KBPyV/Da8HJCxhSF6GONACSE5oAsB0ijB8KtUe/Tk+BdB2+xrh6/5lhUlPTT1NTUgY2pnFfca8Bz4SH28kHwsnTYQZALvL29PS0sLGhxcVGDwUBFUaTkRF/54O+hgh/hEY/LU0cHLV4/+sGNAsA+vBo9ThxzfuM/y4t3d3dT/eFR2hhDol4f99DmjAQHKLXa/pu1r1+/fkBhE1r18NLe3l5p5RX1od+q6HbzLu2MoMH7IuZkRPJ+jbkkjA3yg9Clh3d8vP2N1z6XAD7k1UVPjPcvzyHEgXxHzvE8/vMs+sGNwAhaolzKhcE9TYDwCsd4DjKZFaPMfQ/r+qIF1z9c7+Cc5HfPR3Odg6fG+7wKmPoxH+PYB8elpxSWP+c5z9GlS5f0wQ9+MB1bX1/Xxz72Md13332SpPvuu0+rq6v6+Mc/nq750Ic+pNFopJe85CXHeh6d5UsuUai+Nj4i/GiNREHjE8C/ncF4Tb27z3ie74fgq3WYGL1eT1tbW9rc3EyWEkyAUPDMfl9eF+uUs0rcW4LS6XQ6mpub09zcXIm5WTXgKzvoJ5al0fa9vb0UC3bFx3syPLfFEX3sX/prY2MjAZGi2H9xne9sGFfzuAXiXpRopUAurOLE8W/p9vOu1ysnyFzB5iwu94xg7eT4AqHlSgD+iEraXd3uicC7sLm5qX6/r+vXrx9wi3sekI8b/Ry9Iw4uo0Hg7fNnuLXtwB4ezoF4F+bkdqyuriZXOgqO+rrMYL7G+ZXzaHm96b+iKPToo4+m5ZuxfaPR6MAW60WxH2rr9Xql/JRJluft5t3oMYr94B/3olVd46Fw2u98GuUIcsf518Nu8Ah85vmJLoOYF3Nzc5qfn9fe3l6SbZE3uR7Z7G3P6Q9vbw7ExWuQ94RsnY9ol68C5Vrmgi+zdw+055pRrnuj2aXXPdk8jz6DfM5GfsjNidgHuXsPo2N7UDY3N/WZz3wm/b///vv1iU98QsvLy3rWs56l7/u+79Pf//t/X1/0RV+UlrtduXJFr3nNayRJz3/+8/W1X/u1+u7v/m7903/6T7Wzs6M3vOEN+tZv/dZjZ5LTaGcqQIrHM+M+AkwKqbwMLE4Ef44LcFzY3EtOCiERmGN+fj4hVH9Bky8FJW+CsAf7kDARJk2GiNSrJj5uS0JUU1NTmpubS4zouSog7729PbVarRSKcgsdS49QUFEUWl1d1e7ublopQU5KDkhxDE8KCmRjYyO5Ot2yzHlEYjzfya9lkqF8bt26ldqyuroqSXrooYf0pV/6pbeVd2M9aVMMVUHu+mUsGafhcHjACqVc+MAtK+c/9xzkwJGvKvJ69vt9zc/Pq9/va3NzswSsozua8YneK+dfrHHnZ9rg7eA/gto9TYyxezqoP14egBRKwQW491usk8sHH4toQdI/9N+NGzdSW6ICIySKBevlAQwxhHiXT6ST4t1IObmZA54RuHgor9FoqN/vlzwcsTxkmK8mc2PJn8UcwqMmlT1ktVotGYG1Wi3ld7hHxA0BvG9eX845D0X+jQA2Al4H8+gt9JgDN7yZ7HPkYW68O77pYAwzYcy4h929Rhiv0thI8eXuLr/daHD9SRv9uVFHHYeODVD+83/+z3r5y1+e/r/xjW+UJL32ta/Vz/3cz+kHf/AH1ev19D3f8z1aXV3Vn/pTf0rvf//7EzKUpHe96116wxveoK/5mq9RvV7Xt3zLt+if/JN/ctyqJMUW3cUuZHNCO7qaOc79fq0LTYQ57mVW3vjyMJ4FA7DngbQf5tnd3U3oH28Prj0ASqfTKSUcSjowaSOje9vd0gN00Bds2EMOCe12cEG/oGwoDxch1srGxoZ2d3fT5j8kneJa9JBEtESZiIAdFM7a2lqyGuhnt2q9/TyDfnLQSV1d6a+srOgjH/lIKuNDH/qQJOkf/sN/qHe96123lXejhyB6e/gwjj4OtBsASZ+7AHGh5HzE+LnXjjI9pwcgxP+tra1ScimhvLm5Oa2srKS5Ad/70tmYT+LWceyTnOckKgDahHUMyAfU0g7u9frCS6PRqBS+8r6j3TmF63WOVqPLHYBRDlR4eYTCnJdd/vR6vbTMM0cnwbtef/8dAV5OMfncB2jGayEH6cgfcvYYQ8aLcfGxZ07A877brOdleBgbomw+eCu4nrrmPIKxDRGQxD7zOe3zwsGwVF5NExNp8QYBtGgvoASe9KXF/tzd3V31ej0tLCwcGEfmWQSZVfyQi1r4fccBKccGKC972csOMFKs5I/+6I/qR3/0RyuvWV5ePvbmQDlyC8jdd95RKCqvHxTdtTmU578pC6VPApO7zvGWeDIftLCwUEr8woPSarXShmhYVDEp1kM7HMu11wUAjEgOClnZ9JuDt6Io0v4VJOx58qErUOKVo9Eo5Zt0u900WaNgipaxK03qzosHW62WVldXNRgMSgLbt9539I7iRNBx3kEZx++66y5913d9l+bn5zU7O6vd3V29+c1v1jvf+c5U3u3iXfoyZ23xOypJF0p4TxxYuLJ1XvC+Ztx4LsLVd+VEELuHjXFHmVLGcDjU4uJi4qdovQKC3LqCN51XfFydXKi5QEe5ueCUysnY0vgFi8wbX+nkxooLf8/VydU7CtwIKhmT4XCYjJcqwhCYm5tLW/HHvAGff5FOincj5cBcDqREj5TzvANj99xJ4y0JPC9FGs8hwCl8jzwgHOzeXI5joKGgvY/xzm1vb6eEfpclPndd//gcjECtKtTDubhyyGWDe4doP/zhLz500OVjEfdC8bwSL7fX62lpaSm1BxnqoCiObxUfOOiP4dKj0ql+Fw+W0SRyAZ6LQbrAdm9FFLZ+jbuPmUzS+M2XLpT9HG+Bjfs2dLvd5NWIKDUHRGIf5CzMaHm7pVKr1bS5uZmS9Px9FJ74infDVz94wiR9ggWC6zG2ISL+aClGkDI9PZ1WMLAErtlsljaJ4znskUB74+Z3DmqicJkEtG8XTaoTfQtwwxKi/3DlRo+Bey08vIMABexxD0qcst29DR+jJHGDs1oLD8DFixcP5Hy5UpDKrncH2vCpt9+tyQhwvQxPWIyCOAeOfQ47oKhKcszNxzh+fNOnWKsbGxul0Gj8Rl7AwxxjLlKe77lxp1Hsk2g1H+VaaRx+iLJ0OBxqc3Mz8SheaPrbt2xg/FnBJR3ckRgDk2fWauPQztTUVCkfKQJiZKnrAtrpnjyu4blxXud4ivNx1RLPl/ZBGvtU4QmXlBKrPReNPqSvkIvOp+7hpM4YnUtLS6ldhOu93tG497blIhpV8+cwOtUAxRnJKaJ2Bs9jhm7FSdUTykGLAw9f5oXnwN3oeClI+Go2m9rc3EyJpygOXIckOblgpw5VQjIicr8HpeXKnAnK693jhlaUMTU1pfn5eW1ubiYAlQNjlIk1jzeDOnCdMyiCN/YZ7WDzNIASfR3BE9dznj1ksKrpXxcOT3SSfD6oygKRyqClVqvpnnvu0YULF3T9+nU9/PDDSQgTLmS8HZjQZrxLLjw5j4UYgRw8wFiyvBygxIaE9Xo9fbdaLS0sLGh9fb20RbhvAuVtd/DgYRVpDE7cixit0WidUX9/lv/3ue4Khjnt3lGvYxyXKiPB+xSAcuvWrVR+vJ5+8aX7586d08rKStpYy2VSlQflJKhqPk0ypKT8UmNpbOy414AQhb/YFIMEHvCxZSWbrxyMAJU+RFmPRqPkfZidnVWv10vhT28fW+BHkOieN2mcVBqVspMDFngl5pH4fHS+pZ212ngxBQnV7inkXPQG0jfIDOri2xNwLYZrNBoY/9zYe9siMHvaApToqpLyWcW5mLNbU1zD/VzDx2PzxINRsAhzQAsMjUUJ0/qKGTZi843QfEJ5O3JWR0So0liwRzexo1qeAQPzHCbKzs5OWpY3PT2thYUFzczMpNU7rgjoS18BRMJmXDrtApY+88nt9RgMBqU8HUnJ1S2plIjJROetyqx6ita2e1EcuN0JFIGm1216ejrtO3Lx4kU9/vjjyXvi4C6Xi4UidI8IPI/wx5Mn7S81x0PlYwOoJYEZd7eDfMonH8mBUQQV3BOFFm5751PI7/dxJJRC+8nlIlzFXECZeW4MisD7nud7eCEeq5I3btVvbW3p5s2bB3gMOUB5MzMzaTUKAD+CE0mlN0efNLl8qlLCTlGh5WRv9ALiucWIg18pD5lCf5Gb4p5U92bgVV1YWCh5bwGTktKSXh9rNlDz57pnj+OuQ7x9ka9yc5xzbrBK5Rwa2lSr1UqGr4e24HPmg4d3XUd4GzA2mCfwPPIWLw11xACkrFz7fF5FHjgufUEBFGf+iOi43t9T4ELWr4c4xqAXRZE2aoNpENYwKMzjgAgmmJubS0vCCPXE98E40vfJXwVU+B0FGszjZTmaBiT1+/0EKqKwBkgwQd2ydavcQ0T0gSdt4fmg31GAEcm70mFCMhmiNwiFg0BwDw7gx12ZrtT8/0lRtD5yikwaJ/C5t8NfFQ858GJcYv6JlwkgZdwIpUWljTBjTwgHtm7xIdTxvjk4csARvWluDcewj7dJKm+Jz3UoLtrj28/nPCfwTvSMcoy57WPgv6Oc8LoBsAnvxDcF12q1BP65h7H0a9rtdlo+y/+4MuokKRpw/JbGBpEfi4CU6zyPxNuHjEUmIUfZLVkav4GXMKeHnBlHroN3eZbzL/WFV3d2dtK1tVqttC2Dt8PzRdwTGHk3egAjT1MPaZ8fut2u5ubm0oID9/o0Go0U5sYo6/V6aa4zT0kGr9VqCahjGEfDzUPI7n3FECfvjP6IADrq2hxgfTJ0qgFKTqjnlI4fQ4C4EEJwOiM6OOE8sWIEnSNr7iMxDiWN+xsGAyHjcXFvBszrlpt0MCfGJ7m3HWZm4sT4q/fBaDRSp9PR2tpaCcQh5LE4fH1+r9dLSsjJwwfuwfH9VaK1jHLLeVDcSzUzM5PAoU8KLATaXauN81F8MjLeMcfhqZxET4ZiQrMTgPhzn/ucdnZ2tLa2lqxFBK/f61YofIub1xUyoEdSGgPKrNVqKREW4SWVN+1irOMePYAHduTE6+IA1YW8NFZe/I4WNV4Qz2HyvnKvBveQfI6HyMFwnEvUz19wiEB3r6M/Mwphrwt1XltbO7DyhlV6JMjnQDKKpd1up7wuloHeiRTntXTQmIqGoDR+Q3MEewAzQuQADVfCeFecR5wHJZWAM2Pqixfcy4vXkFdo4Flwmelgxg1Sz+/KUUxBiP0AT0bDEcDt3hpkOucjfyF70VseXmSTOuam19nb5XITgOOvXeG6nBE9iUeeqNw99QDFO8gnRrRw/NtzFCB3fbn7kWt8UyBJJeWIJ4Q9Q5wp2ajNkzfdCnTGc2Z0ppTyjB2ZHELoRzejtxfvT7fbTUshY1/x2999Q9t890LAgefoYB269yUi7Rhmip4NksGqlDcKFAUoKVlULkhy3pnYzttNEWxCubo9+uijun79urrdrtrtdoqvR4+XAzGpDH4cZGOhSkq7sTq/eHjNV3v5hmMkRPMcz6cgHh53ko2WZg6YRdcwgpoxjOEw6h3DhQBYlqmTcwXIYr7FBEEHsbn5xzNznk94jJcueltIhOeVEVGJ+2+8WZcuXdKNGzdK77M6SZ51ivJn0nXRg+dy1eWF536Qj+LjTq6Z87iX5aFGV/quzIuiKHkDyZlCHzjwl8Yr2VyWeJuinsjJqWhQ0mbnZ39Op9NJK4+4Bn7FYMBj5N5Bnud5WOg66ukhdN/Xxfvaw/fMnehF8f2DaKO3PQfgn4hReKoBCpSbKFEZwrTOeJ7UFIENKNSTtXw7YKx8d2+jMJ2ZZ2dnS++dcS8Bz4uejlgXr6P/jh6EaLVw3iesJ7c2Gg0tLy8nZkSY8/I02u7onkRZJhTWNhMGxYCbFWsUi8jHJe7KmOsbci2qBLOvPKEfCLHRR163OyG8Ix30BDi5suP31taWut1ucukibKJXiY/zofMjVqk/3/vQc3v49oRjt1gnWYaUg5XqFqjfE3mcZzJOCOUIFKIFB38yD3lm9DxEa5swmVubDmRzciTyoyekj0ajtDsn1Gw2NT8/r5s3b5aAvX87MUdv3ryZ6ufehJOmnCLK8bKPu18TDUM8eowJqxw9p4QcOJ5fFEXJy0soA7kNf9BvDiR8cza/x3nLjVRvlyt7Pr7k172FXlf/72VGwxK5CEjhGjccMBbcGO52uwnAcQ1eQ8I0rqvwcqObqAf9T7sA3OTnMGbU18FWJMazCrgchU41QImx2/jbhWwO2cJQ0c0OE3lc2kM20vhV2C7wPfETRQ4oYRIi+PwV8N1u90BuhFuIPNfdiW4tIAggD/VES9vLpp1M1JmZmRSCcnc5ngwUPe5CJiUTAQDiz/F7oxJj9ZLX2ycsY3SYMmeSen9sb2/r5s2bybp3K9yV/0mRC3Yfu6o6wUNY194GB6i++2T84D0ZjcbLhSG3pACWCEUUP3PAk5SlcdjUrUqOS2OBxnnnuzi2zv9VfM1co77eZwBqB9bcBw/AZ3FlUwR9AD3nWbdac/NpNBol7wn1XFhY0K1btw6AkxwxJ1g6Wq/XNTc3p06no5WVlcoN2243xX7PKWEHnfEchEL3sIET4RyXDZ5LAV/CD/Cu74BKn7La0I0797x5yCiC0WgkOlBxgExbIJ+j0QvjFOfN/Px8Wp2DfgEkDIdDbW1tpZwcdvMG2MV6I7fxIroXEk8NuZQcp7/daPE+8Xo7gI9jmPOeHEfunmqA4kIsekFy3hPvWGlsKTnKZ6IgiCWlHAjfyKwoyq/15rkePiJGj/IuiiJtDuRWrO8m6ejVJwL1je2sYgzI+8YZL062Xq+Xrq/X62lp8fT0tNbW1lSv17W4uJgsdAc9LgioiysFynUvh7TPtGSJu8KNIMctk0iuOLDOOLazs6Pr168nResKKickbifFscxZ1H6epEC3QOEX8m4AurFd8IBn6gOmyW9AWPNcF1Dety7E6FcHfe5i5zqfew5G4L8ITL0fHNj6NTl3efSSAZhjcmD0wLinxOvqc8WBvAMtb6Nbtii52dlZbW5uHimHhBAUeW6UzSsgovw6SYrgzMl5xPnVFT3k48cY4K2L+x55OW4QSWPwCqCO8wm+oGz3Rvn4IeMjmEB+OTCJYR3vEz/m5+gfnwPOg8zNoijSTto+fyWl3cYxDslrAmj4xn4AcamcK8izkAGbm5uanZ09YPx4fR3AM28j8PB2RVnuY35UOtUAJSo7qMra9vNRCXKcyeXhnb29vbSzoFuK7k6GEbiOpMI4yHxIPkWAwhh+ffQ6eJw0IvzICNF1GBkGYnXR9vZ2yk3o9XqamZnRwsKCrly5ounpaV27dk39fj+9ydi9Rr5qx916Pia0J66573a7qf9iyCJO9AhSIqM7mHGr4dq1aynm6rHtkxb4PrY5i8rHvV6vp1cCALbIi4ov+3JPnCtXQhrOA3hl3KvioNYFd8z3QDi6wIqCO1qPkJ+L7ebb+Vsae0CiQqOeCHcACXVBsPscRGi70vJ2wI8+371OroQhEszhMaxgVmRMIlZSODjxvgL03AnkoID55go2Au8o11xeUo4bTCw0wMjz9+74OCEzGQ83HOF1tn6Ynt5/KWAE4ixJpw4YmA7QY1g8GsTeJsqNADbqJ+7ztvt8xdibmpoq8QR9wLxD/koqgRb6BV50T7TXkf7HACI3x88zT91zGueDy26/z7+fCJ1qgFI18DngERVBTqm7MPcYvq8/R8ixPBCrCkZg9QLr7ck2z1kKtdp+oujs7Gya5AjYnAvRXeje9irAVYVa3W3NZ29vL7mhYbjhcKhut6sLFy5oZmZGKysrksou/X6/n0JD1BtGdmUV68/EZIWTTyJXXg64fE+NSN4+n8QOUrrdrmZnZw/kWZwEReGW42PvK8ZEGguM7e3t9K4WBJivsKJ9jAG8LI336HEXNIKQkBx1iHuaMB94vQFCyoUrH3jAFRTl+scVTc4qc++Mz6NoseHVcXe5hxGoA0rHQ2L0r3uoYkImz3YjwccEJUkiZm4vlEgs5XeZ4m33/roTCCWfs4yrlCDkACOOu/cfCc4ONKXyO3JY4ef9BgAH6EjlF/35qkJCIsh7FHtOTwBUOHbUNnvI0tvPte6dgId8vjK3B4NBMgy9/6TxNvikESCb6UfmqOspnu+g3Bc6zM7OloB4LtwTv3P8GXXRcY3CUw1QfDAjxY6JCqAKIfp5aSzUuQamdsZzlzKbWXHv3t5eSjpFaLk1imLnmTBUFTBxxeHkaDgnwCEPgcS2SvuvaZeU4pUwNrvfwvyj0SglsGK9UD/fuA2FyLMiuGo0Gpqbm9PVq1dLlmMUfj7eR0kWJFZLIu729rYee+wxLSwslJJ8T5qqhFsOtBTF+A2mDozdenTB70KBPmOjJXjTX8YYlSvjAc+6q3hqaiqNrQtLhCo8ngtR+kZZnHPL1IGAt59v3PVc64RQxgr2hO3If7SPEBftixY55F4TB4L0N4AGFzzGySRCefrKqiq6UwCKdDA8Nwlw+/g7j9JvJGP6Rmzu6QQkIlvYa4qdXz1843JIGoM/B93IaQfr1Cd6Hh1ox7ZHIJ2TydEwjXztBhj/aTNgzNME+O/5JvxuNBrqdDpJTvhKIPrPl9M7OEH/kYg7GAySx8nrivytMn69TVX/j8PHpx6guED245AzxlHQvVtZkFtcPvCUAcqF6RFuIF82bBqNRmkNOveTkwIwieDEJ35u8tMWb6sLD45HipZsUeyvOEJQI9C5nxAAO1q6h8PzTAiN8e3PqSI29nJwNQmguNt/EhXFvqcLL8329rYeeeQRLS8va2Fh4dho/qmmHGCL4x7JN/dj7xLARVzl4M9xDwRKng2dIA+RuABuNBrprbgoI7fynC89DOmgg2v57Umu3hfOLzHUwfOpOwLXBX8EaMxPz39ibrhxwbPcuweIc9c9dfC6uqEi7b8U9ObNm6VtCXws/Jvde2Pyq8+9O428Dd4H8ZoIIF2xx75krDwpVCp7/fAYxh2mY4iF+wi5uzx2zxpJ0L6Si3F1fooLEnLAGIreNr8+Gs0RaDv/+kokXjeyubmZ+IRVpbVarRTGkpS8+IS4HATRLzybfqH/HPRsbW2VvPuxroxpzhjOyfEnwtOnHqBIBxsck3cgF/6R0aLFCXnnusuXAWaweU21C17yAzxOGAGBh3L849flrGmekZsozuwRmUcQ4JYC97D1MSsJaHetViu97wJFx5bU3p+8/NAVTgRe9K0nZ1HXnHJibN0dfxQiuZQ3GD/66KNaWloqrSC63RTHMwpyqewO9/Fjrxd/v1Qc3xizl8rvrfFVLpKSdeoCG8DhCp5ycv992aevkkDAOUBxL4TPsQi2mWtutVGW591EnomeD1eIDqw9bBaXT7vb3evH/dPT0ymBnrKbzWZSCoxTFcF/nkBbZXzcqZQzFqKMlcrhRpdpRTHOr/GcD8+Z2NraSp4+32adcj3064nw9C/LbCOAlcqb68HHnmPlOVtV3usIPLxvIritMrxyoM+JbSpWV1eTxw9PCe3m+M7OTsq3w5vJHIpAxA1iiL7AGMI4cX3h/6m365SqPjkunWqA4oPtnRWpSvnnOpf/DmCihQYo8XBJo7G/wQ9rygkHIcgRqFgJ7I/ibu0owCeBE/+dE2oRsTsCzjEP9WOC4tLv9XpJkBPjxEXKMe7nOVg4niScs574brVa6na7B+qbI4RYROyHEZtnYY2tra1pfn7+yPc/1eTA7TAFHdsaX/DHOQ/JAV7csmSMHLhgqQEmKNc3WXOrEi9fDkw6mIneQNoXQ4xunUERaEWQzX2UA8jgHsiVoM+lODcR3JTjG3XlynRZ4PUqiv2kb5a3TwLRzLHNzc1KPo7K/U4FKw7ocuDE+djDaMhCAIKXR6ih1+uVNlmLngmuR6FGIFqv1w/kxzk/SOWVhhzzXMCcQZtrN/MoyuhYb9ri1/oc5XjM32s0GlpcXNTq6mp6+zVGAW1nzgDmWAnlKyw9lOjhqyh/fA5yjG/4O+oQ90jmdPNxefjUA5Tct3QwRJObPJGZIJgDS3Bvb3/3PRjF19xLY9c4Sr4oirTdNmvU4yoIXI85wOTMGt3eXsc46DlF51agPyvHdAgQ7iUPgVUj/jJE+mF9fT0pJpgfD0dul1JXiD4+eKBc2OfGhf45ihclKvadnR2tr6/r2rVrOn/+/IkCFE8cdXJhDiGAIKylyOOSSsI+zgv6DOXMWOTeoArQRFGw2yb85Il4jIcrBZ7n4CbHy9FtnDM63Or2/nMAEvM3vB4u8LHUffMu+gEhz4aLKAD3UrmiYW7QB54c7ssxPfGV+nQ6neTZy4HtOxmUTDKYcsaSg2EPDcKLgBSuJzTO6idXhu4FiSCHcuv1eso7KYp9zym5aFzr/Oa5h+5FjCt2qvRFDsBCbhRGwBY9J5TFPPR2YnRI+yFxQjz0DV47z43iHtdT7Xa7tEjCQRXPc3ldFEWS495e+pL/3uYqGf5EePlUAxSpOiHHlT/xNF8xI1XnoTg4kfbda2wHz0Di9nI38Wg0Sjt9knfisXjCJ7ydNq7UyQ0031HYOmNHMMJ9MSZbVX4OMFAuE5ZJTfuKoigtd/WYLteTF+FWE4ztE7QoCi0sLKQEOFeUkP926+MwL0q8bzgcam1tTQ8++GBlGOl2kAupqnOupPw6lCluawiBBCDOjTeeP66XVBpfruF5LixdCVNHX23hc4Z5kgMoPn6R71wROV9Hb4WTzx8Xsg4M/LkAal/yzjX+DKzWWGfOAWTop2azqVu3bh14O2yUMWxF4J6BKnIAc1Sevx2U8xTkrGRXVp4vhFxGbqAI2TE2Gh/1er3E086j0thIxMjyBE+XYVI5/wk5xhh7WMcVd2y7t7lKrkaPhJfpADqOpyt/aewNcpAwPz+vtbW1tBeXh93pr+hFd+9JLrRDP/KJHlkP9TA34qog58/Iq0+Eb081QHFm94FgMMjq3tzcTMzgL4SqUsruno7uZb/GrYC9vT31er20fh90y4oIUP3s7GzakMlBQ/RwOKKNvych+hxTOACJit/b58ddEWEpzs/Pa2pqKq04qNfrWlpa0tbWVkL0rqQkJTdjp9NJ7XAvCszOWzxZ8XQYPZFcFNo3GAy0srJyQPDcToK34jhGa4zv3JhGSw0wyEqS6JXwzH94mN0oEWgsU6Ru7MiJYpfGK7yoSw7YMM5VFigCjjKil8Hbz2/vs8jX0TMHeIp9S59Rf9+S3vsbheBzLxoK1HtmZkb9fj/1nyuYaD1jpLAxYm58c1TFCydFubHKWcje33FJuvMawMTHiOt95WRcneX87bwB0PBycgacJ1ozJ7w9VXIzF2aOwDrXT/E4PE27fF5HDwtzFeOk2+2q3++nuVOvH1x55oaEe1fhWw9nep94Dhn3xfC6AxT/+HNzdBz+PdUARSonaTm65k2g7OIIUIgDKB3MOXHmZ9C5D/efMy9KuN/vJ9c7g8w2za1WK6FcX+ESmdq/3VWes1iccoMe7+EamCzuq+HX+w6hTHjqTj+60CAcRL1dqPukwtKJS9Wmp6e1tLSka9euHRmguCU0SbnF/6PRSGtrayUgdbvJJ3IEy5GfUZh+LCcUsHR8J02IsFBV/gpCyN9jhFvckxCZXxynXJLyfAl3BAg5fnSwIY2BjdevyhXu/7mXY96H0apkqTZzFB7OAT/n5RzQHw6HKRGRkIQrmthm967Eula18U4kr6Pzb04uwSv8x7sF7/D2d2m8hxHXugcPwME5v95BdC63j7q5V31vby+VGVecxXmZk71xfHPAIDe2sSwHsf7f5z5z1kNUGBCEX+knwIR7I92T5+VtbW2lpdjooxhS5fju7v7bkGMdvL7R++1jmeOPw+hUAxTvIB+MoijSkjRQeUSo0apzBB07HUHt70Hx1Ty42ZggKOGYdb60tJSUtDOlC0GpHNLJueEis+cY2o9H17U/14/HuH10/buHBGXEvin0i7u8vWwEOQrIV4EwPufOndP09PSRdt7kGdRlEuXA32g0ShvPnQTlgGgk59Nc0pkLQBeODii435cho6QdUG5vbycwjbXL8uzoTcT96xtbOXhxnsu1md+R/70tcZ75s7nPQb4L5KgEcn2HzPBNrlx5cl8OQFKOx+hxuTcajbS8OAIMlKwnxuYEdxUwie06KaoCVVGGSeMduV0W1et1bW1tlbwmPn7cX6vVSvso+fg6MPLXWHCMkATGo6/GYdfsWm0/FwhA468foU05MOKy1dvqx3L9leN/qZwn6KDeeZ7n+Pt+yLEZDocpBcFXzUnlTdw45/3Js/FyU6a328GgG7WMpYfacvc9GTrVAAUBJR20LCWp3+9rMBio1Wolq8mZIoIDdzvHFStsye7LuphUoH8mAUtsuXZ3d1edTiclazkTxhwVbxf1iRMjWgVOnI+TJioSLw+K1qrvC+CuQfcy8e4QftN/0UJ3i8Unmk9CXooG6DmMUKZVAK6qf/g+yRwU6eBbqiNVKS0XjDm+98RO2sm4Rrc5PI2b2Me13W4nz5hbTNQdAAtY8URw588cQMwpgij83QsXydvk88H5PCcsud5DVLQHHifXIVdvjjMPRqNREu4AK39/jBOeRy8rjvdhQv1OACjSwZUZUZFLZWXpfENIx5MsPXznYIIPhg9les6bNH5pIHKXzdeQO41GI+1B1e/3NTU1lRQynm6vY5SNPkej7PW6InsjUPNy/HfkTS8j9q17jQFv3r9ra2vpPgeFXp9caNzDu5LS3lzRuEWme7K5G4iRD/iO4Ow4dKoBilteOQWOF8VDEJJK18V76EhCNgii6elpdTodbW5uJjQqjTOjWXMP4zMxGNTFxcVkTaAE4reDFsqOlkkuHJADJVL+Vd5xUkAIB3JL/D7qAiEc9vb2EhiDaJ8vH/TfxHuxyn1CdTodLSws6PHHHz8S+mbSxKSyHOWU4EkK+6j8cpSzzOI3v12gOMDN5UPEHTs9pg+PIswh+M5Xqkhj/o9x65zyiqBlEnihfjzTAVUUnNQNr1zk9SoPFXPT802iYM9Zh4A+Nx54LQQbifn4cN/MzEzKPZmkuKqOPxlB/1RSVDo5ZYqXzUN3jA/5an6O+11uQpxHObtydS81oaSdnZ1kDEoqbeyGl6Tdbqe8uLgiztsUwUrOaHDwEoGb66eqPuO/e1K8P+N9zAl/Gebi4mIKAQGgc2PjxrjXj+eyr0+32y31h3u4fKVnzsjwdkRAdlw61QCFzvCQhv/HAwITM2g5dOzlIYA8BIFyZUdSyiQnwzPB3XUG0kWIx7r7xwVkXOETAVVuwkQmzk2OnDCRxiEaFz6g8wgAuW8wGCSw5lYnKJu6FMX4zc+gfqm8BwZhsbm5uQMIfxLhlfG2nQaKoLhqIruydHASgSa/8YQ4v7gSx+WNS5tz8ArA0YU+ZXDOvWXwib+QL8e7tCU313KWJ9cwBz1vyZWHC3PAU8774X3EfQ5oRqPx3i/Oe8gN30ci9unU1FTahoC3gEeAgrcpCu1J/FHFM3cKeR9E8jdIuywBnPgYUlaU35z3ctg8LPaxjwuLEwBIXs9abf/9X51Op8TP0Sir6n//zp2jLVX3OeiIYCT2rXs9OeZlc5x2Li0taXV1VVtbW6UEYe5lbmKEAsy9f0ejUfKkEPriHPKFBR45AJIL+8T5eBw5/QUBUKSDeRS1Wi0xMkwdE3v8/lwHRuuLza/29vbSyiCSb33ZcRxUBzCRIaLAlvJvMq4CJpOEXQQluetzCtKzwt215y51PFK4ahEKRVGkHBIHTG6t+9s2ve14UTwP4LDxp/yj5KJwT5UAup1Ur9d11113qdPpJKFC/ZxcSUNxgkfg4v3pPO9Kwd8/Qv8xJv7CNa7HIkaJk/3vy5bdI+j157tKCVQpXgddDmJyliv1pL8814x6YQX69ZDnRMF/8Dwrc6KM4PmsbNvc3NTc3NyBMWG++I6xk6iKN+8Evo0UQSXyzo0MlKQbivRb3OLfQzYOBAm5+7hEwOfL7tl9ttlsanFxUbVaTYPBQPX6/opBPIRRefrYunyBJoGT6FnyPonX+fVxPnvbcqFI/sOzeI7wfhRFUdqo0b9dRjqQ8LkiKem4brdbWunj6QzkD0Ud42Pvx3NtPYxOPUBxRRo7izAEE8NditHdzG8vO3ovWBYXEwQBICzXjOAH70luRURO2OZAQ67d8X9khnhP1XHO+V4BWMwuDGIism/VTSgnN1ld6PhEc8XB5GDXR1/+eRgd1YuSE0QnRc1mU+fPn08hlccff1zSQYEfhUhOAEK1Wq0k0BiznDfLlwq7C52+iYmw0ji3JWf90Q5/GabX6zBejt4gaexWxuXPc+gTByFV89mf66vXOB49sAA3yo57vlAu5GGH7e1tjUajtDkjbfHnxrbnvEa5Ppp0/nZTTtF4n7vngvEiSds9H26IuPfLE6TdW+2GEs+CH5vNpprNZlLSlEvCN6G3drudNisD/EQvkMuwnMFwVHLjInqTqnhBKofxHaRHrxH195Wl9OXa2lppEzxABkaGv0gQAuy4F5JVPsh6z0fLGYVuAMY5/UTk7akGKFEo0eEeR2bpJB4Ot/AmTXyABwOAoBoMBpL2QQfZ+jDB1NRUWvJF9jn1iXuv+CR14EI7Ytv8k5tQk9oSBX9spwMEGN0tb0+WdeXhFiQrQOhbkHbMs/FJ6AmFlAXYywnvSUQ/P5F9UU6CEBYRCMe61ev10vteoAhu+Y4eRY5zzpO74fF4fxyzuJogAh6sZrxouf1PvF05i9LBFzznAIT78Nax0ZqD3ghOckrU+0c6uMIHoevHPLne642F656Zzc3NZLFzTafTKb20rYqq+sb/3wkUV9M4eZI8gBIj0Q0clx/RY+FL4t2bC8XwIc9hZ148Lsgx8gal/ddqVPVzro+9bpOMmhyv5XjGQQv/I8/ShjgP6NcIUuA/5Cf9s7a2Vsqvga9nZmY0Ozub5hOfKsOYt9azwSBy3uWttyHXJ0/UGDz1AMVBiVS2Mhm8wWCQsuyrhGau7CjUeS8EFjsvYdre3i7loLgF5tYkwg7hDzjxl+o5+IigpCpWmmMKd+vn0Kv3kQMHzwp3hnWh4olsfg1eDyaWW1CxvrSdZ9M2LPBJwiBHjIkDlNykmaTAbift7u7q1q1bmp2dVb/fPxDGkcrWlo/jJKuEccnFtuFJhDR86mMBmPbEbQ9lUibCrSiKkicm8qjXIfKu/3agHAU7/OFL++kb+JJvD416H8a8B783N6d8LxdXZs7L5Ka4qxvAzeo2SSl5Nra7ymCI/3N9dZK8SzKm8wjke9hgdLn3OgLR6CFkubuDIMbbgSLl1mq1ZHxKSrKDc7yLZmZmRnNzc8mTkDMWKTcHeHPEtS5nc2U6TQIyUe7TN5zHg+nLoZnr8ZUBU1NTWlxc1Pr6emlnXpflGInSOMTpxirXEz3AkHa5H8PH3s4c+Dsu755qgOIInE6L6Fwab6QWN5jJUWRWruN+abykjVelc0xSWrI2GAw0MzOj5eXlA0LQ3XLxTbGew+L1iP/jJ17rk2aSV8EZxoGJPyeCFiyU6HKkrwFf7Djr97uycoDJOZKOo/txUv2pOwrKQ03erqp2nwTVajVdv35dKysrpcTWWE9XkFKZP6M1Rb4EgJnncM7zThDUJHoDkuHNGOt2QNJoNFI4g2sou2r+cF0E3VznPBjBmoNYrsPiQ2D6Kh/3oPpz3TJF4VFmBLaEa5mbMcEe5RC9RUVRaG1tLYE5QHcOgPr4xP6J56uU6EmQ7wflOXVSPpdHyo8r19Tr9bQnCvtJueyWxvKVOU7IA15kd25/T9jOzk5603qz2VS3202hSCj2eQQJubHgvngsRy6H4zH/9jK9vRG850KcMTHcy2JFKbzvcwUepWz+R08XvweDQcmL4nMt139PBZ16gOK/PZ4MI9LJJE15/BmKCiB2Ml4SznlCYbfbTS54LNONjQ0NBoPS8ltX7sRF+UyypHJgpEr5uvJ3dO1WSqTc/U7RJQ6zunKI41Cr1dK7MAaDgWZnZ0sJbDA1/eGAEmFylHBNrG/OixLrFfv2pIjxiR6vOMZ+nVtpUYBI45wNYvZu3SDoCUlwnyt9+BEACu844HPgU6vVSrHvuLoix8MOSmi3dDDR1/upShnQB/CT19nv9bZWAUC/jrK8vbTL7/ecNoj+RzFOWgJ/FOXmfXPU+z7fFHk0jo8bM4xJXIHFNchmZKjnQFBm5Jm43NWvBfCQu1IU++/54h1s0SCKdfb2VbXX63KYLJkEJKsMD5/rfsyNcL8nAi6/Xtr34PFuONdJDvLpV/emIpc9R8t52WV2VTtz8/dp40GJMXKp3GkeWtna2jqww2NEr5EpIPcCYDVhgbGhFQKJd/Gw6RgMwNIshHp8S2r0UPD7KKAkJ9RdIbgiip9IVd4lF/b+jCg8KGM0Gmlubk57e3vq9/slAeHt9PZyb6vVSq7z45B7UarATezLk6IIQnIAhU/VmAE0okDPAVWW20fPSAzLIIQ8MTWG8iByQXKAgP/e3lwfeL1zwKYKsLhFSF3csoz3ertj//o5PiwdRmD7HPV5hRfGQRpeVOY5eWs846iUs7yr+vJ2kvdBbj7BW75/TZQbeLV9dWVRFMkjzXYOPtbwoocZ/D06PJP8lZ2dnfSCWF+FFetKvWL74vHcWET+nNRnsYyqusQ68Izo5XPA5R4n9240Go20L8z6+noy4hzcRRmMDPV9bHgmXloHOv7izVzdvf3H5d1TDVCqUHAEKNI+Ouz1egeSeiZZJz5hcvE5ysWFu7m5qdXVVRXF/kY3bBPuLvRarZb+u/XGs91llvvk2j0J3VcJuKj0XKBHr0jsW58Qjq59rwiUZrfb1erqqra3t9PGSD4pImDBg/JE9zZhAkaPUVQwd4KQ977MjXVOcTqhIHNCgL6Uxp4VPASe11Kr1UrCBi8jwp/nOAgBdKMQXLA5P3D9Yb95RjwXvSu5PozzGAtcKr/BmPr5fc6L9Iu7u/G6+l4SrpgllfZIqdXGoSHeW4KCyAEwb0dODuXmYe7+2005mRTljFvlMRTJwgWXxYDLer2eVm7BZw5S2OU08gjyYjAYaDAYJG8Ay4kPk6G59sVjUt7jx/kcWHE+83pX9avLRsp3mYrXw/UEdajX93PFHCx4/83Pz6d30xHi8Q0K43yhX6OOAFQCQLnXoxORL44rx1P9n9BddxBFcFKFCouiSIxb5UKLzFS1xFEar+rBQ9BqtdTv9xOg8e3DASMMpOdZ+NbXfo3X3ydj/I79MIn5J1EEKTnPVBQKfi7nWkfJLSwspF15fUM3ByWePOyx5OOsyqEdroRj/aVx/ktV2Ot2UE6wx//uYYvn6OMcQJHGbXR+R5nipXIw4W74WD8fJ1fmWGJcF3mzSjHw7fWF/3NWpF/nuQgO8ugP9/a45R77jPr5LrseEvM8qna7LWkMfmNIx1/x4GBuamr/fUa8J8XH+CjzMff7TgHXVfWgbRGg0K8AEwfNuft5DsYGipkx9lAlc5kt7AGKU1NTaV8l3zIh9r/zafQg50BFlbHj8oUxi4A99mPOuID/IrkXP4LE2B6MZuY8r1loNBrJkwLQcG8+vBt1i+da4ZFtNpspZ8i3qKgCgk+Ed089QJHKKJXfMKU0Zqher5fQI5RDdjBBbsdD9xzwzY6qzWYzTQjQKUKdez33xC2IeF3VhMkBkTjhHIBNssI4H8txgBG9Kj75qLdP+ipARR6Pb6EelRj/ASgxye6ozO1elKq+iX14uykCpkkT2AVZDtC4hRpBZFQAAEDAN9fEUAXH4GV410EjiiFadbkx5Xqvo89ZH6forYv1j0oj8jguaoRmTCJ0HqA9bolLSvvE8PZn5oC3g2d5qIG+4B73Tvl4xnHNkffRnUQ52eR1jHs9cZ6k+biM28eClZGSSquvIj+7N6FWq6VxIjzJOTxacUsDp0mGapyXsU3Ro+K8keNp/+3fVf1MmTkPG98uo72PmJ+uX5CrvEHaXxrqCzbiHPZcM7wo/nxf9ZPr3ycKrE81QHEh5hOC4+56pVPX19dLAt0Zx5kND4i7xaXy4DtT8rIpLFMP6fDtCaC12nj5XAzrUGYOfeYGOgda+B8nQLyGdsSJx70OTNyF79Y55XjfRKDS6XTSpIh70rhQx+rEPX5cfnBgdliC4kkKfrfgJwETKOf1Y3yc5+GlnJLw+eChmShwGb/d3d207LsoxkmJDmZcCLrnz5VX5AVvm7c9HvOx5LgDsehJjGAboIKiioKS/3HJMcbD1NT+qxfccxTrzH0kyFMPeLcqjyrXZv92AyHeEz2Yt5smKRt4UCq/0Rxw4t4TqfzCV66Fn/z1JC6n4EH6Biseue3PRbF6+MHlk/OWy//oyTmsHyIA8ftyHpsqw9GfH/uVD7wRQ2cuI6KXx+vQbrdVr9dTXiZ9XRTjXc/9Xg8D8bwcCPQ2R0D3RGXtqQcoOWTLOXfZ8r2xsVFyOXIvRDm+62FEh1zDFvp4ZWq1/dUrvpkUCgNLNCY2OSNwLj7vKCAl9ou3a5IyPgztxjo6A0aQEsukTZISKInJVLmcG1yS09PTafOloxLPxqMVlZq3d1Iffr4p8mtVHQ8bw6iwPRzjwqRWqx2IJ/uKCZ8rCJv4tlTKI/wRN9SD33NeEyg3Bvz3JaqxfX59bDcUFV1RFKWVCXiNXDnlhDpluZGD4ozzFdCO4TE9Pa1+v588KiiAw5RdbPOdwqc5yoFQaRwKiDIZDzO8FpOoo2HErtzu2ZPKnlEAZ/SSet14W3F8TQEU+zl3PgJTnuFzJoZxcuOXAxw+FymPZdOuZyJf5o77yhv43HndPZ+1Wq20H4xvX8817Xa7FLbnPtrLGBA68mdEOeJ9d1xePvUARaoO03jOCMf8ZVVVSBl06MvZIpMS2qEMt9Q6nc6Bl1H5Cpbogs4BjyoQkhNcOWHN8Yie4/W5SSqNlQX19To581FWDDN4+ZTX6XRKr6JHoEVGpm9iSCHXB5OOIdCYQPHakxb8UWj4cbeWDqtnDrwirOhbgCK8zXuTuDZaWwBHBB7gxvnYFTX19nGLHo7DQHWVVZnjq3ivt4V+dZe3t8k9ozFHxX+7ZwagE8eHPnX3+Wg0SnskESo6Cq/l5u9RrrvdlJNX0YhhTFip4+Ph+QoRELpc9iRsrHS81Yyfl8U41Wo1dToddbvdEr/m6unzK2eIVRkOUWZF49gBRiQ/7vwXw1feR5H3Y72iXPa568fhVTyEnpgMOAR8tNvtUh/5/Hc54jLGc7pyOu24dKoBilSdm0Bn567PMY6XwaD6Rk4Q6NG3rnaBXBT7bkWyzeNy56hEHDlTj8PAiQvPeDxen+sft1hy10ZlwbeHcVywOLDzdrqA5/qYG4KCc+XCKqcqgHJUC5NNyHJeIG/LSZDXg2/ajeJkHFwZVpVFH/oxB4cOMskHouwc70XedE+Xgw9PhuRZfn2kKn50IcuxaETk+JZ6x37lt/OeAxW3HHPzQBoDSAR21fwrin1varfbVa227zVZXFzU448/npJovZ6TBHU0HnJ0pwEU6uPvt5GUFiXAG84rLmdiThPj7Zu0wb+eE8RzfDdU5yVXnl6+lM9Fq+rXnCfexyYauhzz3xFAODj2ez1fir5zkOVlVLWHtkQvF4ZxLlRPWVxTFEXykDhw9PwUH0c3AA7jmePQnfPu7idAuYkSkWXVJK8igEkUmq5s2ZochD8zM5NeVkVmM/F7Z8iYrOfKpwohe1vib6cqV/okJFt13AGGKz8/Fp/l7vA4ATzO7IKJentuBErPLfGjUq5fmGQ5IXTSgj72KzziFn5MEozkgsl5yQWpgw2UyNbWVmmcKMvDjLzOwUOVkkrL5qOQjULahXc8n/t/FPK2VXnuoNzc8ni7857XyRUgACWuCoNGo5GGw2Hymu7t7enChQtpy/Y4ZyLQOm4/nDTf5mQQcgKZ5lvWu5Hg/AbvxDwUDEASat3q9w3z4Ff4lEUJGDcsk/c65+SrU+SryBeR16r6x8vif+RFP+7Pd0DmZcXVT3Hu+jjEFaHws28SSt0oK15bq9UOJMM6iPE6VBmNOf1zHDoWQHnzm9+sr/zKr9Tc3JwuXLig17zmNfqDP/iD0jVbW1t6/etfr3Pnzml2dlbf8i3fkt7UCj344IP6hm/4BnU6HV24cEF/42/8jcpkxqOSD3acCE7uHXFB4cznHe+TqSjKLkuYYXZ2VgsLC2q1WqWXL0njfRlgLPJWGHhXKDFsQrtygjd3PgpCZ7ScYsgplKprnHGd+eM1jvRdADEp+O/PcyACQMm9Ffcwylnn7srv9/taXV3VzZs3tbKyciCB8XbybrTGcoo88sOk8fexi+EhvrGM3PJxkMQYzczMqN1uJ8u/CkSTf8XeKcybGBKcBE6ct2hr9LBNAh4RDHvfQs5DDlLIFWNjQJcbvk+Rtys3Fu4laLVa6nQ6mpubS15WnxNx7JwfqsZ4Z2dHW1tb6vf76vf72traOnDN7eTdnLLxt17XavtvwSUsE0Nczu9S2bPCHimesBxXh0njZFxXtNJBD14OfHo9nKJXZRKo8WdWefZinx3lWurgxmwEOiwR9pyeSSEzdnjmPsYL+crKqeitpWw3ZiJw85wTb2sOwEY5chQ6FkD51V/9Vb3+9a/Xb/7mb+qXf/mXtbOzo1e+8pXpRViS9P3f//36hV/4Bb3nPe/Rr/7qr+rRRx/VN3/zN6fze3t7+oZv+AZtb2/rN37jN/TzP//z+rmf+zn98A//8HGqkugwBR4ZIb4BNRLnolt9b28vgRMmDsJ8dnY2vWLdk7oQ3B4CcmHmk61KGVV9x2OTfh/nuiqkOwmk+PmYa+NhhLiUmhUsHmagLLeIcsye++3HvB2EM1qtlubn57W4uChJWl1dLd13O3k38qBbbk4OmifRpHGTxt4ahA3tQYghqAhPwrO+14mD+9FoVFpl4Ss3XLhGnpgEVnLtjHyfc2P7NVGJeSiKOsKLeKhcaHNdTA7e3d2tBBz049bWlpaWlvTFX/zFWltbS3OgamyOSqPRqLS6LUe3k3dzbfEcJYCrlE8Gd8As7YMrfxXJ9PR0WhXluSv0M8rVZQRlO8+5UoznqxQl5yK/xnZHsBxBNtdM4lt+Ry9LvD4HnJiHHgZzQ9hzT6L3Fbk8MzOTeApjhDo4f2PcudGAXM/JpSqwneuLw+hYOSjvf//7S/9/7ud+ThcuXNDHP/5x/ek//ae1tramf/Ev/oXe/e5366u/+qslST/7sz+r5z//+frN3/xN/ck/+Sf1gQ98QP/tv/03/cqv/IouXryoL/uyL9Pf+3t/T3/zb/5N/ciP/EjJLXcY5RSsu61yFrVTdKNJ5WVuzhh7e/sbsrkgnZ6eTi+gcpcm98IsUdHmJogPapU7/zAhFydBlcUWz0WGitZ4DjS5oPaQhFQOXaDI3N3Idb4fgltZCBh3wR+HqWObi6JI4GQwGKher2thYUHXrl1L191u3s31P33oQhxBEO+JbcwJT/eisAW4jyWK13c7hleLoiiF2gB5nsfhSXbcL6mkVHJevZzQzwk1AP0kYM29Pm/9vHtXYl4V56UxL8J3HCO8Q1/t7u4mXvU+bDQa6vV6evazn60HH3xQDz30UFrmPgn4R57IXRNBCc+CbjfvMjbel/BMvV5PmzJGj5MruNwbdj0XBfKt8nkO/U8oiD1O4BdpnA+TIx87fx7Hfb5VKdsq2eptjNf6nKYtruDdSxH1GX3r9US/5PSXG4JuPLj+IlRD+b5ikvs9rDYcDjU7O3vAmKryClUZIccB608qB2VtbU2StLy8LEn6+Mc/rp2dHb3iFa9I13zJl3yJnvWsZ+mjH/2oJOmjH/2o/tgf+2O6ePFiuuZVr3qV1tfX9Xu/93vZ5wyHQ62vr5c+UE7gRUXtFBkpInwvE2LwPGQxMzOjTqeT3kMQLVOsMk8co9zoecg92+twnDyMHOUEfPzkXPhVlkMMS8XYJUrNE4TpG18OR1+hQL1sBNFhKyCOAlwAUTs7O1pYWCgpJuh2864Lshy/uUCiDYe5kHPjhSBCubp15F4sB5fc42NVq9VSLg/1i6DGxxsLLuf6zQGqKg9L5FG3jHOU80JxXCp7K70cnjccDtXv9zUcDjU1NaVut6v5+XnNzs6mBG/KAKRNT09raWlJz3nOczQ9Pa3V1dWUHBvHedL45X5XtdHpdvNuVOQOTiSl3WJzwHF3d1e9Xq+0ssf5k5AEAMaNmVptvFTew4vwIqFzL9e9t1FeHdWzd5jszI1jTq/4vI5hTMg97NyTe06U1/G39yny1L3UDsLcwPDtCdxLigz1ZfNVnqJJwPC49IQ132g00vd93/fppS99qV74whdKkq5evaqZmZnkQocuXryoq1evpmt8knCeczl685vfrIWFhfS5++67JZUtxVi3Kpe4XxstFjrWBS5CPK4p95UAHjNl8tTr9ZQ86xPY1+TnmCzHbPF3vD53rIoZIiDJlUFf5BjwKEDHwQrfOcXhyi+3UgQFEPNQnog3pVbbD2/UajUtLCxoY2OjtMrrdvMudXIezE1uF/SHtTs3/q4kXDBj+bsC8bAG+0cwX3wPHyw3XMQez+Z8VagGctDu1xwGxmPbnI+9rbm4vN/vvBZBBOHczc1N9Xo9bW1tpW3Tm81m8sadO3dOFy9e1OXLlzU7O6u1tTX91//6X7W0tJRyQbzcnNfMfx9FgGPJ+rUnIXd97AANMzMz2t3dPfBKEa4bjUalHD5eGEg4iHIAHf4eNJ7LfeThMIdddrdarZL3NcojynT+OUweVlGVHMwBl8i3uXld5UWFHOTEtnA+Jskyv31ncwcyhM5iGJ6Va1znXkSe5XrP6xB5On4flZ4wQHn961+vT33qU/qX//JfPtEijkxvetObtLa2lj4PPfSQpLFrEaoaTKcoAHPek+gVwPL07HA8I57Tsr29nRAm2947IJF0AMn6BM4BkhzD51B/1bUOhqK1mAMXh1F05+X6yy3deG9cIeWuSIQN4xpXjxwHmORAlSRtbGzo5s2bGo1GyfP3+aRJvBspKkr3ZhzmPfHfMZQWFTY86KseABqAaMbFQzX+8RwVXu7I/VXAO7qo/fhhPBw/cd5AOZc5fZurj/dR9Fq5MtzY2NDq6qpu3bqlra0tDYfDxEuPPvqoHnroIW1sbGgwGGhjY0Nf+7VfmxT6YQDzOEKbUFtuC4Wnmg7jXedTeKLf7yeDznOWNjc3NRgM0nhETweylGW1HPel4LVaTcPhsPSiQX82Hj54M/KR9797ElG0VaEKKIIHvzaOrx/P1SUHYqqUfE5nRZARy3BeZgx8BVQMucewEv3Lt+8CDIDk2bkQdDQK/Ps49IT2QXnDG96gf//v/71+7dd+Tc985jPT8UuXLml7e1urq6slNP/444/r0qVL6Zrf+q3fKpVHtjnXRGL5biTvGDoWJqoS6nGwc4wCqgTh40JEIOdCF8PhMIGTVqulbrdb2q0vJ6AnAYJJgprfh5EL8hyij/+Pmvjk/c2xGLf12Kfnmni2uNejViu/VNFX/kxayXNYP0Rhur6+rp2dHb3gBS/Q3t5eifduJ+9evHhRo9EouyJDOij4Yk5VTuFCcdkm3j8EkoMOVrBI5TAc5cXlxYytv7I9rpiIgHUSiI7f0fUc+SSXNxYtOD/GPVUgl/7IeX7wkHq/4gFAeW5vb2t7ezttyDY1NaWrV6+qVqvp+vXr2Wc6TeLfeI4cN/ZYgm4373pfMkZ4P0im9NyeuDABEOEK33nSc5ggQr2uHNlxNYbbCPV4uDHKp8hH3qaqMakCO7l5CcGHUQ7F50SdNQmEOzCUDs6J6MGI4Mu9qQ7U+eAhYV7Hpd14wngFBu2MG6DG/n0iQOVYHpSiKPSGN7xB/+bf/Bt96EMf0nOe85zS+S//8i/X9PS0PvjBD6Zjf/AHf6AHH3xQ9913nyTpvvvu0yc/+clSguIv//Iva35+Xi94wQuOU50DDY1Lh3OCIQ401/og+3HfxteFJeV7vLTdbuv8+fNaXl5Oq3ogv9//50BIrK+DnBzYiNfGsiKYqOqHqGScIhg8Sh1zbkNJJWUbAYpb6FUhnidCCM/t7W0tLi5qfX29JHxvN+82Gg1duHBB58+fPxDq8Do74D4KucCRlBQssWhCMe6h8nFjdYTv7YPLnFU+Pk6TYvvRI+T1ywncCOZzQCcX0qGvIPgneuB4VqSq8slbQshzb3whoIN73iL7W7/1W8njcBzPX46KokjghJdtejtuN+96vXyOspyVuvX7/RQiiztIc79b72wgiEyVlBTkYDBQv98vGT6cY17zDM9Pie9U89/wUOSpo1AObPs5vqMnoUp2+sfbRz85vzsomJqaSmkEUZ+4xzTOK/rJASTkoV7Ph8Erxso3l00YL7GuubYeh47lQXn961+vd7/73fq3//bfam5uLsUuFxYW1G63tbCwoO/6ru/SG9/4Ri0vL2t+fl5/9a/+Vd133336k3/yT0qSXvnKV+oFL3iBvv3bv10//uM/rqtXr+qHfuiH9PrXvz6L1o9C9Xq9tLNrlbV/GIqLyM8tT894pjwQ/PT0tDqdjur1utrtdnoZkz/XhS3PimCI5x4lhFM1KWJ7Dpt0Xkc/5hPFy4rPyzGhj4tbWe5GjLvDxrADgui4K3mqLCBeVkaS7HA41GOPPZbO327evXr1qqam9l9GNzU1pVu3bh0QQA5Q4oSP4+Z84f3lW63T/+ywyVbWvsmgv3pdOrjkMFpgHqKLW9y7YPTxyXng/DvnMvY2RivYjQsHxAja6AKXyqsTuNZfKMhvFJqDLvo0Wsckxvrzc+1wquJX7x82LWM1TwSrJyF3qTf9ICnl4hVFkZYNexK29xe8yFjimXLZ02w2k5fRx00ah4QdYABGSJiFt93T5/J4Ur9HnZHTKTnZ7eXwHZ9TJZepVzyfy6XyLQImzSmfq1HmUqYnFLu3yXPUHIAQYXAviuvGXF9M0ruT6FgA5Z3vfKck6WUve1np+M/+7M/qda97nSTprW99q+r1ur7lW75Fw+FQr3rVq/S//+//e7q20Wjo3//7f6/v/d7v1X333adut6vXvva1+tEf/dFjVdwpurByAwZVhVWioGDwG41GiRn8et9MDEUalxS7wPRBckY8zLMSrUPKcMoxhLusc5MkN0FyiN/7NirGGBKqUiquzDy27NYCytU9KICWowIUr4e3GbclK89ydDt5dzQaaXV1VfV6XXfddZcWFhb06KOPpnFBWERlDFVNdBe+3A8/ohTwgrBKBVDiHhVyAeK93rfuLYn/J3m+cuPogjUK96oQja848Jh67JscUKCu/uqFer2eEjY95DAcDlMZPi4+B2q1/ZADu0ejQP19XUcZvxzBu1XhQOn2y136CwWF92M0GiWvie/TQUjHw7vSODTAcV/aTqgG/vewL9687e3tUqjDPQT0HUnFDrYd2Ej58cgBjhxFUON9FMuvynWJPOI6gD6MW1hE2ZBbWs3YMB/j6jp+M1Y8jyXyLnc4hmxg9+TY1mjMxH46Dh0LoByl8FarpZ/6qZ/ST/3UT1Vec8899+h973vfcR5dSSjIXAdVCTWO5RiVY+x3ANM7kCCcg9eECcN5BypVm41RP+oWJ0sOdfrxKgQe2xsnWc4Kj2VECyMqj8h4VSDFgRhKxiee76YbwwOAFVaIxGccleALPBWunEejUXLDS7eXd7H+Njc3JUl33XWXOp1OiZfdgqnKC4p8FcMOzi+eFNtsNksbXUVrzIEw1mdUyH7c/+fCelX8nzsexzon+CCvf1X/5OSW86J792JiJtf4e50gD29xja9m8i3eJ1GVFwXqdrvZuvt2C7db7krlHaABEiSx8s6cer2ewgHOHyxZpe9Ho1Hix9FolBJqAc0uUyMIAYRLKt3DOTzdbuxwjv7MUY4/cwCAa3M6yMuSxoZvBAq5ZPiY6+jPit4Qng/gi94fQEUcL68DgMTb7AAG4wYgCvibn5+vNOL5rprrh9GpfllgzmsA5QSDC6OcVeMCza1EBye1Wk2zs7PqdDqliROFtluf8eN1j8fcve0CsureSDlwUmWxeplVQCVnBfA7B3a8/3LloSiZkAh+SSWrm75wa/wo23LHPon9xvg4oDwJunjxonq9XgIpnU5Hd911l/7wD/8w9QkJ2rn+hCJvOb+4hUXCNjFrPi6wq+ZTLFc6+B4h/x35PldmbIN/5+alz0nGMD6rqp+iEsk9G77D2OA18hBubX9W9IwCbmZnZxMQdHkTn5nrhyjUj2tx3i6q1Wop3walyCpGwmIAE/eiQHhYWI2EN4xrm81m2tGY50VAjGeA+1n94xsGQnh4XElT9yqQwTGpGohEfREpPiPXj74owz1MubxI/ucMc+czNwil8kaEtMcNHwci3M8W+N6HzA/GGBkVN1T0vvH/xwUppxqgOEXXay7eJpUnCRQZzge32WymnSIR6ig3Txjk3hwwgXJAI3edW7NOk4S7/57kJYkTaxKwmDTxfBK54nABHi142oViIQnRt2WOCZgOApkMx2VyaV+AkSd17tw5dbtd9Xq9A++Sul1Uq9V07ty59OLJjY0NdbtdLS4u6urVq6l/JB0QRNLBMeYcgMMFHX3Ied9cjWtzMeQqABLDkFW/Yxle30hVQhwh6jkLtCfndcx5WXxe+DWxHu4NbbVa2tnZSR6uWq2WvAIkC3rYkjZubW2p2+2W+HaScspZnEehkwYuvmmfNH5fkCtaQgYor9FolKxv5rsvK67VammvGQ/rRt6OIBme8DAc3+4Bl5R2nvV7Ix/kZFnkIa5zXqqSz9ErGQEr5XrSaQQguefk6u/lej+7pyomsfsW+YybG4/enxDl+VLxmFcU2/9E6NQDlCq3GgIkx3w5BoG8o1GS7BGBwJF0AIjEMEUkF97892MwkjOoCz8vJwd0qiy03ISadH3unvgdLdpYjtfPJ0lsG9f40mMAinuhsEaPQ/QtryOYn59Xt9tVrVbTrVu3dP36dQ0Gg2OV+VTSysqK7rnnHp07d07Xr19PAv78+fO6evVqKcwxiV8jsHUPHH2MQHLwFwFDbp5EsBFDGj6OubpEfjhK/eER2hAFc877leNBaBKgzfUp/dRqtUpePmm8ZNbj8D7X4eVGo5H2QMJbmKtbVX/4HJsEqE6KiqJI7WKO93q9EhCJH7wj7hFhrOkv32ANjwptj6tUnM/hC+kg32Fc8jwAEs/xMuL9nPPvSb+dok7y75zOOsxrGMv0ORUNROngni18ABX+HL/W968piiIlwro3kP70VVMu273+OToOWDnVACWnNKXyC8uiGz+GeHIDK5Wz1KMr3OPLLqxjop5/clZmFQjx58f658DHYQNexeC566IymSQUvT9cCOcmkCtMhJgLoZ2dnbQCAgUEMMnloUTvj9fF7+FZKysrunXrVik/4CSt0J2dHa2urmp2djYlFW5ubqYt1V1Z5zwose2uwCUdAILudYByeUGRZyPI4dlVICcq1whijqJsXWhGfoEPcoAq/o/CuepZsQy8pQjsRqOh9fX1tGy13W6XLFGpnJeztbWlhYWF5K1ihWGVtV71u8r4mgT4bgd5bk29Xtfm5mZasSMpgZGoJPEKugU/NTWlpaWlLHiOXjKur+IxaexVAYQAGrlfGi+553pvS5SVObnsFOWvG2Pxuhw5cIjl0b7omXDewAsFxfCQAwiXDZQB4Gb83KvNtcPhUAsLC2o0yivdkKHD4TDNl2ic54yM4/DuqQYoVYrWQz2e6R/RYk6I+gus6vX6gTdmxusdnEQL05ncFagL/cMEtw+6M2aVdZUDIVGJ5/owMpGDOz93mKCMQtYVDGXGeDMTg/0l2u12UqjxzaXsjwABNvgwhngkuMZzAnJ1vd1Ur9fV6/VUr9e1uLioa9euaX19XcvLy+nFbQ64+e/jE/nLBfVoNCq5xB1QuwCtAiY5kDKJt3PnqoCBt8H/e99E44K56HMhV+5RKcqOOF8AKeQ0IIg9cZl6xb4aDAalbfFZGZSbm4f1zRNp2+ebpqenUz7C3t6eer1e8jQ5z9JHbgx4Lk+73dbi4mJ6czHGRZQxERh7vgNyVCrPD4wZ5y1PAKUMynVZ7N9VoDIHLHO8H3ksJ0t9/y4vJ+qtyHMcz80nN/5ynkn6w3Ui3hNPgpX284E2Nze1sLBQ6kfky/b2dlqqHvuuao4flU41QIGiIHTrKyI636gndp4fRyBGVF3lIYGidReFuR+LyiZnzdG+3POqJor3SU7QHUUARiVWRbFt/PYJ6gJCGofHSERk8hEfZj8OByjk//Ceo7hCilUBPCP2M23yupykB4X+vXXrlq5cuaJ2u60bN24k5ZgLc0iTx8LBB/c4eHYvX+SjHBDh+hz44L6qT44m8a3Pg1xZDkAn5eTkynWemDTmXgYeKH+X1nA41MrKSgLUbnV7v9H/CwsLGgwGWl1dPdJcyhkVh9X1JIj+mJqaSt4/7xOMDwcWfq7RaGhubk5zc3OljQNzstZDSR5i8Gui/IWqvOgRSHAMikYg53PKNnpPquShXxO/c7km/kwHIk45HRbnEHPGjUEvU1Ja0u2GvdeJ4/1+v7SsGC9VjEjE+j8ZOvUAJQ5objfZiFZ98yXukw6+cTfHtP6swwBLTtjmrvcyI1UJ85x3I0dVSqGqL3OAqopcaDhKz/Ub13mc0rdYZ1fDoig0PT2tdrutXq+Xlt4StnnwwQeTl4sdI2M9q+pNOW5xnRRRh+3tbW1tbanT6RzovyhIcuRtcO8JwCKCkwjYnSdzIUtXAlUhnipQUXXMnx3rkuPBWq1WCntN4svcOQ8Nxn7LKRovg/6anp7W7OxscoW7Sz7WFS/KXXfdpZWVlVL5RxXiuXrdSURb2cXV83Pw3rlcoD0zMzNaWFhIHibG1XkKUOErq7wcV8YuS6OsrwIiEagzx3KhwycCLHP9VHVfLt3Az8fPpLK8Lsx9jvObMJsbaL4M3D3dyGvCcmzORgK5RxuiIVX1+7j0BQFQct4Tz0ORyiCEcEJcueAWfg71ugCK3zmQkrsm3usUhXhUArHdPsGcMaMXwevOvYeBj1gv74NoYTgAyQGo3Bh5H+ExYFza7baWl5dVFIW63W5698j169fTNsuxT6pAVU7pSQfH+HaT90+/39fi4mJaIRb7C5okBPmO1qKD7Wih5oBEFU87r+VARw505wBKrHPuf3xGLjQHn+eU/VGeFz1NESi4AgTwNZtNzc3NpZVXse3+n1cqEK7zdsX6+Lged26eBLmxBzghP4cdXPGOujKcmZnR3NxcSoZ1EOLAOS5AkMq87fLH8yr8fs8zcYBa5UGEnKcc+EBHHZtJ89efFY1ob1cEwQ4qOO/84udjXzmPASABk4TE3cMVlw17CG8wGKRQHDlZ3mbXSU97D4pTRG25l07hQXGXo6NoT3yjHLdI44SJHygn9HOC3yl3LJY1CTj59TlLLfc7UvTM5LxQPnFdiOdyBxiHSNFK4jchHNba8xbZ9fX1tG+C709xFMqNgbfxJMgFDpP8woULae8H955MskaiEMiBsMNACf8nAW6elRPuuU98Xqxb5Ce/3r1ueM7oL6m8jPQoCj22ITc//Lg/369jqbo0tjqjwnMeK4oi5Vcch9di39xpXhSUOIDE8xZqtVpScOSoAFjm5uYSCPeVNXEpq3u2q3jD+dUVeS4k6eMhHeQBZFQExtHIygEWnus0CWi6p5m+jDkoVWU7qI7ywduXy0vxPvQQHVs3UA/yi3yu+XNHo5H6/b7m5+ezeS65elcZDUehUw1QIhPErcGj8K46F9Epx+IEicerzueAi7sVo1ckJzCj1TtpkKuAip+bdE+8n08u7hknux93wQ5Fb4kLIL8PdyLxbD9Hvkqr1VKr1SptH/5EmL5e33+L78LCgh544IFj3/9UUq023jzNN28j/2ZSeMcpJ0A9vOPjFUM1TtH97d6BXEhnUrgyB3D8d5Wg92+WOMITzj+eOHgUkMJ3BNx+PudF8fZMTU2p0+kkPvVcqJjnMxqN0m7Tk+qVA0uHteMkiT53Y88VZb0+XlmCEsNzAl9HPouGYQ6cRPkYr6UcngvlgImvZKGMSW2NY1jlIanio0l9mZPFftzr6yDaz8d8m5h3VdVOyp2ZmSmFL+PzkCFs3zEYDLS0tJTK8OfGvVGO0g9VdHJbaT4FlAMfceAiI+GqovPifTn0nBO+cYLw7fdHcFKVKZ4T5rlzTpMQaZXiiP0T+1AqrzKKZcSwSJUQ8fb79vIkvvJcf2Eb/ezu2VarVVrN02w20w6+h1GsJ8+cnp7WPffco/vuu+/A27hvJ7kyk/b7neWruc0EczSJV+L4SQfj8D7O8bgDkyrgnuO/HM9FqgInzkvUgf1v3DqPYDg3N+LvKkBVNf9i/dyq91dbODDxD14BwHWsi/dFrn8O6+eT9qrUarUU2vF3xEjll8zV6/ur1Mg5Iek4grqq+cp/juUMHPo7rlSLfJyTVdHLWKXIc7rFv+O9VfOH/zFc40ZErTZeTRrf++RlRrDiQCXueuxAMmeU+GsGHFQwByNgYkVb7NOcHs71wVHpVHtQpMku71ynxKVVXDcJMFSBk0nAIQdSYnm5SSnpwMTKPTd3X6RJ57zdVd6U3LMi4zljerlVQLGKcRE8WMu1Wq20mgcPCoIubnuf86Z4X8/MzOjuu+/W8573PM3MzOhzn/tc6W3Gt5uwsGu1csZ8vV7X8vKy1tfXD7Wkc14RzkUedKWOYD5MWedAeO5/1XzJKYdY99xzOIb3jLwG6hxDhtFCjEbFpLrHcrwO8b+HfHKgxD+Epba2tjQ3NzfxJZWH1Sun6A6b259P4tk5hefLdxuNhrrdrrrdbtqTJBptrsyx1KvGMCcj4zkfu5x3rWpuxPP+HEkHlLZTTvZwnG83eD3fzu/1kAnPrJIBfp/LEX8u56Ihjuxxb4fve0L4sl4fv9eHsJ0DqX6/X/KiMFcBSdE79ETo1AOU3OTNITjIw0CRsaqssSo0XqUQq1B8FUCJ9fBJ69fF58T7XajmPEe0sarvXEDkyoh9G/vcJ4z3qYMQR/kQkyNapCwx9vfHzM7Oqtvtqt/vHyqwa7X9rbMvX76sZzzjGRqNRvrDP/xD9fv9E9+ojTGen59Xq9VKyb+EDjxpjev928l5OQIQF/jxGufLKhDNM6tASO56Px7LdF6Y1C7uhVewuqPrOYbA3HXv7XJCQHv/+TPpq1i2n4vP8PaSULu7u6vBYKD5+flSu6rG8TB6Mvc+lYQyRGH5ag6Mi6LYX2ZNWBavYJSJfDvQyXmQXCbFezkOuSyKIDPyJef8muhR5JmxXjnD1p8fdYzLTffkO586wHPviYOWWJZfG8m9KVzDEnAHEtSHcfJ6OFgBeBdFoa2trXQOgBLLjKG049KpByhRiHunVgGU3DmEupd7FEHN8SikcmAllgVVWb85AOOTMzf5cv3DNVWgLXd9rGM8ngN3fl28PrdkLddGFJGkBEzwrLRarbQkl7X7TvQLy5QXFhY0NzennZ0d/f7v/37aZwWBeZIARSonscKTm5ub2tjYSJt7HYViX08CBoeBlJzAzfF9BLOTnl11zSSAyfggAH1Jek4p5YRgtKKr5p/fm1Mysc6e4BhXSQFQWq2W1tbWtLu7q06nc2RQcdLg4yjkyloa9xX9wgsTW61WaSmxg2XpYOjG+YbzEYTkeG6SjHOAEXnBx82vrxqDKv6JbfGyoleD+rkRgtyLuiznqfHy4rz2+2kzuxij2zw/xPvLn0tyM4RXhTmJDC+KIu0y60Al5p/k6nZUOvUARTpo1TOQzoSONHMu4ghQpGp3YNVnkhWaK5P/8XyclFXCtUr4R+at1WolRBwFfE5Ae9/4NS5QooWQA04uVDgPM/v7krx+xOzr9XoSckzqTqejxcVFra+va21tLSkEf1dSs9lUvV7XxsaGrl+/nhSJu5ndrXlSVBTjd5qw1O/+++/XxsbGAYEaAWEsh+vg45ywn8S3UdFCkR+j9VoFdnIAZRLPO3kSLHVhdUEEwrn7Y79UKcQYWovKJM6TaOFHLw28WKvt50+trKyk8YhLXydRBFu5/3cC+fjQD1jnrNjBwMitjowAkHKq+Mefk5OvgCQfFz/n93vuVw5wcc5l3FEVa47P4xwmxOPPiXPNgYuvPPW2Ut8IXiQdCLf4qxfcSHcwEXfpjWE8l9X1ej2tuvTne52iYXRc+oIAKBCdlPOq8D/ueOgfZ0inqgkUz+XuqQIX/ruq7Hh91TOqrvOJlbNYcxOI+/w7/s49J9Yrh54Zn9yKKernG3JJ0uLiour1enq/yfLyspaXlzU1NaU/+IM/yLoU8UDQbvdU1Gq1FFeNeSy3k2q1/WWahKqwTshVYF8JKAcmq2gSQPHfrlxzvBev9XsOu4bjuH7jPOR87rekpOzY78H3LYrPjhT59jBl6GX5NTkezdU7htMAzFiao9EoKYajUq4/qup2u4k+hT994zpJWlpaKr2eQhrzggNEjvv8r1Jkk2RjPBeBiYe3I8Cpko8574U/i99R1+RkYfz2BRMADwcjzodeNwdgOcXv4AvATUiGD3Jmd3dXW1tbGg6HCbC48e4eS/d4e9I6c5Q6eI6K1zOGSo9Dpx6g5CaqD2BkNIRd7DwGOYYfqoRvtLImXV8FauJkq1IQ8Zp4PNcPOUWQuzcCiKpnx7Jz57yvcwlqOQHroR+sL8YFhL65uanBYKCtrS31ej3dvHlTq6ur2tnZ0fb2dspVGY1G2tzcLAlC6pVzMUfeuJ3kAsYz7OmDXMJb7n+OcgmwMcw46Th0VB7OCf0cH/vYx3mUu5aEafe6uSLBC5ebky7goxLx50RPVaxDVA5RPqBAvP3uLYAvD3sbd1RMsR2xTVVz83YQysiTl0ej/ZfKtdttdbtdNZvNAzyWm3eTvG45kO11gLw/IvCJVDV/Yhl+f8ypc37LyfEoS3N8RRh6OByWNrTLzUVX+F4+fc/u2O4ZgnIvbZSUQm/tdlutVkvr6+vptQXwqyfLxn6ibg6wHKC4fM/plqPSqQYoUdBFK90T6iBPTuI+Nqjhf6TDhMFhgCReE/8j5KomXW6CxmTA+Jx4X867dFgb4yTLKQAEd3y+C/JJYM4BSa02fj06FPda4FnNZlPz8/Np3xB298z1Mb8RlP4695Mi+M77zpOFocN4LwpWD9f4+cO8HvFZVUDkKEokV17k50nt8rqyMsDfJu7C2ef9pDKrvCixrVX9k7P+vb7eF75MfHp6WltbW4eOaW5ux/6NlvNJEfOUejYaDW1ubqrRaKQdkXPLwR2g5DwSTlHZ+nVVMi93LHog/Hzu/sij3J+7Lx7LybrcPZTpIWdfTRMNLJcR/k6qKuPC+YQ5Qh94mKherydwA9Cp1Wra2NjQYDAoGXTkpXjqRDRuY16Le8snGcKT6FQDlDhxY+NzitGZwDvShVzO7T0JYFRNDhcwk+6pAifevsjkVQoh9okzbbw3R7lnVU06npETOM7AHu/P9ZH3ubtjEVJMSrLMO52OnvWsZ2lubk6/+7u/m95aPKmPoJgrcFIU+2J3d1fD4TD1m+eEHLWese84lgv58Nx4LAeMI00CJ35NvOewa5yigGXuRjAMEI73+rzJKfVY76o5lptfDkjidSie7e1t1Wr7G2C5sD9sLGlnrH+VR+gkiKRJXxUyGo20vLycdkL2+QUPeuIzbc3xY1S8UFWbXcZFPpvEy3HcqgywSQA4xzOHyVo/z4ov5GN8lQd18w3u3PiIAMB1Ctfw243B6DXkXVP0+40bNzQcDkt7+HAvwMr7KybF5oDJE6FTDVCgKGD5uOByJvY16Bzz++NEqXpelUA7zrnjHK+azJGqwMlhisfPxQkZy5gEftwl78g6Tt54PYRHy8EEH3aAXV9f1wMPPHAkABe/q/rtdlJUtGx6RVwXF/lx6pkLVbg1lgMixwUOVf2Z45Wq644iwAEfRTF+L0ncN8KtOQfAVUqj6rle/6PMlQg2IgCcnp5Wv99PYMXvmQT2/Zko9Vgn+uLJxPWfLGHk1et1DYdDjUYjzc7Oam5urpRzEsccZVnFax6KrfJwTprXVV6SSbLK51huPhxXsUaQE+sWwQH9wbhKZVDuHt9cf/Lb8yq9fW4o8hyvJ9+ARwDT+fPnU2idMfGdraNB6uVFD8qToS8IgBKZCGEVd+Hj2uhF8QHHenXmOUyAOaNXAYtJgr1Kucbf/I8eHmeOSQAp97/K2sy11xl9EjCIgM/v8Xvd9eqCYm9v74Bgr9frajabWlpa0vr6ulZXV0vbjscJk+vrGOI5Scr1ESCMpdRxB9LDyot9EMFJ7JtJ/Jl77iRQEq+bxOeRf6pAStxGPVc/txA9HyWWVUU5BZebC/GDR4/7PVHWVxxFC/QoYxnr7sotzpWTIPqFvJNarabl5eVSyCJ+cz18znFeOhcTWScZRBx3rwf35uSAUxVf5nhxEpDOydzceaecFzl6PXzH4pyBXDVXc+XndBXgJ3rpvFyMI+Rkv99P9avVxrkmngDP+HkdXCbF30elUw9Qqhgr58bieNzq3i19d4dNEq7xmcdVBFX/q6zAqmdHYZqjSWBiEuWsjVy58R6vY0Tw7np05eKWk48Lx2ZmZtTpdNTr9dTr9TQzM5OsNpK7Yrt8ksdwUS40cDsp5gOx4gMBsrGxofn5ea2urk4cpxxodCE/yZsRqYqf/Z7ch3pU3RPnUk7xV/VPBB1VysCVoF+bE9ixvlyL0M3VMZd34pa385iXgwKe1E9HaVdsz0l6UKT9urHHRqfTSXsTSWXZ6X3EfQ60fMmq31vFu1yTU9ycmwR8jwJcqGfu2X6sSvZNujZe4/JQGi+xdyM01xeRR307etd/ORAWecoNdUlJPu7s7KQclX6/X5Iv/q4lryPHvR6T+uYwOtUAJaIzH0Tv9AheWGockyrZKQ+K99XrdXU6newGYVXAJVdWFbiZ9LsqT2XSM6JFmKN43aR6R5o0iWMMNArWOMGi1eXH8ZQMh0P1+/0SYJmbm9PGxkYSllUUx+ak3eTedniy2WwmVyvLpOfm5rS+vn7g/ij0/HgUSPFcLi+K3zlgXnV9rE8sq+rcpL6APEwYnxPvcde4C8sq/pwk7GM/5ZICa7XyXjPUF4+AtwFv7HGFcwQ07g07jgX6+SBCO+SEEdrJAQ3poLfD+zzn8fB+zoHZSfzNs6GqOVB1ju9cXXN84t9xTvs5b1c87nWJczCW5/0YAWz0KFFGDP/42Hi7XK9hLI1GoySTCEH76ydcnko6sEI26ujj0hcEQHFvSLRMo3DAg+Lx7MhgcXI5kZEfBfYk0OF02H3RwqqqR1W5Vc/y8g+7z+sRJ3HV/dGK51zOYxKBpDR2bxZFUYq3NhoNdTodFUWR4vosK56ZmVG73dbs7Kw2NzcTSMk9RxpPupxSut0UAcbOzo7a7baazWY63+v1Ukw47iwbwUmO5+MY5oSf1yf+zvF0Lux51Pu9vvH/cYV9TsnAOznweZi1G5VBTklFo8fzJOgX9jvhPDsX58LNVeTP9qWnESydFMGvRVGkVzXk+iTKV+cb9zjlxj4ey8lJaJIMc8qBmyoezT3/sD6P/FR1fQ4c5PTBUeaXt9OviQA/ejJybz9m/PgNMJmentaFCxf0yCOPpLJ9KT0eFcr1OsWcleMClVMPUHyQqizJyNi+NtwnvN+fsySdMTx0MImRqpTBUc7F8iadn8Sssb/cQuHaScKzysqJ9YrkAAWKu4H6sz1HBJqamlK73dbKykopTMPbjQEos7OzunXrVrb+fp+P2UnnoUhlK6de33+jMRO+KAoNBoMUEz5KWVHYRXfuJAFYxes+NlXP9Wtj2TllEudurqxJSmiSJeqbYEXyMg9ThN5/EYC7MOeZ8BmJhYQT5+bmUhz/MIpWMUaXy6ijAp3PFyE/ebu4z6fYX1XGXE5u5pR61bhUydzcvbkw02G8l+Nfr99hACSCMygCAj+ea0f0PHl94A1/X1Vcmh35JcdfPlbsbO39VKvt74x8/vx53bx5M3lVADFeVm4lT+zz49CpBig+AFI5ru+KKAohPCiOMHMeg8PARk6oV02k3O/cJMsBjklKJZZ9lP6CqizuSfdL+dUilBdBXm4SR2CYAylQs9lMwp3JUxRFSqRttVrqdrtJCbinAaHp4MSFY5XCvV3kvIfV3+l00iZJtdp4NQcWUST64jBrjd9VHhDOH0Uh5O457BPby3/aWCXMY04I9+d4z/nTFYELzigzcp4Utwj9fC7MQ9lRwOPpYzxzOVK5caqaL0cxCG4XEdrBc5Iz1hyI+H+p+m3tOW/aUYFJlfyK91bxzqSwUCSXW7m6xLJzYKYqHFNV/3gMYBJ3RpdUAilVHgvvF7+PXBbfo4lxnJubS55qjpEQLumA9yQCFq/TUelUA5QcEnYrA/JBLop996RvNBSFZNXEyP0/DJj48w8DJrGek4DJcRjay0ToH4b+J5U3ycUcLYwIBED6UaFwj4d6qCubt/lmQeSh4EUhWdbjqO5G9gS+mZmZUqLXSVAUxqyI4N1Dg8GgdH0VQOFeD5VRbo53csrB6TD+P+o8iNflPDke0quiKqUCVSkK+KdWGydiOjiJciMqMOeP3NyL7Xe3N7JkZmZGi4uLWltbO8BrufZUKRI3uiSlHUBXV1cr++3zTe12+8BmbA5AoqHnH1/qehQP9KT/8TlxPHO/DwMGOZl6FEBSBS79O9dfuWfRN7GuGCS+0EMaL/12febAMW4KSZ2cf6P3JAfI5+bmEt+RTAu/u6EUv58onWqAIh1EZhGoQM6Y7kGRxgJ+0uZdPpBVgpjr/PqcsPZv6aBlOWlyxXtj2/x8RO+5yVFVd+/TKMxzdcjVJf6O/eJgMi6hLIr95d6e84MSALAAUgjzAFJIMPXnucux6r0ut5PcawJtbW2p1WppdnZW6+vrqe7sCVNF8SVihwEJjjlNUryRDuu3SQo9dz7yyHGE2iQvHWUCbB1wuHyYVJ+qucCzEf4OrOm3+fl5zczMpJcG5mhSm2P+ACHAqampAwD2dpLLQOeP+Dvykx+LgDV6tHL86ef9+GEyLI6h/z4MdESqkoWHeTD9/GGeW2+T87eDE94jxjFvE6+H8Oe7cReNeJetvo8NZTtImZ2dVb/f187OTilfjue6rM0tq459cRideoAiHWywD0KO6Xx/BVdg0uFuRY4dNzxQpSRiOYcBntjWKoUTwUnVffw+7LoIVHIuO5gyJhM6w8bNtuIzYuIcwBGk7iEbkmWJhQNQ/KVsXhYTDgvuJF8WCABzXt3e3k7vMvEt0tmCuopiiCcHEA8Dl5OERo4HY7gsKqFJyimWVfW8XDty9a9SXl6Ge1Ny4Z7cvJt0zIEIx6anp9O+INPT07p8+bI+85nPZDeMjBQVegTj9Xo95SIdtmLt802+V4f3R5U3LMcnk/qc3/H7MJmc+83/Kv7J1SE3l+Jvp6OORRX4OkyJu/zMeb/d24EXxZNe6f8Y9szVzUG2v3qDMllRubm5mVas1ev1lDSd08U+3selUw1QckrTO78qV4JzOes+KjSO+yDn4vgRgFR94rVVlu8kT4df7/+9X2I/5doa2xhBTXxe7PNchrZbqvSTI/+qN0nn2uyTJia3+r4hU1NTpX1RfNlx7nOYt+x2EEDNk9xGo5G2t7c1NzeX9nzBS1RF0RMTlW6kSUqhCqRL5dBQLozk9YnP43jVPMiBhKMC5aoxjPPBeQlh6zzhwLWqD3JK0/sCj9/U1JSWl5dVr9d169at5AGrCilyr9fTV1AATNi19ST5VlKprtTfFZqv5MnJQA8B5WQgv6EqMFIFVA7jj6P0X5UMnARGqkBQFRiI10YFz5yO4RkHs+4tic/w5ffcF+sQ6+wgJRqLzBNWpXEsejGjLo6f49CpBihVwjGnkON13oEMXNzbIE6qnIA6DIBUHaceufO5397mo0ywo95TpRAmlZsDNTl070Cx6q2auTGkv3EZOkCJH8DJ7u5uCo/Mzc1pZWWlVF6tVkseFzwSJ5kk68IHXqzVatrc3NT8/LyWl5e1trZWuQ+KU9xtlfKxcHLKNlLVXPLcCsY7WkWTeMvnZCzb6xbr4IrM76tSXFV1iLzKfAcwOI/6kl7aThk5gMU1UT7cddddKopCt27dKq14yPUPfFmr1ZJHz/saL4q38aT38KG9ubw9t+J97lbJRMqrkpfOhzn5G8s4rN45+eVlHWbpV41jjs9zz6gCVU70YS7B1PNCkH/SODHcz8d7nU8dwHgdXBd6f3k6RKOx/1LIuDItPjfK+6PorUinGqBEa+qoaC1arUyk3GTLTSa+IwL1836N/47WwxMFIjlgUVXP2GeT/nPPcZFurHMEYj7h3Nr3pZo+ntSBSRi9V56DAgBqNpuanZ3VwsKCNjc3D3jQuO9O2EnWQTL1oB23bt3SpUuX1Gq19Mgjj6Q3xVYRXisfM1Y5TeKtKh5DMaJcfJ5MAiOTQIKvrKmaQw52o8DkfPw+jL95TgRvPufj7pe5eZRTyH6e/lpeXla/39fNmzdTwra712O9ACcxUdzrzbPj75Mi+o76eJ943XMydVJIuwq45Aw5vyYeq+IBKCZ/5q6J8rVKJkZ9kfPax3bHsnJ6bFL9/X9MOJbK+i16QjzfMj4vp5f8nlqtlsA2+/34s3NtiCDruCDlVAMU6SAwycXqckrZr4mCE4px8xxVIWp/bmTiSW3JKY7cfbkBr3pe1bVxYsQ2HCYE/d4cY0ew4e8u8XrG93FEiyGGFxykFEWR9ptgd1m2iF9fXz+wEoO6NhoNtdvtie37fJID5Ming8FA6+vr2tzc1I0bN7K5Uk4571UM+UR+mMTbvuX+JGBSxatV10UAGq+BoufCy/BrozDP8bL3WeR/F7oOomObcnPD2zM9PZ3CONeuXdPNmzeT58N5NpK/fE1Sqc99RZCvlOC6kwbXVTlFUJU3OvJfjreqQMskWcxY+LeXl6NJx2NZRwWEsUzuc8M01jHKySplHq/zdsNjnlAdAUsEjH59Tmf5eY65x6bdbpcWmwBmoi6uGuej0KkHKNJBkBKP5a53BSGVPRxHnTxHZVy/flL8fhLYmTS4UfhFdB5/5xRdVIBHsU5z5flE9LJ9wvA/luFvmPa25UAKwhyAgidlb29P7XZb8/Pz6vV6B5S3g5snMmGeKophkpxgwAsSQyyRAH9RMEgHN6nye6CoWBA0OUV9FGFzmOCPZVYBl6jUqsrzcjgeQd8kcAdFIBEtQcYFrx4Ce2ZmRnt7e7p161YKxxF29BCZUwxb8hy8hYCQTqeTvIPD4bDE+ydFPpdoC3QcGZoDHzmwWyUXczLqqHM6B0Cdv+MzJvFRrh5e7iQ+PWrd/FzUd+iVmFfJPHYQ4SDFAQwUw6pch87kN+Abuev19U/Oc3oc+oIAKHHwI0iJHeOhBo+XxskUUXxOeB5HGFOn40zCSW2Oz4htj6CjCrXH+sVr/ZlVwMUZ2c9Hge51dcbmPPF2nwxV+ScIazYY8g2k5ubmtLa2pq2trZQHgCAlF+Wou3t+Poh2tVotFcU412B7e7tkHdO2uMdGBJ4Abs/ij5aqX59TEIyBW1uckw56FKvmTTzH/5zXJies4z05z1q8N3pdIqiJICgnVB3UuaLlHGAYAQ0QHAwGKooibWAFyMD7kctBabVaksrhuVptf4VOo9HQ7Oys6vW6+v2+ms1meqbvOHxSFPs7B7BzfOL/D/s+ijKr4qcc4HW540reZWSUl17mpN+5Z1SVUWVgeJ0oK8py59Mc0MnlAObmgd9DH7rMcZ53mR7HXBp7/bzv3EjK1eE4dKoBSpVQ9EHMUbQy3aUa0X8sOweGJgGcHMjJ1Tv3nNxkOep1k5giomyfADkQExG1MyhKMAcM/Rko2UlM6y5u79eqJFmsTK7Bmm2321pYWFC/39fVq1cljScd4SCE/UnRpUuX0qodt0bq9XpSUp5ngyclt3lYVJgOFqPnqYo/uc5fRRD514/lAG7uXJWi8Hty/6lvbkdXp5zgd8sQfor3uhCO5fn1LiP47O3tHVhW6TkZrLqKvMuxqamptENybh7Am7Ozs6rVatrY2EjhS8DQSSbJOgAD7DHWubBOjkdiTkYVP+WOVQGYKHNiOZPKj8ejzPPyJ9Ulzku+q67hf45XfW56mTkDI4IYr6tvqBdlfbw317b4fOqU89h4HWM9jpIyEelUAxQ6bhKSrlLUbonyFmMUQhTcEQxMAhvS4d4VrjnsvtyEyFGufRFo5PrHJ0JOAeSASa4+8ZvrfFVErTbeg8Jj/bF8+h/3uCtZ3w+FZ/heIh7TH41GunDhQtpdFsXgLslJiaefb3r+85+vtbU1rayspDfDsodG3OvFVx+hGCPRpw5QpPEbdXN8LI0VJhs55UB6VD5V5Uw652UehyKPOuV4mOO0nXPRY+Lz+6jKPholUHSbT09PpyXiuaXLvBE9ZwmzrLjb7Wp3d1cbGxvqdrtp34nZ2VltbW2V9vq53RQ376KNOTCWU7ZPFpBU8VC8LifTcor4KNflPBuRDgMiVXWOfJsDCpH3Ysg3Ahc38vDg5bwu/Ka8nIGDXJZUeoux1yX2T07/+n1HpVMNUOg03Pdxv4wqkOCd5lnNCHLoMJDCNVXHYjnxf9VE5X+OmXIUJ1mOAXKTMJdnEMs4zHsSFUREzM7krjhj3fwZvnqEyeF7n8QEUB9Lt7gbjYZ6vZ4effTRFE7huqqln7eL9vb2dPnyZS0uLurmzZu6fv162uciukcd4EFxou/u7mpnZ6cULsjFnZ045ltc5+aP/8/NrScCWqR8HkxuTuRAQZVS8XIdqLjFV8WnVYoiCmEvA14C3AEq4VUfC7wreMkg34it3W5rNBppZ2cnAZFarZYSv9mHotVq6dFHHz3AV7eDBoNB4j9WIUXZS79F5ZTjkfh9GEDx6ydRlVzLgQ2fZ35PlULPlVtVp5xsjLwclX28/rB+jLmUznPxmVXzKIIL53nkqnvOpPEOtdQhB05iHz5tAAqd75amb9XrQjVSzNiP24lPEsjxmklCWKqO+VdNxsOoSpgfJrQjw0cFOOnZVW3id7zGj+UUrudUSGPmdsSO0GeiAU48J8ETBkkIK4pCzWZTjUZDFy9e1K1bt9LYxhDGSdH58+dTHszCwoIajYYefvhhDQaDtKkd74ySpOFweOClYC5At7e3NRwO0z30W24Vk5dBf8eNyo5LRwUtXhfIBaHPN4+BR97N8XvsF+8f6WAIMQc4cv9zCsav8xcEEt6Bl3kW4xCTZ6Fms1l6qWBRFGmZ8s7Ojra3txOYHY32Xyp5khSVrctKKb/VfY4/+B3Lyp3zaw6jw66pejbfcaxzx+L5qvvi70nXTPrv/B49Hm64cY/v+JsrO6cvPKzq17vc5XjUq7n5w3zzso4TWj/VAEUqC6M4KaI16IyBQPHchNwWzvH/JEGbOzYJ2FTdN2nyVD033lclrF3Y5iZcVZsiM+cmTe45uTJzz/fxY3JFCziClDjGnPfnLi4u6tKlS+mFbbXaGIyeZIjn3Llzarfb2tra0mc/+1mNRiNduXJFo9FI6/8fe38eHdtV3YnjnxpUqrlKw5P09GZPBGNs04wvZAEJbowZAoTMJBhWgIS20yGwQodOQvLtTsc0TgIJ0IRMkGRBQshqIGFwILaBBowDxg62wQ/72W/ye5pVVapJJVXd3x/6fU597tYpPT0PTxKuvZaWpFu37j3DPnt/9nD2qVQc2GK+A70rJDu/vIffseOk86FKmgJJn+uzfjZLG1mSbK/lo15Wo49v9HovUN6rXfw+E119Fp++x+ZCWUCv7efcJBIJ1Go1d380GnWeLZYJ17or3KkFrHkm1DrVKqGtVguZTAbZbBZBEGzpWTy+tc//e+U52fXtk7G+sbWfbdQepV6yp9c12x+fvLR9td+xvNvr/1583Wsc7GcKDKxc9BmefMdGMlyv+dajb+6svNc8GgUndtzOJTy5IwEKB61er6PT6aDZbKJer6PZbKJarWJ5edkJa431quXdbrfRarVQq9VcfF93LmiSom79U2Wo1zRHwl73LVJgvSfELsReIGYjAGMZ0o6ZfuZjZl2Q9nsbLSz93yfofVndOh8KMuni5j3tdhv1et3tcNHdLryXP61WK/TdIAiQTCZx5swZAHA7IrQk/7kq4UdDfNf999+PiYkJNBoNrKys4OTJkw5QJRIJVKtVx8tLS0teD4r+XllZQbVaRaVSweLiIjKZDIIgcAeLsWgbwR+Tb5m3Y/mX/yvP2lAPAO//QNiC1s/s9m4rRPUZOma+HQr6DN8Y8+9eQJxCVZ9tx9cmzOo5XuSjeDyOer3uCuqVSiVXy2ZpaQnlchmrq6soFosA1jwiHBOe3+M7y4TgkUI9EolgeHgYjUbDnSi7FbzbarVciJTgS8OwVq6xLxvlptjrek3/7gUI9F7LR2f7zkZgptfzfd/pNRdnAzcbGQNWTus48v292rDRRhELvvW6fs7/yffkU/JmPB53OpZ6t9VqhX5isRiWl5fRaDTQarXcVvzN8G4kOJ8c/hjRgw8+iAsvvHCrm9GnHxA6efIk9u7de17e1efdPj2W1OfdPu1U2gzv7kgPyvDwMADgxIkTKBQKW9yaR0aVSgX79u3DyZMnkc/nt7o5j4h2eh+CIMDS0hImJyfP2zv7vLs9aKf3oc+7j4x2+rwDO78P58K7OxKg0MVVKBR25AQp5fP5fh+2kM63oO3z7vaindyHPu8+ctrJ807ayX3YLO9u3XGufepTn/rUpz71qU89qA9Q+tSnPvWpT33q07ajHQlQBgcH8bu/+7sYHBzc6qY8Yur34YlJPwhj1u/DE5N+EMas34edRTtyF0+f+tSnPvWpT336waYd6UHpU5/61Kc+9alPP9jUByh96lOf+tSnPvVp21EfoPSpT33qU5/61KdtR32A0qc+9alPfepTn7Yd7UiA8oEPfAAHDx5EMpnEs5/9bPz7v//7VjfJ0Ve+8hW8/OUvx+TkJCKRCD71qU+FPg+CAO985zuxe/dupFIpXHXVVbj//vtD9ywsLOA1r3kN8vk8isUifumXfgnVavW8tP+GG27AM5/5TORyOYyNjeGVr3wljhw5Erqn2Wziuuuuw8jICLLZLF796ldjeno6dM+JEyfw0pe+FOl0GmNjY/iN3/gNdzLvE5n6vPv4UZ93H1/q8+7jR33e7UHBDqN/+Id/CBKJRPDXf/3Xwb333hu88Y1vDIrFYjA9Pb3VTQuCIAg+97nPBb/1W78V/N//+38DAMEnP/nJ0Ofvete7gkKhEHzqU58K/uM//iP48R//8eDQoUNBo9Fw97z4xS8OrrjiiuAb3/hG8P/+3/8LLrroouDnfu7nzkv7r7766uDDH/5wcM899wR33XVX8JKXvCTYv39/UK1W3T2/8iu/Euzbty+4+eabg29961vBc57znOCHf/iH3eerq6vBZZddFlx11VXBnXfeGXzuc58LRkdHg3e84x3npQ/blfq8+/hSn3cfP+rz7uNLfd71044DKM961rOC6667zv3fbreDycnJ4IYbbtjCVvnJLpROpxNMTEwEN954o7tWKpWCwcHB4O///u+DIAiC7373uwGA4Jvf/Ka75/Of/3wQiUSChx9++Ly1nTQzMxMACL785S+79g4MDASf+MQn3D3f+973AgDBbbfdFgTBmrCIRqPB1NSUu+eDH/xgkM/ng+Xl5fPbgW1Efd49v9Tn3ceO+rx7fqnPu2u0o0I8rVYLd9xxB6666ip3LRqN4qqrrsJtt922hS3bHD300EOYmpoKtb9QKODZz362a/9tt92GYrGIZzzjGe6eq666CtFoFLfffvt5b3O5XAbQPSjsjjvuwMrKSqgPP/RDP4T9+/eH+vDUpz4V4+Pj7p6rr74alUoF995773ls/fahPu/2eXenUp93+7y7VbSjAMrc3Bza7XZoAgBgfHwcU1NTW9SqzRPbuFH7p6amMDY2Fvo8Ho9jeHj4vPex0+ngLW95C5773Ofisssuc+1LJBIoFouhe20ffH3kZ09E6vNun3d3KvV5t8+7W0U78jTjPp0fuu6663DPPffgq1/96lY3pU99Oifq826fdir1ebdLO8qDMjo6ilgsti5zeXp6GhMTE1vUqs0T27hR+ycmJjAzMxP6fHV1FQsLC+e1j9dffz0+85nP4NZbb8XevXvd9YmJCbRaLZRKpdD9tg++PvKzJyL1ebfPuzuV+rzb592toh0FUBKJBJ7+9Kfj5ptvdtc6nQ5uvvlmHD58eAtbtjk6dOgQJiYmQu2vVCq4/fbbXfsPHz6MUqmEO+64w91zyy23oNPp4NnPfvbj3sYgCHD99dfjk5/8JG655RYcOnQo9PnTn/50DAwMhPpw5MgRnDhxItSHu+++O7Tgv/jFLyKfz+PSSy993PuwHanPu33e3anU590+724ZbXGS7jnTP/zDPwSDg4PBRz7ykeC73/1u8KY3vSkoFouhzOWtpKWlpeDOO+8M7rzzzgBA8Md//MfBnXfeGRw/fjwIgrXtbsViMfj0pz8dfOc73wle8YpXeLe7Pe1pTwtuv/324Ktf/Wpw8cUXn7ftbm9+85uDQqEQfOlLXwrOnDnjfur1urvnV37lV4L9+/cHt9xyS/Ctb30rOHz4cHD48GH3Obe7vehFLwruuuuu4Kabbgp27dq1o7e7PRbU593Hl/q8+/hRn3cfX+rzrp92HEAJgiB43/veF+zfvz9IJBLBs571rOAb3/jGVjfJ0a233hoAWPdz7bXXBkGwtuXtd37nd4Lx8fFgcHAweOELXxgcOXIk9Iz5+fng537u54JsNhvk8/ng9a9/fbC0tHRe2u9rO4Dgwx/+sLun0WgE/+W//JdgaGgoSKfTwate9argzJkzoeccO3YsuOaaa4JUKhWMjo4Gb3vb24KVlZXz0oftTH3effyoz7uPL/V59/GjPu/6KRIEQfD4+mj61Kc+9alPfepTn86NdlQOSp/61Kc+9alPfXpiUB+g9KlPfepTn/rUp21HfYDSpz71qU996lOfth31AUqf+tSnPvWpT33adtQHKH3qU5/61Kc+9WnbUR+g9KlPfepTn/rUp21HfYDSpz71qU996lOfth31AUqf+tSnPvWpT33adtQHKH3qU5/61Kc+9WnbUR+g9KlPfepTn/rUp21HfYDSpz71qU996lOfth31AUqf+tSnPvWpT33adtQHKFtMX/rSlxCJRPClL33JXXvd616HgwcPblmbtope8IIX4AUveMFWN6NPm6Q+73apz7s7i/q826XtzLt9gALg6NGj+OVf/mVccMEFSCaTyOfzeO5zn4s/+ZM/QaPR2Orm9alPPanPu33aqdTn3T6djeJb3YCtps9+9rP4qZ/6KQwODuK1r30tLrvsMrRaLXz1q1/Fb/zGb+Dee+/Fn//5n5/XNv3FX/wFOp3OeX1nn3Ye9Xm3TzuV+rzbp83QExqgPPTQQ/jZn/1ZHDhwALfccgt2797tPrvuuuvwwAMP4LOf/eyjekcQBGg2m0ilUpv+zsDAwKN6Z59+8KnPu33aqdTn3T5tlp7QIZ53v/vdqFar+Ku/+qvQIiFddNFF+LVf+zUAwIc//GH82I/9GMbGxjA4OIhLL70UH/zgB9d95+DBg3jZy16Gf/3Xf8UznvEMpFIpfOhDHwIAnDp1Cq985SuRyWQwNjaGX//1X8fy8vK6Z/hiobVaDW9729uwb98+DA4O4klPehL+8A//EEEQhO6LRCK4/vrr8YlPfAKXXnopUqkUDh8+jLvvvhsA8KEPfQgXXXQRkskkXvCCF+DYsWPr3n/77bfjxS9+MQqFAtLpNJ7//Ofja1/72rr7vvSlL+EZz3gGkskkLrzwQnzoQx/C7/3e7yESiYTu2+zYKVWrVWQyGTf+SqdOnUIsFsMNN9yw4TN+kKnPu33e3anU590+726agicw7dmzJ7jgggs2de8zn/nM4HWve13wnve8J3jf+94XvOhFLwoABO9///tD9x04cCC46KKLgqGhoeA3f/M3gz/7sz8Lbr311qBerweXXHJJkEwmg7e//e3Be9/73uDpT396cPnllwcAgltvvdU949prrw0OHDjg/u90OsGP/diPBZFIJHjDG94QvP/97w9e/vKXBwCCt7zlLaH3Awguv/zyYN++fcG73vWu4F3veldQKBSC/fv3B+9///uDSy+9NPijP/qj4Ld/+7eDRCIR/OiP/mjo+zfffHOQSCSCw4cPB3/0R38UvOc97wkuv/zyIJFIBLfffru779vf/nYwODgYHDx4MHjXu94V/K//9b+CycnJ4IorrggsW2127J7//OcHz3/+893/r3nNa4Lx8fFgdXU1dN+73/3uIBKJBMePHz/rvP2gUp93+7y7U6nPu33e3Sw9YQFKuVwOAASveMUrNnV/vV5fd+3qq69et9AOHDgQAAhuuumm0PX3vve9AYDgH//xH921Wq0WXHTRRWddKJ/61KcCAMHv//7vh575kz/5k0EkEgkeeOABdw1AMDg4GDz00EPu2oc+9KEAQDAxMRFUKhV3/R3veEcAwN3b6XSCiy++OLj66quDTqcT6vuhQ4eC//yf/7O79vKXvzxIp9PBww8/7K7df//9QTweX7dQNjt2dqH867/+awAg+PznPx+67/LLLw/d90SjPu/2eXenUp93+7x7LvSEDfFUKhUAQC6X29T9Gsssl8uYm5vD85//fDz44IMol8uhew8dOoSrr746dO1zn/scdu/ejZ/8yZ9019LpNN70pjed9d2f+9znEIvF8F//638NXX/b296GIAjw+c9/PnT9hS98YchV+exnPxsA8OpXvzrUX15/8MEHAQB33XUX7r//fvz8z/885ufnMTc3h7m5OdRqNbzwhS/EV77yFXQ6HbTbbfzbv/0bXvnKV2JyctI976KLLsI111yzrv3nMnZKV111FSYnJ/HRj37UXbvnnnvwne98B7/wC7/Q83s/6NTn3T7v7lTq826fd8+FnrBJsvl8HgCwtLS0qfu/9rWv4Xd/93dx2223oV6vhz4rl8soFAru/0OHDq37/vHjx3HRRRetixM+6UlPOuu7jx8/jsnJyXWL+slPfrL7XGn//v2h/9m2ffv2ea8vLi4CAO6//34AwLXXXtuzLeVyGc1mE41GAxdddNG6z33XzmXslKLRKF7zmtfggx/8IOr1OtLpND760Y8imUzip37qp3q28Qed+rzb592dSn3e7fPuudATGqBMTk7innvuOeu9R48exQtf+EL80A/9EP74j/8Y+/btQyKRwOc+9zm85z3vWbc17Vwyxx8PisVi53Q9+P8nfLEfN954I6688krvvdlsFs1mc9NtOdexs/Ta174WN954Iz71qU/h537u5/Cxj30ML3vZy3ouricC9Xm3S33e3VnU590u9Xn37PSEBSgA8LKXvQx//ud/jttuuw2HDx/ued+//Mu/YHl5Gf/8z/8cQsm33nrrpt914MAB3HPPPQiCIITmjxw5sqnv/tu//RuWlpZCaP6+++5znz8WdOGFFwJYEyJXXXVVz/vGxsaQTCbxwAMPrPvMXnu0Y3fZZZfhaU97Gj760Y9i7969OHHiBN73vvdt6rs/yNTn3TD1eXfnUJ93w9Tn3d70hM1BAYC3v/3tyGQyeMMb3oDp6el1nx89ehR/8id/4hBwIFvLyuUyPvzhD2/6XS95yUtw+vRp/NM//ZO7Vq/XN1WM6CUveQna7Tbe//73h66/5z3vQSQS8cYfHwk9/elPx4UXXog//MM/RLVaXff57OwsgDWL4KqrrsKnPvUpnD592n3+wAMPrIvLPhZj94u/+Iv4whe+gPe+970YGRl5zPq7k6nPu2Hq8+7OoT7vhqnPu73pCe1BufDCC/Gxj30MP/MzP4MnP/nJoYqGX//61/GJT3wCr3vd6/DWt74ViUQCL3/5y/HLv/zLqFar+Iu/+AuMjY3hzJkzm3rXG9/4Rrz//e/Ha1/7Wtxxxx3YvXs3/u7v/g7pdPqs3335y1+OH/3RH8Vv/dZv4dixY7jiiivwhS98AZ/+9Kfxlre8xSHwR0vRaBR/+Zd/iWuuuQZPecpT8PrXvx579uzBww8/jFtvvRX5fB7/8i//AgD4vd/7PXzhC1/Ac5/7XLz5zW92C/myyy7DXXfd5Z75ohe96FGP3c///M/j7W9/Oz75yU/izW9+c7+gEvq8a6nPuzuH+rwbpj7vbkDndc/QNqXvf//7wRvf+Mbg4MGDQSKRCHK5XPDc5z43eN/73hc0m80gCILgn//5n4PLL788SCaTwcGDB4P//b//d/DXf/3Xoe1iQbC23e2lL32p9z3Hjx8PfvzHfzxIp9PB6Oho8Gu/9mvBTTfddNbtbkEQBEtLS8Gv//qvB5OTk8HAwEBw8cUXBzfeeGNoW1oQrG13u+6660LXHnrooQBAcOONN4au33rrrQGA4BOf+ETo+p133hn8xE/8RDAyMhIMDg4GBw4cCH76p386uPnmm0P33XzzzcHTnva0IJFIBBdeeGHwl3/5l8Hb3va2IJlMhu7b7NjZ7W5KL3nJSwIAwde//nXv509U6vNun3d3KvV5t8+7Z6NIEJiSeH3q06OgV77ylbj33ntdZvpjRa961atw9913e+OvferTY0F93u3TTqUfVN59Queg9OnRkT1x9P7778fnPve5x/zo7jNnzuCzn/0sfvEXf/ExfW6fnrjU590+7VR6IvFu34PSp0dMu3fvxute9zpccMEFOH78OD74wQ9ieXkZd955Jy6++OJH/fyHHnoIX/va1/CXf/mX+OY3v4mjR49iYmLiMWh5n57o1OfdPu1UeiLx7hM6SbZPj45e/OIX4+///u8xNTWFwcFBHD58GH/wB3/wmCwSAPjyl7+M17/+9di/fz/+5m/+pi/g+/SYUZ93+7RT6YnEu1vqQfnABz6AG2+8EVNTU7jiiivwvve9D8961rO2qjl96tOmqc+7fdqp1OfdPu0U2rIclI9//ON461vfit/93d/Ft7/9bVxxxRW4+uqrMTMzs1VN6lOfNkV93u3TTqU+7/ZpJ9GWeVCe/exn45nPfKYrgtPpdLBv3z786q/+Kn7zN39zw+92Oh2cPn0auVxu3RkLferTZikIAiwtLWFychLR6Oaxep93+7TV1OfdPu1UOhfe3ZIclFarhTvuuAPveMc73LVoNIqrrroKt91227r7l5eXsby87P5/+OGHcemll56XtvbpB59OnjyJvXv3burePu/2aTtRn3f7tFNpM7y7JQBlbm4O7XYb4+Pjoevj4+PunAOlG264Af/f//f/na/m9ekJRps9+h147Hh3YGAA8XgcsVgM0WgUsVgMkUgE0WjUWaeBnB9CRyev8X9+JxqNIh6Pu+em02nEYjE0m02srq6i3W67ZyWTSaTTabTbbbTb7XVlsfWZkUjEPS+fzyMWi2FgYACxWCzUdv6OxWKIx+PuOfF4HIlEInT/6uoqarUaVldXkUgkXFs7nY77AYCVlRWsrq4CWLPel5eXEY1G0el00Gq1sLy8jJWVFQRBgNXVVSwvL6PVamFlZQX1eh31eh3NZhPLy8tYXV11z2u32+49fE5gzmrZTsR2+Q542wrejUQi68bqfDniLW/yh/y3b98+7N+/H7lcDvl8HslkEvl8HolEwn2Pay0SiazjYT4rCIIQT/A3LX7OBflIv9dut7G6uhqaL/2bz2632259ki/r9brbRtxsNjEzM4NGoxFaB51Ox/Gzrhn9THmc79R72Ab7o/efy5xs9r5IJOLasBne3RG7eN7xjnfgrW99q/u/UqmsO8K6T316pPR4KqZevKvgRAFHEASIRqNIJBKIx+NO8LVaLXQ6HbTb7RBIodDlTxAEDhQQGFCA6v35fB4DAwNYXl4OCS3ep4ogFou59vB3PB4PAZhegp6Aht+Jx+NOIEejUaTTaSSTSUSjUSdU9f0cA1rykUjECf9Op+MASywWCwnVVCoVAnyrq6uIx+NYWVlxCoRtiEajDqTsNNoK3vUBFP3/8RhH5UcFJ5bXcrkccrkcstkskskkBgcHEYvF3G8FKAAccFa+1f5ZIyEejztwwWu8h/eRt3Td8Yff4Vrm/QosCILi8TiazSYGBwcdGOG72+22u6aASMEO1xNlBt9rf2s/LFjhfZuZn0cyp2ejLQEoo6OjiMVi6w6Kmp6e9m5pGhwcxODg4Lrr1113HQYGBnoObrvddoy5urrq0BsAtNtth1QV3SrKa7VaALDuufr7bNfIPK1WC81m0/3s378fQ0ND6xYb2wAghPT5P7DG0Nomtlfv5d9BEGBlZQUAnLBXptT361hQgXGsms0mWq0W4vG4s8AbjQZOnz6NpaUlfPe730WlUlnXBx8pw59tAVB4qILVxU4rSOfPvl//jkajGBgYQKFQQLFYxDe+8Y2e7/bRY8W7VshbhT44OBjyiuTzecdHFELafxWsfB95j14NromVlZXQCa1U9L4xi8fjri2+9uv7ffOqykB5j/e0Wq0QuNJ7CD50ztkn2wYAoXdxnrkWVblxTGKxGFZWVlzbW63WjgQpm6XHinc3osd6/HzAxIIUgotEIoFMJoNkMumuAXDKmv+r7FCZPTAwsG4NqBK3Mo0Awz5X77WeCXtNv0P+pwey0+k48D4wMBACHORhPodghbJBvSjsvwIVn77Stvl0m3pkLD1eHsgtASiJRAJPf/rTcfPNN+OVr3wlgLXJuPnmm3H99ddv+jljY2NOyHBCFD0GQYBisYhUKoVqteoEbbvdxuzsrFPcyiiDg4MIgsABCR+itJPmm0gFSSsrKw6g0GIdHBx0KD+RSCCVSjlhMDAwgIGBAWQyGcf8ZFJlVKArlGkhxmKxECNGo1GUSiWnaPi5kipEWpjDw8NOaDWbzZBLfnh4GI1GA5/97GfdoVYrKyshq9rHrD4rS61m3/0atqDAYLiC/VMFzfcTsPE51toaGBhAMpncNK+RHive1baot4BggrzA/wmqCLZXVlYcX3G+KbhzuZzjc3oJ6GXgPWw3+Yn3sQ2q9DlebIveo4qAn/O76mYmQOLc8J1BECCRSDhvDkmFNf/muuacKjBVgK4hqyAInDdFQWC73Xb9WF5edutewf9jTaoYH+l3Hw09Vrzra5cFqI8FqUfOghP17imoT6fTznOoxma73Q4Zs5YoU1SGqceDfbQKmjxjvS46JhaE9PJQcB2z7Z1OB4lEwvE0ZR8BifIq13s8Hg8BEtWJClqArt7zgRJ+bj0tNpxkx+KxBilbFuJ561vfimuvvRbPeMYz8KxnPQvvfe97UavV8PrXv37Tz/jrv/5rAOGBtD/RaBSZTMYNXjKZRLvdxuLi4jpFrcKN1tRGC68Xsytj+5gxkUjg+PHjmJmZcQCFYIXKKJPJIJVKOesxkUhgcHAQrVYLqVTKuS3pMgfW3Nr2ffF43IEj3qeKg/fTY8IY/tzcHM6cOYNsNotIJIJqtYpCoYBOp4Pp6WnccsstOHLkCAYGBnDnnXdieXl5nSfHMqsV0BbB/8iP/Ahe+tKX4sYbb8Ti4mJobilA7JyphezzBPF9Clbo0l9aWurNXBvQY8G7VuhSyNJrZa251dVVNBoNpNNpZLNZN/fsS71edwo+mUwiCALUajUHGBQMKdiLx+PIZDJoNpshYWTBh7ZF82VUoPO9vj7qWqCgVKMgkUg4Tx3fwc9tu/hs/awXYOUaGBwcDIEc8hRBCt/bbDbXWZqPFT0a4f1YAYDHgnd99FiPk4ZdfD+a70SZyZCOz1Cy+oFtVv4mALDARD/Xz6xhZQHKZoCKfTc/Y9s1zKtGLw1zCx7I2xoG1ZCmNeBtu1Q32PdyvLQdOl7a9l50rnyyZQDlZ37mZzA7O4t3vvOdmJqawpVXXombbrppXQLXRsS9+2frdKVScZYYY/JEn/p9tb4f7YLrhZqpFOha5kTT9UxhSoYlgga6rkq6XunmI5hKJBKuH3qceDQadQKYTEoL3D6XHh+2bX5+HgAcyKtWqyiVSrjnnntQrVaxsLCAarW64UJVsoJWGfopT3kKfuZnfgYf+MAHUCqV3OeqmOyCsoBEn6+gRInzrBb7udBjwbvWoh8YGEA6nQ4lmJIP2GYq7Var5b4/ODiIXC6HgYEBN6f0/jUajXVC3oI55Rt9roIPIOzO1rwU/rbCmz8EBdYtb5OE6VUkgNEQEYUq26PGB9eNzS1gP3V9EfyRt3uFDRqNRgg4277xGeeTHisA8Fjw7mPZHiVdD/pbr1svHv9OJBLOwPMZR8oHvn6ofNFwh5VlqiPUi2370Qvo8H9dH/ou1U8WyHMctL3W0FQAo0nwHCtfjgrfS31CQKPASsNYCmD0PZtdI+fCO1uaJHv99dc/YtciAKdIz0ZqLTFWpwJa79Pfj1QI9ULKVAb0gHCREfXrwtO4PtvdbDaRTCbRarXcgqRLc2VlBdFoFI1GA8vLy8jn824xaUhEQxy62JiT02w2sbKygmQyiZWVFbdgZmdnkUwm8f3vfx+tVguzs7OYn58P5Z3Y/vvGz46N/lZlZBev7kKxz7H/20Wv7/G5bh8JPVreVRCQzWbdTzKZRCqVckIXQAigWa9Eu91GtVpFNBpFKpXCyMgI4vE46vU6UqkUSqUSms1myKtlPSP8ruaBaFhNk0n5v/ITP7cAhdfUWiPIYMiH9/AZaj0ToARB4EJRvndwXPi8gYGBUPjIClSGxaxVrgqAoVg+1yqurQIqjwU9Wt59PMgCaZWBnDfypE26Vg+KehyAsPfUgk2S1QPWsNG5Jz/yHdaDZ8nKGmus8roaAHyWPpvv1XfpmrbGh4YyfbyuHpFMJgMAKJfLbqcc17UN46hnxQJ9e/9jsUZ2xC6eR0scKBvzA7rMqS7jRzOgPgXMv+PxOPL5PDKZjHNrM3RDkMJrDPMQwDDxK5FIuJAN8woojNUiVq+LFaz8n0qCoaF4PI5UKuW2ZTabTczPz6NWq6HRaGBxcRHT09PI5XKYnp7G0tJSyKLdCED0Giu9LxaLIZvN4hd+4Rdw880346677lp3j0/AKFnhoov5XNr2eFM8HkehUHDbIQlcKWx1Fw6FBa0h8rDmFVE4NBoNB14PHjyIRqOB6elplEqlkGDVXBTNMdFcJgWeBBUcR82TIQhhOEXJCmYF//whONEcEwrXlZUVx48+F7qCEJ83RRUAx2hwcNABEDse/C53UNh8J2ux9umRk2/sdQ70f909ZgEKQ6MEKHy2pV7zRb4kELD3KrhWsKPAQAGEL91An2P1j+okrolkMolIJOJyAlU/8X18pkYD7LM4jpT1Gj0YHBxEsVh00YWhoSHUajXUajVUq1XU63WXFjA+Po7x8XHs2rULuVwOt9xyC2ZmZlz7dS37wvCPVKfuaIDic+X57rEWtH6Hk6jurEdCyhQ+hD44OIhCoYB8Pu+8Hkzsymaz7loqlUIqlUIymUShUHDPoLeErnvdqcFFwaRJMiPQZViNTeo2NXpLqBSj0bUtqPyM1viJEydQqVRQr9dRq9VQLpe9CsM37mcbN/5w19Rb3/pWdDodfPvb315nmUciEeRyOTzlKU/Bgw8+iPHxcTQaDUSja8mhpVIJk5OTuO+++5DNZjE/P49LL70U09PTaLVamJubw+WXX45Go+Gt/XC+aP/+/SHQqdsXOZfsl7VKCE4BuBySkZERjIyMAAjXD+G2y/n5eczMzDivo/I9lQBDIApeeD9BC9BNqlbFrbxAzwcT9iyftNttt62Xz1Rgo+5kJfWgWEHMZ6jrfWBgwP3PBEkSPYQK9vSHfeP27l4x+PPhTflBA0M2lKMWuXpPNDRBEGJBil4nWFevAt9HUi9Dr7apntB1ZnUJ+YFrVwG4Po+kXgZV6pa3CMgikYgzRnldPSW8n2Ok71eQbkM1NH7oNWU7FViUSiUsLCygXC6j2WziDW94A6688koMDAygWq3ivvvuc+F/jofOLdMH7OfnSk8IgGLv18Gyk/1YCANlcrrwc7mcAyj5fB7ZbNZ5Seg9UQQfiURCuR3c5luv111ylO6M4H2tVguZTMYV/OHnBBy8l3koQRCgXq87ABSLxVAul1Gr1RxyHx0dRTwex0MPPYSlpSXU6/WQ1QD0Drn4PBdWmZE+/vGP40tf+hJisRhmZ2fdPTYkt3//frzoRS9Cq9XC6dOnMTg4iImJCbRaLdx777142tOehvn5ebzhDW/AP/3TP+Gaa65BuVzG3NwcPv3pT+NVr3oVbr31Vhw5cuRRzfOjIXos6EGjMKHSI3hRoU3SueP8MbY8OjqKXC7nrP9Wq4WBgQGMjIwgnU5jbm4O1WoVQFeY2DAP0B331dXVULjH3kfhqEKfgs7G8vkdu12S+U92LavAVo8LP/NZa76dPWw/QRs/Y9I526dWqbrX7ffIs1rvQu/fDD3eoObxpEdqEatFr2E1Bcm8R8GIJpBbYGK9KZZXfB6Mjfqg122iKOWhPteGPGzYh89UOW3lnr2X65791LC3ghTdNaeGnD6XHhg7rvytEQP10DKHkXoqm82iVCrh61//Ou6++26cOnUqBG5846menUdKP/AAhfcB6z0oilqJ+FSQ+gaX37XvVcYjgyYSCeTzeYyOjmL//v2YmJhw4ZRqtepqWmgcnoCJeSqZTMbli9D9xuczH0UZlErBbkNjNUK9h8KX/Wf8kcqPrvXl5WVUq1VUKhXk83nE43HMzc054a6KqBfZBen7vbCwgIWFhXXjq7kKpJWVFXz7299GKpVy229zuRzuu+8+DA0NYf/+/SgUCrjwwgtRr9fdIqN3qFarbblVmk6nkUqlAISVnVZeVfBJL4Dmb1DYpFIprK6uYm5uDplMBsVi0Slx5ielUins3r0bpVIJpVLJCTl6zxhiVG+WWrTA2k4xVQoqMNXDwc80EY+f624F8r0qF02QVSGr3hh1VQPrQ7XqldNaMLobLAgCl2xO5aM1XyjUOYaW3+l1IkDZaMt8L3qkyn4nkYZtLBixyp08TQ+zTYRV5aphHwXKGpokH6jc1xAJ7yGpMcS263OUB1XxKyhhX5TP+WzrDbW7YHQ8KLM6nY7Lm+L7OJYKqlX/kBcpGzScy/ApN07wuvI7wQplTb1eR7VaxYMPPogzZ864khO6ocKnGx8tSNnRAOVsZIWXHUh+xnt98XELgvhMrceg7spEIoFdu3ZhcnLSxfcAoFaruQRTAgBaz7oYmXOiC41bTHmfut0pwO22M2sBst8MH/B/KiJgLTGQi40MzO249XodkUgEo6OjTjB0Oh1UKhUsLS2FXHp23PW6Txj7ELhlap2bM2fO4G//9m8xNTWFa665BidOnMBdd92FcrmMeDyO//iP/0AkEsENN9yAiYkJtNttnD59Grt27cKll16KI0eOIJPJbKliSKfTbvw53rrAFRSo9UNvmHowOB8EcUtLS1hdXUUul3M8Rh6Ix+MYHh5GMpnE0tKSAzwq8LV2ChUG85MIktSS1PwQ60UhKLDWq4Yeea96URT0aI4VP9cigmpocEw4ngr+lS95D+9n+wg6VPhzXfEzC0Ssm9wqnbPRTvam9CIFHDbs0guk8F71jlAu2ms+z4nmTWloRtsEhEGL/rY5SXovf9gXghzygvbRenD4t8owm/SqHnzeG42u7cYcGBhwaxroggk+y+ZFURarF9YCMtUfPDKCnkyGcBOJhFs3p06dwuzsrCtzUCqV3DhpRVsfPRqQ8gMLUHpZ7BZRW5ebdQuSCD7S6bSrVkglTSWjiuPkyZN48MEHQwuPi0nfT+bRhatMxq2wau1SWRBlq7ufjEvFQCtamVSTvQA4K5PvUsuT72Al0/3796PRaLgt0MViEQ8//DCq1WpoDz2fYwWQCiY7T3au9DcXYKfTwdTUlHvuJz/5SS+Q5N/333+/+98Kja0kzrEVWowNF4vFdYoTWONDJnjyf+72UY8Y54MhRFr63M1WLBaRzWad10wtJ/2f32Wekipl3m89lAqW+DydT/VSkhcymcw6IK3fB/y7MOjxkQKPWAAA0KBJREFUoXDkbwIJtRj5XA1BWeNFeZefMx+A/K190/tUwSnw4tycTUhvB758tKQGmw+YWJCiMtAmvSpA8V1X74mV54B/t5WVk/Y6yWcg+fSF9dgo/1gZxvv1PuU5DQ/pc1jEk2dNachR+ZJeRRolHBObuM51RgNUz7OanZ11MmFwcBCpVArpdBrpdBrj4+O48MILMTs76zy/bINGICw/8J2PBKT8wAAUX+fVsvIxoO8zy9AMs6jFu7i46HI6yCzxeNwVClpeXnaJSJpVTgbkc7norOK2CJ5WLN/JXT1MluRvtqVSqTgBQTcfGcSibwVMvJ/X6V2Jx+Ou2ubY2JjbWhyNrp0RU6lUQpaukgoikv2f91kvFn8r+CCQ0l0YlgdUYNj/7bxvFTWbTefhYHIyQwkLCwuIxWKuiB9zlIBwkh/BiQohBSLkCyZCkz85Bqy82Wg0XKVgWonRaNSV2abnQBUzQ5T0yug8tVqtnoBclTyvEQRxfajQpvLRhFYV5CyVz3fpmqQFqEYC593mbvG6ggq2HUAIdGgfNLyjfMV3cV4VGG3EdzsVpFB+9Mox2Qio8HuaH2G9ynpdwzzWsGM4Tz18Cgr0bytjfPKRpDxnQQbQnTcFHrzu0z1sMz2W6vFWHiUv00igp5x8znv4NzdYqExnn1qtlvPgM2RJ2dFsNl3uIUOu5NlYLIZ8Po+vf/3ruPzyy3HZZZchHo9jZmbG5QpyjfoqMXMtKLDaLO1ogNJrofuscgtA1IIjqcBSS6DZbDolrPdSQdAlpotIlQpJXfYa2tFtnfpD4uJLp9POpVav1909jDFSGNPSJVNqfoDtnyp/tQoBOMt8ZWUF1WrVVbdlnRV6b+bn5x1wsG4+tZYBuIJkVpHyfVzkyWQSuVwO7XYbpVIpFEZgvgzrtvhCcxZ8qqW8lcCElM1mkclknILX3CMKDVaIjUQiGBoaQi6XcxY9w3pqWarQ5VxaC4u8puNOMMIaOO122wlD5sQAcPPLdpFXrDJRwU0hqUKZ/ECBZYEBn6PVL4Guu14BhvZPd+BwPGkdatiUwNoCIT5b14iGDzSpl7yr77YF5qiA6vW6U2y6DjeSX9YbuB141kebBSb6OfvG/zWHpNcPAYzNNeHzOZfqrWP7dLwtQLXPsd4RkgIP3sddjj7vCt/BH32+PofGCRW41oBivxqNhtu5adeAhikzmYxbq+RBGpqVSiXkaee6JcjXPDX1htCAarVaeMELXgAAmJ+fx549e9But11OpDUkfWT1y2ZoRwMUoHeIAAjvMVdmJLDgJFN4KNpk6IaWWy8vB5UDJ1KFtTIk/wfg4v0EMvpufq6TzS103Bpp3ZK6IMjE3MZJptSxUe+QCmh1VQPdRcRnMG+DAIvfYzKX3Slh56JYLKJQKLjkWwq2hYUFJBIJ5HI59x3WB6FVfOLEidC2WypY7tlnAiM/9wmcsy2g80n1et0JXybAqRBnaKZWq7mthkwEZmEloHugm4ZEgqBbEI1ChpYXQax6ByKRiONZKm4qFR5/wF1d9J4Q/BBUWnAIILQGIpHweVGaEG49I+qZYDuAcO4K0FVw6sVQlz/Hk0ca2LWrW+41Z8V65vS6AhU+R/NgbCI6j4CgsiAA1L5sV/BxNrLARJNglRf0c9boARDiAQUpdjuxvkfDOUAYgOj86ncAeGW4ylElnX8FPNQJtsil5X3lRytzfe9jOF6NB908QV6p1Woh0EA5D3TlgAIc5q5UKhU3PgoQAYQqimtyPrCWw7Jr1y5EIhEcO3YMCwsLbgfn8vKySzXQZFsl1TucY47jZmlHAxSfRWyVkQor/s0JBrr5Fyrg+RwCGZIP+VtwQibTZxFwqNvNbt2072i32+vuobUIINSvdrtbnp5JtuoSV5Bm4+4KivT0Zvaz0Wi4sFI6nV63K0O9NhTyyphBsFYF9JJLLnFuQSpj3V7NnThcqKurq1haWnIuy/379+PUqVOuii5DVxyjWq3mLFUFWRbMbSSYzifRC6bJuio4mLC2d+9eFAoFtNtt1/+BgQF3ICAVvyoDAhQK6GaziWq16ix9uoBV8ZN3eKQBtyjTq8JaDIyDq1JR0EjByERTIOxa55jrmqMlagEl0C0QZz1oPgXANUFBzTWk+S38vnpFyMd8hypObYeuQXqSaMRo/gz5W2UMx4aAX40BBTQk60XZTkTPksomn/dXgRnHO5/Pu3BjJBJx+WzaVx8IIeka1s8VmChf8rdd+708Zvq/elo4TzbUqiBIv6MylO/15VNpn3VLMMGCNfg6nbUdNZqvlsvlQvdyfhYXF1Gr1dYBRl2X/OFZWBqqZFFRhptjsRgmJyexsrKCo0ePutOj7Zlm1kOovzV0tBna8QDFknUBaliFipSZyBSOjPVXq1WXXwKsD//wGp/rS+ZSi5BMpNargiV9toIGCitap3qYGhcvwZEyo7ryE4mEs944Vlbgckx0gapV12q13DN4H3M/iPrpqeHYUrnR2pyYmMAFF1yAxcVFzMzMhAAS+5lMJpHJZFzuApOR8/k8UqmU8zTt2bMHU1NT6HTW8m5YNI5jGYvFzupy9IHarSDOEwGHhkGA7hbGAwcO4IILLkCpVML+/fvxta99zYFRhtiUJ1VIcwcW+Zlzo2cQqTLgOHKuNYxBwczkaE0C9SXCqkVr50B5TN3y1v2t7WBbqOxXV1ed10wTYAl2c7mcexbXSSQScZ4ojpsqOa5pPo+5Mbq2rfIisFFvK8eYwFDnlWtQC+apx3I7AxOS7pyxnmcbwkmlUshms27MmfxNL0Q6nXZjSf7TOj9AOIxE8KHAQPlXd2BZXaBeRRuWsfPjA0W+XAob0iSvWgOQ91I2WlJgzb5zPOxONY4XjTX2mQb16uoqSqWS25VpPTxsM41zrm1dF4lEAkNDQxgZGUG7vXa6/ZVXXolMJoOjR4+iVCphfn7eySGfPO0FVKg7NsVrm7prm5JlYI3Fq/eDg8EJisfXiqdRuTGev2vXLhw8eBDNZhOnT59GuVwGsN41zGfYH6JkZWhOBoGEXTQq9HwCk8ykyoKk1ppF5Aqi1LOhTG4TygCEhC6LdNFtvbCw4CxAuqvp8gPgkPbAwACGhoawd+9exGIxnDx50t2nVi/DNIVCAYODg8jn88jlci5pi3VfGAZrtVool8tOsA0NDTnLYXp6GqdPn8bs7Kzbkudzr/r4Z6uI46FCVeeBILHZbGJxcRG7d+9GLpfDzMyME/B2Syytr1qthkqlEhKGKpzpLVO+VAufwJNeLrp1NfTC51nrlCBdPRXaBoIMzRuwlqhadyr0qST4fObFKOhkmIo77bQNrMYcjUZDXkdadzQGbFiJpEqNa4hF8ahYybtsB+eJuyN0izSfqWBFBfp2ANOWbMjFZ6HHYjGkUilXIn10dNTJDQUFKm9UgRJMEkxr2EYNPJXLysfaJnpZgbA3T79vvc18p/K1zoMNg/NZKuPs2lCArZ4mDWVSRuvnNFQ1ZwuAOxqDya5MW6C3U3P6VCfpewlotB9qVLNfXDOlUglTU1POA04dYQEHPee6Vnzg72y0owEK0N1mSSsnnU5jZWUFBw8exP79+10SZ6VSQa1Wcwk/WmAGWMsJYF7A0NAQLr/8crRaLUxPT2N+fn5d4Srr0lQhquBA0bnPzcbJoyDlNbUY1dL09Z8CmguXsXVV0uqiphJS65PAiaharQTdD08BzJ000WgUxWLRlfCnyzEajWJ6ehpnzpxBo9Fw/Vd3K9H7nj17XF2O06dPh2rFRCIRpNNpJJNJrK6uYmFhIRRP5jhns1k85SlPQaVSccWEmEBrvSnbQeDb+bceP4LRWq2G4eFhFIvFEB/qzhy1ypLJJOr1egic+PgPgAvPaR4J30vhpDtWqMAJDnQnAPmH+VXsh3pIuN4UmJMXFaCpUFOQqd/RNcj28tntdtsltbM9aiUSJDEXQpWsenF0zLQ9XCPcFcFQD9eEKiCCKt3dQGOGY2wtagtSthtZgMK5SSaTGB0dRTqdRqFQwNDQUOhEbgUMClJSqZSTn7wvFou5oz44zr0MDgUvKlspGxTMkHRN8F793OdhsfzI+xRM2OcDcEC21Wqh0Wi4vmgYEOgWN+R72CeOh5Z+YPVpfV+1WsXKygoSiQSGh4dDYIkghN9hPh9zV7jdmDv31FtPI6harWJ4eBiXXXYZbrvtNhSLRRf+V48Xx4UghWPg8yqdjXY0QOHuGc3uZn2Hyy+/HIVCAYuLi25gKKxouavbWt2OS0tL6HQ6KBQKuOiii/CkJz3JubQWFhZCOwAIBoBwHJxeDRV6PjRPFzS3MRMEsF28l4qJXo9ms+n6TXcyx8Sid93CyXHQXBv9sQtXkzfZZrZr9+7dmJiYcEiaC6zZbGJmZsa5tzkmWrOiWq0ikUjgSU96EpaXl3Hy5EmX26DjyGq83KnUarVQrVZD1gRd6bSoY7EYDhw4gLm5OZe9rn3aDmR3bqkHg1Ym57XZbOLEiROuXH25XA4JHwoy7u4pl8vrFJuCNAXJ0WjU1U6gEtU8I36X3gEFQ8wNUetJ3fUUUvQSqTdQ+8tnaUiH/KvFqXidIJmghGuf7WNhQ3r/2u22y2XStcnx06RV9oH8rspHt3fy/QqmKV8omCORSEipqCLle3pZl5t1gW8FKTjhTyaTwSWXXIJCoeD6oMndlLvLy8uhsBnHhYoM6MoYysZcLufCur0MNRLnS/OgfEahvWaNF4Jp5VG2TbfjWyDDubRhTAITgljyJcdG1ybzGlU+EMgxOZXeFraV4Ef5PZVKOfCubdX6RewbPd8ahlpZWUGlUnE7C0+ePImHHnrIhdf1mA7rKbU7WHU8njAeFLpjNeO7WCxi9+7d6HQ62L9/P44dO4ZUKoWFhQUMDg660vHMSCYzqCKn0GaogKc+jo+Po9NZq546OzvrXJbqbicAUQtILSt+rlaS1pggqtVFq65w9YgA4Vg2hbwuLDKbMobPWlQXOkEOUbfmMADAgQMHcPHFFyMej6NSqThPCgU3wznsFxMvl5aWUK1WUS6XMTo6ikOHDrl54PiTBgYGUCgU3CGKQ0ND6HQ6DrUTMPJcGY0Faxl7blXmLhTt91aShvl0VwA/4w+3b09NTbl6PLxOkE0rKAgCl4tkvUZA2FNAzwkFCwGuJq8C3Z0LGmqhQrZ8S+UPdMN3q6urbs1x7MnLfA89oNpOACHFr2CCYMm2k2OhSs/mKxBAqBfJrgsfiFNAT9CkgF+9OgyHUUGzzgzDz3yXjoV6U9i27QpSFJxQfo6OjiIWi6HRaDj5x10e9MySH/QZ3J1IuciwnAJGoHt2FZNqFUDq1luCVfKQermpIG09DvsdGy7X9igoUM+Melf0Nw0olkSgd5p8rDl95G9dQ5R/JJYm0MRiAnbNxWIoSfvVK/REnuXmAwVfPPuNbY1G18LrnU4H8/PzzhOjoJHfV9CmOu8J40GhEKdgSCQSuPzyy3Hs2DEXhw+CtWzkarXqtkeykBoXDc9oocBV1yAXjS6ioaEhHDhwAPPz87j//vtd4TJldOZjMElsZGTETRIZloBFrTggnKnOvqXTaZdEpQKeiVIENtzHrvVBNGcA6HphFIT4rAwADnRFo1EUCgU85SlPwejoKNrttsveprJdXV114ITPWl1dxeLiIsrlMhqNBoIgwIEDBzA6Oor5+XkHZMjI7fZaDY7h4WG3MIvFIoC1/fcrKyvIZrMoFovI5XIOLJZKJWfJxWIx5+Ivl8vIZDKuwFy9Xj9v/LkRWR7jb7VKGAeuVCquyiMFmG6rpvBkkSWfG1W9UvRMaYyaVh7zRigE1Tuo4Jhbj6lkdGsorUx+jzyrOU9A19tiw6OqnMhHvMfuclCvh96vWzath4Rb5G3xObXyNGyklifPJKHgtmE0ziPDjpwreltKpZI73FHBDz2n1tOlim+7EEGBFlbjXLDGEfszOzuLarXqPABq/fMe8gXnjSGiZDLpALEaPEyEtyEQtkvBqA2ZKq/p2NKTwTWhfKDrie9Qo0+BFHkU6Bqn1WrVGagqGznv3Iig7+x0OiiXy1hdXXUhbt0Zp/fqLjEgXDRtZWUl5EkCumUuuCmB/eJYKtBhDZZarYb9+/dj3759Dkw99NBDANZyYahrFdTzmerlVM/sZmhHAxR1ETIG+oxnPAP33HMPcrkcBgYGMDU15YAA3dhUAtls1oUM6vU6hoeHkc1m3ZYqAG6SlpaWEIlEXAw+Ho+jUCjg6U9/Or73ve/h4YcfDi0QCiZu8xoYGAiVDR4aGgq5itW654ILgu6hbSqwtdIfLS96ejQLXMdJFyXQBXdE3irANQwUiaydvzM+Po5cLueYke/U55dKJQcCa7WaOzlX8wMOHjyI4eFhVCoVN55caGzX0NCQy+7nIXjMIVpZWXE5LeolCYK1JF4CHMZUWQtgeXkZIyMjSKVSWFxcXBf3P9/EZGDyBRBO2NPqstVqFaOjo84DaOPlFEi6awsIV81VAEoBRT5TPuQOgE6n4w6sJC9yDmnl0oOoRgLfqV4h9ZZw7aiiUOFpFbIKYhbno7DXwlZcc2rdqzCkIGd7dIssALdetfy3T6Gx/TyXSEONfB+VoZ2Pdrvtttk2m00kk0nUarVQJWgFb+q52U5EcK07CUulEhqNhqtWrB40jsvy8jKy2ayrmWRzRggCefZXLpfD0NCQq//Esc9kMs7Y4Vxyzil/6a3SMCPbQhmpuU/0YnU6HeeFU++c5U+VH/QY8G/SysraoaRaCwfoln1XsK4GBcEBQ+Htdtt5/vg5wTdlvXqIaHiq50fBPMeRxM9VVih45ri0Wi089NBDaLVaGB4edu1mbRsWD6W8sB4pvudceHpHAxQFJ1R2kUjE5SgUi0Xs2bMHs7OzbisrJ45ghR6CUqnkDvNTQLFr1y53QB4Zg0KdSu+Hf/iH8dBDD+GBBx5Ao9EIxWZ1IZPhlpaWXBGckZERh1DVBQf4PR9022UyGVQqlVDBOQphxhxV2Otz1F3Oxa1JfLyXAmJiYgIAnPeBTJhOp51y43bW5eVllMtlV/2VVkwkEsGePXswMTGBmZmZUHiBbQ+CtWJwCo5arRbq9bqL4Sqzq3VOwMkkWlsQitbcyMgIJicnMTMzEzoo8XyThgNJNkSgbl8WRGKOjQoTAlnLP+rathYgr9Gjp/NIi1fr36iVrNae7l6zYSVNTKXQ5W/Ll/pM/Ztzvby87IS9ggfOLfvG9trnqcdRFYOGsHTd8nuaaM6+aHhOwRaBiXo/NBzEd1Cpq2fv4YcfDvXFKontRMq7HAvyi8oVKi8gXFSPXl8NXZDUg7a0tIR2u43R0VGXDE5vSzqdDgHASCQSAsU6pwpIGGLRrbxU3GooanKnehF5TcG19RzQM8QwH+/jerC7cWho6jM0NDkwMBCqPaRy3HoqFKDQ60Se5RzZ/vD7Ok/6TP7MzMzgkksuQSwWw4kTJ9x8At3dceoh0r5omMeG2DaiHQ9QuGtkdXUVu3btwvLyMvbu3YtMJoNCoYBXvepVOHr0KG6++WYsLi4C6B6TTiZstVrOcq9UKi6xrVqtotFooFQqudOJCVRoRdIqO3ToEMbHx3Hs2DHntVFhZDP7I5EIKpUKGo2G86gwW52CnF4f687WxNnBwUHXBn6P9zP3hQtRgYh6ZLTMOQVAsVjE8PCwsxLtricCo6WlJczMzKBUKjnlxvEkYEylUti3bx/27t2LqakpFAqFUBiByV1M7FIlxoVu6yJw0QBdCyaXy63bYkzXLT1Fc3NzGBoawp49e3Dq1KnzxKkbE4WierIoGCmUgbW5ymazrv4AELa2+L8KHutOVa9jJBJxSbhLS0vOO6Hgj7sPKGT4DvX0qaGgYENDSirctZ0KnBVo275rQTRN1LXghoqI8XQdY1Kz2XRtJx9pPR8qBs29UWtd1zEBBceWXi81DmwyLnNuqEAnJycRBAGOHz8eApn6s53CPKr0aOBouJDk2/arIIU5hEB41xTQDXMvLy9jfn4e+Xze5RsSANFTA3R3M9owHRNSeZ1A3FrzVJ5M4lVeJimfkcizVMzKuxb4avhGAbjKY8pozjvztzhmNgRKYEFSTzyBj3qJbPu1b/zNH44P216r1fAf//EfXh5nCEqBFPuh3hP+bJZ2NEDJZrOYmJhAsVjE2NgYhoaGsG/fPrzuda8LoUh6AOjasu5gKmECArp6yQTNZhOnTp1CtVp1e/oZH+UkMlno4osvdl6CcrkcEoyceF2Yq6urKJfLGBwcdLUCuPOEoEYXCREoP7MKjV4LWsYAQiEroKvQqYgIuDg+Q0NDLuygbmd6jYIgwNTUFI4dO+Z2PKlS1JOWCb4OHDjgtnYq2OB3s9kshoeH3ViqQNecGeuqVIs1n89jdnY2lLdAsMR+dzodV89lfHzc1bo536RnJNG6opWhIQqCQwJmWoPWNayeE1X6SmrRkHd4SBiBCfmVO+RojfKaWmpUIHy2VlIm+FevkL5XeU/bys+4dtUiU68FBT2fwb+paFgygGuafETvIgC3vZW8qICY1r/ykgITVWKaQ0CrVUM8qnx5XZNB6YllcS3t13b0oljPcKFQcPkl3EFFBQeELXX1MrBIoa2Xof3mfeVy2Z0kr95XDc3oHNB7YefNVvVVbwWvc94ox3wePfV0kX84n+Q1lZ02n8vW8OH40Likx59ePMo/3bCgngkLdHiPykCVg3yf9Vpag0K9IRqGVD0EwBXX1DAq71NvzBMKoIyOjiIej6PRaODo0aO48MILcerUKXz9619Hp7NWqKlYLOLQoUMu34TeE03u4mKKx+OuAiWTg6jkY7G1xMtyuYzp6Wns378fu3fvdqiRwpTuy/379zv0z3AH0HVDU5gyIZJb0BKJBMbGxpwnwlpSFHBBEHgPIeM7dNuvxnrJPAzPqLtzaGgImUzGgSM9yErd2LqFmGEUMrcqOdZFKBaLiEQirrR7LNbNxmdycrlcxuLiogN6jFNr+X0uVvaZ/VQlw/wTtsXmBFFgzM3NueTbrSC1YtT7AIQBxurqKo4ePeq+4/OW6LPUWtXP1HqhgGg0GiiXy6EaE3QF891UIASOtF6ppBXQaGVXzhHbpH1WkKnjod4Kq6zUI6duZ/6oMrDhP/IU+6ehFvbFtonCl3k/1ktJxUCgQqDG9jCMrMXJqNg0j2pgYMDtzMjn8y4/Svu+3Ui9J5q8ScXKnDDKJbvVWmUZ88Q4RjRsNCxI0KY5bwQbvJ88FwSBk91At2CYAms+WxW2rikCXCvfeL8CaFXEajjZs8E4//V63Xl1NDeP7+h0urlfbJPmrtDzpGFI5V9fjoeuD+WpXp459XRZr78CF31GEATIZrNuc4J9j4aNnjAAhVY/J7xeryOdTuPCCy/EzMwMgiBwsUpWNeS2VKJcCiFaAWT2lZUVLC0tud0nysD1eh1HjhzB1NQU9u3bh2KxGPJikKLRKMbGxlAsFl0IRI+958KkC73TWcvcTiQSrhS/ClordBcXF10yKZVJp9NxlqxaqvqbC0UFChUTUT3frdabVhhNJpMOPHDBAwgBqPHxcWQyGeTzeXf6LfvKPfrZbBalUgmzs7PuOUxi1v37VgGp54EJm41GwykFWlbsF+/hgoxE1hL7topsnNn+aD81JGHzHNRCJynA0XlUhcoTulVoA91zaugJ6XQ6LolcvRnkXfbDWo98Jq1jtotCm7xqvScKsnnNWnH2Xt31pAJUt1/yOcVi0fFCs9l0J0Sra50CGeie4MzcKAIMHfNcLudCraqoNFeGfNput13SNr0nsVj3XKpMJhMKA2xHUi8fQSMQzrNRbxfzp2ySMsNC0WjUeXlVIbL/WltGk99V8dF4Yb4aDTTdNURPJPtgZaJVvgSdmitjDTY+i2uBsopeD84jPUsMpVtjg+9PJpPIZrMA4GSlbojgeibP83scU+tBYZt1B50NE6kBoWtVr1lPp8pUjgV3rmkFdvt9+5yz8tqm79yGRIuYAvH48eP47ne/i8OHD6NUKiGXy2FhYQFf/OIXMTMz45Ap3VEU/EywzOVyTnDE43GXg7G4uOgSFCmQgTUL9Pvf/z6Gh4cxMTHhlCEFsSYDcSeMZqNHo1EX96dAZzEeghkm3aqVEolEnKeGioEHR3EhM6lUBYUyJcFZLBYLnRrM5GFtO63narWKbDbrwAUAZxGoECaAYV4Nk4PZv06n43Y3LSws4PTp0y6plTFgejwArPtfx1gtVvaHi1EXJP/eLq5ygjC1RNTDxf4RjPCaKjxVpNY1C6zfrk5wQiVJhawudlX0DP2Q9zTkQt6lW9oeqkn+Z7Kv5m6w3WyTBTGMm1PgA+u3b2ofFSQRfHHLNIEt+ZmJ3twdxrEkz/BdfDcVX61WQ7FYRCaTccqWYVYNPwJwu/5oDFHBsl/5fN4BJBoaWuyQIWdVmtuJOM62mikQLtRHikQiDuARkDF8okadbqMFwl4/Hh/A+aIhYz0JupFAZZ71wABYN758rnrJyD+UH0B4qzHXpfad64p9Z94LvSoE55pz1ul0XJFR9off1+KLLCNBMKMyQD3l2jcF9yonKBd819kfknpR+EwaTGo0FAqFUNhfQQrf9YQCKBwkdvrYsWO48MILMT8/j2g0iqNHj2JhYQEDAwMufjc9PY1du3bhggsucIyYzWadco5EIs7yymazTnBQgQJhK7VareL48ePYtWuX80YAYYZhQSJF8jzfgMBCqwcyn4QeBno7VLhb1Mxti/QoEYwxH4DKhACMcWNaelRM9O7QWqfLVJU+gQDHQhfA4OCgK6yWyWRQLBadtchtv+zj9PS0a5vmAvG51rpRcMIFrwtJw1YUlAQviUTCuX63mug6BsIVbslTFNqNRiMEZBRw6fftNRUmHAOOG8OH5APOP4WlVqJVLxx/uFPGKnUKXnWHq/dPc1PU+uU7dB4t0LJb2tkWggsbCuC6UyGqrvd2u41CoeDWtlqqFhRQyVSrVeTzeaecNRmbbaQnr1arufCHKiF6AHgSLMOb9XrdeWBYelzncDsRZYAWxdPfvjZHIhHn7SV40LFWry1BJ5+np3FzHXAM+WzKS7aJ3gb1VDAhnDxrvW6Uo7yu+RZAeCeShuH4DvK8glbWv1EdpXKUYXSWoNBQF9CtxkvPJo0Ctk+3H1MvaHKqrjP2UcfXeuk4Zj5wou/huHMeuaYGBweRy+VQKpXWgR7lkc3SjgYoamFSwMzNzeHuu+/G2NgYTp48iVOnTrlsby4OKoeFhQV3uiatc92GSIFDgUHLh/FJZe54PO4Kl42MjIS2JdMDQOFMS6JarWJmZsbVBMnlcq4WixZlGxoach4cKlu6RWmJxWLdE5MJSlRpBUHg8mmYRLu4uOgWIcNcZDgCukql4oCUuuy5YNSyABDalhoEAfbu3YtCoYCDBw/izJkzmJqaAgDnmWq1Wq6MPd/JBaHb/vgdjf1yLHWxqpXPBUQlzLbakMhWEAWTlvcHusJ23759mJ6exkUXXYRjx46FrBBg/W4YBQrqOQHCAIW1RHRcKTiWl5ddoibnlt/lLiuuH3r3CJIBhDwAXBsqwCm0lawrmcKT16hcCDw0hMh55trWbeM+C06BAoEqPXrsrwpTCxCazaar2ksPJtD15LbbbRcKKxaL6/LCtD0aqsjn8zh9+rTzKur92zHMo94TVfIKPvU3/45Goy7fRq13PpPP0XHjcQ86nxYoAN0KyDTKCFL0gEutZKsAWseaMp+ePa4nBSUWSNNjw34oGFCPOd9LYBuJREI7F/lcrlXle35G/qesU+CjwENlnPWMqEHJPtt155s7fmZBDN/HZxWLRVf/yr5fx2cztKMBCq1+MhMrRB47dszFwZiHoEBmaGjIKa2ZmRlMTEy4wR4cHHRCxrq72u21ImDc6UMLkgKZQrJcLiObzbqEUCpRoLvgpqenndCny50KO5PJuFAKPQrZbDYUgyQAGBgYCAEI5rdQiKvgplJsNBquRD1BG92oWsGVCyuVSoXCRWRujasTPdMbxEW7a9cuBx727NmDwcFBPPjgg84qYhybfSN4VEULhMMGFGA8QBDoemDUwmb/4/E4RkdHsXv3btTrdczNzaFer4cO3zvf1Gq1UCgUQrlNCgouv/xy3Hvvvdi1axdOnz7twIAqfyo7tYascCGA4Oes+EhASxBXLpeda1a9LeqtU9e0hlvYBt97dTeOCuFeQs9adQzZ8AgFPk+LIOq2TIIojoOGpEi8xmfoVn4FgPodtqlarbo1pjkXHBO64bnO1MuoIIWJ3M1mE5lMBkNDQ6EcCQv8txNFIpHQQYv0qqkX1YJfa2QAXWVNUKugkGPK4owKTBSQa/kDKnV9j4IdoOvRY9v4LBuq0qRbDbErf2p7FYhrWJKecfKc7hKjIUfeIcBjG8kPvM7n0ShlGzS1QPndGjFAuPAh86l4j91NZYEY+68hHf7O5XKukjWPhpmdnV3HN708bL1oRwMUnRwuZnoPOJH8jEKLKJ4Tz0TYsbExdDodl6DEMsNA10rnpMZiMRcr1JwGtodKkouPqJfMSeWsyYS7du1yz2deB9E1FTw9L3wXkbSiZqvI1bvEOK5uy2M76S1hLguT9iiM6N1Q5qI1zfG17vbV1VWX/MZjuvP5PPbu3Yv77rvPubPV+0MFzP/VutX3dzqdEJCi5URrhPyQyWRw2WWXYXBwEMeOHcPp06dRqVSwa9cujI2N4Y477nicudRP9A5x94su3FwuhzNnzmBgYADf+c53sLi4GBIOjOcD6xPbrGDS3AzmZfB7fB7BNseb+UAUqBSyAEJCVJUOFYIVbD5rzHp49Dt01fN3JNLd5sz2aulw9ShqciLlANtE4EXZoLkpPKVVvUFsi7rJuVZqtZoL/VIesF8avlDDSA0L3XkWBIHbEp3L5RwI42dUItsldwrolkpX0KCeLPXcKqggP0YiETf+uoNHdx52Oh1X/NGGjtRro94IVb4A3EGjeoKwDduQ3/leVcT0wtCjonyqYNquQQUsyoO8TplH/lA9QF4lbyn/qdeE69aCNuog9SSrZ5B9JihSQ9AaPr08L+q9euYzn4n5+Xns27cPs7OzuOOOOxCLrZ1EXavVXB6W9aJsmtceLbNuJWmIQa0Tol1NAiSzMTTCcu2RSMTtsScYABDKRyEQINPobgigm+nPBcDJ43kdQNfdx50seiw7T6Kk+5g1SNSNXavVUCgUHFCyikCRu2ZWa0G5SqUScoESSFg3J/Nv6JVi2Mu6FcncjKUTRDSbTZeITEEzPz/vCqaxjgwTRXO5HDKZjHMda64PBYRdMFzMKpzi8bVzPNiXfD6PCy64ANPT07jjjjvc7ol6ve5qz2wlccugnctKpYK77ror5LZmn3QnlA33AOEcHQorDZlZMMDt4ryH88LKnZrcqq5mrgNNRgTWr0muEVXivE/bSmL7uKWS3gYmGaqFqHkzKliZfMo6PBwH3qs1TLgum80m0um0W1+2Pfb59BRqzouCG/aZ/faFCgheKHM0wZNjxByE7UQEJxq2IKn1rnNsAYbOGcdHvYlasNICB2uQ6TrRXW7q3a7X6y5UZHMEtfqwJtgrGOG8qXeDfMV7rMeRz9DwK9cVKyNrjhZ3IFI/EJQoGLPyW2Uz38X7LFhkOznGGsai7lAwo2uMY0AjmrKAOzVjsRgeeughJ2fotaYXUUHOudCOBijqGuQk0fWqtR1oDapwU+ZvNpsuEVWBCXM8qtWqc8kp0wNrE86Qyupq92AnTrSeHcJkR8vMbLMKPN1/zwXDuDcnnUpDwREVAi0D3blBcKYxTioYMr0VFhTy3PGkdR/ozlZPRjKZRD6fDynTRqPhqrwWCgXnBRgeHnZzwNBYLLa2q4guY445FQOBC/tJBUehR3CXSqVw8OBBHD9+3G0515wKJs1tFamCUhe4CmFgvQVKoM05VHAAICTkuS7oCSGPAXB8TUFIt6yGzPheAlwKeT6foJ7E9/H7Nr/AghRrnSnYJJAgj9JzA2Bd4inBKYDQ2tBKntzBx3dpfRfyQjKZDFl4upa0zZQv/Jufq1KirNEdShpuoDJVxRoE3cRvzqv2e7sQZQXQ3WKrfVFQZy1nn1VuQy6UZcoPNsQDhM/F4aYDO16U8yx6RjlA4A0gJB/pTVE+pdKljGF71fOhbVevhXol1EPONivxPSwyxw0KPHRW26k5NAwXWtnBMVWdpxsILPDiWlO+Vg+L9dK022186Utfcl5A5kiyXZlMBqOjo+6QU87bE8aDouEdZWoKZJIytaJZtfZorRGAqPu1UCgAWDtvIJfLhZKvND5Ppuci4Y4aWqncOcAwBCurAl3riX3RZF3tI5mg0Wi4xafFoNhfzc1hO5lFz4VEJmq1WlhcXEQ0uhb+otJh3J9eHYZ5iNKJ+gG4xQd0w0/xeBzz8/MYGRnB0aNHXcXfI0eOOIZnrhAXxerq2mF1+Xw+NHYELuPj427LM92jfL+Wz969ezdOnDiB+fl5N+86ltZyP9+kiphzRyWuhbzUOlXBzHAY50A9JOQLCmIVOLFYDLVazQlJFaTpdDpUPIrWnIbcON6ca9Yi4nrRxEIgPO7qqbGgzLrPuZaYZxaLxRwoJtEa5ZwrIAG6Xkv2I5vNOg8bhbwKbhoA/FzBFtcL28c1x/+5ruz/qoBtCIQgXoEm+6lJ3VvJpz4iTwHdcIGCDP5WIGKv9bKoyb+2z761y/ED4AxEhsPVe8H7WPqAlap1txfDOMob6qFjP9kGBR7K4+QZ1SO6u4vhVPZV11+n03FeFY6N1t1RA5xyg99jHiKvWY8eQbXW9OJ1Xb+qBxXAqd6wISMCfl1v7NPu3bvdBhINW22a1zZ95zYkFWiK6hT18XMVBNaNyonXcw8oHIE1i4EIs1QqOYtTAVEmk3FWPw/Mo4IPgsAhcy073Gg0UK/XXTu5sNSLwx9aLdyxE4lEUKvVnFeG+RfqmlT3PvsFdN14qVTK1WzggmLYhyArCAJnlRYKBWSzWfccLZwUiXRPJmb4ZGBgANPT08jlcmi3264Y28LCglMa7Ce9OPSSMBxlrXcqo6GhIbTbbZdYDMDNK+OhBCfWVQv0rqJ4voi8xbbTY8AtqkC3wBLnmEJH205eJL8uLS2tU4JA98gCTTYl30QikVDO0urqqgMw5B0Cb1qqBIfWa6BKxHqIfC5/+znQrYehCcxWkem7NH9Ad+ypomPCZTQaxcjIiAMEFLj0oujuN8oBHWu1nnUerMzhmKgxoG3mOzTPRRWcXuc7twv5PAw+AKFgkffpGHF8gTBgJ1kQ08vAUI8A/yYQ1fcCXRnLsJ7OLe9T7w0QDtVZT4Kv7eo5I7BnuJ88wO+px4n36PO0nwxzMkdQ9d7q6uq6IxQ0JMvPdc74WwGKrkN+butPqRwiINHkbhqwNKKKxaKTadxev2le2/Sd25CI3NT6BLqnRQL+ralqnVAJMl+CrjX1YuiuHWWufD4fWpxE2ayayjMpGKYgk/AMCi4UggMV9orEVaixlko+n3ftIIBRL4t1qTNxioyYSCQwMzODM2fOoN1uu63NrOOiY0hARaua3hSCK0Xc5XLZtbFer6Ner6NYLCKXy2Fqasrl8+ihXETxTMzlro1IpFtZkSeb0tINgrXwEmtZUNik02kMDg5ibm7OPZvjWSgUMDQ0hGh0LWF0dnbWHSB5vunKK690XqKxsTE8+OCDuOCCC/DVr34Vz3ve83Dq1ClccMEFOHHiBGZmZvDUpz4V3/zmN0MZ+xQUBNsKwCn8dAwY2yY/qAeAv7mtXHlI3bpUquq5AeAEJj2J9EpQULLGg1VsqgTU80NrjPzKHw2T8H+OAw0JVUjq9SBvVatVxwf6Q/5iH/hdXwhCXf28R0GUAht7r64ZTd63iZrk8+0GUPSMGCUFGz5wYD0qAEIyScGM3msBrD6XilBBHsExvSIkelkpc5nzQblvCwbasBLXknrXtH28R/tMIMS5JH8reKc3XPtHftK+sA/0KuZyOfc9rbGlRiq/o2fL6RjqvCmoUn7m+zl+NEy4U1UPs9X8FI5FMpnE2NgYZmZmnBdls7SjAYom8DHUQKGlLioCB1+2ONCdgGq1um6rVb1ed5aXokzuiGCCENCN61OJ0h2nCkPjpXx+JLJWA4UCS1E1mZ8LSPtTLBZdO7TNJHVNa3ITgcb8/LwbF8Yx2W56KqjYqKCYNMv3pNNpJBIJLC0tORe7tqPVamFqagqTk5Mol8sun4BAhV4TzgsTV4nMZ2ZmMDo6GqpQyHwcbpmlB4vVgB9++OFQEufY2BiGh4exvLyMM2fOYHZ2FuVy2aH6rSC6ZIeHhzE0NIRIJILp6WkUCgVMTk66nSITExOYn593Qo1E3lW+B8IhFVWoBM5U1NaLQa9frVYLCVECAE08JxjhbgQaClyH6lFRoahAnqS8ogJaQzsrKyuo1WoOPKn3hz/JZNLt+tC51/WnHol6vY5cLrdO+VGpqYK0StWOrS+8wb6pC13nST1inBMqTRo2VE66prcD2fwdygdg/blL6oXSuSYgsWPJZ1gwY69xbGl8AuEKr/ZQQP7P8VxZWXEJ4RYM87nqKdA2+OSz7bvuRLPzp95NJu2n02n3XQ0X+cApPavM7VOdxeM+FHQrOFKjQAET79V5Ue8I+ZhrnTKY48hcGB0HDQNnMhlkMhnMzs6uW08b0Y4HKBxgLhhdEGQwxhwpnDTGDnQZioqSQoMMrc8FEJpUhjiy2axTmFSitDAYDlpaWkK9XncMxQz9TmetcFQ6nXbHiuvJsIrO1VPD+2j1cbGpW4/bIpnZnUqlkEwmUalUXD4M35vJZFCtVlEqlTAzM+MWEhcyLVCOV6FQcPeUSiX3mRXYpVIJQ0NDWF1dxeLiIsbGxtw4s5YJFw+9O1SKtVoN09PT2LNnD4aHh1EqlULWRDQadedvJJNJlEol7N+/H6VSySmuarWK+++/H6VSCbVazYG6rbRMjxw5gksuuQTT09O49957HQ8EQYDPfvazSKVSrtR8MpnE1NRU6NwTtRhV0DCZTnMk9NkU4HwGsJYrNT8/H/JIAuHYMwEDtzgTIDOUp8UIyaN2vdh2a/vVba+KhfxPbxwFoQIo7vpiKXT1HDHkA3T5hQK+Xq+7QylVoWr/rYKxysgnbJWX9ZquYesx4P8cT014326ka9wCZDXiVJFbcGLHQ58BrE+gtqEgyk/OF+dV28ZcQcoTPlPBFZ9J40+focYWr2veirZP+Yf6wiZFkydppBE8DA8Pu7HS9akbILj+OK6anGx3+xE0cEy1HRYIct2Sz9UDwvHRXCyuFT1OIpFIuCKfzAXi+qeOjEQirpTGzMzMpnltRwMUMggn1TI9lZ8uDK3cqYdX8Vl0YSnatol3RJv8n9uWLVJlqGRhYcGFLJTJNbkMgLNiqVgHBgYcoAC6mf+6YFXBK4PSKmAybzabdYx47NgxV1F0YGDAWZ+03Lh7ie5JJgrTMqEVzQMHO50ORkZGEIlEXP0Y6/3hcQPMbcjlci6fRkNRHFPOFcd9amoK+/fvd7uBotFoaEdJLpdDpVLBwsICLrnkEhw4cADVatXNSzKZdIAqm82iUCggl8vhy1/+8uPKo70okUhgenra1bqZm5tz88EQC8tFx+Nx532yVqSOmSanAd3wIHmAQlhDL4uLi277PQBXwp7KnYnRXGMMwzE5VbfxWhe9eid8lqj+zf+txyES6ZbWZw0fClLdeVCr1dz2dsa4yVvMRyiXy6E2MS/F8p++2/5WDxDHWgGVBScWkPF+Cm/2l2POsaTsOBdr83yR9YQp+NRdYAo4rNJXALsRmNPx471AmE94r/KNKlq+i7xKonKnwuc120/ym4bRbXt83h6+l15FpSAIXKFKBek6JkB3S7fmJlIv0BPIzzRiYEGhtk/lAwBnZFPvWQMTQCi/kjlo7CdzZ4aGhkJGMp/J7+XzeYyMjKBSqXi4yk87HqAomrVZ1vF43FldQFcws4YB0C3ypcLCCkv+zd/qBtNkKaBbE4XhEe44sVYiJ4/fV9BC9EoUTkbSXANlRjKFuhWVyXK5nMveJvBYWVlBsVjEwMAAZmdnHWiggKTHY2FhwdVQ4XlFTFzlIiGDc3cSS+ir0KlWq0ilUqhUKjhz5oxzC9ICJpJXS6XZbCKfz4fyGYaGhtzOIy2+RMBDIFav13Hfffc5wTQ0NISJiQmMjIxgZGQEp0+fxv333/+48ebZSAFlp9MJJT/74tsqvIA1AUb3MOv3aChOn82QpvKZhiO5boBuEhsVjeYJMZeKApEJeUD4RGtrRfMZVvFoH1WoqhXKZ/DdGv/XfhG4cPeYHmDIdcVwJN/B8ahWqy7EqmBCQYS2Uw0aXz4C79Hvcf2r98rnbleQYmXLdiGt38Okf1XI6s0AwqBCPdLKY5p7Z2WlD6Bo8TpbJJCWvfIa5QlDyConfQDUF36yc2/BqMpc5Qt9Dvter9fXeY+4DtWzo58nEmun3FPhK1BsNBqhXT0EwfY5amjTE6L6Qonf07IMtpaSghQaqswxtO1bWVlBLpfD0NDQpnltRwMUjTkqmqdSArpbAgG43AoFM/R0aNwPCG8J5HP0t3Xz0TtBYTg/Px+K2dmCaPxf4926TU4FliZwqbtNmZrWsS6mRCIRqk6Zy+UQBIGzKLmNl0yvuTSsKpvL5dzhca1Wy+0SGRoaciW/ybwLCwvIZrPrQjHsby6XcwcHsr6Kbl0Fup4Angar3iyGq3gmErcaF4tFNyazs7PIZDK4+OKLXX4Qx3Dv3r1IpVI4efKkC51sFZGvYrGY81ypwALWJxWqsObcVyoVV4mUQpEClveQNxhO5PhSyHONEGyoC5r/Uzjrjh7lRQVPXAPkS3uvVbrqddTnkd/5o2PCdWOfw3VIZUQQHQRrB4Kq0CYxnk/lpQBFx1vnTZWUygi9ruOhoQc7v5w3Xc/s83YM81AZAXDKyypD+0PSraYaOvF5Gay3QseRz9DtwEEQOIOUPKRjTKOQ8pVtVr7WkIwFCPpMy7O+daoeS/2cHlLf+Nj8F/XK0zjk8yxf2TxF9k83SGi6AkNkJAvI2AbuuOzl5SKvNhoNLCwsYHh42K0lgkOGs1hTbLN0ztz/la98BS9/+csxOTmJSCSCT33qU6HPgyDAO9/5TuzevRupVApXXXXVOkt1YWEBr3nNa5DP51EsFvFLv/RLriTuuZDuCqD1SCFFNy/zE4IgCIETAM4SpJWnZZfVGrCCQoWXKoVoNOqOT+d76Q7jJHLCNBvalnvWLGcFWHqNjMbPNTmSjJXJZNwiHhsbQzKZRC6Xw65duwDAVcRkgil329BVx/YXCgXnHiUQmZqacuPKMFEkshbi6XQ6GB4eRi6XQz6fx+joKIrFosvVIaKuVquoVquoVCpYXFzE4uIiKpUKSqUSyuWyC1Xpz8zMTGhM0+k0isUi5ubmcObMGTennPtjx44hFls72+b06dN4//vfjw996EP4+Mc/jq997WtbxrvkG4I3K6x8Ql5BsrrM1Srls3mfWon0QjAniUKPfMGdNlwbLDio64NtU9e0eh55P8MUNiFX26/k81zYd6tHRNujVrAqrNXVVVQqFbTbbZfbxX7pOqdSsLWQbAhCvULqwdS+cQ5UEfgUkfaTf2sNGTUYNkPnk3fVW6uhAXX72/kl2XwIGmE2J0xBifXIUB7qVnEAzpujRScVEFNJMleOlbL14ENuBCCoJi9Yb5bOKT+z86nPJGinx7nZbDojjGFoJoNXq1XU63UsLS25ZHoa3Ow714PqJQUSamBTP2nIRY16ks4L1656qm2/+b/OUbVaxcLCggNoGvqloViv1zfNa+cMUGq1Gq644gp84AMf8H7+7ne/G3/6p3+KP/uzP8Ptt9+OTCaDq6++OlS18zWveQ3uvfdefPGLX8RnPvMZfOUrX8Gb3vSmc21KqIQ9GZUMkUgkUC6X0Wg03ATZCdAB9MX/eK8PLfJ/bm3k2JRKpVCMX5VGNNo9IZkAIpvNOnDAQnB6ngzfRUGoFi/QTYTtdLoFv7jw+H8+n3ceGCa6aplljcFSOEajUVd+vtPpYHx83OWkMFFxYWHBxVFZh4Vzkk6nMTY25nb4lEolzM/PY3FxMbSFUwU9F5bWNdBxoLLjNtEDBw5g//79aLfbGBsbwyWXXIJcLudyeUZGRpDJZFCpVPCP//iPuOmmm9BsNnHo0CEAcAX4toJ3qZDoSfPxmwppq9ypXPVv+wwlhpFWV1dDSc8szKdgguPOLd4E9rrW1GolXywvL7v+cI2pB8R6HUmq/K0HgiCK7m3WgOA7KHij0W49GA0V0OK0JbepeBTs0wJldWS1lnV8VVYo33JdqFC3lrhVmjq/XGsW7PVS9krnk3et8lflp6E5nV+rIFW28Tk2J88CVp0LBQzkSx079eiQV6kXVDbqM23oQsEJ26A8zTWj/G0NWU1U1zITDJcAXQ+H6rF2u+12kHY6HQda2CYF5Mojuv70WXZM7RZxC7joOeF3fUaFfld5ulwuY2FhwbVVIxQEiZulcw7xXHPNNbjmmmu8nwVBgPe+97347d/+bbziFa8AAPzt3/4txsfH8alPfQo/+7M/i+9973u46aab8M1vfhPPeMYzAADve9/78JKXvAR/+Id/iMnJyU23hRYKkSIZgkd6E8nxM27n0n3bKhjVNW0XmDKeIm0AoVwN9WDoJHOSCB4IbrjQeB9BisZ1FeWzXbrYdatiKpUKZa4zJ4Mx2U6n47ZNM0RDa5Fgh+GfZrPpgBxLoROAZbNZLC8vY3p6GgBcaIf5KmfOnAkBFgoeFsPKZDJugVoXN1207JMeXMiQBXdnxWIxl1HO4nhUVgcOHEA0GsU999yDRqPh9uxze7GexXO+eZd9Xlpa8lrXep/P+6B8bQWrWrHqIqelFo1GXZiMoTMVIvzNxGnmCJFnrfvcCmfN07JtUre9AjDbfnW/M6dLPR/qwWHCLteihrt4P/OuWP+E79MEewAh63sjz6m2nUKXVrCGdtkGzU/wWaF8n84x+3A2Ot+8a/tgZTAQPnJBAQBlgc3x0OdYHrfeOpXVBJaqC9TjSk+rTdLmZwTiOpa2rxou0VCPKnnlX58eYQ0i1iHSqrUaWqexx3VKea7hWNZ64jhprRfKSI6N5i1qf3xzqjzH3Th2PHzjozzBe1iZnOfHsY1a1G0z9JgGOB966CFMTU3hqquuctcKhQKe/exn47bbbgMA3HbbbSgWi26RAMBVV12FaDSK22+/3ftcVhbVH5LuXOCE53I5zM3NhZJQaZ3oaaFAeO86lT0nC8C6yaTQ4XbOIAjcLh1+TsahUGUux9DQkDstmWiZ7eL97Av3jnOfu3XZ2bLMHCd+zjomkUjEWc7cRUP3YaVSceWXV1ZWcObMGUxPT7uyxDy4j2ieVixDQLSY2He1rNvttgvTDA0NuXFheAdAKE8I6HpTWJJ6bGwMxWLRKcuFhQW3Xfuuu+5yc7a4uIi5uTkXKiHfMeykh+sROAJrLu+t4t1YrFu91AcwrEfP3mNJFSaJQjoIApd/okI+l8uhUCg4PqVngqXwCbjViuJ6Us8It4uT162HwKeQLcixiop8rIYH36W/uU54fhMFPL0ttEwp5JeWllwbNCeMCkvHmUDH9sH2R3dBqEeF46f90DHROebfGiKywLUXnW/e7QXUIpG1cOXS0pLbVcVEbio83Rmp/KnX7G4SVYq8ZkNp/D4BN2WlTRzV0H0kEnEheQJLywO6XjRUYQEJ/wa63jn1ztMA01IW/MzW9eEz8vk82u21gp98B/PwmAfE8VJDjjs02U7tr40msN38PxaLuZox2n8bEtLv27Hg2mK9Kett2gxPkx5TgDI1NQUAGB8fD10fHx93n01NTWFsbCz0eTwex/DwsLvH0g033IBCoeB+9u3b5z5TYcGchGg06sqqW0EYBIH3TARrNemk6WeRSMTF6qPRKBYWFlxMX3NKyJTpdBq7du1yCZsMb6hnQou9kWGJgtU9p0wDwFUP1AVK1M2twsyFofuZilxdhdHo2pbd2dlZl3RZqVRQrVbR6XS3p5ZKJVc9kO7/YrGIZrOJ48ePu4XEQ+Si0agrrlUsFl0fCXiCIHDhBe4eKRaLbhfJ/Pw8pqenUSqVEAQBRkZGsLq6irm5OVdkizuQCDoGBwcxOjqKdruNU6dOYWRkxCUBW0Cn1un55l3uMFMBYPlZwbP9UbLK3/KLVs9kiASASxhk8jTDfrQAaX1SsFLwqyDi3FH4UDBb5WotLR846dUnriX+8JryOj/jYZ3A2sGB3D1gE605/+oVIpjp1WZVRpwHeu9syJLjq15InU/bVw0d689mwjvnm3d17jg3nU4HlUolFDpWS175XGWb/ujnCvgArAMPep/mHGmISZND7feoxGkkMFdJvbgEmWpM+oC2BSkqaygPuUGA3nE1ZDn37XbbHWw7ODjocgD1OAryA8OWnA+tg2XHhW2zAEt/A93dULY0h/3b/u8zPNif6elp1Go112dNmN8Mbb8UcQ+94x3vQLlcdj8nT54EAOcGUysknU6jUqmEtjlZwaDuPZ9gtPFN/YwnBCcSCbcgiWIZY2Q1Slp1mhgFwHlEuBOF1TspkJg8Wq1WQwJW3YHKHGRyLZrFHTd8PhUQARYtz3Q67RKXOCYU1s1mE3NzcyiXy+7kW4abBgYGMDo6CgCYn59HuVxGpVJx3+fZRABcbRSeXkxibRhWeo1EIiiVSpibm3M7dAC4/fPlchlLS0sYHx9HKpXCAw884BRAIpFAsVjE8PCws4oYAtq7d2/I5U+Aosrk8aJevBuLxRyg81k0vayMs1kfyhPkS83RIG+TT3gelFp6/EzXgk3EVSWqBeQ2UrD833qCfECGfdFwhwWYAFxOgYaTrBdUjRSuL56pxbmgwUGPLBWe9tcaOgQgbKttMwGMbsW180RSOab3qIFyvqkX76pSjkajLueLBpoF1vZvkipJvYc/aqD5+MLmqpEImBWcUKHTm6Z8RWVKcKqeHT36RPvONvUyDvQz5jXR+0yvONcavd0EesPDww4sKKjQ8BZDW5TpnAfyP9uu3h+bd6M6hAna1AG2H7650996v3o/V1dXMT097UL77Otm6THdZjwxMQEAmJ6exu7du9316elpXHnlle4eW0mOORz8viUqRUvKNJoXwrwIFUwkFS4an/MJM+ud4dbYaHRtt06pVHJJSQQRiUTCeVgYWiCDE6RwkTBxL5lMupwA5lDQuqUnggyslhqZiczAnJfl5WVXG0PjfZqHwhBNpVJx8XNNHKRQ5UJlobBYLIbh4WEAcEnI9LBQ2WWzWQRBgEwm46xWJq0ODQ2hUqk467fT6bjDCmklqGtyeHgYQRBgamoK0WgUY2Njrq7M3Nycs+xYgn9xcdGVXGa+zZ49e/Dwww+7sVUrfKt4l8CBVYY3cn9uJAj1f/U42NCO3dlArxkVaCwWQ7FYDIF+fpc8w7kkeFEhpeESVeb83PbFtl3bzGcrKOLf9H4SaDIMSf7kc+hVI+ig15LfXVlZO12WOVpA+CA5IFx5lm1kf7hGrAGkypV/V6tVVyRQLVbrGrehAutW70Xnm3dV5jDcAKw/ZoGkHmrtH//uxdcaltEkfrZdc4eCIFwuQt+tgEQNPP0uvSqcIy31QACsIFdlB+dP59OuD64/1TMa9lhdXXU5e5TLBCx8JhO+NceK/KpAhF5PepTYdmsc6FrlmPrar2NpjamNSOXIzMwMJiYmXBh4s/SYmpCHDh3CxMQEbr75ZnetUqng9ttvx+HDhwEAhw8fRqlUwh133OHuueWWW9DpdPDsZz/7nN7HCSMj0cXFipFKdtAp8HTC+BwyjwokAA4sMLlR3cbRaNRtZSRT0XXMuP7CwoI7yZfMA6wxBt39tFYZmqEbj65ILkwVXFxA9rm02hjuYT/JNGzT6dOnsbCw4FC+ulvZD7rGS6US4vG481Cw7/TKcKFTuNHd3m63Xfn50dFRF1+lh4ceE7pCU6kUdu3ahVarhdOnT6PT6Thw02w2kUwmXTiIikcL4nFcq9Uq4vG4SwK0FtBW8S5BFAWJDxT7gMhG1psCAwpdCncKLlpuzAmgVUMQks1mXSI5/+Y5Ghq6VNJdA2yLrqWN2nk2sMUxikajLkmWgptrgfzOXBpdpzQYNAeKikG3FtMLxyRqrjULtjTub5MIFcRp25iLocDO54myIR6f18FH55t3aQzy4EX1cCn1muONvGi++zVMBHS3qyoAoBdAwSS9wNw1QgCqBoqGuinPFTRTttp8JCVtu28dk79Yl0fr7VBu01DkOqRHnF5u7qajN56AbHBw0NWzsuMBYJ3c1zFWb4cvIVbna6P54/hoykI2m0U+n3fhQRr1DMNuls7Zg1KtVvHAAw+4/x966CHcddddGB4exv79+/GWt7wFv//7v4+LL74Yhw4dwu/8zu9gcnISr3zlKwEAT37yk/HiF78Yb3zjG/Fnf/ZnWFlZwfXXX4+f/dmfPadMcmD9jgYKF1bVI/kQO+PNvnoHtLAoSIheeS93Q/Az7spRVBuJRJxngp4FoLtLgCCBbjfdncL30jPTarWcgtCzLxQA0XsDdPNYmKPCeCZ3saysrLh6JUwkZcJhLBZzFVmZf6Lx/2w2i5mZGZffwjZR6CtopJeEQIaKmJ4gi9i5HTmdTmNyctLFgCcmJpDP5513Jp/Pu7DU7OwsqtUqJiYmvLslmFQ7MTGBEydOuF1IQDdH4+TJk3jKU55yXnmXxdVs2MTyrBXYvVzMKmyAbsE7tTxpRdELEQSBC+fQcqP3je/Rqr3qpQQQ4gu2jfyonkif8mL7fVYnlYsV/AxL8h0Mp1JRRiIRd3QA85jYFsoG/q1ufyYIE7jxLBMqJRuGo4K0c6ZeHwVtQbBWQGxoaMgbotU+2oTas3lQtoJ3VakS8PXygujc+vptyRcyUI8U0K2lYr3eQLcyOOUuvca2VD1Bgz6DHmvKM11X+uPTJ+QR23Y1GGySNz176rUk0NDzglTHUGZxfej5Z81m03n4AYTeQYBuZQZlkDUulDhmGiKiDiUp36sRrXPNBHXWKNsMnTNA+da3voUf/dEfdf+/9a1vBQBce+21+MhHPoK3v/3tqNVqeNOb3oRSqYQf+ZEfwU033RTayvXRj34U119/PV74whciGo3i1a9+Nf70T//0XJsSWhxUjvPz8yHLh+RDh6oclMH5LOul4DMp4NvtthPmDN1ks1lnmZH5iBzVQ8JFztgc38dJZhuYkEr3nyoAlhSmIlI3I8GFhrFUkaRSKVdenUxNS2JyctJtY2OdE76PVWUHBwfX5dRQiSWTSVcKX92lmUzGvVMBFL0JjLmm02nMzc1hfn4eiUQCQ0NDmJqacjkrsVjMFYrjAqzX6ygWi6FYMgURD2JMJBL4/ve/7+a0XC4DAP7gD/4AH/3oR88r71Jo6EGWbLMKcavA+Hcv4EIBQyGhApWePF0LGoLkPC4vL7saMQQkuvtAa0PYNrIP2i4r1Ekq2K3g8wlT3Z5OHuR64JpfWFhAPB53tX9odVIhkU9VZiwvLztPHME1FYDPo6F5Cb1+gHABOT2F2QIxNW7UA6Cell60Fbzb6azV5WDitY/Ydl/IxY6TfubzTqgyVN5Q41EVbKPRcDKFMlMLwbHNlMn8rSUXlLdpcBL89PLO+zws1tvA9USvtIbWWSNFjUb+qBeGsp3blnkPvdz5fN61h/xKee7zglJGK8iw0YNOp+N2x46OjmJmZgbZbNYdYTI3N4eVlRUMDw+jXC67mkK5XA4nT550RmG9Xj8ngBIJNhtQ2kbEk3ivueYaN+DZbBYjIyN48MEHsbi46BSlJh8B65PRBgYG3BkzyhR0yxIsDA8Pu0mcmZlx2275XAo+Lh4Oqx5JzVyMdnutbgMBCrdp0uUOrAGiiYkJl2zKve9UIlqkjoIgnU47hW8rb+pWSA3X8P1At8T5xMSEs46y2ax7V6lUwtGjRxGPxzEyMuKUAQEUdyOxsiwBFJVbo9FArVZzJ8jS68PcAnpPOp0OZmdnXdiMO6WAtTBbLpfDzMxMyMuUzWaxf/9+RCIR1Go15wbl4mb9i29+85tu11Wz2cSJEydQLpeRz+fPK+/+9E//NAA4LxTPgrFeB6skrUWnLlaGOKLRqCtlrwKYrmDyhAp4Ci0KYYZFaLGpYmfoRJWPupcp4NRatAl6bANJdxRo3onuaGONnYWFBVfrh2O4tLTkeC0Wizl+TKVSALpKhCEXrkkqA9bx4Zgw3BME3WRMzYPR9mpIR7doapJmp9NBPp93p2sz34HvY37bsWPHHH9S1tDy9NFW8O7LXvay0E4o8q3yay8+BroyWBOz9X71JlF+KzjU5FjyFX/o2dXkWgIU6gTKJ5vjwbAK38trbBPXCfma77Q6xRobGoYE1nTCww8/7Ly5ND5nZ2fdERw0/rhbkc/VsD0BDeU/54Mn06u3LpfLOUCkOSsaCeDckOiF5S7Myy67DM1mEydPnsShQ4eQSqXw9a9/HcPDw+709SuuuAJzc3O47777MDQ0hJWVFXzpS18KAfqVlRXcc889m+LdHX8WDyeNYIELR1EimUTd3MDahDNZUQtQKVF4UMiS+elC1pAFww6akMi2kKl5qB09FmR6Mmmj0UAqlXJb0lRxsP3qjeE7NH5NtMy+DAwMhM5hodtQwy/FYtG1hZ9TSamg2b17t/OOsIgQvQBBEDiGo4eE1ixBXSQScWEEjlk8HncJs0x05VblxcVF55oH1mqnaL0Tji+3Ro+Ojrp6HrooarUadu3ahfHxcRw9evTxYslNEwEbLSC21br4rbfEek70OnnAhg40JEG3L9Ct2QN08wo0ZKPeLwBujfEdBCKWF1UBqdLxWZbaTv6v1ptaelwz+XzeeSTIv7yfZftjsZgb33w+74Av+V7d+LrrQfndto2eKVU8/K0ubX7HeocYZrVeFB0H9XgqmNtORC+ctbK1rXpNr1se0Ht83hP1lmjeD8EJiV5sKlw1SNVTToMAQOjQWL6bAN22VYGWBdh2jfpIeSMaXStgxvbSEGB+CktgaK4YAOflY5g+Go2GPIq65Z+8zn5rribXrSYas182jxHoyoaZmRmUSqXQ4bNLS0uIx+PYs2eP85Cn02ns2bPHfc4+K2DfLO1ogKIKm+CBlokykwoQddvxnlar5bL5qSyALuORoTnhdM9xwpvNpjtyWq0ohkWolKn4GfOn0OR9zAnRTGdrMas70GeFAP6zSeht4ZjRPcjkXDI6E3a5/ZjufhZvI4jJ5XLodDqYn593ykoPreNPOp0ObWEmkzLMRQ8ILd6FhQUX1pqfnw9t46SC4oGFurDa7TYWFhZc4TGONz/j7qbdu3fj5MmTDixtFTE8xblSr4GG4sirVpD28qqQ9DMV2tzySNBLr5+CfX5fAZO1uCg02TZ9v01CVIDi64cCE5/wsgKU7WEpcL6LayebzYZK2zOHi21haEjDYIlEwnlfFKQoIFMZYtsH+LcOAwgpCQ0TUAnpGKisUQWznYghZVXKOq8cK503O2YK8hQAWrCr91JxK4DUsaVM1vWioJsGGrCWD6FyVxUo16I1Vkm95p9/a7ssn7M/qVQKQ0NDbg1q9W8A7rgTLRNAI5OhcUYPGMZT7wg9M0DYW0p5okYu38Hv+UD3qVOncPLkSbem5+fn3TjNzMzg/vvvR6ezduI5jWwaklzXvrk9G+1ogKKxslgsFkraUstLkRsXly4wxt3VWrTuSgCOKZT5WExHY/RaP4ExRj4/mUw6pc36E2QkAg8VglyQtGa50KjIVABYdK/biuntoYubOxXYZ82T4TPIcAx38T0cu1QqhdHRUZcwx+TblZUVjI+Ph8ZN3aIUzvR0UCkuLCxgbGwMrVbL7Xbi3PIZdPvbeQqCwFWb5cGInU7HLZJ2e+3k32KxiF27duHYsWOPA0dunmxyrLqLVUAoj6uwU7IWP+eJeU4Utnw+54IKWT0fCnaoFPgZy8VrO9RS4zqjwaDGg/arF9hSq9d+rhYieY/J8FQ0rIkSBIHLlWLuUbVaxeDgYCi8yD7RgqUC81XD1bb7PAUqhC2o0PFZXl4ObYe171DDZLt6UJRUVlARAuEt2frbXlOQ4nuujju9ouQp9a7orh4+zypiNVw555RnCm40yZttsHLW5zm0BoPPq6YylDsZ6YVIpVJufTEUyM0V9HbybDNWSuaYKKDguxUA8/0MY1lj2gJKJX02fzKZjAtFqrxaXFx0kQzOmXrlfVGKjWhHAxS18mKxmJtMVVoqtNXSswzHRDmf9aoCnO+lBUdAofko0WjUCXa67hjrJtLXhDkqaHozADhXGXMKCAr4bHoHVDlRiGvMk0qIbWTymGaSM4lKhTK9RKlUyvVT481MymI+TTabdSCNnpmhoSEHQAYGBkKxYzIuExm5SBXFq0Kl1UFvjCoBDbGxNooWrON8EWhNTEzg9OnTbiy2gnplzquQVf71gRL7w+vqnlV3rr2P28I1Z4JAWq+TRzWMCITDij7FzHvUZW7boMJQlTyFGseEQpc8Sp4jfxA8dTodVwGZ26PZN/V6sv4MPSr1et0BFm2rAhIdVyWdR1VOVtAHQeBOB1dBzfHgGlWBvh0Biipskv1f79ExVBCs9+o9vudqOE03MFDeUCZQH/BdQRCEdgtSftIbQ48WgSG9FaxRpGtQvV9WJ9hwj/6tnjT1GBEosGYV0D1FnMcMEJCRX3Sreq1WC6UTEMCTdwhQfOEp37Zin6fLfq5JtPTyMCfLeo30eT7v/mZoxwMUoHvgl63IqkJeB8UnGKng6C5TcELGUGReKpVCOyIUGdPbQHBBZa5tZTyRz6V3hueF2KQuup4piIGugtAkPoIdXcCatEjgEY/HHQIGwoWP2CYyIHe7qBXLvtDtmM1mXXIXhcTCwgLy+bwDFwpQ+DudTjsrNhJZS8SNRCLue6y2SoVKTw3nSJVlLBZztV247ZjeK1rNDF+Njo6GznQ632QVmPWmAP6dZ9pnCnXL33wWQZA+m/xIbxxziBj+0+3GvF93+ajQtgDFGgzqJbAGAcl6JHQM1OujYBWAA88UvvRUMtGcoT7OO9cPeZz9T6VSIRDLcbMeDgVfvjmw1+29vE5QrEpOFbkqnO0KUKx3CfCDCt9nPvLxiOULyinr1VBFyzZpbhVBJQE6jUAaL/SeAAjxijVo+XwLThSEKH+fjQ90bCgbdb3qtmB6BxmaZe4VgFAxTwXfFiQpT9u50jH18bKP37UWCyMCOi86FvaZTyiAQmHLHAMdbAojRevqXdDzMYC1cAyFmiJxClwtvqTJS5o3EIvFXL0RYK1ujCJZdcOxfgOBAj04zWbT7UBgOAqAy8IGwgeZ8b1AWAACXQ9KvV538XkqIwKqSCTiEneZOMa8HOakaPlztqXdbjtAx/Hi9tRYLOYOimJ+j7okqWxUIXKHCXdKsGgc6wRoeIvPsPkOQRBgfn4ehULB7Xqix4kKeXBwEGNjYzh16tSj4r9HQwSOzDkA1ntJ1LK0Fr0F3Po372GfFbyqkLJJckA3c58eM/7NdaFFrTSM6kvktqEMFXK+Pvo8SvY+AmiddwJuvoOHpik41zGktU1+ZKiISkytPCtgtT22fToH1orUdaPeLDWiqJg4lr73bAey4+DjWx1Hde/zcx0X33Xfe4Aun+kYaY6F5lDxc4a0tYaUehYpc3mMCd/DtvgASi+gYtei8p7KK12f/IwevWh0rdYWDcR0Oo10Ou3y7OgloS5ZWVlx5fNpQFK/NBoN93wN3VpgpR7LXjxvQYpucmDuiYbafM96QoV4VBAyiZPI08a81ColIwDhQafAtgxFxqYLvNlsul0n6rKjEmCRMwp5MhGVMd2UaqVaocSqrlSq+Xzeual1650KXbaDSoTvIgJnxjgP09OYMbc/00rmOLIOirZPx4EKg+PYbrcxNDTkEPXi4qILH3EBEdgw7MXQC/vOuVhZWXG7Hth3Ch5avRQqKqxqtRrm5+exZ88e59VRFyTnb2ho6PFl0A2Ic8O2qxtWSS13Fd5W8Vlrhfyga4D/262aVnBx7AlO6IniPOjJx9Y7A+Cs4GQjC8pncVniOzV3IBKJuC2R6rHkdV0varwwRBuNRh0/2vHVPvYCKb77NGdF54WAm89QBcEaGTQitiNAUVJr2cefdr436o/KaPssjhHQ9QxqQTBriJIo55hYSqNW28+5UrCuoREgHJqyYR7fOtQ+6XN1TFRm8YeAZXV1FUNDQ85LEYlEXISAz9Txp6zkutTEeOb7abvUS2QjDRv92H51Oh23o0eNW8sbqms2Wv+WdjRAAbreDbruFJxwEnyxMZ0cWlua+0A0rkKLFWE54MxUJjBhSIfAhM9kDRLmRnBbrm5z5HYsboG0uyNs2IUMrvkFLOQzMDDgEoapTJLJpIsVAsDk5CRyuZyLc/IcFpYhpoeDiJ3eKXp1KFDpSWHyIa31IOhWsC2VShgdHXVueZZR5w4dtSh1bugx4nd4vADnOJPJ4MILL8TY2BhmZmbc9uEgWDunZ2hoyG3do0tSwzwjIyPnj1ENaQ4K51lj67xOUgFoLSCfACH4IRDhs5lrwbAI+ZBjTkCswhPolgnn+2jFqTdO142Gf3xWGP+m8PbFptl/Fd6q9DXHQD2jkUjErRP2hWub/RgYGHBH1ttcAzv2Og5Km1W89n6uM7VaFYwMDg663Unbnezc6zxar5h+h9csCNPv2meoktPdLQBCngkS5a6uNd6nRirnQROkdQOCVd5sp4JpbbtvrSr/8Lp6VNgO8ngymXRnnnHN8lms80RvG0vo61pnX1X/cXw2AgtnMw7sPPKn2Ww6mQxgXaXlsxkmvWhHAxQK9Ugk4sIDVNr8G+iGH9RSJPrjJPI+dYUzrEF3GTOU+Q56BDgpZBBNdqMLjMBBE2TVLc1CbOl0GktLS27bMj0EClZsPJxx60QigUwm4woA8XlUQPQ8MK8jFluryxKJdBMro9Go2w0RiURcmIUKiYDQJuky6SybzaLVajmXKbcjE1xls9nQ6aeMq/Za/O322nk9u3fvDuX8DA0NYWhoCNPT0zhz5gwuu+wynDlzxnl8WAZfDxLUapKM3W4VqaIF4HiJniSOhbXU7G8LVPhsFdj0NOgJ35wTJgySrzi3mhTNc5W0xoIF9irsda2p98YKc7WK2VZdi7zPusYJymkdMylbFaRWEFU+DYI1D2OtVnO5TKzXA3QNHs0R6iVY7TxsJPSt4kyn014lx3Xi+952IQs8fG20is56klTx+76v19XTx+/o7hGVb+phUJnHuaF3j15thtDVC2vboAClF1jRtun3raeMf/tyztTLy1CNVs/mRgx6BHU9ahhc15uuV75bZYZtM+WAnT8fYLEAk0Ygy2f48oPs32ejHQ9Q6M7Vw/aA8BY2MrAqeEWuQHfQmL0NwIUm4vG4q/KngogHkVH50aNABaw1J4BuSXgqfXpfcrlcqEqs5rFQOejJqSpMKYyZTEvBS2DD7xJ4UGBrLYNoNBryspCpNDOemea5XM6VONbwF/uufe10Oq4f9ORQmeguJ1tTgfOnfzP5lgXcOp0Ovv/977uQ19jY2LrzJubm5jA8PIxcLudyhuj6t+c1nW9SIUC+VEsP8MeCrbCw4Rv1LmhIjICDITbu3tLn6i4V8iMAd1AZvQ98JudfrVi2g4reusOB3p4htsECLAUYPgVAg4ICkf3QqqBsSzabdQYN15KCMbZd29jLe+KbG7aZbVMgzx+tR6TP4zPpid2uAAVACAxYrwcQ3pHV6x4LRgG/IlPlStBJLzmv84e8ze8rENAwDssQUL7G43HnUbT85ksH6GUsKOjS1AIbQuIYsV2qr/h9u9uIn7PydCQScQnuBOSRSMTtyiRZ75L1umofLEjbiHygkzKF25B1Lh4JP/9AABRWjKSiI6lXgCBFyQ6YCkiNuxNM0I0ciUSc0tXvk8n5XnpWmGOxsrLiSq4TRPCkSioaejfoUSGSpveA7mkKUoILhnUIsFjqnlVYCWSArnDR3Q1aMlnBkiJhtpEucea1cJcPy0c3Gg33fnpwNEOdloEmaWoclHPD30zWLJfLGB8fR7vdxl133eVqt7BInwqXWGztwLD5+XmnYLnYCSK3klSRUoCo0AXWWxr2fxU0VoiqoNFaJmo5aX0SXlfAQcBHFzIVus6N8hX7wWep0rfCXRW8bx36FBk/4/yyPQyJMDzF/pI3+G56SgjYFSQw/0q9NVaRqNK1+SYWUPTqn4ZGNa9H+0pjQ42F7UQWePjm1P5P8q1vq+R9ZIE05YbmG9GTEIlE3DUA7h4FzJTNlD3kY81dUj62HkEfwNyoD5Yv1LPCtqsMJIilrNKQPz0U9K7Q2801QZBG3levtyYR++au15z5wIzPK6QGEpPQfZ6pzdKOBihkINY90EFTxaqxOGUw+yygu8tHC03pPm+iVU64DjbBCYEFd5uoNTU/P+/K2NO7osXZiJDV80IGZViJi0nd71xY9JrEYjE3LgDcmTv6TMYNd+3ahVgs5mKbBCE86ltjm2yvWuT5fN6dbcIFQ8+KJgRScTD0xB1OWkIdWG9lUakwP4YnMXMBq/fKzunCwgJ27drlCnbxXuaibBVpro5d7JsV1BaY+KwUrgFNkmO+FBA+lM4Ck16KWq1RYD0QUPCs3wHWC2pe8yk23xjo7h3ew/WqNSOCIHC1hHg/eRxAKMld1w4FuA2t+cChWsk+Ic6+2ZAssLYWeJSFVVJcP+dizZ5P6jWXvrCF/Z5vjDZzH39rGXbrBWcyPMG/Agp6w3XXDBNKVYnT66jPVuNMAbeuPV8Y04ZK9B7tvxoM6oVQjx7byjpQdl2pN1hBr4JrlY/2++cyT5a/LWhnO2OxmKtdpeNwLrSjAQon1h6mRQYlM9tD/VTg+iw3MguvqVKjR4Nghc9iNVkteEblwAmiJUqAEgTdsw+ooFm8hwCIzKoMRu8EvR+KpINg7WCoUqkU2udPMKKHp9HNyRL1WstkcXER09PTmJqaQjQaxeTkJDKZjAuXcDFzsbFfVFQEOslk0vWRiYFcdCyvzzkDwu5c/s8+FAoFnDlzBouLi67fak0RAKlHgF4UnnXEol7MXdgqIo+S39gPG06w/MnfutCtwAC6AMhuB45EIi50yHdpIje/S94CuuE6rhcrvPlcC5asK9m2VRWdtagVsOr9akgA3S3+qVQK1WrVef7I80EQuLoo9NqxX/F4PFQDhiBY2+wDKr7/7WfaJ5/ibjabyOfzLt+Fn/NvHvy5XT0o/K3gzPKv9TIAZ8/n0f/1+QQl6sHWBGPdjaVhfSBcLJBgmnkn6r3ke+08WlDh4wu9V+exl+Fhn0mdQ51Crz/BajQaxcLCAqrVquNpejXZfhoWfB/Xhoby+U41sO2PD3DTwLb9sH1UT0qj0UA+n3ee9rPxgI92NECh1cSwCIDQ5DCmqNaetVh0YPnbekY0Ls5Th6kAeHomK9FyghVcMNk2Fou56rD6TGZgs2hUu91GrVYL7SJishMXJ70H/KxarbrDmhSNA3DbwIJgbduwJrxqHZJWq4V8Po9oNOrih1rmnuebxONxlzdDrwr7oomYjUYD1Wo1dDIu36dKzuZjWJBCr1C5XHZ5QDz1k7uVgHDmOBdVp7N2XtDIyIjbdaUWylaRghICVWBzRbCs9UPet2PHsdIfzcdQHqFLWMOB5A/1vOk8qSVHUgDqAy3WerRuZfXK+JQzeVvDrXQn8/gI5tfU63Wsrq5iZGTEnb0CdJUceVl3hlG5+ZTORj8ce+2ngkR7P42eXq7+TCazrQGKzlkvr5j9zAekLVmAYJ9LEKLXFFyrAqYhSVBN2U8Ln4eWKlBReWbDO7aNvdrL6zbs16vfyj9Adx1TXxBs00DVcDxLSHBsCL6Yc8d1zr4piFRvkA9k+/63Y2D7pp6UlZUVdy6P5tGcC+1ogMKFrpUgOYh0/QPdBE5a4mQ6YH382yYzEQgw9sfvt9trZ9pwNwrDKpqQSLe6rVDYaDScBasJi7T4K5WK286r/SHQYZtYQZCKhx4cFiXSkuXsJ/MwmLCq46OLPxKJIJfL4eDBgy48NDk56VyM3HrMeDnfsbS05BiRCrJarbqzI9RdSgFNIMY26Fxwl9TCwoLLdVFLQ8N3uu1QBWOz2cTCwgL279/vxmmrBT/5THNzKCTtPCj5wIBPkDBxmwLX5oJYdzPHkvep9co28Tp5VcGJtRT52yfgeikfBTR8nrXMbJiJIGplZQXpdBqlUsl9j7valGdpleoap+cRgAs5+sZbr52tX2wz1xbHV/tHBakHNgLdRH3rfdguZOeG1xSMkjbi342u+e7hWlHDQhPfOb7Kx1TKlJkaCiYvWF72rT0LUmzbNgIo5FXredLvKijSsSSP8zkaDtdwF/WPblKwW9g1KqB90rQHBUvaBgXiyv/KC+wn30kjnZs4uNNuM/NN+oEAKLRQdLDUc0LFZV3dHCiCB/sMnSTu1iHxBGOGUbSGBU8qjkajrpIfAcfKygpmZmaQTCaRyWRczkk8HndeC0WhmkNAZEzgQk9Kp7O2NZHxdW71JeNzay/BlZZ75oIPgsC5lVluX2P0IyMjIaW6sLDg4owjIyMYGBhwHiTdFk3XK4+aJ+hQ4EQvUqfTcdvFyfBcePPz86GMcAJEzeOxlqomSasXRU+63SriuNpiU1YpW1IhYoGAfTafR37he9StrbF6oFtSXJOkuY2d7+e4KvghKchQ8gEp2z+fxakCWwEc38/nEHAz9EdgG4lEHJ+yWnGxWAyBZW2Xhls3It/nveSP8qWCPlZLZvhWQxRc79uRVD6pcvJ5OfQ7Svazs4FYACFe1dw6oMsLfC8BgYYCeY0hSzVuFBSQpzWp1oIWBfa+fimAVqOL71E+Vw8of5NvFGDRmGNeFdAFaOoRVb5mKJ5rWPPKtA/qAbT96GUE2X7ouOucNZtN5HI5F+o/F9qeK2CTFI1GvdawCgj1nlgLz4doga6A1+JoGsuv1Wqo1Wpot9cKnCmK58GAvJfbGmu1GpaWllzMe3h42OVoMBF1aWnJnQdkGYftVsajVUDmZHY3vTTsJ+OYRLRkWoImReFMnuU2MVqiTPDVMsuJRAL1eh0zMzPI5/PI5XIuO56eIe6AYtE1xlOt9Q3AWbh6/k4+n3e7k9QVz/mt1+sYGxtzRdysMOFibTQamJubc14UPRZhK4g8x0WrQNHeA/gtUWvV8DsaLlIL0QcAOGZqmer9+nx+l14LCm8Ljuz1jbwNKsz0f99atQJdLTvy/65duzA/P+/6ViqVHCjm9t1Go+G24esY8pnqRdG2+MCjbZ/KHQX4aimT1HPC72rYR7eKbidSS19lE4B1fGbHTOfb8rrPyNTvK1imcUpPrK4fAkJ6s23FbvIuZZEFxKrE+b81Hnxkedt6ItgHghY1NoAuyNITyPkd/uaxIwqggiBwQI08w3mgoaH5I9oH6gIly9uWxy0Y1b8tGGf0gcakzRc9G+14gML8CCC8E0eFg0WwltF0AtSSJJNrjJJ1PBjyUSHJ+xl+SKVSSKfTWFhYQK1Wc0zEsAjfxYqWupUzmUw6ha1KjN4a9hOAA19kWLq0lXHo1ibpItYdQ/wOy+wXi0XU63WXu6ILlQuALna6HDUjPhqNOs8Ji7exTbr4ufi4YyoIAhfC4sFYFIiccy4IAitaHL0W2NzcHMbHx12uDhX5VhDbr1bF2bwnJGvNKIBQb4wqQwoyChi1KBWg8DtM1KaQ1UQ7tsFnFSsoVHDTyyPRy5JWBahWs127KuQTiUSoWvPp06cdj3IM+HyePaWJhVxX1rvWC0TpnFHW0CDSv6lIdUz4Hobh9AwTzVvZjkT+Iq8B4UP8VP7aPvjkriWf90QVo8+LoXKFY0cvN/mdoKTdXqt4Ss+18q16f1SO+DwI2h8LyG37FaSontF+MAWBa1eBF0P23KlkQ0GUtwRgCq5sCN/XLtvmXjJU7/GFYy0gIy/zDDSuzc3SjgYoQPdwPJIFIOqyVbe3MqRVzkTnusDoOq5Wq06wMaGVyZ8UNABchn673XZJolQSGh+l8KLXhddTqVRol4vGr8kcthCXVSTKvJFId7+8hj5IPOWY300mky6BbH5+3i2SSCTi+k4LXWO8eiquWlPcncQaKdb92Wg0HIDj/KTTabdTRxU3hT+vE7D48gc0tspclL179yKVSrn3bRWx7XrasoYKSVYw8xqwPqmWFjjHWBUGBaDuPuN40X2s72LSrIIMn2ek1//Kgz5lZPulisL2037fghX+plXMXV+VSsUVrgqCIBQmpKdOk4OB7lbWjax9FchqCJEv1Yuinj/yPPupVWXVUtb8gu1G2m+OkSpN3uMD2Rbo8dpGIIBjpXJaq0ITZGrbbCFC/Ux3x9DjQH6nN1qTarXtvh/lc+1TrzULdA1EfT75Qt+r4Js7IjW8Zp9NXWTHUT2DmtKgMtq21XrHfHOp9/mMB6AL+Gmgngvw3tEAhYqZZCcb6MbAeICfKmFrBemkqtuLSpnbeTW0RGWuAn9gYMABGYZSmMlM5qhUKqjVahgdHXVbf4kwaREQNGjJfQoGLbqmiXjK5JYZyKBB0D3QSa029oULmAcwMtxTq9Uc0OIiHhgYcACh1WqFytEzt4Tv4QKji52LlGElVTqZTMaFYdQ9CcAJH1oMrLioFogN8/D7lUoFsVgMk5OTITBzvol91Ux3dZf6hLvyqPVQ8HMKYPWMqCBRpcJrBMkE2ORTbqm3oFcFn+9/HXufZabt7fW5FdA2r8EKV+0rATJ5j6FTTebmWMRiMQwNDYXaoda/lQt2fhSs9PKAEZzoO0m6c07fSatzO5KOH/8HsI4Pe4EU0tkUlZXLvJ9yHOgabrpjU49vsEqUMoIyKBIJVz22YFW9brYvVs74+mX7qOvXxyv8TAvGUZYXi0VX7VsLXZJ3SJSXWtAT6Mr/jQwKlUG95sr399nWAaMdmv6wGdrRAIV5DRaJksiwdP/To0G07HNRqZBTRctKlRQcBC2ccDLR6uoqarWa867QzUbhrwcMUlhpgTMuuHq97rYaE6xoG3U3ki4yVRAEL+ou1+2NWkmU42StSAAukY9bOHlfNpt1yJ7hHF0o3E3EHB4qDqsstMQ0x2RwcBALCwvIZrMuvMXP1XXObcvVahWjo6Przt2glaQerHq97uq9bBXR09Rut1Eul0PuZ3U7k3pZmCroOF+00tUC4nN1vpmbpbxA/uZ2ePWi9PKk2Ov2XiUFjfYztcatUtDna1iVQF29T8xVIN+SZ6icgqCbOMyt9JlMJgSEfdajTxhv1hpUb5aOnR7YqEYRFe12JAVS9jplqvUCWrIAzscL+rfKFq5xyjvK9lar5coIUM5RSfMZrH+ia0lBic6x8jLg361jx4T38bfPq6D90R2W1uMJdIvR8TePDsnlcmg2m67aMA0z/c3ibkAXfFBOK/nW6kaAW8fC5tPYPivg1lDPZmlHAxQyom/hA13vAu9TwWpdgvpdMr8KNX6foQqGYShcmOhaLpdDyoDMwMxrTh4Lmw0PD7uFxi2HS0tL7rlalA0InyqrAMUuJnUrq+XM5FUyMl2dzWYTtVrNjQW9NowX0kNhQRC3NieTSXfGEOtPRCKREMii4I9Go85qt4um01k7yVOPDKBSYb+0L9zZRK8KFSuPHg+CILTjivclk0lXTXUriAAwGo06i4j8pOQDKfq3tfA4pgwZaUze8ry6fQlc2CbmcvD5mp9iAQqAdXzI720k1C35PCj6Pg0JqlJTfmRfCfh4L5/HE7ZVgXK7r46djulG7e9lXWvCsyogez/XIoG7fnY2Jb9V5Mst4ZwpeLGKmb99njP9zCo33k8wwjlWi5+yRXM4bFspU5l/wu+oYaS8p3yuPGZBuPbDxyuWl+xuNH6mvG132/hAIQt/1ut154HWsWYeGXmRclerSHO9qwGwGa+Xgjv7Xt8cUw5pHuJmaEcDFHoiejE1SeuM0OIC1icu6Xf0dMtarRbaflksFp31xmd2Oh1XNIzghsqW4IQ7XOjOpweCE1mr1VyiKKu60l3PRUmgoKBFF6oCDCbr+dCxutnsItf4eafTPYW4Uqm4PBaWiVfFFgSB86bQs0XPEYutMWxj50vbl0wmUSqVXFt1Aei2XAocABgdHcXo6CgmJiawuLiIRqOBxcXFdRnskUgES0tLWFpaQj6f3zSvPdbEMea8NhoNV11YyQcGVEiSrFXPHwJr9QZSUKiQYZuYe5TJZEJ1E1Qg81n6fn2nDfFYy5Lt9f32KT77bFVYyu/2YLJIpJs8GY1G13lB1SPXaDTcOlVLUP/3US8LmfJBazT5FLB6rHQdWyt3O5HuaLS8oEqYBoSPLGDuBVh879a5Vz4HuvzN5yjfMvyufEy5Rb7iNT7rbDzg4+1epM/QPCcrC9VjY/vNdpFveXjq4uIiyuWy4ym2ncY0n6chHAu4FDDZNcD5sP9bsGV5nc9nH861vMOOByhAb5Spcf7l5eXQFjXrvqKgI4PQA9JoNJwblkKHlnm73XYxQeZr6Om+DO0QZWp5e4aE+H6CKO4u4HeZ46GC2GeJ6QJTha6LX5PulEnoGqWblCCLIaFqteq2EQPdM0to8Wl7GHrK5XLuWZFIJHRiLNtHxtUx5TVrTaoy4X2JRAL5fN6Boocffth5n3S7JvvLNnY6HczNzaFQKDxCznv0pMmUBCi6lVrbbK0W/q9AwCp4FdrWO8h5YeiQ66LdbruDFdUzY0M2PmVCQaRePV/7fe1UUGVJPWsWlNhxUjBOz6caFgwr0mOkIK3ZbLrdddp3JV//laynRENqVriTGFrNZDLuXoY4t3KX2UakwIBzp3LGylZgvQK39/s+s/xCi9/KcFuAjZ4U5sBpoUzKNJ1Lhh0o30kbASVfP+z3fP1R40/52YIk+zwt0Knrkp+zFhWLWVLG0ljUuj8MffnWqY+/LShRomyw86I6QfWJrsnN0I4GKHYBqyLWOB7DDrotWBcQGYOf6dZDhmxoFfD8Gno2KpUKFhYWQgXblBG5/YsWnoZJYrG1gwjL5bJL7IpEIi7sw3cybwVAiBm0LyqwrSWtwESFOwWoghItDx0Egfufxd14TH0qlUIul3Mgje5GJhNzjKww0619ZFp6lJgrQqDGhFu2dXBwEMPDw6jX6zhy5AiazSZOnz6NSCR8QOHo6KgLTdnFxr4vLi5u+WGBFJaxWMzlQgD+sI61BtUysZYOgJA3QbfP8rrNMQHg8oX0uWplbaSgfULOen5s30gbARSgW5tCLTKrGKjYeV09bXwGD4sk0LclwW2dHtu3Xv2wnytQsXkGVnEDcN4crgeCk+2aJKvKqJcy9nmMAP9Y2fm0v9XgpJwicQ1p3ol+h/NJOURAqOuH8pheacomDVNq33qB716kYEqvKdhm23Rc2FfVT7oLjM/h9aGhIVdCgbkpTHq3YTm7RnV9b9QP3zUaq/ocC1ztHG6WdjRAIZhQRMzrQLiIDCtIajzeIkNVAprUQ9c3BTqFHMMxnCR6PTQxlYpdz0HgJM3OzrrzQwgShoaGHEBi/owuSLZdBa0qFGUKfq6eJmX4aDTqEDbdsdxpo96PTqcTOhmW/WJ/KNgVgFDgst8UuEtLSw7Ns5/1et0dblgsFrGwsICBgQFMTk66d7CA2+nTp/Hggw9iYWEh5FWhZ0kTohUcWYWzurqKhYWFx5E7NybyAJUjgaQC2F7Wjc+joVaVevwooPX8DgJpddPrvRwjnUufFWXX3EaeEyscVUipAuHn6gnkPboOelnd6nLmLjPyL4ExLTi2lwqLbei1c6OXUvIpKRsmVWWtnsJIJOLyUGjMJBIJVCqVbb/NWMfbfr6R1e2jjcZUlZxuhef60XHi2NJg0tAF+Z+AMBKJhMo76LryhVA322b7uYI233f0M+2bBRCWf9QQ5bNYjFDXInlQjU8FPz7ZYgGN9sl6xdTrRLL9UYByLny9owEKB52WEAffZ83QIteCZarILTPRnaa5DvSeDA4OOnCSSCSQTqddoiaVvta2ALquMJ56TPDBUAZzM7LZbGgXB0M+bHe73Q6dmOxDqT6mU4+JtXIYXtHEMbrE6QmhhTI0NOSSYPlZPB53lXULhYI3NkwhzF1OWq5ZhVwsFnNWQCqVQqFQwJEjR/Dggw+iVCphcXER1WrVvZuKnZ6ITqeDpaUlDA8PhwoCcVHreLHi6FaQ1nIhkGROkoZKbLIp+cjOsc6p7h7TeeY9nDOCSAChnWJsj7qBteChgiFtlwp63ucT3lbgWgBpBa9+x94TjXYTrlUZEYhxHStQJ5+wzdxVQEGuY9zLarZgxXpHmNjtE8hW8JN/WZzR53nYTsQx7pVf0stTdDay863PI2lIhAYk+YKGihaz1O/Sw2INxV5yU9thAasFGL3+57VeCl/7pf3Ve22Yk8/UdaJriiCFbdVDVO02aoZCrQfFZ1z06isNTfVu6TrUtuhnm6EdDVA0GYjokAyrWdDA2qCUy2W30wTouoV1snXwNLTDiaSVwyTOVCrltrLyLJ1YLOaKL1EJMceAOQBUroz/E8lzsrWWhVoP7JvuplEmZZ91+xcZXBlTwQMXNJEwfzMkoC7waDTqDn5i5VuOI8dP0bp6axiCodtRC7Zxjkqlktsed+LECaTTaWQyGTfuFExsty5C5hjYaosWhPL6uVQ0fKxJY7GxWAyFQgGFQqEnOLFhF194h7xF4j3qXdBtiyqkOOdqFfUK0WykqH3CzPcMbbsqiF7Cyz5X51YBGa1qCmP2n55WhtHUe8T7+H3r2veBEdsuvU4e5W+uH64Pn/eHHspkMumA1HYGKLrmgfBc6jhsBLY265XYCKAACB0cqkpYQ2z8jDJCFbUFUxYM+0CKbbvvftt+lYXkBfs9n6fNGiZ2POz3qE9oBGmYUWWL9tUaPdqms4EvLVFAMGZDbWyjbf/ZaEcDFFYl5aADcHFmawnxfp6sqwytHhU7oMDadi5NwKtWqy50oQDHgqUgWMvZWF1ddS5mAOu+x+/q6cS6oDQe6lNUqoyV8a37T3Nr1NtkC/rw2QRMkUi3CuDKyorLGSEoUKaNx+OoVquhE1k5jgqsCBCoGLm1uNlsYnFxEc1mMwQ4JicnMT09HQKRGvtke1hLhIm9tVrNfa6gLhLpuvq3gqhI6a3I5XKh5FSfUPAJERUWFAwUGlq4Tufegh7G3lWQKll3tw8sWK+JD5jY7yrZdedTBvqZghRV/vScaL6CtU51W7EebNnL8j+bQFXQoSCdBhPn2SoR3h+JREKGlc2f2W7kAx5WafvG0gcEfM/Vv9XA5LwzZKwKUb3p+nzygBZlU1ney8DrBap9gMsHYLStvZ61kWfBGqdsuxojaoDob3qSaADSq2/D9upFtXlF/NGx7AXUI5G1HEA96FUjB3Z8zoWvt+9etk0QB4LnqnDAWPhMGYWWFsMTFCR2Z4tF1AokIpGIS64k0+v3uBuFip7bk9W6i8Vi2L17twuV0OsSiUTcQYNkLiafMnlULQO2W2OKPkFOkKEgRD0W9poFQPyMSags2z8yMuLK+fM6xxiA29lEYKbnofBkaCapMqSk1Wm1vwsLC0in0y7JuddWQ4ahAIQq/docAN0ps1WkVSC5VdDmn5wtF8Xyq1bR1VoenEP2nWOip3wrYAHWu7t1fnoBKBXEvdrKz/jbemn0mg+U6XXlc96nIFjfo9c7nY47o0WTIjWh0vbDR3y/NXAIPllZ2a5R5Ud+j3yr+RJbzaO9iG0nwLeAxY5HL+DnU3S9gKv1PFDZ0kMAIFT7h+3jD8Pq/F8/1zZZI6YXn1sQ7+uL0kZry/fsXuEmzR/z3aOgjmkJeq6bnUO2x4aS7Tq0ZAEba6uo10qBtv48YTwoOki0QDgJ6t5VoMIMZx6Qp/kcqsDI9ESh3F1Ci4i5IJx8JmdGo9FQkqki9ng8jrGxMSSTSbdnnYm3AFAsFt12Q9126xPiQLd6phX4QDj2R9CgKFmZRU8FJcjQ4l1E2wBC7ud8Pu8WfyQScaEYhmg6nQ4ajYbzDtGronFgur8BOLckQYr2u1wuY9euXThx4sS6LW06d41Gw83p0tKSq7ioglOV+laR5jYVi0XnxdAwXi/F7BOOyq8WVOs7adXzXVojQceR14Du9nR6Juw9mwEjeq9tO/tlhaZ6+WxffHNoXde8h+0eHBxEq9VypQNYbZPjrEnBPjDVa8xJFoTobgprdVsvp+27vX87Edts50c/5++N+uD73He/5UfKUhp/nEOgy6MqYxTAa6gDgFeZ+kA4yXqzlc9IvQB3LxnEsdR5V9lneYPv1N1hCgr1nZpXmEgkQlW77drSDR4+YGb/1/sorzVv09Y8scb1ZmhHAxQrKDk4GmohcCEDr6ysoFarOetft7zqeTYUbGSETqeDarUasnboNdDy8UEQOCGoeSYjIyOu2NnDDz/sziXglmKe2QMglKkOdAUv+6aKjP2y2fTqXeBYEWhwrOh14g8T9HiA3eDgYAjo8W+Nr6dSKQwODjoLhYuCz6Ilycq7BC0Mm7E+DYWGhuXUKi6VShgZGXFt4RxbIULAFI2uFebK5XI9F9VWEgVKLpdzlS1teM+22XcdCNfxYd8skPB5kfh9VTTkO1tjiO9R4AsgNE/a1o3G2SohH3DR9vAevk/b4wM4+qMu/yAIHE/Tu6Hb0y2g72UN2zGxwIRCmEdeKACxioHEJF4mOCqPbEdSQ07zefjbAhb9DFgfJvR9x6f8yYPq7YrFYqHde5TBNocQQEgGMj9wZWXFpQX4ACPbaeWSj2d94VAFdMq/GwF5BSk+L/nZ0hN8Ro2GEPld1TU08DX0bcG1BSxAd90kk0lXrNQCFMpsH7DfiHY0QPEtfGZ2kzFZQ4QDxc+ZTKg7cFS4qMCPRqPucKYgCJDL5ZxyBeCUND0sVPzJZBJjY2MYHh7G6uoqTp8+7ba2MmShLmaGh+giViZg23hNQYoqC95HZuTi4OJlvNGid/2fTKpxXlrb1hpgHko6nXaCgS50AhV+R3ODKDD00D8qFN16y/FnOIg7LtQVbxWGgsOlpSVks1nHA7S6rBfifBO9X8PDw6E8KhUovSwXK9Q0VGcFllo1VCS6e8inVPQ+a8lx/qyQthYlSQW03tvL4vR9zwdo2B4LUDgeJI4BvXKs7EyruV6vY3R0NLTe7Xqw5FO+Oo5Uegwn29wBn7Lm1mKVAbbf24m0P+yfT6lb+azf982jftfH67w3k8m4UgcKLvScNMo9zitlGA0i6ym3oJ/v7RWSAfyhG0t6jWtI32Hv6fW/Gp0KYDgPqgfsOFP2W/2mz7Yh382QAicCFLaDukPbxDnZLO1ogFIoFFAqlUILQN1IzNxXZc2cFZ5foEmWQLfwD5mAk8pkV+aEKCKNRqMuwXNlZQWZTAa7du1CPp9HpVLByZMnUS6XnQJmWWvGEjUUpNabHgWuLkmSCgC1iPl9/q85G/xfLTldlFzIVvlr7QhdZEA394GCljknvGd5edklzrLv7GckspYgqIXstE0qIKrVKjKZTAh0aRu5GAgeY7G1Qx4LhYIbZ2t1bBV1OmuVhVncrpf3qBdA0TGynjLLB1bY6gF1KvCUH3oJ5XMFUbyuf+tckQiclSz4UaFqhZ8CMPX66bpRkKKF0Bh6VEt3I96wileJa1ErA1vvDsec7SfwZ84aXe3bGaAAfk8JyccTvuuWNgIplOscT+UF/ZvgX+eU39dEWspv5n9ZOWj5fiPvSC/e532UOWy7rtfNjJ8dm17P5XXKWDVMtWxEr/Zz7Gw419ceC5CozzQflHOm73nCeFAOHDjgSvsSNRMJs8aI1kjQE2RZh8R3uqJOSCwWw9LSkstQ5sm8Gq+uVCpuB8mePXuQyWQwNzeH2dnZ0Pk8rDXBd/B/WgCayZ9MJtcBD/UqcIFptjR/WwGqXhM+k88j8blkTD1t2Pcda92SuTVJTceY3iceLqjjy63MbL/PoiJIzGQyocXkW7y0pDi21WoVuVzO7b7qpVzOJ0WjURdmtIBkIwXP/31hAOUN60lR7wfzpzRxtJdHyYISnwDeDFDxjbf9jEDDzr+CEwVjvv6Sf2zSN9/BUGO9Xne8zjL3+ly2xwdAfGOkY8IQL9cDE8R93oRIJOJO1uZ6oWLdziEeoLf73wIwHxCx1EshK0BQbwcQrmdjq4qzrozu6KJMogFFL7StPeTzovjWo3oxdE3a7/Tie8tvvLfX94D1QMQqfF871evpk392/RJskH/1fb450vclEglXvkFlDqMC6uXdDO1ogFIoFDA+Pu7CJhzMaHRtZ0SpVHKgRJlAk0apUDkhqoA5wBxwPb1YDwiMx+MYHR3F2NgYOp0O7rvvPpccSo+A7kqJRrsVYHl2DHNQtGgU36WMpBahCgKf0uL3NNTDz6xblpabBWcKBtTa1jAA72UbATghS7Suhb50ezGfxcJ2ulh0gUajUVcYTy0Ea5EAXcuCO4gY5lEvylYTd2gpSADW53T0ssqUVICot4vEMI9anjw4Td25Ou7Wo+KzEq1C0n74QMzZ2m/bsNHnbJftO/9Wr4V6TyORtS2RLBRIvmYFV7XMfYpjo3ngvBGQq2L0/bCdsVjMVZxuNpvI5/Pb2nuibVMvJn/bceplDNg57gXKaTixhg3D6dYqpweaMsdnnNowj4Y0ON/Ky3Y9sD2bWZ8+/vHxUy/+3gjU2/G286B/a/hSw4f6He0Tv0N9YLcg+95PXclx7TXH5wq8d/Q24/n5eVx88cXIZDIu+S0Wi7kEOFokOkGcTM1JoEBXAEGhy8+460d3SNRqNWQyGRw8eBB79+5FuVzGvffei7m5ORcm0i3CLHSWSCSwurqKpaUll5BKL8rAwIBLlmVb1YuhliL7w8VkhasqOr1HLQhujdZzKBQI6TvUdd5L8GoblfFZiI7jrUXSdH7YB40d80dBjCWfFaFetEqlsu602q0EKrTYdevuRqEVHxAl2eucBxUOmq+kYUblF59Hxc4l/+Z7fMLIp6w2Ajy9Qlm+sejlzfG533mNfdItmjYxWd3SvdqjffP9zR+tEtwLnPBHPahBEIQqYm93kOJTchsp1c2QvVfnmjJBQ3oEH81mc11iN3MN1VBj3p8aeD45qTyuXj2bn6R86fOA+vrj4xuSGii9PJNslz7DGne2fZSrNI5999nv02DXPMKN5AA9JJwf/lCH9uKPjWhHe1BOnjyJvXv3YnBwEI1GIzSxTKokU2s4IwgCV/EVWF+yG+jG9flblRuBxN69e93OnFOnTqFaraJWq7mkUS4EHv6VSCRc/JseC2CtZkc2m10nGKnQuRgZzyNpf9VDQWa0DGi356oA1+1oagmyr/o9jg+frePKZ9B6YTvpWufOBt6vxYI4HwqmlCgcFCQGQYDx8XFMTk7i29/+trtXhRSLCA0NDYV2bW2lC93WFWGbLfUSZlZQcdyB8OnDBIzcJk8rh8rZt21SQYvOOd9nAb8VhBZE9VLqajXb72pf9L0W5DD/Sa9ba1cViO6sIzjQ51thvZEw9SkrlR+aT6bWoypGusS5xvVIiO1M2h8dI50je6/Pg+Qjy+f0gGkeEcPW6gFXuUBwSOCZy+WckaVyRkGr5kqQX3wA3CpZ37q04NnHkwqI7fP0N8fVN17kU9UR6p1ROWG9KNao84EQri8etaLf8ckFAO7AWG23TUXYLJ3T3TfccAOe+cxnIpfLYWxsDK985Stx5MiR0D3NZhPXXXed21b76le/GtPT06F7Tpw4gZe+9KVIp9MYGxvDb/zGbzyiBVmpVHD8+HGMjIysO+2XVpINZZAxKGTpGQG6R1Pr5DDZksq0WCxi9+7dGB4extLSEo4cOYKHH37Y5aFkMhlXUIw7YfhMuinpzqWHh1vi9OA/DQ3pgmEfN0K/djHwO8q41uJUdM0CP7qjAOgypHoxtOgdLUc7jmwHc2uogBh3B7pAUgWXD4nbMFw2m8WNN96Iv/mbv8FTn/rUdQqF47+wsIBvfvObuOOOO3DHHXfgyJEj60rdn0/eJTBQi83+6Pz2AioUSFSI+lyOOdcEhTkBirW6+KMub77D9+5e7fPdqzyqn+vfFtT0Ggv9rm+crGdIgZi6+NVzCCB0JokaNL72WGULhE9dVoCic6R/8zlUouRxyoNzofPJuyQFKLpOOV56n++3/bvX/5QDNE7S6TSKxSIAuNy/bDbrtuyzOBnnt1AohD7jnFM2EBDarcbKS77+2HbadeADYb0A70br3AIN/m1zaXS98/v6v35XjUAfONF3cly07ISv7UC3ii3fp95Arolz4e1zAihf/vKXcd111+Eb3/gGvvjFL2JlZQUvetGLUKvV3D2//uu/jn/5l3/BJz7xCXz5y1/G6dOn8RM/8RPu83a7jZe+9KVotVr4+te/jr/5m7/BRz7yEbzzne88l6YAWBuAkydPYmRkBLFYDJVKxbWFi1ytJjsJFEjcFkhlS0TKmhrAmkt+cnISQ0NDePjhh3H33XfjoYcewuLiIiqVigMyBBVsHyek3W6jUqm43TzA2u4WFhGjsiAzAHAZ5swyZzhG9/TzN384+VowRxU+x4PZ7BSqdhEA3QXA7cJUajqWdO3ZqpIEKvTuaMiGaJwHB/oWhgo6RedUwgSYr33ta/HCF74QBw4cwH//7/8dxWJxneXBcc7n83jGM56BK664Ap1OB9/73vdC/HQ+edeOey9BtBFgUeWoblTdFUTrkLydTCaRy+XWhUqsZaNCTcG9Dyz4rEOSD7z0AjRW4fu+43t+L+FqPaM2IZmJ6EGwtj2eh1D6wkUbtVs/55yqZ0Z/LFCkV0uVN3NYzoXOt9zlj+baqPLRNWu/w/83IjumBCpBEKBcLqPdXqvBREDHUA5lUTS6VsAtm82GNkEwab5SqWBpaSnkzeLcqSdFwf5GPGjbfjbA7VvrvUKLPmBPD6AvJOQD6JQX+lz13vq+r+uHtWK4C85GJEj05FCG689m517pnEI8N910U+j/j3zkIxgbG8Mdd9yB5z3veSiXy/irv/orfOxjH8OP/diPAQA+/OEP48lPfjK+8Y1v4DnPeQ6+8IUv4Lvf/S7+7d/+DePj47jyyivxP//n/8R/+2//Db/3e7/ndrlshqLRta158/PzuPDCC3HPPfc4JFyr1dz2VQCh+BjQBQ+zs7PukDZlBFW4xWIRxWIRjUYDJ0+eRL1eDy1Eonoq8E6n40r/kim4hZDtjkQiDr1r7osKUgsI1FVIBU9ww3f1Eso25GKFpiJqXyiFpOBDnwWEhQnzfLhjhwzLNtG9zlAbk44ptHWh8nc0GnV5PBTyH//4x7Fnzx4873nPw2/+5m+GwLJaADwpOAgC7Nq1C5FIBN/61rfcvVvBu1YIKPlAgx0PjrvdxufzgNBzQK8Ykwn1Pap0dC34BKRPQPvc1Gf7fyOhpUK11xjo3758Gf3fjksymUQqlXJGA5UTE7F7tb8XUOFnAwMD3jLwak3yPuVXKkvNp9gMnW/eZb+AbnVWVUhWXugcb0Y5We8vrXfyKj0fKrsAhHIONeeKciYSCRfz5OGM6k0ENk5U9wFizqdtN//md2zaAMnmFep46RrkOKunXd9h/9Z29ZKntq2UDRZEcez0WBaOvz5DjVsLztXTtll6VEmy3OI7PDwMALjjjjuwsrKCq666yt3zQz/0Q9i/fz9uu+02AMBtt92Gpz71qRgfH3f3XH311ahUKrj33nu971leXkalUgn9kFZXV3H8+HHs3r0bmUzGJaMSzVtLkdYlgFAVSeZNqLs1Go260vTz8/M4deoUlpaW3HPI6NlsNsToWt+EiF3PfCCz6UKgVyOTyYQScvksRcRAF4zwup5fQ++ILlJrbbOvKysraDQaaDQaztNA4ESGZftUofF/BUcWuPA6BT/bzzYy3KNbBC0Q4wJTJK579Kenp1EqldBsNvHwww+HPAn8zXBSq9VCqVTyLpCt4F3lTd8c9xIiFriQt1RA6hlOttYKx5vPsQmd+i6bNNhLOW/mc5/S7yXYLXDxKYpeQMTeb58NdPMPGAbmeKjC87XH97/vPb28B+RherU0rMAfrdGyGTrfvKueWy3oqAnyOkY6xzpm9j79zM6tjh/51no3+BnlOpWkhtp11yF3c6mMpddYed4HLjdqo48s2PABHZtDZsdDdYWuWZ+Ro/f72qL3aJssELPz0el0XOkIJttrEi35QkNBdvzOxYPyiAFKp9PBW97yFjz3uc/FZZddBgCYmppCIpFw8UHS+Pg4pqam3D26SPg5P/PRDTfc4I6jLxQK2LdvHwC4mhiLi4solUq4+OKL3QACcMqX1jwnVRW0jZlyAGOxGAqFAiKRCGZmZlwCLCdpdXU1dAqtMgR3aFDJE9UDcKeoKqLmAuGi0nopyrSaX6AhFy4umwRm0atPGVAJKRCg21Sr5/rihlwsekCiLhrOAReUBQ/0EmmuD4W3LmhVVp1Ox51A24t8ypB9ajQaKJfLOH78OHK5nPv8fPOuFXA+Je3rkwocCl+dYwWGFMIEKDqPBJt0zfu8D72El22nFbz2Ottj+2vBh/3b9sd3j69NvGY9JlbQR6NrOWhUUlrAywemes2Pto1GiX5mPQhBELhEQiu0OacMLW+GzjfvkhhOYS6ZT4GzT/rbByI3Ap30fufzeef1IrFoJoElc09UBjNkRp7gulDZybbZvDCgG0Lv1X4ly2927Sg4IfkMFOvR5zUqfpsQzOf42qDXbM6bz/iw7bT9ANbkfL1eR6vVcmFjPb9tozDPeQEo1113He655x78wz/8wyN9xKbpHe94B8rlsvs5efIkgK6Ci0ajOHbsGA4dOuS2T3IgKYgJTsisGrtUoU2FOzQ0hE6n47YMVyoV587UirH5fN7t2KGgbzQaLi+FcTtasHpgVTweRzabdUKSoIOghQuMYIrtJQizNV74o243G3dXJrPMagUphQ/doroQdMFwhw7DaXy/ZtpHo1G3pZrCQkGX1jVQrwx/qzXAarKkhYUFnDlzxn3fZ1FQcayuruLIkSOoVqsOWD+e1It3z2ap+BS9FShWsfmEIUErPXw+ZWnBK/+nUDkbOLFt8vXFfsde62Vh+5QAgHX83Evg9nLTkz+5BvUMnI36a9tm26/VoPUzG/qIxWJoNpvrrgPdvKmtpl68q30NgsDJJc01s+QDLL559fGMNW6SyaQ7voKGEfPzGLbR4o+Ut7pbjetFw85cA75Qi7bPtt8H4FVe6fPPBgL4tzUY9HNg/dEnSht59xT0289VT/h0hu9dzN1iGJ27pYBurS0LUs4lxPOIthlff/31+MxnPoOvfOUr2Lt3r7s+MTHh3OiK5qenpzExMeHu+fd///fQ85htznss0V1tqVarOQVHF+SVV16JL37xi24ydPeHTjqVL60ZniI8MDCAQqEAAK6yaxCsne+ijMJwkibV0WOzuLjoKkICa+fuqFJm1jnzLbgAyVjqjoxEIiGXIwGIuqV9CksXtyJXFZ66w4nf11AMFzWfoe/SEJXOk1bKJQhjXJ+xdebdsLw9PSc8VJD5EbrQVHBouftIJIK/+7u/wz/+4z+uy6VRJQusCVQW7zt8+DCGhoa2jHct6NpI6ZN8VowPEKhwUT4hjyoQ7pW3YcGez4NhvRu9FLr2S//2WVP2u1ag2jHS+7jedSz0Hbpzht8neKMx0Usg9wIttr3Ly8vrAB/Bva4Ju44tr5/LTofzzbu2T5SlBA9WISr55tsHAC2gUSDX6XRQLpedR5vGny/fjnPOytg81oCVZn1ekV5t8YEn39+WNxUAaJv0mq4vXvN5pcg/TGXQc8t8YFdlgI6/DySq7FB5f7Y1EQSB86INDAw4uUqDqFfuzWbonDwoQRDg+uuvxyc/+UnccsstOHToUOjzpz/96RgYGMDNN9/srh05cgQnTpzA4cOHAQCHDx/G3XffjZmZGXfPF7/4ReTzeVx66aXn1HjNsWi327j33ntx8OBB7Nq1yxVqo7fECgCNozabTZfEOjo6iiAIXGl7Wv6c/Gh0rUT58PCwq10SBIELz0QiaxnWuVzObXej65HJoNlsdl2iEw8uK5VKWFpaCgEAnWTdKqnMBIQrxrLt2m7frh4gLOwtyOEPE9DUQqTyp6C3WzcJDnkfQSC9ULoIePI0+5pKpdx7dVHRhavzyVi5KiTbVwKgZrOJ8fFxLC0thRIDzzfvcvxVCHPM9X/SRgrZggcFJ5w/KuJ0Oo1UKhVyhXPrJfnXPsd6WnpZVBsJM+2TfY72W5/VS/j3Ag7K12otqxdRhSrv1d1x6mrXcbZt8/1ND629rlakgnXOHdevjs+5WJnnm3cJStgnDfNYPtXvABsDvV6fkQdptNXrddRqNdcO+z7yuxqm7fba+Uga6uH3NSxtwx/q5dVrtp0+r4N9lo/XLd9bYGM9KkC3eq+2jf+rXtC1r2tbAZDtR68QUK81zbnlWHJ3VCKRQD6fD8lk/dksnZMH5brrrsPHPvYxfPrTn0Yul3Oxy0KhgFQqhUKhgF/6pV/CW9/6VgwPDyOfz+NXf/VXcfjwYTznOc8BALzoRS/CpZdeil/8xV/Eu9/9bkxNTeG3f/u3cd111/VE672IjEUmPH36NL75zW/iP/2n/4R77rkHQG9LLQjWktFSqZRT/vv27UM8HsfMzIyz0qPRbtE3ChQqNuawsL7J0tISotG1JC1l/CBY2zpYLBbdWT5Uzo1GwyFQAG5SySwA1ikaMo16R2xfrZtP0SsVhC489s9adJaJ6TZlHNenZAE4hahJtwwFEYxVq1XnoUmn0y5sFYlEXGExPle9J7rzQfuoY2A9AxSmVA5LS0tYXFx03z/fvKt9sn3oRT5vmXoDrDK271MBpPPO7/vGTb/bCwyowrdkFVAvsu/ygQKfh1D7zzWlwlwFrQJ1/ZzePN2ZZz2LvSx/9dT5wjv8PpUk88ZoALHNCjgBnJMH5XzzLvvKNlMOMcRr5YE1Di31AiccX44PQRDzCYHuKcRsA+Wc1p9SIKJbZJmMTHCqvBcEQUju6o8PyOhvn3eiF8i1xoXylPKsAj+9hwYrvc69xt3OiZYesOCpF1DT6/pMK5M0f1HlkHowN0vnBFA++MEPAgBe8IIXhK5/+MMfxute9zoAwHve8x5Eo1G8+tWvxvLyMq6++mr8n//zf9y9sVgMn/nMZ/DmN78Zhw8fRiaTwbXXXov/8T/+x7k0BUB3otS6v/POO3H11VfjyiuvxDe+8Y2e4CQSiYROMt63bx8KhQIeeOABxONxdx4GUSEFCcvU1+t15ypvtVruTB1gTWgzV4Qu9Uwm4xZXJLIWYmLohx6akZERB5qsAiHRAtBkWHUd2vFRZlamVwDE7+uWbFuuWxcIkbo+WwU1x5jjBcAlVNHLsrq6inK57MAIsAZqlpeXnevVxoWj0SgKhQKWlpZCfbT9tcJd29VqtTA/P4/5+XkcPXo0dN/55F0+zwo5jp3vN/9W9zrnQ+fEWni9vGL8XwGNeuEs31hB6lMovYSyTwiTyJP83LbXCnzbNvt+eul6tdeCMXo2GW70jbtvHqwXS721dhx4D13zTB7XZ7Bf5xqnB84v79qQtLrwexksPvIpul4gmOPHUBzQDSFQVuj72cZYbK1gJ9A9roTyWdtoPR/WeLO8vZnwB+/jmNnrvpCHXac+sGOfo7ysvOsbx2g06nSI7/m9wAoBjfWq2rYrPzcaDbRaLeeh9O0UPBudE0DZzIOTySQ+8IEP4AMf+EDPew4cOIDPfe5z5/JqL2nlUrZteXkZn//85/G85z0PpVIJDzzwgLfd9KC0Wi0cOnQIl1xyCe69917UajW3ewfoekmYFBuPx922OlXktVotVECNbaJCBrpnwxAccLuWXdgqnGyYh9cUMes9usAUHTNkpDF6wK/gdZu07nyKRCKuvgvH0Oet4Wf6TJb0psVSr9cRjUZDlXoVFNEiY2wbABKJBFKplBMudj6tctP3Z7PZ0O6KfD6PYrGI+++/3107n7yrAssHTNSbBYTDcarw+H0bxthIUVhhpMBT7yH/6L0+AGKv2/f4vtPLI2FDVlbgqnC01qcCdVVqGylAPp8hSn6/FzjpJZiZ38C1r+/nM9vttuN9LYHge965ApTzzbua16ZeoF4A9VzAykaAkjzJEJMqTZWr9Iokk0m325Oh51gs5vJUeECrDY/YhFr2QftMg8AHlLVPet3yo36uPO0bR/J3Lx60n+ma4XfVy8L1ZgG/jru2RUGgyopewJ3rgWHPdDqNSCRyTgngO/osHg6uMnAkEsHCwgK+9rWv4VWvehU+/elP48EHH1z3Xd6fTqdx+PBhnDlzBtPT06EQCon/6wmYiUQClUoFzWbTKVG6cAkekskkhoeHQ/kmLDTGXUS8NjAwgEaj4XYEcbGxn2yzulFpafkOf6LCt4KfC5RMpMKUzEciWOHOJgtI7KKgUiUD21hpKpVyqDqVSqFarYYYlt/XM4C07yMjI6jVautchbbf+pnmGllLbCt3SvQCKL0EuRUIep+GdnzK1yeASBspho2+p8T2aO0DnxDW+/W3vt/Onw/w9vqbv31jZdvhAyiavKpr4WzKlYpSt+Tb5+sz7GneOp+9xng7kQIvKwNs+88GUnoZNL2UO++lDAW63gjKtqGhIQdGtAibDY9Ho1EHZOyRIj4FrPlJvcCv9ol/2/t8Bp3tq4IH23+VrWyLD+jyM46Ntpl91rCYPt8nC9g+H7BWPqYu0JApIwq5XA6pVCpUD2oj2tEAhYNm3WhBEOD48eP49re/jWuvvRZ//ud/jlOnTq2bwHQ6jauvvhqRSATf+973HLDQ2B9BRyTSPRcnHo87b0AQBC6PhPv0idqHhoZcgqy1BrQ8c6VScYuCZe11wSuw0K1bmgSmbeYY6G+2/2yC0LoigfULUz1Wuvg0m1yfoQxOIAaseTFYB6VarYZ27qj3gGO+e/du3Hfffe4ztTpUoFji5xx/Wrs+T8z5InrhfELdkvV02ORk7mLwgQhdIz6hv5EAsuBJn0eyFp/P09ILrPgsbiuQ1ZNgP7e5JPztswZ1/VnvBPmDiZW9hL3eb0GirkeblM/vxGIx1Go1Z70zSVmLR+rztyup0WDH0q5D31gBfsVsjSPLC+oRiEQiztgLggCDg4OuyCW3jKssV28zf1MmqmfFB/J5TZOoffxtyddHHyj3gRG20Qdm7O+NxlcBg64Zjo8CiV7yQD8j+cI8fI99pl6rVqshL/zZ6AcCoFghR6R4++23Ix6P49prr8V3vvMdfOMb33B5D5lMBq94xSswPj6Oz372sy45MxIJZ3ivrq4imUyGvBHc+81koGh0LTdiZGTEFW8bHh4OFVPTNtPVC6wtdibOAuH985FIxBW/oUtRqyPyWbrjRxnPjpXdLswFb2usKFii21sBkFYytMBLx18/VwZnHD4ajWJoaMjlp7BfANx5PXzu+Pi4C6WxMJ4COKtIlWy4g9/RkM/5Jq0ZYZW8CkeOrc+9SwFrk/lIG4GQXsrbZz3xOxYM9lLkPqBkP/d9Ty04BbnaX43b838fGNexs9fVAtW2MmFb+2rb1ws8kN8JPLU9/DsajboDRYvFolOktPS5k0rzZ7Yj6Tq319jujax6n9doIz4FwmdN6Tzy5Ph8Pu/krYZnSD7PCNA1vixA8QFtXwhVAUwvQKKAw5fAbdc/x6gXD9ix1nfxb/sMlXsKhtQY1n76ZIOVE3yuDYn6AI6CF3tI60a0owEK0EXeHCB1YwVBgK9+9as4evQoXvrSl+I5z3kOGo2GK3w2OzuLj3/846jVaq4wG5/HvBMCFK06u7S05BLdBgcHMTIy4lxXLLqWTCaddct2KYLVPA9abiR+j9/VfnLyCVzUjakAi4BEx4QAQBlMY+fKWJ1Ox+XLaDs01qsghc8i6fv4v/aFIJCJsyMjI+5MlFqthlwu57xXIyMjGB0dxd133+2EkiqRsylD/rYKYytDPLS4e4EK/dsHEjiGNl7O+4D1lSV9wtd+1uu9+v7/X3vXEiPXUbVP97x6nj3jx9gO2DgvCUWJEAokGJZYhIf4AbGKWCCEQIFkgYRYIAQsg4TEBkXsCDsiRSJBQgEJJeERKQkkCo88CAETPxKP7Xg8093T090zPfUvRt/1d785dbudZDzTSX1Sq7vvrapbVffUqa9OnarSfOJZ/b4Hs/wceKzD8jowTq+ImGp8tSwq4VMrXD+WLTPbkn9evad5GBkZyYgJ5ubRbjHluG/fvsy/YreCy6zwLJna7lQW8JvfMcsuk3iejp6amrJqtZrtBMy6D+1CZUDbCVume3XM2ia8NuO9dy6jyrRuflmk04qIuBeO24bG0XrRKSvPisrkBPXFA4leOgEkpcjarRhogqKVbpYnKFCAJ06csPvuu8+mp6ezgwHPnTtn3W43W71jlt911cyyTcXghby2tmbNZjNb5oYlfaOjozYxMWHT09NZY1EFyD4g7KjE7N3Msm3ueSMtbSycngq1CiCeEUJwTdi4z/sDQJmiLrgR4RvpoZFxh6PCCoXLigp1DR+ecrls09PTFkLICN7GxubKpkuXLtnJkydzc85ew+8l+NqYd9KCAoLE5M8s39CVcPB7ZSWB/x44HY3nKV9PKSlBUZKh4WJQ5RUbZXsjSi8PGldlX+vT63xYLj2ZinXEyCfaIqZ2YtN22BeiVqvZhQsXrFwuZ+0cg5xDhw5ZrVbLdNNuBQhCL4Kidee9Z8CTPQ7HpAjbEszPz2fHbEC3KgnXKR2VeW8psRJ7/Ga94xEahkceYhYO/u/d1zr0rCfQvV44hGUywWFjRCNGVlAX6rOlbUnrha03/eIdRVBYiFWBhbDp64EDDkMI2ZJhdMK8TX6pdPkMHXTYa2trtri4aOVy2Q4cOGBzc3OZ9WJycjLna8IjKvz2lq4hfzDx6vQL+1tAsJiJekLOjk9mlnsmnHh5LhLf3GDVUVdHngDywPPuXkfB+eYwmI5qtVrZcfdwLDbbtFadOnUqM53D4sTmeM6fpzSZOHmkdqeAaUVVpmZb5361nKo0VDH0Ih+9yAjngX+zfPK9mJmb01Xlqm0WiCnhonT1urc6wYundRt7psoXkxe0N557Z5TLm/4mZ8+eze2Fgp1kkeaZM2eyjfR2WjaLwO2Yr3E99nqfCq/e+Rp0NBY24BBXHlDyNI7XyXI4b4l/r3YRIyJc/l4ypNYKjaPtSuu3SC68+zpw99L16t+rA60nDGJV7r33x8+7EvI90ASFoQrDe/lmW18iOgl0luhwQwjZyB7xsPnM/Px87oAxnKODcICe7AvFqSZ59i7HdTB0TKMwuCF6DpIsBFweHgHw6hasmIHAxawROn/KnaVOU3mNlPeIYJKEqS440F66dCnz08F5QzpaV6dC713zs73RfpHC3G7AgoJOSq0lDI+cMOnEPY8kqBKObT4VU1B4nuaF5cosf6il5iNW1706YY9Mog3p+0R4DhsbocfyxGnytDHrFq/zhYLGtLC2k6GhoezQUp6iQLjJyUmr1+u2vr6eHamxm6F1ELsfC+MRSv2wruL3ipWRTE4QvpdVUMMWERTOlyfPXpmYBHF8jqP78/RDimPy7eXFk2mVV02TnZ5j78SrWyzNxx5gnn+NhyuZvhxoggITEzf4WCfqdVToyFm5s8kde3RAKWKOuFqtZp7f2OdETZvc+XLD0C2TR0dHc/nBdXYK084LVgS+x86vaAQgap6XNlt4sASYlbJXFjxHyQ7SBtFgKwkDm/2wNQV5xP4ycKDFM5i8sQJgx2POK0MbM969Wo92AqXSpt9Bq9XKdg/2EOvs9V1yuvy7l5Lp9Ymli7x5o2nAy5fXDnHdIyTeSJPTYvO0l67WuZqzWenryBbp6eDHuwa55mlDPI+dodXqUqlUMr84WFVwRthuhbZvzatXRwy+5tU3A+8Gg7FqtZrpW5bnIh8Ss/gUT4ycFJEWhupMzi//x7N4AK11GJPbGFH3rB8qZ/w8lnW1vnNaWi88Hcv3yuVytjMvdLZOFRWRqX4w0ATFLM/UvHnRXhYUkBR0XLyMF/fL5bKtrKxYuVy2Q4cO5aY/eFoHafOZFDytw40IvijcgBAXO1pqo0N+QgiZg66ZbXF8jbHyEC4f/oc6wH4tLLAAOw3z6I+FXgWR19uzIuIGy065KDOsUVDwrVYr2xjPM9myBYXfpZaZwdYrvIOdQgibDsI4HwQrk8yKRx8eqfKUaK9r3j3vN+c3Rlx0QzlvGkitEXyN04rF0XCcp17hNS63NY7LeStKF+F47h1O5TwYgFVR42EwgQHWyspKbgsAbp+7EbFVRtoxeh8vTi8ivLGxkW3SiIGhdqAeAVFywveRPhOdGMHx5F7DMwmJlY3Lpfqc09C4qte8dol7LGMcB3nVfo3JB5dNiZqmg3KOjIxYpVKxZrO55T2/HTI80AQFFcujclY6zG69l80KASNy7cyxkmd5edn27t2bMUawR1bG2rggAOyUyFMzeg2KSy0H+Hhz3dzZIowqYU6HiQWmVbRjQPn5OtclExUVYE8JcCNW8lIul7NpHJyTUy6XsyMB4G/CZdROsVdD4HfjOfHuBLBRH68GA1hp8X8zf57ZIxR6n5WKR0JipEUVoMZT4qKWNbP4yo5YmWK/PUWs+exFTmL3dbTpPZ+vaVvk1XCQZZ3u4eeUSiUbGxuzRqORa087KZNvB3jgESMlZpfrUKdE8K3tk5dh66BNyUls+sazRnrEJKbTkG8lMaxX2WfPk2OvrXrvnfWlwutv1JKDQSX3BSzbrMt7kSik4U3j4iiBpaWlnu9c66IfDDRBAbwRe5GyNstXEvtOoNFgGqXb7WZnv2BEPzQ0lPMe5xeIlwYLCRoULwn1Tk7lqSbkwyzvxMrTT8ifEh0QK5RRGxiu66gD+ffmI7Xu8JsbkJJBbeScJsJidAkiCKUNwgJL0ujoqDWbTbcD5fyo6bRoNOxZ264mUHfsY+SRJi2j2VZH1ZhyjilcTV+fUURgFEWdit5nqEN7P/UVy4/XpjmevnNVoiwL3GY4DSYk+u6wXxKc6vmYeci3dlZ8Jg+fKaODrEEB6ov1pzfd4Olp78P3VZd6sh0jIl4Yfm7MchLLk6cD2XqNd6ebVhZByYXWaxFJL7qP98H32FIO/zdYAmO6QT/IM6zl2HAQ+5vELChvhoAPNEHhDp2VkNnWUZaC70PJYGkrKh5p12o127NnT0Yo4JjKwo3n4p7nezI2NpaZKFnBeQKiDVnNqtxwedtsJkswMUOxYsUMT3WoYsb2x8reuTHyPZ3yYRICE7Y6unKDhw8MSIoeC1CpVHKb2inZQt6K/nsNuB+mv53wRkfq7KxKMUYA1BJXZLZGHEU/BCR2zSMnKldFBKOfuuK64MGAznnzb647resYqVGrDK6xvKj8w3qCHWKHhoay08nxLN28rVQqZdZCJk5engYFSuQ8XxQtp9f5mW21ZLM1WsmHTjsUERezrXusFJESzot+e/lXiwRbbFker+QdaxwmGUXWF24riKc6nd0aOJ6+CyYmWtZyuWyTk5O50+GL9KvmowgDTVD0xfFIqIiVAkxOoFwQl4WKrRcgBojPefCEHcQEHa+SEeQRafLo2DNJQqjQ8fPhg0iHlbKO4jySoPXJ9YA6UgKocbxdY1kpeB0B4mOvGShyWFF4yovrQbeb9kiLQjvPfuRju+Epbe+dA3otRkAQpkjxe3IVi9erbjUNvqaDBO9/rGPy8qwjb1bWXryYouzn3WtcLQM65G63m63IwqGYZlsHSwBPa3J7Rtr9Ku/dCHYILgJ3oL3k05sij8lvjHAUWRb7bSuaZ32uR044HU8WlQRzeEYRCSmqW7ZkxaxanH8l/LG8IH2UGUc26CnRHrw0YxhogmJ2mZTAEsEV3o+pFC+u0+nkHDz5nALsCouOXjsKdHi8m2u5XM42XTOzzDrA0zoskLGRrjY8M8sRJJAQdPSl0uUD/hCGrS9YNaQOgt5v5AFTXTHFifLzVAUrWnZ+ZcWOcoUQMqIFBYeDGUEg4Z8S61T1OzaFs1tGqUpItCMsUpYMT2Y8FF2PkZN+FKWWyXsXSg699IrIhJc+y5xHurVOY+9dyYYqfc+ywWWC3mm1WjYxMZFN15RKJavValumdwA+pFOtKIM4xWN2eUDkWVDMtpJP6D2Fyr3XFnqRDLWg9DON402F9mofRe3Su87l5/+ejMTSLIrnWUKgD7300IbwWwexReVmkoIFI1hy7OWZSVO/GHiCwp20dnzsW2K2tYGwdUCtBMzWsUcITz8AGhbTLlgKB8sM4rISVSHyRgZIE/lVxcvlwj3eAIy3zOdze1QJcr7ULIn65Hi8qoevKzFgwqdLMNFwEI4bzNjYmK2vr2cHMmKVizdSQXyvLFw/Wl87CS9vLA/eyLLfcnjERp+haRYRkl7PZZN5EWKy2681Q/MfG0Hqu9d2X1SWWCegcXmQgXn4yclJW1hYsE6nkw1WRkZGctM9nKamwdcGEdA96lMTsxIoIfA6fpatGPkAvLisMziM92z8joXT+/zN0+YMjQufD603L33IQ1Gb0d/a+bOFsagdsEyqta+IlPEqVaxojVmD9F4/GHiC4jF2M/9lxeLrSB3xcAYPzrvh7ech8MpMQU5CuHzujfqkAGqu9Bqj7vehggmfFqTHo0HeBIydtmAJ0hGO7gboNRzE4/uqjED2lPDBEqPEDB+QOb6GeXpu/FxPTKDUSVbzqI1rJ60oXt3h/SBvqgQ5bj8kqyhMjJB494ryw4pNFWARIWHLQb/wRotmW999UTyvw4yRELWu6EAI4eHwfv78eWs0GmZ2+bRq9fUyuzwdynpkaGjIqtWqTU9P29LSUt91stvgWVpjbc3bRkHj6RSeEgePsOhvj7R4nW2MaHukRAeL3Pn20i3cTvBcr92j7N40uVdfqhdibU/zrYhNHWv9cjvmQbim3YscFeEdTVB6vVCzy50y2D9vM40dHuE9zmSBCQh33rAUsDXFO6Y71mA4/7qzrQoLvqEQYkycFQacYLGxDpQlpoeYtPDcLwP/Y+eO8D2uLzBuPiRPG1Sn07GJiYmsPpvNZs4qZnZ5kzZYybST9xSHdrg7DSZz6kxotrVxc7mKFLqS3VhaGsf77cXlazElp8SxqA48Za7pekpN5ZrzyO+7l9LW/GsnxGRESQwGCK1Wy1ZXV63ZbGZxYWFEO9POgXXG1NSUVSoVa7fb1ul0snQGEUzm8D9GxlU2lFjgGr57ya6G6ze92Pvn+Hqfy8uyFutzimTALG6FjMk07sWIEsdXgqdh2QLO74ePE4nVqTd7oGnwFOaV6t6BJyhmxfPLMeHDfZ5iwOm2PC2Bj+4WqytK8IJATvASvW3sNT8MftmcX6TB0y9cZjBZDsvlQzq6mmdjYyNbSYPn64hR88N5Ug9x7kB5NMVb7/POg6r4WbFh/h5TVryxndafphEjLLsFXMd4LyC83ogRcXCtn/RjJMaDp7C9//hGXrwjB7znxOofClLltJdVQ0eVnCePSOi313FyOkpK+D93wOVy2ZaWljInWe1I1NeK6wm7UHc6HWu1Wtmho4PqJKv1FAuDtu0RBLO87HjtgcN5hKLISnIl8l9ETmLtJFYWtHGQAU8nafpF9xkeedF43nXVkR6h0t3auZ5xnTcdhTvB0NCQTUxMWKlUyqbp3wwGmqCg84JiUK9pNft6L5j3oVhbW7NWq5V1jOVyObetMsAKhF8Q7+gK9qge6J5AaIPQ53F5kC8vLRZSVohsRi6VSplCVLOcp6hZ6XjPZZatbJ7j4j+UE6aKFCMjI7a+vp47Ph2kCkuq1aLCDS0mJ7sNqBuQOF5Jpo6VTLJic+f6X5WNylMsHv8vUu4eaeFvlqMi8sHy4inZ2H0lILEw3kefgf8eqfJICt5bqVSyixcvWrfbzRFuM8tIOIDOCfcx3dloNDL9wfIwqND3ErMOFhEUhMF3jJzgO+Yn0S+h6BXee3YR6fF0Ia7HLAlKxLy60P8eOffCe3nR9GJlgL7mvX1YlhEXB2DCF2t4eNgajYYtLy+/JafvgSYoExMTtrKy4jaAGGKdKNBut7N9N3gOmRUtiA86d89ygkbIUHMZ8qqNDfGYmDD5Yt8WbuwMtqLwM5hsYGOpSqViZpYtfUS9cIOB8gRx4LwzwfJOtVTyWCpdXhmk4TGa5u3vmZDgvzddFmvcRf4JOwXUCba7xwov9tPx4gAxpcVhe5GImGJWeNe8jr6oAykirTFSwfKrz+L73PZZ7mMKWZ8fqz+E1Q+bwy9cuJD5ryGdsbGxbOtvBeqCySjni9v6oKCI2OE/T2XySkZNg9816xXIadFgoxfx6JegQGZZljSfPGDjuFp2xGH5ZPmLQclKTH/F6iTWPosIn/YX2v9on4d+iPfiwnTn8vKyNRqNt7wibXBdxs1s3759udE/L3P15qcBVXQ8atFOEp0pP4PTBjnQF6FTNJ7CVAFRkyKeB6FhyworM3RssYbGgoa8wS+GDydjh1uuB24sfKyA5is2kon5CGkdsbLG6FOvVyqVHNHT+lTiUlTnO42NjQ1rNBrWaDSs1WrlNu3T6TKzYjIQU7aKIjLnhVPEOv6YpULz55WJZcLLXy+yhvAgP2xZ80bwRVYUzhMTEk+Ga7VaduAj4mB5PK9YA8rlcuaEr1Mh+sxBQ9HoXO9hOkCnvpVAcBq9SHWRzHOYImuLEpPYM1mWi94fl5ut46z3vIGE/vbK4YWPka2YrowRllh4LR/XJ8rabDZtcXExW7nW6730wkATlPHxcTtw4EBmImel7rFUHS1ppYMVIz6P4iGAeI7ZZX8KnVNUAfY6ZwBh1YkWz+IwnoJH2fUMIvWQ5/zgPluHcOYQDn/CPRVAJU39jEQ5r1wPyIPWGcKiTFg9VS6XbXp6OtsIy1MSmoeikUqvUcx2I4Rgly5dsqWlJWs0GtZut7Mpy5gpGOhHmfH92HuJpRMjAF66MXnT9DzSwiPpGFEpIkuavrZjvof7es3TE5oe/0d7OX/+fLZZIlsGPCdXlJW3PmBZ1+cNMjzyif/eYMrrTGMdLj8jJhv9kIt+PiqPV5pujIR5KzpjZeTv2D39HdPFRfXJvpSx/Gt75mMesFiBzxTjsG8WA01QGo2G7d2716rVak558FRDjKTwfz0HB34PGAXxxmc8umFnUwbS4Y6ZrQ1FAssWEg2PtDkcW5D42QCTkJh/DJMUPk8EFhUWeqTvTc8gj3q2DOdXlZbXsQGwonCZp6amMv8Zz6/Cs0LtZuAgyqWlJVtdXc35VHHedVTWb7l6KXBvFOihiJzElLRe4+dovjxywnny8qVkw0vLS8ezqiAM2l2RFWVtbS1HKkMImX5oNptb9l9CXtBmtC74Wbv9JOMi6Hv13iWmMmOyovD0gob39KSm4X1r+kWkh8MWdeJFFhhOR/0NY3nw0vDkI0ZGisrJOrRXW+bwmne+Njk5mdu1/K3K8kD7oMCMdPDgQVtcXDSz/Ny0Ng5VlICO7NHpY+tqmCR5O3yMArCcUMEOdWZ5a41HODjPvUa3KjQgV56AsaAgrCpCjsPEDk5PvJRXy8j+BYiHukP5cB1TRtwJmF1e+qzvC86ymMbCXjTtdjt3foTWzaCYyCuVio2Ojtr6+rq98cYb2bQbVnf0Y0lRqJWCr7OC4/r3ZEtJdq/n83uOKVKVcYThT4y4eOnx85is6BSkJ59FxMwjM6wj6vV65vzHB66xU6yW28w/J0w/g0xQAC6f2eX3hikujwQUkQL9XVQ/RZ2yhisiUyo3McIQ84+JyTK3AejDonrgNurpaw3HYfkZMdIeK59eYyLCPoB8D8e6wAfr7bAGDjRBCSHY8vKyVSoVm5mZsaWlpayyeBTP8AgKlALvz8GdOiqfXzLv54G8qGKHwlFnWc4L50+tIUWdg8eyGaywdStjr6PitDY2NnL7uZTL5cz3g0eBeI6nOJSMqVLWOsPprhyOO4fh4WGbnJzMprM0Ta4/LkesHne6ExgaGrJbbrnFqtWqvfTSS7axsWG1Wi0rF8iYzvly3am1COD3oR21XospdE4nJmdKsrVDYvC70bYZI0qIx0rcIxMIr5YRr+yA+gqwvOG++gOZWeYAyPcgkzFnbC6D1s07gaAUkWKuPx7s9fIF8T5I35MThkdI9Hq/5KXoO9a3xPKn8s6k3qvHorQ0jldevRcLy2XiMNxnsL7Qdo/+sFwuZy4CeF5MNvrFQE/xHD161LrdrtXrdatUKlnF6Jb0Shy0oqFctONlgoIpDz1fR8//YWWoysbrDHSuPOYAWpR39b/BNT2fCPd5yS4ES4UJxAombXhsgyGrUCNdJg54ptchar3BeoBwUOjIx/DwsFWr1dyJmQiD5xZ1ZLsNo6OjduONN9qxY8esWq1m8rm+vp4tz4PzLOqf3zUjNuKPEZIiRe1d5//63Nh1L08xouNByax3n8N5BMwsv5kgO7p69aTpqgVrbW3N6vW6tVqtbBllp9Nx3wngkSPvWfjAwjCo0E6UP9AbRcRXyTVfj9VLP/VVRHA8+fc65F7P7dWuvPTU6t0vitplLK0icublzSMk3kf7svHx8S3E/s1ioC0o7XbbrrvuOnvppZdsdXU1m45gU6tHEHQPDpAT7dBxL4SQOZDCqgClpFMNPALDs5APzUvMj4Tz7o2SWajYSsEWEq9jQByky2dmIC0Ozz4mIYTsQEWY8jxyxA6TWLaM53E9IQ7vCssmRFzDFNrk5KSVy2VrNBpbppX4+Zyf3YzZ2Vm7/vrrrVTaXJaKTg9EDWVpt9u5OV9d5m2WX7qoVjKEK+oMihSoF0dHWf2M9Lz4Gr6IjBSRFfUbgewjLlsQ1Uqio3yPXJltEsdms5n5aK2srGRbHBSBibPWHbeN8fFxm5ycLKyHQYD6mqEOMb3jWU7M4hYJDROzGsZQRIiKOmUtk8q5N6WpxAP3OW3+5gEa6zAl3V6bQTpFbSnWrrx6hRzGppxiOoL7Huh97Mb+duzpM9AWlBMnTtjU1JTt37/fVldXLYRgU1NT2VI+mMl5B1Kv82JHOCYo2JMCygmdMy+BZWFi6CgJULaJeNzBIFysMSrrVodXb36QG4yOGlXoWIGrJarb7dra2lrmQAyLEs9NoiNlnxOvAYZweaM9s8urenTUOjw8bHNzc7a0tGQhhNzKH+24iqxW+m52EhMTE1apVGx1dTW3nB0fHaGYbfXvickW//Y6gCKlrYh1Ep6/U1E6Xn49Oez1bE5HO0GtJ5Y3+FFpGNYHauXAvbW1NVtdXbVOp2MrKytWq9VseXm5J3EqAvKBHTdDCLa0tGQXL14cGB8qD0pO0fY951iEj/3XDtR7VowY6/+i9uARbh5M9UqjqH0UdeoMz5LSjwWpKM2iMEX58v6rY6wXH3oflrI32zZy9fKWYu8wFhcX7b///a8dPnzYqtWqdTodGxkZsWq1umV1DQTOW+LFIyk212LOFJ1yu9226elpm5qasn379uWWHzO8EZnmgz+edYXD832PnGDUjWtcTnXgZaKG/2C/fGYQK3cVSOSLV/3wlJEeUIhO1euMeO8PthAwSdq7d6+FsOlvxGXyNqgbFKAhDw0NZcumUX61pBSZVT0UKZxYuKL7sf/ajjyFrHn1RpyarhIGr51om1GiwVO2CIu2zW3AWzHFugBn47TbbVteXrYLFy7Yxsbm/jWx0SvXj9f2x8bGbG5uLts1uV6vW7PZHEj/E4XWAfQMduT2CEWvTtYjsB656Dd/MeLB/4ssNUUdfVF7iOWDdbunazXelaTN5MGLr8+LbRegbdobDCP+2NhYdIXrlWKgp3iazaadPn3aOp2OXXfdddm201D+OFunVCrlOmR9eUwosKabHVsxVdFsNm1mZsYOHjxo6+vrduDAAWs2m7a6uppThFCCMWXDYZUEMLTxxTocfqb3nFhHro0EAqejUUy1cGPi5+scPPYt4bpVp0QuAztNgtjg/8zMjI2Pj9ulS5cyp2QdicXMoEXKbqextrZmFy9ezA5HrNfrW0ijKhi8iyJ/KsCTGY9sFil2tujF0vauaxpF3/zeel3zrispAWI+ZZBD1CPOeVKys76+bq1Wy1ZWVmxtbc1qtZqdP3/ezDYdZaFbeoHTZQKP6WHoFh04DCK0c2a9BN8alWtPFmOdYq9neveKOvoichErUxFp8fLj6ScuD+talnFPDjitonxqGM0Df6t+6FU//D4gx9xnlMtlm5iYyAiKR9CvBANNUMrlstXrdWu32zYzM2NHjhyx8+fPW6vVsvHxcSuVStZqtba8PH45UPwgJqzASqVSdh0rSC5dupQtBYXfC+8a6XXCDBbGmImY4zHR4XBY2sjzo1B6LIDo7NVPRJU930MeQB6Qjs71c1w8nxXu8PCwTUxMZFaCdrudq2OOC/KBuOPj47Znzx5rNBp26dKl3J4oOsXgoZ/Ocydx5swZe/DBB+2mm27K7TcDFCm6IlLSi3Ro2Fg8vc950PzF8uFZFrU8McLYi9xzGE+O8Z99SFTuIO+8jB7WUpAT7FOzsLBgzWbTxsbGrNFo+JVagKGhoWxKDzqJfa4GwW8qBk8u+Bqm2nHdG33jXi/57dU5czpmcevLmyU2ngUQsuNN08TyyaTU0/+e9c1Lzxucef9j97z7mg8mIEpSdMBTLm8upMC05VvFQBMUjEDq9brV63W75ppr7Prrr7fnn38+G5lypwloo4Aig6Ctra1lpi6soqhWq9mR6isrKzY6Omr1et3m5+ezqR4z32HPzFeepVL88CjAs/xwR4W0POsJpglY+YH5QhGDhEDYkBbC6zSWx4jVucrbsh2dMAgfwnDHgdHlxMSEtdttW1lZsXPnztnc3JyrGNQ/I9Yxxq7vJLrdrp09e9bMzObm5rbsrsmKR0deHkksUtJ8jb81nCpZDxr+SohfjHTx75gVpYjI8H2d1mUHVXaE540GcQ9OyVhKXKvVbGlpyV577TVrNBo2Ojrac78TTw7RFrFTMKCWykEmKR5QB2j7nvXaIye96iBGEACVo37zGgvvtZciwhNrI6zveRqd8w3gvqd7PXIfS4fvewMc/WhdsAsA51t9DpWkzM3N2YkTJ96yPA80QUGn3O12rd1u25kzZ+x973uf7d27106ePGndbtcqlcqWuWbuUPEbzppQQGhQ6FCXl5dtfn4+IyuNRsOGh4czh1xsTKPCyZYNr+NkJaX3YmRArSoseMrKWUFzWpw3fHv7U+jcJZ7NliKvowLpABmBvwoLMhxsYUHBctrV1VWr1+tb6kFZu5KyEEJuF0PNj76bnUa327VarZYtM4Yi4GkcVVpcBm9aLwZPsfYKDzBZ8pRYL6JSVOexDikW1vvmOJBNriMdrbKlhA/MLJU2LaYrKyvWaDSs2WzauXPnrNVq2eTkpE1MTNirr77aNzFjC0KvFQ3eAGAQ4REDXTrtdYheB6nQNLwOOibnTL4RN+bvEeusvXtFZCtWBtVpCk+negSew3t1pGn2Q1KUYMfCqx7WfmJ6etpGRkaiZL5fDDRBYVa+sbFhq6ur9u9//9smJydtdnY26+Tgj6Ibq+HF8rJOb++QEII1Gg2bn5+32dlZGxoaslqtZnNzc2a22QBxYBji8GiIXzwLHvt1eJ0tQ4WCLTV4Fju4emkAbLVhRc57RqBeYo3C+63TNoiHjhcWLxBCtp7gGjdyrGaJkZSYz41H7rQ++u2otwvII6YTpqamsneoJ2ijY9NDxvTd9KvY9eOFi1llFEV1yu+hyAqi6XjXWK5VycfiwWLHJF2tKhsbmydKQ5aw6WO5XLZ2u22zs7O2f/9+MzP7z3/+01PhalvBMnrsI/ROhfdOcA0+aV4H14+jtXddr+E/p8O/vekkwHMg9cpW9NHpHY8gIVy/Fh7Wn2ZbrYOcP6+/8NIrIl5cH960jvrNcLmVpIyOjtrExIStrKxEy9cPBrrFoONDZXW7Xbt48aKdPHnSDh06ZOPj45lVACMkZYW8GROP5vWFw9t+dnbWQthczjw9PZ2NwGJOsUwglJl6ZrqixsrPYEsG0seoUIWfBUpJgwoW/wZp8Za16vSKfrhjRbq81JAPYWQyx1vk8+okrRNVbEWkzOuMe3WY2w3kB6Rtamoqd5S5t9rMm37ppdzVp0jjFSnKmMJGPK2/orovihdDTIl6pEgJKS9dN/OtTTqIWFtby87X6XQ6Njw8bDMzM1av1+2VV16xer1+xTKD96t5xH/N96BbUNQZXi0VgNcmGfxeY519DEXkVcMVPd+bvoiVQcmWp+M9XR8jXmb5c9VQj15dcpr87V2PkaheZeP7nvVESQqOJinKZz8YaAuK2eURitlmwTudjrXbbXvttdfs8OHDduLEiWxztUqlYq1Wa4vndAibm5BhJMXbubOCuXjxYrbUeP/+/Vmn2+l03BN+2aIA8AjOLL6hD79EXbaLqRM8i1m5J4CepYHT5g3ZvOejLLF8MuniMFwXEGAs20Y8OM9h5RQrNUwBcTl03t5TRurXowqtXwW2neAVHWabclypVLaMLDmv6gANFJEUM3/lWpGFxFOWMcWG9L3RWT+jOpURzpu+Q8+5WmWN4/IcOW/Wpnnj/GOK9/XXX7cLFy5kTvg4sTg2cvXeB2Q9NnCJEb9BBuqIzyjrddK1Wd7K4ZFqlb8i2WJShP+KIvnm5xT957RUx+vvGKko0lNm/iIJ1vc6bYj+QfPm5dcrE9wauJ49IoWwrMu9+7Biar33i4EmKCFc3omUBbvb7dri4qINDQ3Z0aNH7eTJk9ZqtWxkZMTGx8ezTd0YmI9mPxT19+h2u9l+BRsbGzY2NmZTU1OZg51nReFRGitVNGAVHiUT2mhDCNlUiLJWDu8JmJcX5EOtQEo8tBHqKAlxkAe1jGh+eXkawqP+2drimU4h+CwHCm0IMQWyU8AeO9g/ptvtZivPdDSmikQJtlleTlgGdBTGcfS395+veZ1LrMPheLpyhvPC4bz8Fb3bXu8dz4SSxBYETDZYVhGHV/QpGerV2XHeyuVyzilWiZfX0Q46dEsBWAWLRtx6zaz3lE4RefHkk+GRjF7pF7WZfiw63rN5IMv3ikiL6lveFd1rP5pPLSvnRf/zgJH1Cf4XTdGZWabHefBeKpW2DIiLMNBTPMz0zPKjqLW1Nbtw4YJdunTJbrjhhtzhft5OdxsbG5kHfwgh81lBuuxMis2bms1mdux6jIgAPALE1IkuL1RCwFMwKKNuP8+Cgg6PwYKu5lc8w2uwRQ1Vy1nU6aBucU2nlvD8VquVbVi1srKSU1RMRjj+IIPfF6x0lUolN73DBFnJMupSvz1rCRBTXDFF7V1TGVHzb1EnEVOQMbBc9bKaeCQaBBxO6uwYz89gItLtdm11dTU3VRqzhBbVJ49yrwSDTlhYv/F0Lb55Sp7llnf7ZhnyLC/etdiH01MU6TvvWfpb25/34c0WOS6eGSNpsTJ4Uzy9BjQcLpa+1gPnz8tn0XVYYcbGxnJbKKCtXQkG2oKipnxV4Gtra7awsGDDw8N29OhRe/XVV219fT0zp7MlBRUHZ1fMQWMkr0sAteNXwoN73scziyF8kXDyqI/zwWSG64atFLxpFTccfg6mwhhsuVHliWuxumFwmYeHh3PkD3488KFBnjn/nO6VdsC7ESyz8MUBWdFdgWOKxlOkDCWQKmdefnrVoZdev2kwgVAyEXuW/vaIjoZRQsH+KNhCgNsj5AxWk1arlVsOz4MTr0xefmH+7lUH6vg4iASFySHrOLO8ZTs2qCgiH7jP3xqHr+lvr7NFXvi3puk933turP151jIGE1gvXBHp9upf86kEmp/Bz48RK4Tns+R4sMQrUzF7gHhoM1NTU9ZsNs3MMtJ/pRhogoKXyCxVlUKn07EzZ87YoUOH7D3veY+dPn06IymY7oGSgCLCfgggKDALA57CjwmSWhtAZvCSPYXLjZr9TlSAORwrB+7gY/4l2tA2Nja2+Iew4HMeYqNYfS9eY0b+eOM3gAkm0gGZ4XrzlAzCaxq7FSgPnMnQ2HEoIitznoZg+VBrkr4HtagA/RI9T040bS6PlwZ+s0JEXovIkMpXrJ3Enon/3Lb5Piyq/ByYovmUcnZAV7nyOhOGVydat1reQZDdIkDvqJya+ZsselY/jRPrQBmefMfITszaUGQN9AhPr3YUy5fe9/oOvqbfKne4pv2JDhw1DzrQ5eebWc76qPdwDQMsdkLvdDo2Ojpqe/bssYmJCTt79qy9/vrrW9LoBwNJUFBAOK/xTpBsmuVwZ86csf3799vMzIwtLi5mFc/WkVarZaurq7a4uJjtrQIGiM4PpGVlZSXzUgZJwnk23HHwGTe8bBbh1Zwf64RZABlIC/EgON7KG69jZ3MskxxW7viPNPGt5lz9DQXPli5W+O1220IItrq6mu00C98fbG+P99ftdq3Valm327VGo5Eddc+NNNYZxeA5/m43uPGjfnCGVL1et0qlkk0vQm5GR0dtZGTEms1mzqqnMgM50KXKLF9m+fOXPOWsyhxxAA2vcsNlZTnjdqp1z2ko0VJfEJ4q1elSWOFiYTAA6Xa7trKykjnHj4yMZKM8yCIOxVRLCudLSRDqyusctHw6LezF6VeergaKSBTyz/WPOms2mzm9VyqVctZC1Y9Kvj1CrnIfm2rQ53ptIUaAYoTSs2DHCArqhtNRmdewsXqODQS5/vm61548+eN2gvbB7YZ1N7cFfONYiE6nY41GI+sb9+zZY2+88UZuGb9aDHthIAnKxYsXzWxzu/B+sb6+bqdPny4MgyPUE95dqNfrVq1Wr8qzILu1Ws1qtZotLCxclecmvP1QCwkULq9aUCiZ5rSudH7ebGdk18zvXDAthsMvEedf//rXVclfwmChH9kdSIKyZ88eMzM7derUVWucbzdqtZodPnzYTp8+bTMzMzudnTeFQS9DCCE7IuFqIcnu7sCglyHJ7pvDoL93s8Evw5XI7kASFJiLqtXqQL4gxszMTCrDDuJqK9oku7sLg1yGJLtvHoP83oFBLkO/sjvYazUTEhISEhIS3pFIBCUhISEhISFh12EgCcrY2Jj98Ic/tLGxsZ3OyptGKsO7E++EOktleHfinVBnqQyDhVIY9IX3CQkJCQkJCe84DKQFJSEhISEhIeGdjURQEhISEhISEnYdEkFJSEhISEhI2HVIBCUhISEhISFh1yERlISEhISEhIRdh4EkKPfdd58dPXrUKpWK3X777faXv/xlp7OU4U9/+pN99rOftWuuucZKpZI9/PDDufshBPvBD35ghw4dsvHxcTt+/Li98soruTCLi4v2pS99yWZmZmx2dta++tWvWqPRuCr5v/fee+3DH/6wTU9P2/z8vH3+85+3l19+ORem1WrZ3XffbXv37rWpqSn74he/aOfOncuFOXXqlH3mM5+xiYkJm5+ft+985zuFZ5S8W5Bkd/uQZHd7kWR3+5BkN4IwYHjggQfC6Oho+PnPfx5eeOGF8LWvfS3Mzs6Gc+fO7XTWQgghPPLII+F73/te+NWvfhXMLDz00EO5+z/60Y9CtVoNDz/8cPj73/8e/u///i9ce+21YXV1NQvzyU9+MnzgAx8ITz31VPjzn/8cbrjhhnDnnXdelfzfcccd4f777w/PP/98+Nvf/hY+/elPhyNHjoRGo5GFueuuu8Lhw4fDo48+Gp555pnwkY98JHz0ox/N7q+vr4ebb745HD9+PDz33HPhkUceCfv27Qvf/e53r0oZdiuS7G4vkuxuH5Lsbi+S7PoYOIJy2223hbvvvjv73+12wzXXXBPuvffeHcyVD20oGxsb4eDBg+HHP/5xdm1paSmMjY2FX/7ylyGEEF588cVgZuGvf/1rFua3v/1tKJVK4bXXXrtqeQfOnz8fzCz88Y9/zPI7MjISHnzwwSzMSy+9FMwsPPnkkyGETWVRLpfDwsJCFuZnP/tZmJmZCe12++oWYBchye7VRZLdtw9Jdq8ukuxuYqCmeDqdjj377LN2/Pjx7Fq5XLbjx4/bk08+uYM56w//+9//bGFhIZf/arVqt99+e5b/J5980mZnZ+1DH/pQFub48eNWLpft6aefvup5Xl5eNrPLJ5k+++yztra2livD+9//fjty5EiuDLfccosdOHAgC3PHHXdYrVazF1544SrmfvcgyW6S3UFFkt0kuzuFgSIob7zxhnW73dwLMDM7cOCALSws7FCu+gfyWJT/hYUFm5+fz90fHh62PXv2XPUybmxs2Le+9S372Mc+ZjfffHOWv9HRUZudnc2F1TJ4ZcS9dyOS7CbZHVQk2U2yu1MY3ukMJOxe3H333fb888/bE088sdNZSUi4IiTZTRhUJNm9jIGyoOzbt8+Ghoa2eC6fO3fODh48uEO56h/IY1H+Dx48aOfPn8/dX19ft8XFxataxnvuucd+85vf2OOPP27vfe97s+sHDx60TqdjS0tLufBaBq+MuPduRJLdJLuDiiS7SXZ3CgNFUEZHR+3WW2+1Rx99NLu2sbFhjz76qB07dmwHc9Yfrr32Wjt48GAu/7VazZ5++uks/8eOHbOlpSV79tlnszCPPfaYbWxs2O23377teQwh2D333GMPPfSQPfbYY3bttdfm7t966602MjKSK8PLL79sp06dypXhn//8Z67B//73v7eZmRm76aabtr0MuxFJdpPsDiqS7CbZ3THssJPuFeOBBx4IY2Nj4Re/+EV48cUXw9e//vUwOzub81zeSdTr9fDcc8+F5557LphZ+MlPfhKee+65cPLkyRDC5nK32dnZ8Otf/zr84x//CJ/73Ofc5W4f/OAHw9NPPx2eeOKJcOONN1615W7f+MY3QrVaDX/4wx/C2bNns0+z2czC3HXXXeHIkSPhscceC88880w4duxYOHbsWHYfy90+8YlPhL/97W/hd7/7Xdi/f/9AL3d7O5Bkd3uRZHf7kGR3e5Fk18fAEZQQQvjpT38ajhw5EkZHR8Ntt90WnnrqqZ3OUobHH388mNmWz5e//OUQwuaSt+9///vhwIEDYWxsLHz84x8PL7/8ci6NixcvhjvvvDNMTU2FmZmZ8JWvfCXU6/Wrkn8v72YW7r///izM6upq+OY3vxnm5ubCxMRE+MIXvhDOnj2bS+fVV18Nn/rUp8L4+HjYt29f+Pa3vx3W1tauShl2M5Lsbh+S7G4vkuxuH5Ls+iiFEML22mgSEhISEhISEq4MA+WDkpCQkJCQkPDuQCIoCQkJCQkJCbsOiaAkJCQkJCQk7DokgpKQkJCQkJCw65AISkJCQkJCQsKuQyIoCQkJCQkJCbsOiaAkJCQkJCQk7DokgpKQkJCQkJCw65AISkJCQkJCQsKuQyIoCQkJCQkJCbsOiaAkJCQkJCQk7Dr8P2kexoG+FFyAAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZSsWVXm/UTknJERkcOte28VNVCCKAINioAon6LSINIqS1yNA4q2qN2CE9oqDq2oLbbtslUEESfEhdqt3TigTYsM0tqISEsriMhQUFRRd8o5IzJyiIjvj1y/E8+787yReYtbNyup2GvFioh3PMM+ez97OOdU+v1+XyMa0YhGNKIRjWhE9yOqnnQBRjSiEY1oRCMa0YgijQDKiEY0ohGNaEQjut/RCKCMaEQjGtGIRjSi+x2NAMqIRjSiEY1oRCO639EIoIxoRCMa0YhGNKL7HY0AyohGNKIRjWhEI7rf0QigjGhEIxrRiEY0ovsdjQDKiEY0ohGNaEQjut/RCKCMaEQjGtGIRjSi+x2NAMopo7e85S2qVCp6y1vecp8+8+u//uv14Ac/+Jq9Y0QjGvHuiE4rjXj3ZGgEUI6gV73qVapUKpqentbdd9996PyTn/xkPfKRj7xm7/vRH/1RVSqV7OcVr3jFNXvPiD7xacS7IzqtNOLdEUnS+EkX4LTQzs6OfuqnfkovfelLr8v7fumXfklzc3OFY094whP0kIc8RNvb25qcnLxP3/8rv/Ir6vV69+k7RnR9aMS7IzqtNOLdBzaNAMox6TGPeYx+5Vd+RS960Yt000033efv+4qv+AqdOXMme256evo+f//ExMR9/o4RXR8a8e6ITiuNePeBTaMQzzHpB37gB9TtdvVTP/VTR167v7+vH//xH9dDHvIQTU1N6cEPfrB+4Ad+QDs7Ox93OXJxS9yd//iP/6jP//zP1+zsrB70oAfpp3/6pw/df9ddd+mZz3ymarWazp49q+/6ru/KlivGQj/84Q+rUqnoZ37mZ/TKV74y1e1xj3uc3vGOdxy6//d+7/f0aZ/2aZqentYjH/lIvfa1r83GV3/3d39Xj33sY1Wv19VoNPSoRz1KP//zP3+v22dEh2nEuyPePa004t0HNu+OPCjHpNtvv11f93Vfp1/5lV/R93//9w9F88973vP0m7/5m/qKr/gKffd3f7fe/va36yUveYne+9736rWvfe2x3reyslL4PzY2poWFhdLrV1dX9UVf9EX68i//cv3rf/2v9fu///v6vu/7Pj3qUY/S05/+dEnS9va2vvALv1B33nmnvv3bv1033XSTfuu3fktvetObjlUmSfrt3/5tbW5u6lu+5VtUqVT00z/90/ryL/9yfehDH0ro/0/+5E/07Gc/W4961KP0kpe8RKurq/rGb/xGPehBDyo86w1veIO+6qu+Sl/4hV+o//Sf/pMk6b3vfa/+6q/+St/xHd9x7DKNaDiNePeARrx7+mjEuwf0gOXd/oiG0m/8xm/0JfXf8Y539D/4wQ/2x8fH+9/+7d+ezn/e531e/xGPeET6/653vasvqf+85z2v8Jzv+Z7v6Uvqv+lNbxr6vh/5kR/pSzr0ue222/r9fr//5je/uS+p/+Y3v7lQBkn9V7/61enYzs5O//z58/1nPetZ6djP/dzP9SX1/9t/+2/pWKvV6j/0oQ899MznPve56Z39fr9/xx139CX1l5aW+isrK+n4H/7hH/Yl9f/4j/84HXvUox7Vv/nmm/ubm5vp2Fve8pZCPfr9fv87vuM7+o1Go7+/vz+0TUZ072jEuwc04t3TRyPePaAHOu+OQjxXQZ/0SZ+kr/3ar9UrX/lK3XPPPdlr/vRP/1SS9MIXvrBw/Lu/+7slHaDc49B//+//XW94wxvS5zWvec3Q6+fm5vSc5zwn/Z+cnNTjH/94fehDHyqU7cYbb9RXfMVXpGOzs7P65m/+5mOVSZKe/exnFyyK/+//+/8kKb3nYx/7mP7hH/5BX/d1X1dINvu8z/s8PepRjyo8a35+Xq1WS294wxuO/f4R3Tsa8e6Id08rjXj3gcu7I4BylfRDP/RD2t/fL42JfuQjH1G1WtVDH/rQwvHz589rfn5eH/nIR471ns/93M/VU57ylPT5nM/5nKHX33zzzapUKoVjCwsLWl1dLZTtoQ996KHrPuVTPuVYZZKkW2+99dA7JKX3UL9Y/9yxb/3Wb9XDHvYwPf3pT9fNN9+sf/Nv/o1e//rXH7ssI7o6GvHuiHdPK41494HJuyOAcpX0SZ/0SXrOc54zFM1LOsSM9zWNjY1lj/f7/fvte86ePat3vetd+qM/+iN96Zd+qd785jfr6U9/up773Od+vMUcUYZGvDvi3dNKI959YPLuCKDcCwLNk2DkdNttt6nX6+n9739/4fjFixe1tram22677XoV8xDddttt+uAHP3iIqd/3vvdd03dI0gc+8IFD53LHJicn9SVf8iV6+ctfrg9+8IP6lm/5Fr361a/OXjuij59GvDv8HdKId++vNOLd4e+QPvF4dwRQ7gU95CEP0XOe8xz98i//si5cuFA498Vf/MWSpJ/7uZ8rHP/Zn/1ZSdIznvGM61LGHH3xF3+xPvaxj+n3f//307F2u61XvvKV1+wdN910kx75yEfq1a9+tba2ttLxv/iLv9A//MM/FK5dXl4u/K9Wq/oX/+JfSNI1mRo4osM04t1yGvHu/ZtGvFtOn6i8O5pmfC/pB3/wB/Vbv/Vbet/73qdHPOIR6fijH/1oPfe5z9UrX/lKra2t6fM+7/P0N3/zN/rN3/xNPfOZz9Tnf/7nn1iZv+mbvkm/+Iu/qK/7uq/TO9/5Tt144436rd/6Lc3Ozl7T9/zkT/6kvuzLvkyf8zmfo2/4hm/Q6uqqfvEXf1GPfOQjC4Pnec97nlZWVvQFX/AFuvnmm/WRj3xEL33pS/WYxzxGD3/4w69pmUY0oBHvltOId+/fNOLdcvpE5N2RB+Ve0kMf+tBC9rbTr/7qr+rFL36x3vGOd+g7v/M79aY3vUkvetGL9Lu/+7vXuZRFmp2d1Rvf+EY99alP1Utf+lL9xE/8hJ70pCdlFxb6eOhLvuRL9Du/8zva3d3V93//9+t//I//oVe96lX6lE/5lMJqjM95znM0PT2tl7/85frWb/1W/eZv/qae/exn63/+z/+panXEmvcVjXi3nEa8e/+mEe+W0yci71b61zqbZ0QjKqHHPOYxuuGGG07F9LYRjchpxLsjOq10mnn3/gWXRvQJQXt7e9rf3y8ce8tb3qL/9//+n5785CefTKFGNKJj0Ih3R3Ra6RORd0celBFdc/rwhz+spzzlKXrOc56jm266Sf/0T/+kV7ziFWo2m3r3u9+tpaWlky7iiEaUpRHvjui00ici746SZEd0zWlhYUGPfexj9au/+qu6fPmyarWanvGMZ+infuqnTuUgGdEDh0a8O6LTSp+IvHuiHpSXvexl+s//+T/rwoULevSjH62XvvSlevzjH39SxRnRiI5NI94d0WmlEe+O6LTQieWg/Nf/+l/1whe+UD/yIz+i//t//68e/ehH62lPe5ouXbp0UkUa0YiORSPeHdFppRHvjug00Yl5UJ7whCfocY97nH7xF39RktTr9XTLLbfo277t2/T93//9J1GkEY3oWDTi3RGdVhrx7ohOE51IDsru7q7e+c536kUvelE6Vq1W9ZSnPEVve9vbDl2/s7NTWOGu1+tpZWVFS0tL133vhRF94lC/39fm5qZuuummY8//H/HuiO4PNOLdEZ1WuhrePRGAcuXKFXW7XZ07d65w/Ny5c/qnf/qnQ9e/5CUv0Ytf/OLrVbwRPcDoox/9qG6++eZjXTvi3RHdn2jEuyM6rXQc3j0Vs3he9KIX6YUvfGH6v76+rltvvVVPfOITNTY2punpaS0sLOj8+fN68IMfrLNnz2pyclLValXtdlvdblf7+/va2dlRr9dTr9dTtVrV2NiYJiYmNDY2pmq1qkqlom63q16vp729PfV6vUNl6ff76vV66na72tvbU7fbTff4b//f7XYlHexIWalUVKlUVK1W06dSqajf76tarWpiYkKzs7NaWlpSrVbT1NSUxsbG0r08h/Lzm3slpXJ5Haanp9P5fr+v8fHxVN/9/f304V7qKR1YWZ1ORzs7O7p48aI2Nja0u7ubzvf7/UK77O/vp2dIgx1G//7v/16rq6vper/Xn+HfftyP8duf4b95P8fr9bpqtVpqf8r0/ve/X/V6/eNn0hIq492FhYXUVvdllPVaPHvYM/wcv6emplSv1zUzM6PJyUnNzMxoampKMzMzmp2d1ezsrGZmZtJx/nNucnJSc3NzajabkpT6a3x8XHt7e9rd3U19LEnj4+OJHxhPjPHx8XH1+/3E1/v7+9rc3NTly5e1vr6unZ0d7e7uFnh/b29POzs76nQ62t7eVqvVSvzPWhP7+/vpPuSFr0HhHoZr5W1ATvR6PVUqFe3u7p4I7z7mMY9Rv99P7cC4l3RonPoHyvFTpVIpyGGu6/f7qf95NvKT65CxlUpFU1NTmpub00Mf+lCdOXNGN9xwg2655ZakE3gWsp9nDXs35fP/sR7xOGX1DzwV9QXt2G63tbW1pVarpfX19cRzfO/u7qrT6ajVaqV2510uv+FLyue6hjrG8tIeyE3K6HrA6xxle+Rx2ivX191uVysrK8fi3RMBKGfOnNHY2JguXrxYOH7x4kWdP3/+0PVTU1Oampo6dPwRj3iEFhcXde7cOS0uLqpWq2liYkKTk5OamprS5OSk9vb2CkLFwcP+/n5iVmdQOqjb7Wp3d1d7e3uHBlu3202Km8HJsySlDpYGDALIKGOUiYkJjY+Pp2unpqZUq9WS4IWRHKhwjw+4iYkJ7ezsJPfZ+Ph4us4Hng84Z3inqPz39/e1sbGR2jUCBgcotDVtc/PNN+vWW2+VpENgg/8OlnJA7zjHcmCn1+tpc3Oz8F7oahTIteLde/PuMhoGII7z/I8HxDgPw3vz8/NqNBppLE5PT2tycjL9jnyeE3KusKKigI+r1ap6vV7i/d3dXUkH4w0+cBcy1zQajXTPyspKAjOSCoA/vnNyclLb29tpbFFGwiBl7RgV28dDZQriOHSteHd5eTm1/TDlVUa5MmMw0Q9eP5fL3OvGUbfb1fj4eDJCZmdnNT8/r7Nnz+qGG25Qs9nU+Ph4+iDvJyYmktHmICXWJ/Kl1xP+53eUa8ikvb09SQf85QAFcLG3t5f4aXJyUhMTE9re3i6Aju3t7fTdarUSUI/yDkDebrfTPS5jXfdwfbPZ1G233ZbkuoMi9Gesm7eJG6R+PAfoykBNjk4EoExOTuqxj32s3vjGN+qZz3ympAOGe+Mb36gXvOAFx37OzTffrKmpqaR8tra2VKlUNDk5qYWFBS0uLiamccWJ14VBhqJFUMEo4+Pjmpqa0v7+vjqdTgGZ8oxut5s8MxE5++AaHz9o6jKhzMBBOAKyENCQo2JJyXKA8RiEOzs7ialinM/LiSW4u7tbUPbROuGdc3NzSSijCHLAxi0RyuhKx69xZYDg8DK6pRE9VQ5IADY5cOTgaXd3N1nDV0vXinevFX28HpKrvd89gP5N305PT2tqaiqBYpQcAMX5HJAS+2dyclJjY2NJMEZFAH/yzRjc29tL48uf58Kb/m+325KUxlf0BvJO+NHHRKVSUafTSdfAz+5JOKqd7w1gyXkjroauFe+6hzVn0EiH6zeszBh1Xrcoh1yOuzelWq2q0WhoYWEheZzHx8c1MzOjRqOhubk5TU9Pq1KpJA8ZYNN5kHdFwO1yLPddRt4Ozhf+DnjPxxBlQ866l75WqyXZtbOzk8AH10QA4rKu3W6r1WppZ2cntWHsA8aql7nf7+vcuXO69dZb9YEPfED33HNPeq4DrOXlZe3s7GQ9hx+PjDqxEM8LX/hCPfe5z9VnfuZn6vGPf7x+7ud+Tq1WS9/wDd9w7GfQQR6mmZmZ0dzcnMbHx7W7u5sQqVRE3fv7+wUggLeEznMgMTExoZmZmYIyx50LQNre3k5eFd4ByIlgJboSCc/w7cLc3Zuu2N1lxznqhWAGeHW73WQJbW9vSxq4xVH6LmgdETvKBgDMzc2l57tL3cvmoNCtYPdU5QSCNPA4RZDDO9wacEDoYbeI9nHb4zLFVdpqtU6Ed683fTxCIrqIo/ePPodnURBTU1MFfuY8xxgfeFSiMgL4T05Oqt/vJ6sOIS4pAX94i/7e3t5Wr9dTs9ks8A3X+juGkcuCaKWiBCgHYzh6Fu5PdC141+UolAMq7m0ou46+cEPLPRGSCt5UaWDkNZtNLS0tqV6vF/hoYmJC09PTmp6e1szMTJJrfCMXOYZszIWPvJzRc+J1ih8/F2VjPM/z8Aw6WIoGl4cgASf+m2tpU7zwzWYzAfONjQ1tbW0dCklGg25iYkL1el0PechD9Fmf9Vman5/Xhz/8Ye3s7Gh5eVmtViu11ebmZgG059rJ63tcOjGA8uxnP1uXL1/Wf/gP/0EXLlzQYx7zGL3+9a8/lMA1jPCWwJCTk5Mpht3r9bS7u5us/vHx8cTokpKQQ6BWKhXNzc0VlHFEmuPj45qeni4ISxjp4sWLycXs3oB6va7t7e1krfN8t7p8UAFSarVaipnCSP1+Pwl2H3QAFI7zPuowNTWl3d1dzczMHAIDDkzGxsYSaMGqweWHW7Tf72tqakrNZlMbGxupjdxC8AGFS9O9MN4+Xgasa/o0Ws3O2A5MOA9ocnDkoSdyCjqdjtrttsbHx3XlypVj8xt0LXiX/rwedG+8JGWAJPeh73w8wc/uSs+52QEzbkVj9QH4o9EgKXlCsYwZGx66xXBhPLuC63Q62tzcTIZEzqMRhakDeFcqzuOMoaPyiz4ej0pO8R+XrifvHsfbQN+4onYFF71Zs7OzajabajabqtVqiZ+QGXgC8J4AbiGXKR5WAeh6eXMgZFj9cso4emZc3sZr4B03TMfHxwvytNfraWpqStPT04fyofCaI/ejV3x6ejq1X7vd1srKitbX15PM3N3dVaVSUaPRUL/f16d+6qfqiU98olZXV/XXf/3XWlhY0L/8l/9S7XZb73nPe/S2t71Nu7u7mp6eTmGk6EH5eGXciSbJvuAFL/i43OJnz55VvV7X3NycZmZmDlnUMC9o0BU91h1Wjw8MScmr4uGEiLpBpPV6Xb1eT8vLy0ng8Q2CJ1k3xmwR0ICHSqWiZrOp2dnZguBE6Lpb2S1XBH6n00mM4pbE3t5eKot7Npy5ABGTk5NJoHv7jY2NaXNzM5WlWq0mkOKWAe+Qip4arvN8GtqBwTg7O5uAmgsTf3bM6eEZWBcM1k6no+npafV6Pa2vr2t7e7sQYvh4Bs/Hy7vHoWsBYI7zjAhIPJnbvVpRyPr17kGgfeEZPCYOTBz4ICDdgnTPiTQwDnq9ntrtdrIWO53OoRwUwAq8BBh1oyPG/Z3PqHMMEzqvUTbP8wIguexx6/8oRc177mv6eHk3Wsl+XCqCAP7Ha3LgJbY7MoHE17m5uZR8DeAlCRuDhv8LCwtJJ3iZIkjwsGCUJ7HO/qyjxlUEV/AZ5/w373c+8XL6Oc6juzwsOj09XfCge/6Ie2K63a5mZmZUr9e1tbWl1dVV1ev19L7P/uzP1g033KDFxcXEwxcvXtS5c+f093//93rve9+rnZ0dbW1t6aMf/age9rCHHeLv2EZuEF8Nj5+KWTxlRDIPsTq8J+5WA5iAHh0guDWP0nXl7+EIF1YwHiCn3W6r0WhocnIyxft6vV5C+HgkxsbGCtZCv99PA4/BNTs7q7m5uYIHwRVCdB27RwYF7e9AOcTkUXdbu/J3oILCQFBUq1XNz8+n9qaM6+vr6TrKwm8Gl+erSDqkBHHZEgN1IOaJljFvQRrE/gm/7e7uqlar6fbbb9fjHvc43XHHHfrjP/5jSSrkIg1LXr1edLUuT7/v3lyf4++jvCRSMezm48JnlDkAkVTwlkTPiVuuMeyHFw0Por8DXor3047ubeE6Zv8wjvv9ftqbBAvS6+i/eacrCZ815HkNkgpGDeVgzMUk7rJ+uh4g5eMhL/9xPES56yN4cU8phgoJryRWIwf4T74T+SQYhIR2ysoXeZtUAO4Zdp80yFsqAyy5/nVPN+DLZXeUxV7OGK72doIH0XMOUMid8hk+PgGB8M+ZM2f0KZ/yKZqfn1e329XS0pKazaZWVlZ09913a29vT2fPntXu7q6mpqZ0++23a39/P82aHRsb0wc+8IFk6Eag7+3juvk4dKoBSqvVSoOehFUY2WOPeARA3Z5Zvbu7m4QLHhasP3f7ScWpU56QhBdnf39frVYrxePm5uYSU/iUNu7F3UZiF3F1n4GD+9ozzp2REfYALI9V4knY2tpKIMiBGMyLsHdgw6BxDxJCG3cqU0SZDYGgRym4RUSYiDrRBgiGM2fOpNAczA2o5Fk5oeEuUm+f2267TV/wBV+QpuydOXMmWetYFlx/EnRci/paUPR2+GyyMg9JBOvRa5cDOQ5C6K8cSHEvS/yNdxLwD1+6B9HPeQIk+VXIALwq7inhmL/HQz8OjgElDoQjQOn3+ykvxu9BUfjYiZZw9KhKxcTC+ytQiUomljMHXsqAibe1TzX3PoZvkDe1Wq0wG8yTrjFkMD68bNHz5+fgMT/uMm+Yh2vYWM15ZJzHIB8LEHLNeS2CFJfVUbcBUOLMSsL2yGGmOPOMD3/4w/roRz9aMDjHx8e1tbUlScmTWavVdP78eW1sbOjcuXMpt4VclGshw041QIlMTIOS+Fav1wud7sxHJ9LRhFhcqICsOe6IUBq46kDeLgh5R6vVKnhDEFKNRiNNdwSMdDqdQlKpC4G9vb3CtD8EJRTj4z6HvtvtanV1VQsLC5qfny/c51aeMz3v9PwZD5PRBpOTk1pcXNT09LRWV1dTsrA0SGD05LOpqak0/Y0cHQcnKJ3p6el0L59cmKHfP5xfUK1Wtbq6qk6no8uXL+tDH/pQmmqIdY737aTIBU7ZQI7AIN7rfRU9JACRGE6J38MASdknAhSOMRb5eKgjeksimHHysArWMdYZoSTagHGPp5JjGAII4Vgunw3C2PE2dQ+ej1vuxeLlOdSL8/yOSY4+1qJnxfvXv2mLeP6kiPZ0OVhmPOSI43iMa7VaSqqO+UkexsFgAZxEz5t7WYZ5Bt1T5oQid8/xcesUyY3ZHFDz67xc3q6eg+V8GXmI9vIQjueuuE6L3maAysbGhtbW1g7JAGmQlBzHL94rZhhNTEyo0Wio1WppY2MjJap/PPx6qgGKJ+ZJxc7udrsp9ozlRMdFZc4ibjC2pCQw4jedhXuxWq0mIVipVBK67/f7arfbmpmZ0fb2dhKinAfUxGQmdw9LxWz4nZ2dlCg2OzubzruwxiLE9cd7id03m82CGxvLAWFLW8aEK6Zau1AGoVOmavUgQXdjY6NgjXiYa3p6WrVaLXmVPBmYdqH/HNg4CPVBDIh0z0uvdzCL45577tHNN9+sm2++OfHFwx72MO3v7+sDH/iA/u7v/u6+ZdAhlHPlRsXt3g7/uHJDCbo1lfN6ROvRn0sZpCLQjRbeMBADcHBARB2j5yV6cGK5cUe794Gx5uPCLUn40MvgbeIhWmkQioF3HKzE9sLgAJS4suA4ZYrvcwXj4IX3OYhyj6YDlsgvJ03uYZCGz+bhmAPo2dlZLSwsaG5urgBKIpjFExI/PuvL+8rXvyoD6DnAT7lctjn/+nfOkzLMUxSf7+Mq/ue90sAzDm8SGowAmmM+5pC9znN+f6/XS0YahiIGO/xIubje6+U5iIwJ8oBIp5ibm9P6+rpWV1cLnvkyHimjUw1QYEgHHRCCbn19XY1GQ1JRkDAI3IvCrBxnDhgEREpCKwDABR8DB5Cwv7+v+fn5lHDrSYPSYIYMSJaZBVgBlBnXJgxJYiq5Kl4GD5MwO8Jd8BB1dzczlgMzXXxaNdPZSCrDk0OugCvJyclJbW1tpaxw2pQ8k/n5+QLDxjVfHABFpYo17YsHuSLCWzU7O6uNjQ1NTk7qEY94hNbX1xNw2d7e1kMe8hDVajW99rWvvU948yhy4ekzX/x4FKbO437MLS7Arl+XAydR2fszc5ZjFO70lfdttGojSPF3x+u8PM7/kpLHBGGIF89BqXs8/JwnDkpK7YOX0b0ByAEXwDnFFo/79GIHyWWhnX7/IGTL+KfM8ACyKIKU+wtRZ+9vSantYniLeyYnJ7W0tKSlpaWC99vBCc8lRMe3J1pzH8+FB7nO5Ub0BOQ8JznQGynntcyNFwcBOeASxxzHfKxIh3P0uMd5i3t9TPlsStdfzp/IWNqeZRd4B+3soXh41SdEOPBBB6Mn6aeZmRktLy+ndYe4/rh0qgEK7kFPlPPOoxH39/fTdVC0UJ2Zo1D1aWys0Een8Eyuc3cxM3EAF+6paLVaKV4HyiVhb35+Pq3PgecHQerCjVwVBqwz8/7+flqJEHRLW0iDsIsLmN3dXW1tbaVytVqtwuwjyrm3t6e5ubl03+zsrOr1egIHe3t7WlxcTKsdssw5lg3Z+CB9wFC0mF0ZMEh8uXH3avlsqF6vp06no5WVFf3zP/9zip12u91CnJRBcxK0uLiY6pVzoUYXtVS0sFwwR1ANsPR1DiRlnykV12IoowiSIjihD9y7FcdSLhwUAcD4+HhahdZBkCsXxrkrNPjCXd1eToCNr/tDLN2tZurDO6KFG8vCtbS9e1Ci1eq/3SPEvc1mU7fffrve8573aHx8PIEUF+r3xgq91nT27NmC8eP9LA1W0XYvKNsf+Ho4DkpyuUo+PT1ekwOOMQQhHU6IdfJzsQ5O7qWOAMW9HFzrQMB/H+WRiWWNeikaHrmy8FznQbx4XiaXBchO+BKDYG1tLRnI6AP3rngeJ2WBX73c4+Pjunz5strttiqVypFrDzmdaoCSQ800AMoPpRkToFxI0vH8ptNA/ePj42mJYRrcmRJh5bFCztfr9SQcOb6ysqLNzc209HqlUlGr1dL29nZKtvUO9/pKSiAFd1wEKe566/V6hXq6JYsl5Mm07XZbm5ubCSzxfg8l7O3taXNzU3Nzc6k+29vbWlpa0tzcXAoFMXXN+4q4c71eT94Zn2XkybWSCgsRxQE9PT1dEGpY3Tx3ampKKysrqR0dlO3t7d2rRdquFS0sLBwSFgDcCCQiEHBQmfNASEphS7eCpGKoRhqe0Bh/+3/ns+idQdg7j6Fg4NVYD57ts2Goh3TAP4QCXeDznzFKXd3b4t4LrseC9LHs7Uy/uKVK+7knxUMN7jXxMvj7/RqUPMbD2bNn9W//7b/VS1/6Ur3vfe+TNJihhnERQ1UnQXiFI1CIitWNQGRXNPgizztA8Y+HeCPY5b0RvOQ8jpH8GjeGnFec57z/6HPIr/H/EWD677JZXbzXy0A9cuXiHurh93h7RVnCNch338JkZ2cn5fzs7e1pYWFB1Wo1gcxq9SDX76Mf/WhhfyxAi/fP0tJSMpxyXqwyOtUAxZlbGrjF5ubmUgMRF2u1WglwSEULUCq6ynBN4YVot9sFz0O8n0HkQtMtMYTR3t6e1tfXU3iGacnb29vq9w/2QxgbGysIImcsBk2MWwNSokWCIgDMoNCjWxuvEF4FFDfL/O/s7CSQA0hjYFWr1ZQFXqlUdP78eZ09e7bQJ9JAMElK+SwMpPHx8QRYfNEgEnxzg9UXtqP/sKpnZ2d16623qtFoqFo9WIPmrrvu0tbWVvJsEYM9KWo0GoV8o6joI7DznCc8c3jIpPzqu76AkwvJeF1OeOaswJzXLSrsaAS4Cx+QET1FvJv+7XQ6hxS+eyoAEAhEV1CuIOAH97jwTHgNvoyucScPV3gbOUDBSvW2ipa3fyQlLyEAZW1tTaurq/rsz/5sffjDH5ak5BXiGe5qPylCaeXCdJEvotEUPSER5MSEav9Er0nkPeepnEeizNvgvOfAxJV87HepmMzt/eygI3rzIriWBmDcy1dWXv7HcnJ9DH3F9qI/CAfHveokJR3JFgLwttfd9SRJtoRPATqkCkgHMn9xcVFXrly5Krl7qgEKFrmHaugMdq5lERsE9dTUVIFBUOT8Rmi0Wi2tra0lYRCZxZl0e3s7IUsGnytOSWmTsUqlkqZAT0xMpCl1JJL6VN0YT3UPCvVBYINc3eqjbaQDBmGqsSP3OD/es9hd4GDt1Wq1FJZiWwEGpVvGKFFpkIzrycD9fj8lyDLVmz5kXyVXiD7YxsbGUnlcKNCHN954Y6qrdCBQH/SgB+lDH/pQCs9JSrlJJ0GsyUMd4Rmvp89y8OmTtDN96HspRUDhYTEHlVHwRkXqFnu03mI5c2BFUlI07iGK/ExCuQtPjAtAvHuOXFDD87zLy0UbkCvl9YteumjRkSNGOzA2OeZAyd/H2ItAJiovzns/ct/f//3f68lPfrL+1//6X1pdXU3v5Nut/M3NzWvFjldFzLKL4JP2p334zzVxWnAEE9Hr4v/9uX4+fsoAjZeJ9ov9GcGDg/HonYieE77jjJk4vrjO73cwHp/p4ISyR49orDNljOOa8iEPonfV5Q5LP4yNjRVWiY0GiHTgDWaywt7eXkGWU5a9vT1NT09rfn7+gRPiiUlT3sEcQ4DNzMykhsaj4IDErbTNzc0k8D1vQyq62LheUuoEBycoaKbV+pLc7FKM4mALbc838Xe5J2ZnZ6fwvr29vZQcS7Kt1xNhGBE3dYvH3DJgSp+vvMlzpUFiXy77HaDjVj7X8U6UBWtYoLQqlUphYyvvI4Rj9FgBDmdnZwt1kpQWfUKoE6Y6KWKrcTw6jUYj8SKAJYJXBr4LQFcStD1eL5LfAMc+HRtyQergxJPhotDOARb/730VAYorJUAXM7q4h6Rw6k5IAA8cYwaBjMD1dXCk4g657j2Znp5OvOWKAeHtLvxY98hz1MfBYS4R0BWij3G8lID/sbExnTt3Tg972MP0nve8R1Jxp/GYV3QShIsfz56H8pBPuPIdmOZCMDmvSDQ4pUFehXtK4rc/C8p5UFwpQ+7RgB/gf+S4XxuBTTyX80Dm3k29/JzrlFgfb8dYP69jrG8MDzIW3buDke26EzkAQHGATfv41G4iAA764VtyQZvNppaXl0u4q0inHqAgxCQlV60LTXIsEPrdbjd5UchbwNPiOxZLKgj0yOSOYGFSX7MBd3y73U4hIpgdIeVeFIQ03gzeGZVCtXqweydeBwS7x/zcEwNQIS7o64t4fJ82xEKHPOHNf3uZEEwohH6/nzajQoB1u92UQ8D9oGrAIB4hplEz48ZdjwsLCwkw0VeUnaXtHTjSVzzXFdpJEuvRsCw3fAyfMt0aAUd/u5JyAeYeNnZDRYAAUtgcEbBSZulB8IiPAxeo0uFEwZwl6wmPeL5Q8P487mW6uQMcCK9JpVJJY2x8fDyFcN076AYKdfMwMCCf+rPYYy7s5hY1bePfDl6isRSVmIOYmZkZ3XrrrfqiL/oiTU1NaWtrS29/+9s1Njamhz70obrjjjvSytTIDJ55UsReMCyXPjZ2MBOE0A95dx6ik3SoLYf99nq6hy16VqK3hHv844DSeTwq9njcwyhelti33O/PcXDiYyfyC8cZ9zkjQhqEen1CSCyLPzcCMAdb8LDn5Xl7x+UleB48y/jw2VruDcST7/UnZaLXO1jg7bh0qgEKc7ijEJQGzODxcp/mi+CjcX3ZfAZczhLysIUPAs9DcU8Mi9W4YHOwgnAnx8CVBaADbw8CHgtTGngpqC8DkbpUKpW0aBuhF+5xxU4ZsC49HONuVVcak5OTabE5DzmhNDykRSIsIR3yezqdTop5sk0Bi9LNz8+rVqulVQ5rtVrqS9qr2+1qa2srLRAXLSb/3+12015C3W73RBdqu/HGG3X27NlUtlyo0a2c1dVVbWxsFEJB8JDvfA25hYenol6vp9gzuU/u3ZN0SNCjGGMeC+/gOq8HZaRsrF/BTC/6kLHnSsRBhlTMTXHgCRAnl8nfiwxgfAPY3VMSAWr0lHA/ICd6h9xT6CAtWsw8x9vLx+vU1JRarZbe9KY3aXl5WZubm7rtttv0kIc8RLfddpv+4A/+QHfddVcai1ebZHhf0Pnz5wsLq7mHhJAdctaT96VBPg9tTTu6ksyBhbIQjn+g+Cz4I4I65yXIvWexLO6R8HfFazkW8+fiRI0cyIB3HST7ui+RHKzkgImXEUMx1/7Os7Fc0UjH0MdTC08CzHmmG7VTU1OHtoU4Dp1qgIKwRcghEF3JY2nh4SA50oW770yM4vJchSicIJ4fGQiFvba2lma0kJMRBTGAhem8Xjae7fvQuFWIcJCUQI+vpgk46HQ6SaAQRvDkwmr1IPGSfAUHXIAhXy/GB4O7n+kTdyOCxnkvsU+AG8mwLFwHKKNvGo2GFhcX03uid8ld+5SROvlg7Xa7aedi6naSXpSlpaUkMNwqcgBIOxBmq1araeYX9QPsuULg48rePSVsvgb4oA+2trYK629EoEKui3tfIMqMsoLXWJiPRbmkgdKAL9xrQbhwc3MzPQ/PpFT0/AFmXfjSfryDcuPFpE3ci8b9eBtxU+NRjQAqWuouayKQipa8GxIYLv1+XxcvXlSvd7CA1j333KNKpaIHPehBevjDH55y4ShfVMjXm2655ZbUb8iK6elpdTqd1PYO2HKJr66oaadcnWLYI3edj3Pe7ddG5R69F2WeDd7vz44gM/aF3+tAJAIAvwbjNYJv2jbymAM+9257ImsuRMZ5N2q9vWKbOI+6N9W9Ku7VIVrRarUK3hP0BLOBYshsGJ1qgCIVQywwjFR0RSOo3EXuLnGW5UXIuZLkOdEdyHPpGKnoGmy328lSRfHjFqXzYBiAicfAqZMLaZaEdhfd3t5eil3zzFxoijqg3JypUXYoPAcbKCWYDkAEKqaclNERPYqEcqJ8JCWgyH+2BICJUZSdTifVu16vp1lGXgepuDHd9vZ2SpKmzisrK9rd3U3u55ylcT3JwR1CyDdF80EvHVhWD3rQg7S2tqbNzc0Cf7pgQSFzPiasRQHvXgWy+j0U5EKOEAiABqUJkHUQTNnpO1fU9BnhuPHx8eSx89WPowXpIIayEe4jRCoVp15Hfqb8bikD+jFiADoIXGau0Y5YoFExRivWyxGtZrdk6W9XDEtLS/rABz6gCxcuaGFhQa1WS73eYE+rq7FCrzWRc+DyqdFoJE+cW9QoW7fGUXq5EFoOuETjMMriGIKGIjiJhmHOo0W5ovKWlJWtMQwZwUf0OsLD7uF0kCINwjnR0OaZHENXeBugO3yChIc86QMnL3v0ivZ6veQlAZhUq9UU0ud+ohAYJXFJAIwa8iaPS6caoDhDO/MBSCJTuyUkHQw03NzemBHRcn/87wPAhSAeEU/y7PcPVoBdX19PFiYd5Z4UVzAMGBQHwtWXhKccAA0HJJTJmdUVTozzUhamHTP92VEzwhtylBzDQeQ6jI+Pq9lsqtFopGRFAJUPUuqJoqY9Nzc31W63tbe3p3q9runp6TStzQcXfXHlyhV1u92UZ7C+vq6LFy8mrwKD+SSFvHsBWEyPQe9JcAx+ynvu3DnNzc0lT4pUBMZRUbqy8H52KxYeI2w3OzurpaWltDgTIUDKOzMzk5K8AZURUANY4MOoqF0w03f05fj4eMpt8JANIGJ7e1tbW1sp1u3j3Bd4800BWdSQMrunEc+O34swXVpaUqVSSTlVZR6kaIl6nSNAgf/9GSyOdeONN6rX66ler+vOO+9UtXqwg7h7w2Ke2PUm+p/y0+fsdO7yyoGAe7DoszIrXjqcswL5tS5vHPi5Acq10ap3Q1NSoawR/FN+BxyuxPn28vnzPLRPOf050VPoctFlM2Xw9qAOLtt8Bp6HJNFvXndvG6jb7Wp7ezuBecrJuI5eKs+dnJg42JOnUqmkcsALeE2PS6caoEjF5YtpELek3GqjoV1gb21tpftdKUgDBovM4HktrvhdgHm4Ia5XgTsd4c76JChzlDgWIuVl8PlsGgSbexLI89jd3ZWklBjroQP3LklKZcdbQpmxQimPKyJ/Boger5Gkwuq7KBryEMh5YfYObekD0AczOS29Xk+zs7Oan59PCbYMfB8Iy8vLacNAhKjPPnJv0EkQ/dbv99P+Ie12OylU1mrxsiJcms2mJicntbm5mY1zR2HMx13s7k2Dn8gB8lBQvV5PITnCJFhJCDqe75Zat9tN+3AAfHwWB54ieInZLJKSoI7WKbzfbrdT3hF86LkiCFAMFUmam5tTrVZLKzgzDugHxpw08MaRPzM7O5tWH6YtfGaUK9kISKRijoNfC0ivVA4SuHd3dzU3N6eHPexhunTpUqoH5WFsbG9vnyjveh3iuJMGkxe41nlDKuY5uXyNIMTfk/v4M/kmxMiz3XjyRcjgOw+F8H73FETQGUNB/vE6uTfDE819mw4vM6kJyHv32PF+5L97nxxASQPdhAyNgIdn+7iKYaI4E5T6YVg7aEKO+MQMxh3hXfqJ+j9gAIory+gdicjbGxWBSRjGkXZE9S5corfGn+95FVxLLosrUbc2fXD5szyXBiXilgrWKyEhAEgUBjA4UzkR/B4aQeh5OeOUNBRJzFshXt9ut7WxsVHIU8GV12g0NDs7m/YZApD5Qnru/aE/fQD74CSpkHVdWIbZ11lBsZEEizIEbMEP3rfXmxBEKECsSzxJvV5Pc3NzaZsEhAq8Mjs7q4mJCW1ubhZyaWKowJ8Zw3me3IwgJ/nYQf34+HjyqrgVJw1CQ9JAWAFkXJjHkOfY2MFaNs1mM23FwI6oCDxpsPiUh6p8u3e8I4zjCJoBtwBoBL9UXJ02eiF97E1MTGhxcTGNZ4Qu4R/APM8pi7G7jGImA21M2GRra0uXLl1K20Ugq86ePZtCaie5RQP1iL9RxvRD7AsHxS4j3ehxpcfvnGHpoMLviWWTBh5hAGX0MtK+8Bi8Ai9Eb2Z8twNSZB+yy41WX4+I8eIhXPjJ5TZloB4RNMV24zrK7ffB93FWnL+vUqkUQnQuK8gz4p4I0JwPKM/Y2MHEBkKkGDcPKIASAUnuXI6hyFXwa9wlRiNHD0qMFWKBYl3BWLjH3aOCa9cz27k2uhw9BkkSJOQzkKrVaiGx1S1g7vEERkfk1C+u3spAwYIH5HAfiZvj4+NpphKCxFF4t9tNC641Gg3t7OykzRDdtR/DU1iLDooAfO6S9//uMvdcFxcw5O/EDfVOgqrVakoedeXq/IyHgNlL9DFtPDk5qfn5+RR+iJahJ8pKSiE7F7j0uychb29vJy8JYMXzBXq9Xtq1mlVfSXKGFxwAEy5kuiyCst1ua319XfV6XbVaTVtbW1pcXExJ2SgMBGO0mpkdRrvEacyUgXp5/pMDdR9nbu35GBkbO5gBx+7kJP2xICD1jN5Gt1IhwmgoJ5L3FxcXNT8/r16vp7vvvluf9EmfVPAOE26D10+KHOQhK12ORi+tVFSUDgIi39NvMRnevXXcB4B0JS4VPQIOGKSBF86946yUjScT44HneD3QE048J3pYMCAB0G4MIIs9DOZ96ue83dxzRrs4mKdPPN/EAUquvzylYWxssDZPHGsREHp9I3EdvL69vZ08/uiS49CpBijOnFIRPEhFdO/kitwVQnQX5ixs93Lg/vIB4NZjBAsoF8qENeD5Ab1eL01x5hzC11E553zDM0AIz2EgYEUyuHwg8w1QIUSG0mcwM+B5BgrUXYMR4PX7/WQt9HoHm6GBqH3dFJ9N4eEsV6aUj5kmDCSUEt4YeALvSbRqc1bHSRDTqKOL2y0chFS32y3UjQRjD9sABLmPZ7mgq9frKZThlnq0PrvdbgLXeDjgK/fE4MHA40WeB7zjewGNj49rbm5O0kFfcm56elrr6+taX19PIAdecRDhSgw+9Lg34VG36sgB8xArz/C8Jmbs+KaVvsYS44mp2vAQuVKMyXq9nsK3WKE+g8XXgiGR0L0DN910U7p+eXm5EOqUBhuHshzBSVFMhHUZJhVXQXVZ4GOONhlmgXuoI3pY/dp4fwQnnozvoXJ4wsOgPA8jkvrwfM+jcU9krJ97TvggC/FI89/DmQ4i0CPU3fPzInBzQ851mtfBjVo/Bn8DrgFCjB/awvvVjXbaB1Dn3kTGPQbHAw6geGdIA6Z18OKD2d25/JeKyVl+rbtlXXEg/H1VV3Z75H2gW2cCz8J3CxWr1O/3nJRGo5H2lqFO/HbPCN4XaZCw22q1CrNXHJjwbgCRKxHckg60GAwuSGJYyAexD0JCPHhAUHzkqdDGboG5MEARuOeIBcmYCcKz/VkMLgb0SVug0sEy+yRpu7XtvxFWtK3Hp1mvBv4inycm0DGzhvpXKgfhlitXriSg64IKIuRASAGep0x42UiEbbVaid+c1/GS+bN9rSISViWl2UkAHfJwXAF4CJNnUxbGBNa1A2wUaLvd1tramlZWVrS+vp52uqb+jE/GRqPR0NzcXAFMk0+zubmZQlMIXaZwYynj0o5TXX06OOOl0+mknB9yUqIijKD+JIj8IweIGGyeo+C87GPYAbEbZg4SGLsuDxyscL80CFNLxRA9YRP40I0ovGiek4LHw8sWc1RcD7jX0o1b3htD5hiZyMhoIDtvex6Ml8eBNu3iACICCZ4rFZN2fSy79xsi/Il3ife7EUS5HRzlgAz8Dzh5wAAUqRgXjC5ZFwgOGvh/HFDiz+C3h1j6/YPZOVtbWwUvAxYmoR+fsglDY8ER0oBpGeyerIRXZWlpqQC+UNYwEcfc4ua3WywQIIjttjnmg8sHsaTCAKIt/b+v3ItL0pOvWPUTa5ukXvqT7yjUIpjs9Xra2NgoeLNQICgZPAYMbARHWf9fL8IKdrDrApAPgsSTYeER1p6gv1FyAA8HwLRbp9PRpUuX1O/3C0mxzvPuMUEZYmG5EKJvUepMd2fjSYS9j1FXAvPz8wULF35hxV8Ucuw/1gwiTER947XugSTPan19XcvLywmg7O/vp8ULaQcHRAht+NTB8/j4eJpNxnYFeKl8LAAiXdFKg1kRgJJut6uLFy8WQDh9EIHKSQJsZhESDqQPkRuA4ugZjIm9ETTQTyjm6BFwbwL34JmIwMbBbPTyUiaAPc+mnWlbf4aHtJyiTOcdtAf6wMPWbihxjjLHLQL8HZQJ+etyPyfbuS4aQE4e2uVdMUfL9asDSpfP7mn0fmYce3jnAQVQpPLFdeh0tw5RXDn3oDOCI1cXDjFcsLGxoZWVlSR86SAESaPR0MrKSsHz4dNpYWr3fEiDzG53Rbbb7bRAEouYxZAAgzeGvuLA5r0ec6RsbpFKSnkysSwexuIdvhEUio3EYN5PzsTCwkIaAKw06OWm3xjkETAidDY3N1PCLILen+MZ5m6lnCTBJ668HVi7gqYunoAY+w5QSFt721Hfvb09Xbp0KYXIfHxQHsCBpGQl8+2zIHw3bm9f6YAP19bWtLGxkXio3+8nb4ILOtY4ibHy6Dan35hhhlKi3Oyq6uM5Koetra0U2nHL0/OXuI/25T4HkViDzWZTs7Oz6na7ydvD+311ZAfwHnbY3d3VxsaGbrzxRtVqtTSDDsPF28S9BfT1SRHlof0AxZSJ8pEP5DJTOrxFg/cbOUVu7cMD0UInp8PHs3smHOBFBR0Vvq9F455KB/CUid8xBOdePspLLqGDq9iO6A6SSGOuYPwgJ3gvvOZGnfOOlyXqMycHhdJgm5ToFYkU+zdGJzjvM5WOS6ceoDjIyCFvR9+OBKMbzJmY50LOSDAPLt7Nzc203DbP8dhmtVpVs9nU2tqa1tbWCm5Bfz6EMCX5E8VCDBzhFsELz3A3cPQSOKDwNSR8cJNIyXt5n1uWKCqsYZJ8sQjZOMrfJw0W+nKkjdXNQM4hfR8g0mHg6eut5Ny9Dkjp25MU8BBCHnKvn4MT50nAKf/dCwXhYnavHPk7rLwcBTAhlRjGIYeDdUfgia2trZQA5wYA7wY8Ly8vp1lXhPhqtVpS8ghntyZbrVaqu1uoPrY9iQ9rE4BA20oD1/n6+npK6kVYemiFe/x5tDv1jjM6MBJcGbjVTTsDpjY3N1PoRxqERtvtth784Aen1aY998B5RRqsERO9EdeTfHyOjY2lWXoeSpcGnhMH4FGZexiTZ0evEbLHvQSe3xF1gANNL4fPLIPcc0Z9vMzOfx5a9CT+2FfUwz048LkDJm8XxjUGtPOxey9oO3+2T6KIAMTlXIwswOvcFwGKt31Opnr5Imjyd9PHyPgHzCwe9wxIg0YG9REmcc8HwjBaJznFyDNd2KH8+/1+Wsre0a8rQxgfjwRJbgguT8RCYQNMKAsDhj1rAED9fj/tUcP22JQVpOoek+hVor4g2kqlkhQ9wt/Xk0FgE0ohZMUgZT2TdrutmZkZzc3NpRyGiOYZsGxgt7CwkN7nCbOulCKoc4GA54ckRRcYKCG3kt3delIULTyOUXYse8iBCm0SPUEOPn33YvoH97G/WzoYR0z1RYB1Op20/48nkwIEK5VK8mYwPVhS2uMHhb64uKipqSmtr6+n6Z54uLa3t5MnBuGFsuL6xcXFBHgBY0y99vZjt2ofU9KBlU1iNWOwUhl4mtbX1wuC2mc00aaStLW1pbNnz6bk3UqlmAeCN4v24739/mATQsKohDORA3t7e7rrrrv00Ic+NC12Bph0XgGESTrRfaTcOKB8zG7CSKEf3etRrVYP8SxJ+Q644ANfgsDDZh4WdK8GZXOwgixzwOnAJXpMOO+K3JWy5wXlDF7ud4+cG1/x4941eM/lbTQivX60MR6gqKtc7nrEIHqzvK19XJWBpBzA4b+HfXkXeg3Z+4DxoFBZBgEdmrM8JBU8AZxzK82vdabgN40/NjaWlgPf3d1NGc9Me3Ul6DFaFAEgolqtpnVBPLHP47UocrL+8aaQoMfA9Rkbzkgcd7cdx6WB12R9fT0tb+4WBF4cXMvSgPk9N4H6VavVlHdTq9XUaDRS8hyDlvbf3d1N00xjCAqhFgUPAzrWyz1CrvB9wDk4jZbU9aYoqCAHEPG3g2ypaBF5Yp7H0Km3z2LgPRA8yD3tdlv33HOPNjY2Cjsf+3N4FmGTmZmZtHokCpp2npqa0tLSknZ2dpIXA5DbarU0NjamhYUFLSwsFMZxr9cr5NQw84ekcZaiR8B6nfBMrK+vp5wY6uEKgb7Y2dlJeWS0A4BgZmZGi4uLWlhYSGAJi9/DZ4B9QBLxdqzjvb2DlZBJpnfq9/u6cuWKbr31Vs3MzGh+fj7NLPKy9Pv9NP38JMmVlqRCH3h4jrEKL5Nn4mMwZyzyTOSU87In5HOdXxNlBuE0gHBU+NQH4j0x1OKg1WWLUwQQHEM+RW8bRpobqNLAm8p4kAYbpDKGAW+Mf/cGuZHm78t5QqKB7mAktk2u3/2c9yl1pR8xQh8wAEUqggwYgUakAz3vAAWVUw48L6e8HAQhxEG7CDpPSMK69LVR6CzWEGHKIS4vlrGnDAgxBDTMiWUiFRcxi23iLtQI3LiOODgrc1IO6sHSxgww9ixCoQHAUP7u8kRA3XTTTarVaoVsegY/4GhpaUn7+/uFOD5KgLLyTfu4so31d0HBvd73J00uwKIHRVKh3zjnVmG0lADILoCobwQnPA+eQrGQz7O2tpbCMu7G5hkejvGkwK2tLc3OzibA6eBGOkg0PXv2bAIODirX1ta0s7OjhYWFtI+SW1skWbdaLUlKi9vt7e0lrx7l29/fT+CHhdQ8SZvy4FXyVXI9oa9Wq6VpnXhtEOretltbW1peXlan00n3nTlzRgsLC0lxA/oBKeRweTgIDwuz9QB5KFiUs09PPimKiqpSGSygF2WrK8ucgcg1EaREr4Gkgqzjfg830KZ84D8W2fNZhIyv6AFxY8g9KVDOEPI6RHIvhjSQQxsbG9rc3FS/309epyj78FoCqH3PqwjMaHv/n6uft5+XKwKR6GV1jzbv9TaB3PjlHEBdUiEcfRSdaoASkbIzP8KLtRW4zu91pOgf71SOOZJlkDgKxc2GwHNPBvcxdZMFnzyBcXz8YL8aPBXOXO4Cn56eTh2PZwJllKuPAyu3xhHYLM5G7gnPYBo0Hp2pqalkrRLO8gWNsJJwpfMcrEkW/6JetNnOzo7W1tbSqpmAKvcSeF/7APHjbk0xUOkjt8hzFtNJkPdJ9KAwoHNC0wUn93v/+fXRa8Z/Dxd4cvPm5may7gmnwGNuvbpR4AoJgCMd8Do7JqMkANwI2e3t7QQY4IWVlRX1egfroNAubjEzFl0gS0Vhi1KnDej7drtdWDQOQELyMV5KjASABbMPcjPSWKHUgQ8ze7a2trS0tKSzZ8+mdVUAUCxeRflYRqDXO0giBxx5HfCSOeg8CYry0svoxo00SG72UDagjf5yr5UDr6gk3dCMngiOu3eG6zkGHyFTnV88DMRz4JvoCaBs/u3Ph3hv9Grv7u6m/MV+v5+SifFCe/243+VepXLg8SPcGXP0uMZ1WDTWHDT6Pf7tXpRo4EZ5GsvnvAHoxzt/NflTpxqgSHlXOQIKpkO55yh2nB/3DvKEJo/tcw4h7zF7wAOMFDOim81mcuE6YQEyQAkHYT1HxetAgvrDgG65RIZl1gCKA0GMO509P9ySZV8SvEaSUh0dsFWrBztesp4Dyo0wAAoJ8MJaLe6Fgo6qS7QEGBRYHg54InA7KXJhx3/3BEI5vuRaQhy+xQL3RJ5yQU/ogXZg6jfhE0Cw57G4YnHw7CCLDwrbw5fuZQMAkPeCF4/3bW9vp9BKu91OANkBireNgy9mdTAVeW9vT6urq7p8+XJhjynKwi7Z9AfAhBCNezmZJYbnhXHjbUA/EL7Ecr/99tsPeSM9gRL3vOd4UUbq5kumn6QHJQesfVzlrG/P3XPl5UaadHg9KleCDtL57+3hx13Be7k89OihdcqBvKMvo2eiTE9wnYPmXq+XZJ8/Dy8lY4BQJuFQkn+l4jISlBEQ6O/GEI/HGaM5z473W67to6Huz2EcRsPQv302K1uSOFg9Dp1qgOKd5QPZO2l/fz/FjSOaREj44Mq56bwTEXpcA+omROKxehJbWRMAD4R3ErMWcD8SZ2fQ1mq1wmAClQMYqDPWrs8SikzlgxsQBwBCASAcO51OYdEzykCSGO3h64pQp9nZ2bTKKIqOnBzpYP0LhAvKttVqFRIQXel4P/hv9664JYdljGL0e6MgPSlyoe2WWxRyUajTXgBdAG5OCDlY5JlxJUf6zxWsW4Ju+cZcFNo6CnKe02q1ND09rWazmXYnhr89sRsA3+12tbGxUXg2YSRpkHhHe9BW0mAcknuCZ2NlZUWrq6tJ4OO5rNVqKbk3Ajr3/E1MTKSxx5Ll0gGPSwfGRKvVKqyCS3sAytfW1vSBD3xAD33oQ9PuyIBTkl0BH4BH6kL4Z3Z2VlNTU2nJ8Ktxk19ryhmFLnv943I5trHPxIrn4/sAEW5cISc9r8if7x4ZvGER0OOlkoor03qdOMdzo6Lm29+HnkAuIreZEbe/v58WOQScVCqVQoK7E2PB5QNtEmeRuh5j/EevSDSCXKa7PPVrI2CRimHjKK/dI44HMifXh9GpBijE5NwSjUosJgXlFFRZh/g5jvu0W7LzsdakgbXvawCQTAuT4lXgvp2dHbXb7cRQTF/0WUi+wiXKot8fxC4pI7FuQJAzhA8+hAdTBPH60K5xnRZJaS8QH6wIcFb/xOKEcYk9Ujcs2rm5ucLAZTA70IgAK/YxgzT2H/WlDJTT3b9XO1CuNeGpkFTIjaDuHmPOWawoTPc4lQkebw/f18bBLLN0HBzhYQNUoFAQpA6s3LPHex3o3nzzzSkJFl52TwhWVr1eL9SZMCJA1xWV84s0yMciTErYizAV1jHeSaYa460gvMP0acpBsqo0iKtj7ZIvwpovvhOz90Wn09E999yTZrj1egebHbqHik0A+/1+YRYHz0XIo2hPmqIcdV6Llrlb2tIg/JEDJ1EuO+hzg4i+dqDixqlUXD2VfqlWB/unuSc16gt4NVfn6MFyoORrLjkf+CKVgHL62AGJe5vcU+4gyNsFfYCh4XXKGS0u+1xu5PqA3zlA5tdEUBedAQ5QHjAhHh8g0Rr2WGIuXusdlesAfrvV6ogfoeqzJmBaX6ci5nj0egdrMvR6vSQoydug3KBo9q6pVCppCp8rMZjUZzAMs74jUqY8nU4nlcmnSmLNMng2NzfTexHsPMc9OLQJLnJf2hww1u12debMmSRoUIK4uF04+ADy/vKB5v3ti2p5vXGfxlDBSVClcrDsOn3v/UQ7YblzvVulCCWvew5Y8xsA4G2GB5I2wRrb3t5O+Si+2SXtC6ABlAI2XBlg5ZM8e8cdd2hnZ0dnzpxJAJbxQX+jPDwcCgB2rwqACMuMOuGlA2AA1n26u6TCTuaVSiUtZY8XpNPp6O677078Lw1mDLrHdXz8YGG7hYUFLS4uqtVqFQQz3klf5Xl1dTUZBpXKYHque9Bc2Xg7ArZO2oMCucxEFvn/CB5pAw/rRK8HFAEObeJAGp51Je2gJ8p15PjMzEwytMg/ilONeQ5eXvg1ytbo+XTghbxBTjKl2nNO8IxgcOB5wXOGp9VD7S4T3FPiSyqUGXe0Zw5wlPVrBJEuhzjufU/7eV9ivDqIPQ6daoAiHc64zh2nE3MMm2No7zRHo67cPEcD4cjsHN8RGAZDUG9tbSVESQiCMvizcJFfunSpsBiUrwfAgHJrKyacwcQRgcMknhyJt4MkLhD/+vp6el+j0UiuZgR4nJGEovFQFt6SVquVyrqxsZFm75Cw6/s+uNDL9XmOKD/LtXO956N4bPSkiEXLoBygcmtOKlqo0WKMAF0agFUXzgAB8igQ/IQZEZJunXnIwoUwSsYVMOWEx+v1evIEXr58Wf1+X4uLi2kmigNN+AZBy27B8CWJdp5EzqwZ3OXO63h/AF4eGyf/hWTkTqejj33sY7pw4UJaadY9FvCVGyj0wT333JOAF+X0JFBpkDRMONinMPtMJ5c3GDEk1Var1ZS3Vcb/14Oi95myRqMvUrw2B058DHAc2eAhxijfUZgRELmXz9dy8iR0b/tcOOSoukcDmbLAM9w3OzubxjDeQMaRNJiBFt9Dm3m7wSe+1EQMjcZ2j+0d65YDK/G/e8+lwZ4+DsxyoSDa/QGVg+LK1jsoIvEcio+ILz6Xcww4j3P6TB1HkjEx05WyL13NPiUxA9sT5hCGWGUwJGXyweoD0Qes18XrxjPYYA5XvNeLfADCOpVKJXmDsEB4Rr/fT1OqUUoMGsI3TI0myZJ22NraShsZAizcK1Lm/Yr96wOYEBzLj7tV4gsh5fr+epJbZVHARWFBP+fCdX6f866PDV8zCECI5ywu0Od5ARz3j7+P9nQ3OmORc554ffnyZe3u7mp+fj6FBvEkuOfLE2v9GCCYse5CulqtFvg5zojDI+Fl3Nzc1MrKiq5cuaKVlRX1+/1kaFAvhCpjmHZhDaTt7W3dc889mp+fV7PZTKvu1ut11ev1wtoVACTGCnzK9OnIC5JS+Ae+vVor9L6gCCT8eO46aJhxAbkM91WrXWY72OS5tEn0dHOdP5cyeS4Yx90I8HPe5jkPhK9JBQ/C/xiszrfwlHsmPQcLsAvvx2gBdXZwj/xDV3BdmZ4r46Wc98T1ijTIS4sLjtJW0YtCQvwDCqA4ko4NGhV27KjIZBHxwRguiFmLwQcAm7YBKmA+rFKEmaRC1jbrRvBuZ0yfObO3t5d2eu33+0lIe15FjOu5knfGdmE/OTmpZrOpc+fO6WMf+5hWV1fTc7A+aR/a2VeQdSvSBTcC2jePw91drR5soohXgyXTm82mJCXgRv/5u73fEFJxwPKhzQEoMdO/Wq0WPBjXm+iXHE+6cHCh6vzqbe6Us4IqlUpSkvDZxsZGWgkZLx6C3cMhkFt27lkBuHr58Di4gvDp5isrK9rZ2dHS0lJS1tE9TUgKL4ZbmryL8eJtGdvQV8cldOX5GxsbG7py5UpaZBEepZ4+JvntWysge/r9g4XWtre3tbi4qImJCa2vr6fVcm+44YZDuQXePoRxYgzf+7HT6RQ2Ujwpip6GCIzjmHSiXn59lLschy98/AMEpMFuwpIKPOnvdR5xj6PXIf6P5Yrj071FXOsGJHzqHmlCktQLPYJs7Pf7aZYZZQd4M4mBbSJ4l8/apOzRWIdiDtBxKJcj5LKJb8KqyJeoV/nN7u0PmBAPzOLJeZHBIjO5mywycxws3uG8h7i8CxnCSyi9TqeThJVPRQQRA1I8bugu53q9rpmZmQIDI2D7/UEcGoZH4LpSccHtAgEmcuu92Wzq1ltv1eTkpO68887k/ud6BzUAG7wSsa2I6+IRYWqlL8DG+2HUdrudZnl4/JW2i4Mkp4ykwaqetAXK1tfu8HM578z1opwFGsFKLp8oV+8ygcC3C49e72AVYkAkQM6tKdqRXAlyg+KYioAGwQigwGplhg45Wyyi5kmx3W43bd3gLmP3XBAWcmDq1hs8heDmXWtraynvqd8frFe0vLyclsGHv7FA8TRJKniOnJ+iXKlWqynZ/YYbbkhrB7Xbba2urkpSmsXjns9ut5tmvHnf5hR3p9NJoaKTIgdIOS9eGR+6HPJzufvd6wkvcs4TV50fnQfd++Z5HpTbEza9bBE0wsO8y/suyj7AtnsuaS/kGYYszyFvCk+m53DFGXKut5gBFz0lrpccYLmui7wT+zD2R/SE8O2yFhnhwNuv6ff7hSncx6VTDVCkYoJOjM264nImi66qMopWioc/SAoEHff7B1OCL1++nMCJJ9AyqFmJlVkFPl0YZT4zM5OQMsIIa58sdgQtyXIx6cxRfXRNehvRFo1GQ/v7+2lVWRcEKDmsPAcCXjeEAc+FcRlQJDuSAMr0bxdIDPK4UqJ7waKrNtbJXbT7+web1AGmHLSdJECJFIXMMIFeJjRcuLrF5PF2FHIMEbpiR1kCMj1BEfcx/RyTBz0xdXp6Ou1Yzdo5XvaNjY20No57BQE/JE4DmvAC4e3wxQSpv68X4Tlj9Pn+/r6Wl5e1traWABoAmnCQ750CIHGr1JWaK1BpkDeytraWwAh1YknzpaUlLS4uJhDHuIr7qeSUIDLnJMnzcuK4KwMduWORt53nAajUm7HqYR5kDgYHuSoezkVWz83NJZlGHyN744w5l2cck4oAIMoSr4fziOcRuf4AHGEwEMKjzlzD+6mfjw8IXZALYcX2RpZSdu6PfVUGJOPz+Y+HKBqP/tuTkY9Lpx6gRCZyS9ktvnh9zhL1a7wDpeJ6Hz4fHWTY7xc3D3TBwnecReHeiG63m+bH9/uDPBUEnO+cigJoNBqp7l5H95bEckRlzsAHFN18881qt9va2NgorBbLoHDlKRWRPnFXBqgnF66urqbFrlgPBuDlArzZbGatJu/LnAWXE4IMbLdMPRcoTiE8acoJgpynhD70fvR+cXe2z4piJVUUnCe4eTuSL+S8DWhBiLp16JtkMkboV/gC/pqdndX8/HxhtWXK56ut0t8IPveasNAbAjEHwlFCS0tLajQaKZR15513poRwEnABzrQFe/JQdgcigAjPe3FvHX3F+J2fn0/gGKC3traWxnC3200AMipA+sM/1Wq1EAo6CXIw5qA4Z12XUQTVLlN4dmzbKLc8uR5jkOO+XhP9yvOQTy7P3CMdZY3XkbLHMkfD0NvAPRruDRkfHy+EHBmzjCUAlI+7aJB5Iq73Ta7MUV5EY8/rEfvJKcomBykOlHK6NSbUH0WnHqA4OQqGnHFi55ZZp96x1Wq1ML0tutuw2LDIsIh8TjoC1RkC5mPmCu5owiL9fj/tjcNaJcyIQNHjOowrH7p1kaOoCPHo1Ov1xGAf+tCHCi48H7Tdbje5/j1UFVc45F0IiAsXLmhpaSkt1AbNzMwkUOaKDeXj+QyUmbaNAMWFA0ohnqd89zeA4nRU35Xln3j9ACcoWPKh4ElcyrSTCxXax70tOzs7hYUE3f0sDdzHhGVqtVpS4iQDwrskhvo4w6rEHc5YhBd4hys1d9sj4F35u6KjvoRPWTGX1WX39/cTQHLlFEOEtDXvAsTjgXLjxpMh3RIGsJODBkiJeVUuj7zvc/1/vQhPRAQXUWHnQEpOoUfyse7ABI9sbkYP5/zdDoC5pgxUuqL1ZRFimXMgJRoM0Sh0T7mHDfEGej0w6qLHw0NN7sX3sUr5PHE45xHJyVK/xusRz+f6lXaI0YXYp9TvasD1VcPwt771rfqSL/kS3XTTTapUKvqDP/iDQwX5D//hP+jGG2/UzMyMnvKUp+j9739/4ZqVlRV9zdd8jRqNhubn5/WN3/iN2trautqiHGrIKDAjKs/dGxnLBQ/HAA/SIHufDP5er1eYCYGVVa/X1Wg01Gw2k/VJBrM/O1pHuM9xY9fr9STEPFEPEIPl6XV112MUbhBMMj4+ngRlo9FQrVZLMywAZu12O8Xx42wQNj0bHx8/5KpHwOOlqVQO1v4g/0AaCANAiW+iRvnKGLqsbtLAknBX6D/8wz/oR3/0R/Xc5z5XX/ZlX6a//du/PcQT15N3ywR4mZCPAtHrHRWYe5kkpWm2uTVioP39g1VRmQ7PZmZ88HqQV9FqtdK5jY0NbWxsaHV1Vevr61pbW9Py8nJawr7f76cwX7VaTbsfe5iPpFhyX5rNZkFxe186CIjhLHiwVqulfC7evbS0pPPnz+uGG25I/ElbAWIojyeKw4cxrIGCQ1mQY8bYZyl9t2wJla2trRVWwnbrMnoP3/Wud+l7vud79KVf+qV60pOepL/4i784xE/Xi3c9LJhT0MPI+e0o65x+BXz4FHNkIR4TN4SQN4BL+HVzc1Orq6uJJ924Ygd2QEsE4F43H2tRd3CM9vGQkc/akVQIR3loJ9c2USZ4CAtw7QCuDETk+siBZuwD2t/7eBhQcWMy1sHH2nHpqgFKq9XSox/9aL3sZS/Lnv/pn/5p/cIv/IJe8YpX6O1vf7tqtZqe9rSnpZUYJelrvuZr9J73vEdveMMb9LrXvU5vfetb9c3f/M1XW5QC8zgK5Vy89riIPlov7kKDkVjvhF1ZPTdkfHw8rc3AIGGwcQ3MBXhZX19P79nc3NRdd92lu+++WysrK9rfHyzX71ahr46JQDsOOKFuCEXfbRUhOT4+XkgIZoqxpGR1Ynli5eKWxJ0fp47CwAj+RqORFANCz/d/kQ6DLe/LnJXFPQxGt7a2t7f14Ac/OPFabJfrzbtlACT2U9n5nBXqlop7Q3xxK/qX6ZDr6+taXV1Ny8KvrKxofX09hYN8GjohD/qSfnJhyfXMmmEbCEJM9D/hFZ/Wi5dlbm5O8/PzCVx4rosnxkrFnZ89VOR8LSmBaLZicGNgZWWlMN340qVLunTpktbW1rS6uqrV1dUE0qiHK0yMEzycAC08NouLiymvzPOzWICRe/kd+b7T6eiTP/mT9d3f/d2Fvj8p3s2BXOrlBmKOooyN53xcxPwnV5YOIuI48t8ORDCCNjc3C3lG6A9+l+mKMnkar/OwI/fBj+5R8ZxDQqCNRkP1el1zc3NJjuLZ89malDN6igh95dojkoMQvzbKJ/8f+92vc8BYJs+o+3HoqkM8T3/60/X0pz89e67f7+vnfu7n9EM/9EP6si/7MknSq1/9ap07d05/8Ad/oK/8yq/Ue9/7Xr3+9a/XO97xDn3mZ36mJOmlL32pvviLv1g/8zM/o5tuuunYZYmDwRvP1x0oAy2R4qCJ1ir3T01NJQvTY5+8l2xtSUmYegiE8zs7O2maLYzLLABPEmRqFmDCV+TzXVZRPPxGyHEtgC4CsIj0Ea6SCoAI5nOXvicmY+ECunzVRO8Dn+7q3h+Ok4vix30KmwsWBJSXy/ua49VqVY997GP1GZ/xGVn3+PXmXd6ZAxyR4iDPuaX9HPfQ1r5wIO3WbrcTDxO68ZkTvr9SzhCQlEIxWIXOJwDN9fV1TU1NaWFhIXnHWJ+GXb2Zdh4T6Aif+mqsDsT59oWqHKzi4fSw6u7urqanp3XnnXdqdXU1LS9Pe25ubhZmT3hyJnxIHcmlarVaySiRBmud+BjiOMvc00+0O+PPXfzev5/92Z+tJz3pSVkL+yR49yglPex659kIsiM48aR82iOOc+dPACAeL5+B5aETvCpsueG8DR8iD6PhF43Z+D/38YRuwpf9fj9NfvCN9OAxDx3y8TxGypybyeOy0csWf3OP1wNgHcFJDnDwPL+WMHJsH76vBqBc00yrO+64QxcuXNBTnvKUdKzZbOoJT3iC3va2t0mS3va2t2l+fj4NEkl6ylOeomq1qre//e3Z57JLsH+kImKnUyL6HeaOGuaqiwMCC5H9O3B3s2W8L0ntiJbno/SZaklCkc96wJ2NJ4MZOtvb28ld7gv7eDmlw5akM4kr+xhL97oDesijwXpcWVlJ1rAPMqwB6ksdPcPeBxYDFcFOLBZhVKkMdhz1ernFHAdgtIQiOIm8kgMo15t3jwLNOX7lk4vv+jf9Th/49EVWCd7Y2EhubdrEXebwPF4Cn/HkwNZ5FaWAqx3w4rslO/hutVrJm+KAnGmhULRao7DNjXGUlfMF2ywA+tk1mXV3VldX08KEbCjnFrrzmytPykiez/Lysi5dupR2UI7AjhDQ1NRUYT8lB+9Xk2NyvXnXDZooY8r4Nh7Lkcti+IDj3scxqdvL5PzIvkfujcB7xnYK3ofwSSx7zhuQ+x9/O4D2WY4OpH3mCyDEwYnLPp8aTR3RG7l2jp7l45B7sz2fraze9Fd8Bjwdr3O5fhy6pkmyFy5ckCSdO3eucPzcuXPp3IULF3T27NliIcbHtbi4mK6J9JKXvEQvfvGLDx2PKI+Kuys7CjO/1oV9DmFWKpXCYGDVyK2trSQAsXgQvihZUCiLkeEFYeYAi711u92EnqvVg6XkmZbpqHp//2BXVMoAQ/vghXIALcdsfq2DsV6vlxQZ1iF1Q6Ex0LB+fRBJgxi6Z9CzwzFWDt4SXxacREUsXamYbxCFVa6ubsnn+CM3QE6Cd926z1Gs21EC0UEx7UXogfwSpr+7NcMMF0849LaMlqBP3+QY/OH8hLCHx0kgp7/h8U6nk0IuOzs7KXTpY7DbLa7qKeWXHXeecC+I8yxjcmtrKyXTslibAzUUSzQ2+B1DTS6UAX/ICnJguI6prxgs5JR5MnDsZ+cHNzKuN+9Gyo0nl7FRweX43cd1Lv8jFzpCkSM7IqB0DwN94+uhuIHnyz1ALnfKvAjxt3usvR2i4uc+gK6PN+c5L4vLMuolqeBhceAoDbxGOa+Jlz/KGvfqlQGdYeAHHo/XRjl2FJ2KWTwvetGL9MIXvjD939jY0C233HKoU8s6IHpFnJzZI0CRijkngBPQ/djYWJoRQEgHxSgpLbvtC6kRG2SgkNvR7/fTXiO4i5152WbdNw2UitPK+I5KPNY95/pDgFMechB4h6NiEoS51peWd8vXQQpI3/fB4Jm4WilXpVJcjCl6D1Ds3j8RqEWBcrUD7FrRMN49KlbvZXTQkRP4XncEC4Lec6XIl/J3w3dugXIOCxMecMseoYtAjTM7HNRWq9U0DlqtVgr9wU8o8Tgrg/85b2dso5yQBZA4UAeksd4OfO6epJzi8TCM87lPUXUFu7e3p5mZGe3u7mpjY0MzMzNpATf6Em+i9x987nIo1vEkeRcapmyiQTCsvP6MmOTqINn7gL50RehgIL7TZ4ZJg1AoSr3f7yf5RJncEx1Dp17PYfWBeAfeOUlpPzfqgJe9UqmkZfIrlcGeUPCTr+HiMhPA5mWOMiOnD6DoteN+jMwclfUrsj2nn66Gd68pQDl//rwk6eLFi7rxxhvT8YsXL+oxj3lMuubSpUuF+/b397WyspLuj8TUxEi5yuaYIx5zNBpBiXe2gx8WMfNF0nCFI9R5Ji5tFzIIPp+9Uq1Wk4Jn5sLy8rK2t7dVr9dVq9UKyVuspAmgcReolz16g/iOoMStDAZ8r9dL67lwLE71RVn4wOn3+8ldzXRlEhUZNK4AmHqNgmKFTJRntFYi0Chjcj9Ou/mS5H6NX3u9eTcm+EVXufddJG+fHP+Te4FAdFDtsx/cs8WeSvCDg3B+x37xnBGEGTxPQh8CFaELT7hrWzoYkzs7O+kcPBcVg1unOdBCGX3fHM7zjIsXLxZybnxJccY2fM/76EOfpurKkhl6Hl6L+TE7Ozu6ePGipAPvBnKBe9zC9jBxjhdOknfLvDqRhgGYCMIcjMQ+d0vex8wwcOSGDL+9TwA3/h76ycMrbsDy7Jwcje0Sy9Pv97W1taWVlRVJSp471zExn4uxzDjlN7l9LH/vssPLJRVlhZcxgpQIuvw47/frykCaG0sYJv6sshB7GV3THJTbb79d58+f1xvf+MZ0bGNjQ29/+9v1xCc+UZL0xCc+UWtra3rnO9+ZrnnTm96kXq+nJzzhCVf1vuh68sYvE/hlv6Nrz59fqVQKW6mjAHyhHzb+Y4M9dyvTYXgPKpVKWjUW5UACH4l2rOYaZ7qQHwKzctwHb06AxNgfzOJJpAAm8gIcXIHwXWD7VGfPf+n1BmtOIPjZRwLG9U2jUKSdTqcAZOKAd0aPgiInwHJK3AeIHz8J3vWZZ/FDvY5Tfr/HQyO+bxRhO9bqIT7PLAI8GvADzwB80/8+a4xjWH4+Q4FyE07BQ0Psv1arpXAnfS4dAHeWxs+N7QiSeU8EbZE3KDOzcarVqprNZprOzLIAbPA3Pz+fpvgzXZj6My0/3uOz1igPs/3IO5OU9iNycgVQ5i3yep0k7w6jqAiPA7CgOHZ9VmHsT5ffAE1mUvJptVqpv/kQbifPyUGmz4px+ePv5H/M8csZy66QGQeEDl32Mr7cU5njZepI7iNyOsrK2AcuL2K/RJ4qAyA5b29Obvn90RsWn3UcumoPytbWlj7wgQ+k/3fccYfe9a53aXFxUbfeequ+8zu/Uz/xEz+hT/7kT9btt9+uH/7hH9ZNN92kZz7zmZKkhz/84fqiL/oifdM3fZNe8YpXaG9vTy94wQv0lV/5lVedSe4MDcEwufh02Te/XTg4w4JqET5unWFxMRiI53uHoBQQXC6USeZyN/fc3FwK9SAU3aOB94EMdd+6vizUFZnQ243k3larlaY7A1o8Do9SpT5MU6W93V0tKSVIMu3SAR0ucN9fpdVqaX5+vgAW3dKKfexWl9ctKi14ZWtrS/fcc08aNFeuXJEkffSjH9UjHvGI6867WCY5MDbsPr8+KmMsdkmF/Wd6vV4KLdCmKEy31gh5+CJtWHY+48RBjIdvUCrkkUhKCadMKUaokgTearVUqRysEItlyPjjme5mj30dDRUHMT6mr1y5kvbEGRsbSwvXuRXKeMbC9YXm3A3POwHhkIcvCdUydhmfktLU5ptuuqkQbogL5lGfdrutu+66K73nnnvukXQyvAuv0fZXQxF857wnAACu8xAYoNfDaChtn63jSczurYNX+/2+Zmdnk+cKwFKpVAqrofpYc53idYky1XmD30xPjyCGazzB3D0PjAE8fdEzQnI5uoPxz6cs9zDXL85zuTpiqPrxWJf4nw1bXY4fVRanqwYof/u3f6vP//zPT/+JUT73uc/Vq171Kn3v936vWq2Wvvmbv1lra2t60pOepNe//vWFnWNf85rX6AUveIG+8Au/UNVqVc961rP0C7/wC1dblEPCme/oPXG07QosB2ZighKWD8t5E7pxt+Ha2lo6jgL3zvRFy3q9g3URYDiEIcw4NjaW1n/gnZubmykEMj8/r7m5uUKCntdlGAjLKXJAhq9R4eub5Aaf1wurm1k/1Wo1lY/F1wgZsbIobc5UTVzsMDS8wgBzZRgZ3PsyuoclFdr9n//5n/WjP/qj6d7f+Z3fkST95E/+pF7zmtdcV951Yexu/qhonVwZ56w2hBNCGIHta+j4isgeniBfitk1KG+EN4CYMjONnJkoACGEMGAHoTkxMZG2ZoBPUNjT09NpyvHc3FwCKIwjD6v4OKbd4EHIc3BoIwAB04gdjFSr1bTlBHkIObc6M9CYRulKBK8ixxnH09PTarVahSnIEAsgsmEi20Z4/3P9P/3TP+kFL3hBOsc6VCfBu5Eno3LLKfEcAM9Z4w58qD996TPD4E3W5nFD0mcAOQBAdsF37rXz50uHl6enjFGPOMWxy3+8JzHMxHWej8S7CUEBUBwE59qFsnueTo5y4CAHYMoMJpfFufZxg5C+8JmjVwNOJKnSv9o77ge0sbGhZrOpX/7lX06zXjyT2Zd/B41jrblFhZWG1wGFzbmdnR1tbm6m6Y/sUYPQ3tnZSTkjPmjoHLwG7oFAgSPgSXbC/Tg1NaVms6lz586lgUOi7eLiopaWlnTu3LmUkOp19di8W8o5ZUYYhsXYtre3dfnyZd1xxx1aXl7WPffco9XV1dQm1Wo1uRTn5ua0sLCgxcVF3XPPPYU9g/CWeHvyXuo2OzubQjzUgzYZGxvT0tKSFhYWtLCwkKxXb1+Ejws0EixRPq6kGSg+pbBSOQjbPe95z9P6+npSnteLd3/v936vsPgSbezAijwejpHvQ66CC4hKpZLyBcbGxgogA97Fu4flyVRbkkZ9USwWMIthStrOE+ByeUqMM/p/YmJCZ8+eVa1WS0IrLlh19uxZnTlzppAPA9jxnBT+V6vVQ0uI09euzPb29rS5ualLly7pypUracE19uSJ06BRUj41lNATYMjH19jYWOJ7Qp/j4+NaWFhI3khCW5KSzIH/b731Vp0/fz7xLH2A7HLDg7K0Wi19wRd8wYnw7hvf+MYEuFw55cjHaDR2OI9s9BwpD42Qo+a8yTk+PtZz69hIg4Rw/9APeGEajYYWFxc1Ozub+MvD18hY7xMMU+qCHOKztbWlixcvpjEJ36+srKjdbmt6ejptCstY5Jm8C286HnfPm4Ln4DvP/6N+7pGKoJHJH3g1mX4Pr+EF8fbEw+g71UfvEd8YK1yztramr/7qrz4W756KWTxllPMYeHJT9CpwPv6H6XxaVKVSSQIaBq5WDxIKd3d3tb6+rpWVlYLQ95wCj1HG6WUIQAbk0tKSZmdnNTs7mzYM5LmS0k6XjUZDS0tLhcTDiNo9xBMFQWw32sqFPYxOPclXIIF3Z2cnCdUzZ85ofX09KQ+AiSN5F057e3taWVnRzs6Oms1magOsVLwwhJBo+zLPgvd55AtpsEAWA8s9SC4AToJcmOW8X7HfjnKnO+j2kI17S2inVquljY2NtHBaFPhcT7iH/54XQl/7AnCeFyUNwj2SUpK5gxNJCVTlwngA+tzMBHg3tiflc0MBTwweGqxuwAYgCODmuVScdwXoZaR8TKNGcTcajWQF+1TYiYmJgkeL6d+Qh02pV87je9J2pZcp59HL8XDufqc4rhmj8Gf0kAIe46wfNz757zLYwyBlBlwsV6xXLGsEXFFh433D2zY5Oan5+fnCitteF57lRl6cIg25XOObceZjZBjNzMykjQsrlYpqtZr++Z//Wbfddpu2tra0sLCQdAChz/X19QRqXJ5RBgdurq+uhndPNUAZxvgRoLiijIKQb/9geUkqMPrExIS2tra0trZ2yDJA8OIx8RwWSWlaMsKV9Uymp6c1Pz+fUD3WHQOL6ZCgVU8egzlj3oa7Sb2t3LqlvP1+PyX+4Wny3AUAytbWVlo7YXJyUhcuXEj3usXCIIzAhbLyHNZlwJuDVcA0PI8f5/oYivlGEaB5/8X48EkRisvDdJE3I5Xxu1Tczdv738/hAWSZdnJBXJi6Uia04aCaMsYQIDkq9DtKHeFEKIjdrhHQkpLSdiHmM2xcaMeYek5ZSCrUpdPppMXpSNhFyLMvVKPR0MbGRpo5xxotHn6LoV08HJ7cSJuRk+PhYefbOAOO896PXOvg7f4CUJxyVrkfL+PrnDyWlLwgfDys6SBcUmp/gCJGnYcF4VXazsE87/b+9D7wMsELXn6IPskZxWNjY2o0Gtrf308exPHx8eRJhjzh1T3PhB19sUv0DP+d4E+8nO49if3lZScM717N7e3ttL4O25OQEhBn97hspRw+Dn1q9HHp1AMUV8LRm+JeCyj+dgHvTOwCBuE8NTWVZum4cKlUKoWkQBRitGo97sm7JicnU1Iim6yxLggMXavVdObMmeRijtMZo/XtgyUKMx+Y7jrH7QhIwW0tqbBhGu/H8kNw836uQbhgKVJm7kdJwvDd7sFiXrjC3WUa+zXnDcoh84jivf4+kE6C3H3rdYiUs0gj+f0II7cYUdCENnwHVTwDZValNFgF2cdCVKqef+XJpM5/Pq729va0sbGRVvbETc/+P7wDo4Cx5cDScwr4D1jy3cFxmXtoSDoQwLzPp5Z6QnBO8FJf8ld8CwvAuOfytNttNZtNNRqNFI6lzev1etoawi3jqNzjeD5pgOLlihSPlwERzvE8abBWlHujpWJuoMt8PF/IGA/lc50n56PsXWnDW+TSeXpANHhylJO/0ZNfrVYLMyORqegQQtnuKXEZjXJ3nuC4h4i9fwD61C8HJDEkNjY2ND8/r06no42NDa2srCQAT1mlQYSi0+kkY9v7xWdAuTfVJ4pcDZ1qgOLk6NWP5SysHGCJ4Qhci3wjiFgRFlchMxMQ9rzXhSd5FqBUwjfr6+uanJzU+vq6FhcXk5Du9XopGW91dVXT09M6c+ZMmgpKud0T4kIgtkEuQYnrAFrUp1ar6ezZs2kzN3ZShhDCCGepuNeIJxVGJA3T+kqiklSv1wvCaH5+vrC6oivBWE/K4MDP3+lliFb3SQIUTzbLgRTvRy9nFIbePvCCz2ZYX19PSdYutH0PKfgcK42k7aicAaMeFgIUxVkU0sCKhT/xEHpSH4LOFTKWWfR+Oc97mdzD4orNlZgv1MWaRePj4zpz5kyakkr8H1Dh746ucurk1j19wow432IAxbu0tKRarZaEebU6mP0mDcZrBNWQh+3uT5TjXx9vw+7zEIXnmPi9PgZQys63EUx6sjGGoctk9x5Lg9VYfaZblK05z0qZUeyeRKfoXWe2pgMz6s0zHaxEo9vL6bkyPIPxEL0sUL/fT1P+c31Tdo/LAPRH9MZ6uNjXG7oaOvUAJSrk457z834dwoGBgmWzu7urlZWVAlonsWlra0vtdruQ/e+dRfLT5uampAGTAno8hNNsNpO1R94LTJwDGDGxMrov40wfv99BGdZHvV7X3t6e5ubmElPxgdHck0J8H6Hvrn/ewTkEBO2DFT02NpY2B/QZPTnviYOS2Hf+HcGHC68IXE+Chr3fj0dBLRWtH+9TV6J45NjvCJ5yfkFx0x/+DB8H7iGDd6enpxPvVqvVtJQ7XgtPjq3Vaklxw6Ncxyw2wpfuGeR9zqv0I8+JgM75GcXk+SqEk7xtCUPOzc1pY2ND/X4/eQ89zOvKx+/H24jbfnp6Oikbyoj1vLe3p2azqRtuuKEQDnbAk+Nn6hTDnSdFw2RuDli5seHywa91YOkGhZPPfuGbPvbkWtrLgZ4rbk+qdgAd8xe97PyOdS8zGlwu81z0CpMvWCEcr5+XB/AqKQExcgJ9ZmgcE/A6x6KBE4Fjri/LdGeUn7S3h0Hd8OG4zzK6GjrVAMUFxlFAxb/9eE7huVuQpLXNzc2EbnFfe76FryxL3sbm5mYK37hluL29nSxV8lB2d3dVr9d15swZdTqdtF4DXgnI3cw5gOL18evLlJqHeRjgzPBg9hJKhBDB+vq6JiYmtLm5mdrI3+GufwYMIAaB3OsNphS32201Go20cJfvTeLWiwvqmHgchZ3X2wXTSQMTqMx743WOoMT7PtbB+YAcCja0dE8SCXmEEOE91jyJANM9YQhP3kdOlY8jZuCgMCYnJ1PCaLvdLkzjZVw0m820T1NcNt69JTE/IAIUp2hx0uYermXbiErlwPXPeOXY1NRUwTPKc91LA8hjFk+tVkt1jzNIkA+Mi1qtlkISUjFBNlcfD3PcH3hYOhy+yZUrdy7Wz40HiPZz8MbHjT9JBSDtQBavDP3lU98pkz/Lw+dezghOOeZ8Gr2ifn+vd7ACOPoAXqSczKZ0IxfeIOTIDB0H4BEEOjiLci/Xb8cl92R5H0CAEfrNk+eR1eQZlunpHJ1qgNLtdtM+GuxImhPsETVGa8tzNnwgEP7Y2Ng4NK2SBkegI3hR3MvLy8mSRFgRCoKJfAZDr3ewXoivzMk18/PzycPBQCAGnrMgcyif93At3+6KdJc9ng/3FGEBMJMHF72HfLCaGWCEHFAwviWAH9va2tINN9wgSSm85Kicdo/lj8LchZOf8/yfGP45CYq86hYm/2mfCC6jcIkCkTCFC22mNCMo2TsKLx3npSII9naqVCppSr2/jxAF3jXW9QB8UwYswH6/n1ZRRijjhXABhuD3/JMy5cH1lNvd6w6sOMYyAZQN7xIKwkNCnkvjbeXeGN7b7XZTvRmfgA48LCiklZUVNZvNVL8yBehK7v7iQYlyxyny6zBFGPvO+9Q9gmWyHcMPwEtOlYdKfImCarWatuJgKjE8Kh1OuKcOw/guGkdR31A+zuEFieEo5Cvhp/39/QKIlg48gCSjYzy4h8bby72MyJJcecv6JNf2ZXKLemB4ohe9Xd0oOS6daoCyvr6u1dVVzc7O6iEPecihDvLfZR0RUbA0cOeOj48nly+IFWtTUhJUdBBxbAaXJy4h6FlUqFKpqF6v6/z589ra2krhH+agnzlzRtKBYmUqGoofVOrWWK6uw8Ikfi0LxjnD4zUBtXuMFHd4vV7XpUuXCoOQrcw90U0agAuSA30dAkJme3sHm2GRoMh9PrgdVHnd3VKG3MIGKDlfnCRAiUKMY3wzuCP4cCAZgSbHPLyAR4OYsKQUa4c/fSVOt/JoYwSLVMzl8bi+W0osuoYSh1/GxsYSwKlWq4W9l+A5ByNuKTo4o5+ji9vHrV8vKSV1A4Q2NzcL69AgXMnVAcDF3AfKyVoTMzMz6V0+zdrj814ff5Ykra2tJa+Le4ly4NsByv3FgxLpKEAS+8WVnStwZIrn6risdUDiHkDa3NsKkOvymPvx2EqDKe8+ycHDog5SvL4O4F1hu6eNujHTyEOfKysr6X1cE9uSsvhYRna6weDy0MGVe4mOyzs5EOLjPz4HcE4fRIMesHg1cvdUA5S1tbVCnLeM4iCAogDwUMfY2FiaTgXTIMhdSKAQ2KXSZ6v4qp3cz0CZnp5OXprp6WnV63X1er3Cct8wP3uC8D++P4d4o1KL7j6/DxDiAAjlgCXJTBBc9ng9mBLMPTs7O7py5UoS/g58YnwXhUSiMSEA+sGfy0Cj/u7p8Xq6xe4D0/s+DrSTIMrgMdwIpHMer3hMGihq2gcPBaAsroVCm7VarTRrzNdCcYvI+4L34onxHA/AgaSUU0UdCX3s7+9rdnY27dQqDVYj9s0j3dsF8HHw6Qojetc8yTJafIAx6tzv9wu83+/306JgDv55Fx4gwPX09PSh5EQULMYIqzJHXsN9j7crjlPqnjOsTpp3I0W+deWYK2dOXkkDJQwf5jwRgG+AiSfH8lzPc0NOEGKmf/DW1Wq15PHiHWX1inXwT+wTlznOF+gLacADKHaAhudvoCPcs+gyOrZNv99Psz1pF589E/vlKEDp9YneEwj5Q2g5J8sor88EPA6daoCyvr6eLJjYaO4ZceXl5/gdr+ced80iaFzAs/CYxxJd0EvFxFX3bExMTCT3rq+JAaOy4BMCMM4akA7HdHNeoyioy8gFL0oTYIalghJiX4m1tbVC6AsXv3R4NgVhAE+YJexFBjmWELF/96K4gnVhPkyAeBtFi8376CSorA+9Pgz66BlyYRy9SAgk1h1xr0m/3y9sZ9DpdNLaJPSHv5t24n4Pdfg5QAX3VavV5PGbmZlJ7nW3brEkvf4AYvc6ej8j7KPXEIBEHVBgrGXUarV0+fJlra+vJ28lvAzPuyWNkoB/fQ0Kyu6reUbw7EnJ9Xo98StgnvLzfL/eFVpU0DEUe3+h3BiM8ijneYgy2esH0Z4euvG+yXkTeRb3etsRZsNbUq0ebGBJ30iH1/SIoNGv8++o+CO/sucZ7yWUWKvVUtjG5aykZORRHzw6fFwveK4H15YZ5DkjNkfeR2UADB5mbaXd3V01m81DoMbl/nHpVAMUt55w10lFtOcDPbrMudYFHg1PI2LZSyrkk5DIihJAQJMcRPkQPN1uN8W8EYpYT6xLQeIe3hfCLNFFN8xjFJmw7NrIYCiVWq2m5eXltHCbT4uD+Z253f3u7R9Xf0QQRMuZ9mQxK/JP+v3BAnc5y8G9MTlrzQVgHCD3BwEfB77zq/eNL3DEtVKxLbx9HFyigMl5wOOFl4FQy+TkZApb0lce9kC5Iix9+X1pkN/DMU8ehxe2trZSXhGC2EM7CFmEOu/mf67teG8E3whBvCGtVitNtcaYYP8f8sLYaZYESmLpyIFer1dYQDDmXjGmATcu/PGaEsqJuT7wum9VkONr79+TDE/G9i4zEo4ib6MopyIwgV89tySC25yBxh5L/CeZGZnMZqbIOt4dAWKZhyi2C+fjh77z9W7gBffWuQHGePNr3UjgnYy1GEpxnixre2+rYTJxmJHL2MKrhaxoNBqHvNke9jwOnWqAAnlszhknNqify8VyuR4XGy5yp0rlYP2O9fX1woqbMBQM6Tki5GYAPGC2zc3NAqLe2tpKyhfvDWuoxLBObjpc/J8bRK4I/Bjt2Gw2U5iJMI67Uymrr7Qb288tWuqKkpubm0uxVwAKwtbX36Cc0iB/hEHoCjgnOLzPcrxwb5D8tabcYHeQwn/ax0FAtHzc6vbZJVNTU1pbW9Pq6mrBjc21eCz4jdcBXpZUSHAGuHifxeRj3su5mOxMUm5u4TUXlDkDw6+h/s5D3l6u0OCdfr+fFgPEksZQwKsEXwMqKLMvHe4eU1al9TVfarVayt/y0ObY2MF0epQmYQy39KXD23FwTBrkR5wkOcC/t+BEyk9zpb9j/0WF7GVwXvVkUTeGaGdWLI58F3MGY9guUs448vo4EOUd1AnQ0e12CyHGVqtVAPZuHPpzKQ/jLUcuC47bR8e9zscmk0jYY4jZn8wUpJyucx4wOSjSYBbBMIRXpqhdIDhzIVSi8On1elpdXU2LOCHMfNBwjzSYs8/9JNWxXgRWG+5zclBA87Ozszp//rwWFhbSAkI8LybT5eoMucs81j3Xllh6HjqYnp5Ws9lM1jcWsHuLeJcPdMAjCZiVSiUl0qJIXdBUKpXCNOMI/LxOw0BmjqLVcJKCvoxfc0I7Cl4XUjHk4aCLpe1xjUfl7u3noTnKBRhxV7GvdumhTmkASHChs3JqtI7hXZ+x4MmwzqdeVwduUlFRuvXooSGe66HFlZWVFLrk3NzcXBKieI88J4BvwLcrJ6xGvC8bGxvqdDpqNpvpGF4byk/+io/9nGVOG7gXNfLH9Sb3il5rApxEIBaBuwM/frvnieukQfgaTy3eWp/Z46F0ZFgEKdE4iN/RYHByzw/f6Al4sFarFcaiL1jnspj7faq0l89lBR5YyoYei22eo2jQRVmFNwT+ZSsJ3tVut1Od/POACfGQzApAceEaXWw5jwGM7cf8GkfBe3t7unTpktbW1lIYx98ZhSIxdgYyLnSEUrfb1dzcXOp0BBZuZ2kgdFnECsYiZu719HKXgQ9nzijsOTY+Pq6lpSUtLy+nQbO2tpY8KleuXEnImRg8ZWOVXVbBhRERArhWYWJmduDN6PV6ybqkrbwd+ERh7fXIHc+dO2krdBig5rwLGSx6V1Ccj4KZhaCw0BFaeFEAHLSle0RY5VRSCi8yq8qn3boy97IAPOnvmJtCcrjnOKE0fPYC3zkl6KAM3nKLFHIL1i1xQkybm5vJcMDTQ1090TWWKXpPaC/i7xgTy8vLKQ9laWmpEMqC1+v1emFnYFdw7vp3UHBfAIOroRhiiiAy8nT0NEiHE/yd170d/Jy3TQxduCyOHg3K59/IT3ZV90kCfAApOXAS3+3HomJ3fo8GHOFQDz27F4Xx6t4494DCGw6uvIyMCx8LxyV4NSdPyRf0lIW77rpLu7u7KS90Z2cnLYf/gPSg9Pv9FDq5mntiJ0KOMt1y7/f7unLlSmHXUVcOPjAoC0zmc+0Rnlhc/X6/4GJ3gewbRLlAAhBgbUbhAFN5OXN1zAkSf/fMzExhXQvK4YKe4wAUXH0uhBmQKDvfo2d8/GBLeojjvIu2yQmyHNhAIMRrokC9P4CUaFVAsb+4FpAS+y9ey3Ra2pJ1E+AVPGAQoDHGr919TL8DLpx3EJxsKInC9qnxEagS+8eyZZE2Bxc58FZmwcK3eEkQ1JSFsjH7jERhyoWVyeJ15Jc4APKtF+BjLEiAlns6OF6pHCSVX7p0SYuLi2lNI9rVww7U2+vkRgXluVor9L4i598c30Zg4ddFnpeK4asos2gTeJox4crfc5JcZvJMX4MpylvACJTzmuS8W3y73ogh9ChvHWi6F8e3geC51Mln9Xh7MH6HGeY5GVMm+yKIjDKq1+vpgx/8oJaXl1P+ztzcnLrdri5fvqyZmRnNzMykvmy322mGaq7vj6JTDVCwwp1xcklzUGx4bzC3jPByIGSWl5eTx8CtVLdm6AAEOwxHEt7+/n5y966vr6fn8FzWivApZcTz3csT3+dtUTbw4zXxP23GM6emplSv19PW2rQPO13u7+8nL8/4+HhabItsdJSpW6YIAHebMzW72WymwY37PFov0ftDuWMfct75wD8orvuDFVrGo7l+o39ccGK9cE2v10tThj0vivMu8GICtnsFHWR7nJzyucdrbOxgXRGfidBoNAprjPAs7pWUxi1T6H2VYd4TjQQXuq7Avd28PQAWLIrFzKYLFy4kfvIZOvAFu21TVjx+ADu3XKWBp4m25DpAV6VSSdObO52Ozp07l/J0KLcDIq9j5BEUsq9uexIUFXcEFkcpohwI93PuJZCKYXjCy36vA5g45n3mi4fsvZ1zM6hy8jJXhxhezAEE8pxYZwcZz2Js9Cdjzj0iyMMY5vF28zr6+OCanF6M9fFj0WvC9x133KH3vOc9etOb3qRLly7plltu0ZOf/OQ0KxBvIHko29vbKecwZ5AdRacaoETBOcwyzg0gPxeFC4xMvgmC3adHOgNGgeNWEczX6/XSOhAwEjuhovRJ4Or3+2n9CFzDLrDjYPI6HiUYypQz91WrVTWbzWRN+s6uU1NTaa47OTg7OzvJVc3y6gAMn/XkYIV3bW1taWJiIqFs70fPWOc7N6ioVw6QOBDEXb+1taXV1VVtbGyUttN9TWVlLbPQuEc6vPM21/iCa25ZMm2bWVRRoErFZFffhwbQSB94O7trGaHrU3ABotLhHCWORcXgISHPM+BYVBx8x6mZnPOkXoQ4Fh/eC+rkOxH3+wfeWdzr3W63sNOyb4WBp5G9hdw6jl6SXq+XwqQAM9rWFUwEZR4CiAr6JCjKmGH/oxGYe1YMPbuR4tOLnQ8dDDjABkD7eJEO+IL1gWLuE+/0vBP3TnO+jP+ifsm1g4f3HUgBdjHe6GdvL2QvYXXe5c9xz2EE7mVe9TKDKNenpDm87nWv0+rqqj71Uz9V7373u7W3t6fHPe5x6bkeCu73D0I9Oe/rcehUAxTCJ7lK59CaC3S3FKXBzBSYg4EB4vU4oc8awuOBG84Tknw1Pb8fi82XZmYQYu258Ke8jo4jE1I//46/va5RKTrTIlDHxsbUarWS8O52uym8xGwIBHmj0ZA0yI/xeCn149mEccjSX11dTaEkL5sLagZxbkDFQRgtBhfu6+vruuOOO1JOxUmTl9H7M4LICEqj8kbAwYe0Be3KGgwIb887kVTw2vV6vTQl2XdB9tlt8CCeD/qNUIqHM72/4aU43rwtGG9ed769bZwPcjzNNfAjH7w3/J6amkq5CMymYEdjyg4AYmYCgNcXFPN1hHJgAyIc2mg0CrllZV4T/ne73ZTncjVC/lqT82ZUdMOMCL/eKdYFvoZPXS7Rth42RL44KHePCjzt7euJ5z5WIjCJ3857OTkbdQ7jhCnpTH+nnvAz4NhBPYYx17jB4CtxO4j10FWUITmeGdYf3o7IlY985CNaXl5WvV7Xbbfdpne/+92688479djHPvbQ6uGUqd1uFzbofMAAFDYqkw4jdr5jB3jHRbTqzE2iIdc6gidHAuXLMwAuHO90OgWXYrfb1R133JGWwwfcsEkgrmJmEeAh8hijU67OZddEQent4s+GESUld93m5mZKiur3+1paWiosRy9JnU4nWYnk13hsFQsTYIBrHcXaarU0Pz9fyLMAKMbQTlRYXgevB2XwDPqNjY00RfzeJI7dFxTr4L9jnR1UeEiEdvT78A54+JFzDpx59v7+flqXh4UJ3QPiHgqEPjOzvM8A3r4iK32NhwLeJwxImXLjNR6LOTMeGpGKSfBuibMoXbvd1vr6ujqdjq5cuaIzZ86kuDmLJFI3aWAIAUoIkTWbzUNgzy1HnxmCTKGtAPnb29vJs5UDMzwzKuKTBCiRJ6WBUZAD1mWKMY5V6XDCt/Mr8hcPEh5c96z4mM7xq7/bE6wdtJQZB8MMQJerKHQHCoBfX0uH8eoGqqTC2i08m9w+gI6Xy712sdwx1HNUv/g5l0c8C3DMZrjUBW9hu91OkQMPV6IfXB4fh041QPFM7jJEKxVd4/z3+xAozhCEKhD0KG0EvaNVBqavccKzsHgQMmtra6ksMGWj0dAtt9yibvdgwahcGCdnNZaRWzLOhDlw4se9baj3TTfdpKmpKX3kIx/RlStXtLW1JemA+Wq1mmq1WlJILEblSksazJaamppKrnGEPB4XmHthYaHQJ24t+TPdo0K53YPCe6NrHOF20m7y6OWJAtl/u+JywefgjeTXarVa2DgTQUc+FCARoYJVHtuO/ImYb4KicE+Mz8Ry648y0NbulQQ8SYN8Lm+LHE+i9P14rj0R/mxVwd5CXIf1iadkd3c3Jch6mAxBzEwEykxIx3MEvMy5cAMJkIB17tva2tLCwkIhlOlgEPniIChnrFxParVayTg8ymMCxWuix8Hr7te4xxA5E5d28DLE8IjPMgOoePvHnBGnXN2G1dXlrXvCGDOAlPHx8cJO8PCrgxaMYA9vIQvhT+pLHXLgjLIMAySRysagJN1www0pv/Bxj3ucPvzhD2t1dVX1el2rq6sFMOjr/Gxvbyf5/4ABKFK50j3qOre+XNkBTghtoAiazWbaW8NDAwAHOo38El8PxeOLDCwYkHVPyPlgjxBnZgZKtBxjnctCID74InBxxO/WN9cCOObm5rSxsXHIOibfZHd3VxsbGzp37lxaVdC9T7Ql1gFTS5n5gRt9b28vJQvnLABX2q6wc33tAIVnU89er1dY3vqkKCplByoeIvCPW0tcj8ACiNA/bn0CfDudTrLaUMqAaF9q3i2hfn8QmonXO6hhVlZUON72/X4/Ad3Z2dn0jv39/UI4xt3t3h6eM+BtIBX73IUhYMK9ehMTE9rY2Ci0kXtJUCCXL18uJBR7GeN0/2q1mvIc2MMKmUIOAbxPv21vb2txcTHVyZWce01iXU+KNjY2ND8/X8j/y3kSyijWgfbP5UkACH36sZ93+eDGCOQLYeLhjV507s0Zu2UALGcQ53RMvMaNauQSst7DT75uj1Tc8sTrShnx/rgHKraVt/8wwBLlEL8nJyd144036vGPf7z+5m/+Rr/2a7+mnZ0dPelJT0peUTcUuL/X6yXvJYb6celUA5Q4mKGc9cX1Zff6tEGfgogLzZnG3cmgRV+8jTwNmGVsbEz1ej0p3VarpV6vl3Z9nZmZKSz9zb0oCAaPAyqvR1nb+O8cqPFj0YpwJEwMdXFxMSF43KvkolQqB4lqV65cSUxZrVZTvB9rh712FhYW0vouMdyDIPEZGQ463NqOuRtOnPf8DGmgcK9moFxrygkB/5T1TeRlF6QkcMcY+v7+fvLkuaXmqwH7YmxRoAGm4cOpqakUU8YKhS/9OF4D92yQVBoVUqw3FHk9F/LxZ0TLHN515eVjmXPMQHJw4t4qgIyklNyK98+X5acdmVrPjs2Ee6XB2OJ5WM3U0Wc85QwH6ndSFBf+y3kfhpHLI/6XKVQPoUXw4cabe+xccQNKfZp+TLx2b0dOX5SNC6+P10MaeFDgH/hwf38/jR+fYsz4oo6EStx4cwOUcRFBCrlfvoKzj5sywAXlvCbeLg95yEP0pCc9Sbfccos+9rGP6dZbb1W/39fly5eTQe0hH0AY3hTCoselUw1QjkLrUTGXCXg6F6saZQZIwOKUDgbF7OxsQqzdbjcBDneDsz6LM8T+/r6azWaKhzOHfGpqSpcvXy64GwmXeD2H1duvie2RE2aRWRlQnoPC4J2ZmVGz2dTW1laaAeG7GBPa2t/fTxs4eva9r8zJM8fHx1MypVvH0mB2h6/DkYu701bR9e2AyEMPrgBPMrwDRVDiMfIcwPTfbgHSfjzTQSz7z/iqxwhKabC/lAtXz5VAkXsIiX6J/N3v99NqyQ7wpeLeKtLAY8I5lEfMR4CixRvbhzrH96KQ3JvjMykAKLu7u2llZ4AVPOuzLigjSoMlvj3cQ1tiHddqtZQADsDz2SIOhlwxe1u4/DppL4qDppj3AB1XETrvxLbzMezXeM5R9DLlvDCSCvLE3+/1iTyV+849O9bZed5lWr8/WE2YlYzhr/Hx8YJnE4OPyQrU03ndP7zXFyOMi9mV1WVY//jvfv/Ao/7pn/7puv3221OI9EMf+pA2NjbS7L12u53CopIKKQ6+EORx6FQDFKis4SM6LrvPlRoWlE+TpbOlwWJTCGcUAMIOoYbVyaBg0zKS6xBKeCmw0PAmTE9Pp/08eI7HTaMl6YLL650bWFwDRTcpzIRQn5iYSMvc33HHHUkJSYN1XMbGxpKA39nZ0ezsbAJytK8LcnJ8fOYDYKfVaumGG25I5YyKywVRdCd6f0awQv09DHBS5OApl3fgggdycJJzUcc64jXxKbG0J4LSF22jPP4u3xEZa85nnrgLmue6AmF6IfxOX0SlzpjyernghXJt4p4J3oOXgrr7OPaxR8gRo4SNOz1fAVCFgsGgYQdkB4y+fo+DDuTD3NxcAkAOsOPYjbxAWx9HudzX5PLIKYKNsnORIjDxRODYtvCbg1HvV/47WKhWq0mm+qwzb88oY6MR4OWMv6PXxT28Xge+3TPtYBgvCxMQPLkfPneQ5eA7ygaMCkKJXo+j+qTMiwJNTU3p/Pnz6na7uvPOO9O+cevr62q1WmnlZPdiIuNJ9j0unXqA4oww7Fyuc9zt1e/3kzBHQSOIJKVYs6TkQUDYVqvVQqJotVpNiYB4JDy80Gq10iZlxKU9/u4Dz+OOOWQe6+TffjwyYxxcsf1A7A7IlpaW1Ov19P73vz+1F22zuLioSqWSQMry8rLm5uY0MzOT1joBVYP0NzY20rN9syz34MTy8dtdon7cwUdUih4qc9ByEuSJpu7ijYI/eo6igPTwJOfoN8Cyeyp4ForZFaVbxd7O9Bvg2bdxYKwQqkPIIhjxFNL+LqjJlyFUEhfni2PUj+csw36/nwS+Ky3qzZgmvOTTst0rtL6+nqYdSwfr5iDwHXwgmAnhkASIEmIdlUqlUqgfYCU3a4l+ckUXvSs56/16Ug6cSMO9JlGJR56mTV0xe76Fgw/AiU+p9fHu/1Hi09PTham8EcQgZ13ZO/95WZ1ycjX2kwNw95ZSB5KqMYK5lzaO9XGQVpaP5XLOE4XjdcPAiR/L6dlut5vKDnhaXl7WlStXdOHCBc3Pz6vRaKRVpVlDi8jAcehUAxR3NUYrJNegOUZzC5TORHgxzRDBwrRAkkAlFRIGGThYYS64K5VKWj4e4c5zGfDubsZ6iysI+qDMDZYozI5ytXKNf/Ms90CglJj/3u/3tby8nBiUZFo8KJXKQa6NT7FmPjy7vWK5oqBQZHiiohcoJ5jdAo0xewcnUdDnQkbXkwAP0sD74dsecCxaTDnh6XUGnDggcxDjcWEEN/kXCDxfN4L3utL0qZ0I9bGxsZRTJQ1mLgAUyPvwpfXr9Xoh3ygm+Xl/+/vjOAaEUDf3xgAEsFBdEdBee3t7aYv4avUg36TVaiVgQcIr7UZ4h8UV8dJ4uIf2bjabad0jjBzq5rPYHOxFZVLW7ydFJMceh8rGWM7oiF5Sf4a3G22GbPI2c1nJJy7XwPMdAETvnb/XKcpXvz7+j3I4ghj3MDh4d8+KA3bK6oZNLEd8Z06OxPbnWn9WLG+uH+kj2hY5srm5qe3tba2vr+vGG28s1Asgf1w61QAFKkODUpGhygAKgKTf7xca2q23ra2tlMjqOQ0IYBQ1gxcPS6vVSlM2eX6z2ZSkNDuIJFPQ9Pz8vJrNZiFJVBoMJP8f613GtLG9ch6JeD9180Gxs7OjZrOpc+fOJSuSmQj8xn2J0GaGEoib0A+Dpt8fbCzlCbc5F38OeHn/R8+JJ895n7mldhK0vb1dmAHiq0MepZDc6nMPEkmw8DwhDq5hJhlEu/iGXpIKQp9+9Di/CxzflZfF4FDiHuLkN4qZJFL3Kgyz5qIAzSloyuXToz1k5ZYnZcFTUqlUUgJjv38w64Yl7tnd28cM4wUg7R5HFIsrwXq9Xsg78T5kWriUl1fx3ScJTqRBcmr0xkr5cRnpKGUYjUbOubzgHG3oY9sNOSiGPyUduiZ6T2J5ojyKfRH51evmRpN7cn38A+JdV3C9h3d8LzbOwVcxPOheFKgMcOTqEfvHjyETCP1iwLbb7aQLVlZWND8/X1gDBcP/OHSqAUqu0WC+eC5njTgT+bxygABgg42R3EKjw2E2VxaNRiMpZU+6nZ2dTdvRM6A4xrbUe3t7qtfrBXcf5c4NupwwKPM6xONl7YYAJm7oK2lKg2mG3W5XV65c0d7entbX19PCPTkhiyuSpGNAAsyPu58299wIBA9li6GZaGH5d+4akiRPMsTjXgj61j1m7tHw/1GIUsednZ3CeiauhGk7hKBUdNMD6lg8jf6JXin3llBuX+OE6wiBev4V/ISXhen1PpvFvSRlijoqiOhp8fGLVyY3TddBkQO6sbExLS4u6sEPfrBWVlbSuijMinCZ4bkMHqrDI0S53GtK2/GMMuvd2wHi+SdNbgjkZEvuf9kxjkORt72NpMFCki533eiAfFo7MsOBjANEb/ucos+VN9cPZQawGxp8fK0Qf7fLPS8j52mH3LjJgVfakXGRAyY5r9XW1lYhLEvulQNJ2rharRbWuGo0GlpeXk6GfavVSrM5JV3V8g6nGqBI+dkrUWH5Oenw1EU6BgvImeny5ctqtVqF6Zgeq0TQIwhx17L3jCe5jo2NpZkrrFLrCx6xW7KHf7yc7jEZZkUdZWFF5e0xztielMFBGwBrYWFBm5ubWllZSXPc3TrgfkJWuP8rlQNXNtM1SbrlvuhCjgPIy+8D0I97fbxetG3OKrie5O0TAQl9n7OMXChJSpY/K7+6YOc9CEKUqjRIKHVecoEUkxVz99fr9RTqRGCyjgieFbxmDjokpfwMB1K8x/koKqycEoz9TNnd+nYvKYSXJ7bD5OSkzpw5o729vZQn5QB5bGwseQzdK0U5PQRBGIc+wruEmzvXtxx3o8DfT91PilwuSccLI5eRtz11hlccREbl6KEPFCXyAcDI8x2Icz/nWHQPvvdkWyjyoR/zevj1EQTFekoq8D18ISl5GGKyNvrG30N/uHcpltuPR9kfjzEGq9WqlpeX06rhvnptvA5jAO9js9lMk0K63a42NjbSEhVXG1o/9QAFio0cGdoZIyo4CAaCIdbW1tJUMHIEpAFiRTi7AHN0z/F6vV5Y86Pb7abN8aJFOjY2lizMMusxB7rK2iSH6nMM4iEeV+BuLfEMPCpjY2NpBdy77767EAJzCwRgg0CgzniVfAMvF/LR0mQgx/rlwEYckK68fErrSVH0iuTAyTDviQtu2h2+c+XunisHIrSju7vj4lBRqLpb2a/jueRj0d8AIy87/dLpdJI725/jXhTaycfHMKs2lt0NDr+ftgI4eTI4756amtLi4qJ6vYOZBw7eJKUFBnFnU1YAY6VSySZl4uKuVCopxJWTQX5PDqzdW0BwLSgqueOUJcqhMq+Jj3/41L14ztP0oYceo9x3cEI4InfO875iuZ0Xo+zNyWKvB2XysePPpX5urJCrQf09XNjvF1fH5T73rkf9lgMp/j/2y87OTtr4lfyr3D3RW+tbwHQ6nbRIIWuE0b5XI3dPNUApE1remH6NC1tXeg4mEKyAE+JrgJZ2u51WmYV5qtVqElLuXZGU9k4YHx9Prl4sLM91abVahdUAKT/1yQGNXJ1jvcso12aAM+51K9SFQ6VSSXkL/O/1elpeXk7MyKBkcGGBo5Smp6cLC4XRP64IvA7HAWOx/i7cpYGHgHKdZA6Kgw8XTDlQEsEpxxBgHp50BexKkKmLLlToT7fUPVTBf/ptbGws8bmkFGd270ivd7ABn7c15ALay44nxT00Od4/zhjweng943XxnR4qIPw2OTmper1eWD3aE4jdSwLwoNye9OseSvJc9vcPlvxfWlo6ZIiU1cv7/yQBiht6UtGTlQNbOcoZCG4c5UL17g1zRRcBjV9L/3r54jOjIZQDgjkAEusTz3u/x7ZzHeTGgvcvcpPz8Fuv1yt4NFxG8OzcWDmu52JsbEx33nlnWu351ltvPVa7+Ziq1WqJz+F1Ntp8wHhQ3OKJbtLoRYFyQIUGRjhub2+nsAQABQEGs/h+M4R2PO7Mc92S3N8/2IAQ68vd49IBA87Pz6ekPIj7ywaM1yt3jvaI7ROZjjb19vA6uvs/ovfx8XHdfffdyZMiKc3mISmW55Mw1el0tLa2lnJPvD/93bmPCzeEQHQHu0DzvkOgXc1AudY0DIw4P+c8Z+4yjsv3AwrIJ8G74uAS3vLcjAiOeQ/P29vbS2FJBxHumULxu6eR55YpozJrbxifR3KB7qE9+IFrokHiwJU28Ot5Bis9xynZzDqTlKZS8gzkAe2E59BXh8b75fsSxTKWeVBOkqI3LJYnei9z4AWKfEF+WE5GA2gBeu79g6cZG86jsb8dPCDT3JApa+NhbV8GYGKf5fjS+dCXdahUKskYjiEs97iy9hDnvL7e7hFguJ7yc5OTk3rQgx5UMODKQjMuc9xTxISHdrstSckjdLX0CQFQoDJh5g0TGcVdh5OTk1pfX08zdrCiuK9SqaSF2Vi6mlkuMAuKwC2p3d3d5FlgTw723Jmbm0sLPtXrdS0sLBQWLnOU6i5mvv18ru7OpFHo+73RaomMznN8cLiyYydiUPPKyorW1tbSVEzajjbyPV9wKUbFB7kHJwrFWHZXUP6cGP9kobKTolx+yVHgxC0zt7BifaN3wGfYkIsRPR94UnimNGhjvAFs5OiLv7l7lxg6IUAUsBMeRVfEXvfIq9LhWR45cgUFSPK2cR52MMA9ZQIbjwdeTqzXavVgTyI8grQ5+0h537jC9RDe+Ph42ioiWtSR172v3MN10nQUyI/9GGWaX+eK2+9FcfusvFgG97q67IxgoN/vJ9mDjPfQRE5eUpajwLPXMQdQoqfD6xE9vZXKYJNaQizUHxAnKY05xj1GcpSZLiej7PSyx/bPyVLI1w7yzQ3RD4wT+u/eGISnHqBI+UTZMnLG5V4XALjCIZQqK0oyx5ulq3H9slYIiJJMfgQOrjqWOJYGgnF3dzetMumZ5vz2mCPkjFZWx3jM22qYsPC25ZwLT367FwLBOzExkWbzuICenp7WzMxMIakYa7LVaiWhPTMzc8hqjHWIFomX0UFIBHc+0MgPOCly8OEKJwqyHDiBfHlvBFROqNAHLCjmQFJSYfZP5B36HEDu4KLf7xdWpK3VaklAonwRWNJgeqQrat6ZE+qRcrwQQY408E5Jg1CPh7b8HYwz6unelF6vl7ajYOyz0BRhHednlAX1AxQ6SHPDxce/K9HoMckZCyfJuzHsO0z+DlNKkc/cWMyBE+d17olK1z0NLue5nr7yECDjg750HXEcGeR1yYEY50/3DLtccnDui58RSifs6Pc5/3obuXfWdZkDudgPuY+fi/V0QyiuLxPHI33iBsNx6VQDFKnICNGN55ZSjnHiwGLBNT4Idd8bYXz8YA8ZByfuGqbTYLyNjY3kNTlz5oz29/dT9n+/308Z24uLi4l5YcSYi1EmnCIiLhtUOeaIgyynqKJw91BJpTKYYk34ptPpJJc3eTa4+jwzn3ycnZ2dtA0A+T45iyWWi/LGMscBFgWbA6yTJNrO85aiMItewghQABk+pZZwgtfdLS74Ls52oV18UatKpZKEo6S0VDWC0fmNdVjIe+Ee3/Rsdna2sC6Q14v2KOPxHP/nrnUPUhSSUdl72Ib/PBcg2+/301YPd999t7a3t5MiwKNCXhmubN7t69u419F3AqbPAHvuQYtgJac0rzd1uwfrITnQz4EVqdxgPEoRxmMRlOQMEgc4nv+EgenJpG4UwBdxLaI4JnOy1evpICVeXwbCXTZ7yIn6+Qa1sc6UEf3ifB8Bb+7eMmASry0DLm5octxXsfbQuufTXE2o59QDFClvgUnlc/MjE0hKsXq/B8GMmxeriIRWV454T4i5dzodtdvt5Aaen59PMWsGDkmiDHKUB+jUFVSsy1FCKl7v7cJ5vyYOdBfY7qLmXrdaAHKALpb4P3PmjC5dupTaoN8fTOvzRYj6/YNM79nZ2cIGWXGQRyslCqg4sFwp+QCHThKguACMITP/79d7n7tFQlu6JyQuKgh43N/fL/Avz/b2gQ8B0pISjwKI8KRIB6CTPCL3sLARJiE+FLN7UiJIgaLxEPnvKAXtwD6n3FwZOBDgfZIK7v/9/f00VZKNPZEJY2NjaYkAnw1CAjDgBO8g/E9Z9vcHmyg6X3hZ/PukQzzwiyc4566JfSiVh6Jdafk49fo6eOQe70+/3kMdufaK/ORjscy4y8mgXF0cPHi5OJZrDwewrKTNWPP9n1yWedia1AN4i/Hq749t620R274MLEbA6DvRY7SQyuDyl3uvNtRz6gFKmQLLAZZoicLwKNjYUZVKJcWYXfCQ9MlS7jwPRt/c3Ewub2Lz29vbadoWQooOkwbrQvAeGA3KDZphlAM18bxUHOSxXT2XhmtzIId4OspwYmJCjUYjKbSVlZVCqEpScv9PTEykheloo2azecgKHsbYURhGJZRzD9MHJ0nRSvO8lDKrmQ/WCH3kAh4BIRWnM9Pm3gbuUaBMrPvjq0TSd2wWyPVsVUD53ZsG8Rzfr8fbAHLAEK1yb4s4ziO5gqANENZc7+OZa3imu8UBd67Eer3BOkdu4eIFhF/duuT5bPUAT7qXFr7NGSU5fjhJchCdAx0RAPg5P1Y2dqPxEd+XW8gxl7ztbeaztSqVwYxFeC5O341GHOUt47soG70srqypTw4c+3H4CJnqs+14LmsOubEFL7nB6+TjKpYztl/8RMJz6F4SvGvI7Djd/2pmT55qgFLm7ozHygAL5FvAe/4HmxphQfGNkGL1V6YX9no9tVqtwvbSuIC5h3cwM2hiYkLnzp1LLmTvaLeic2XPDfwyge3tUIago9BwQY93hIGTe2ZcLdPDWq1Wq+ASZGExaaDkGHAI91zdcgKNc9ElyXkXEGU8cr3JLUP/RCCSAymSEh9KA+sTvoF3EArVajUBcCw0+tKXxpcGYF1SsvrZRt3zSbDWfCaLT9UlAVEaLEhF/3tynQMZtyIj0Z85i9D5wt/j7m1X6g6s47hh/GGcOL9Thvn5eV2+fDnVDd5n/DKbB3nhqwNHb6mHc1FE3h5edy+rj4/rTWXgwo9FgzEey43hqAyjDKcPXRZJKgALaRCyiUof2cs1AH36xWdhHqUzcsZfTvaUtR9j1D03fq8DMs8nYZq/l59p8Bi1GAFxa4th5byaj/cnhsf29rY2Nja0vr5eWJoAucFspLI2KaOr8hO+5CUv0eMe9zjV63WdPXtWz3zmM/W+972vcE2n09Hzn/98LS0taW5uTs961rN08eLFwjV33nmnnvGMZ2h2dlZnz57Vv//3/76AiI9Lw4CIM5ZbRzA2DYyr0lcjHB8f19zcXGG1y5gd7QlVlcpgR1OET61WS8/wZDhPNpycnFSj0dDi4qL6/X4K+bj1kHM5utIqU2xc6xQFXdk5bzO/HuUSw0+SkrLyvXvGxw92dD137pzm5+fTjCW8UPV6PYUnAC7dbjctjFVW1jKKlpf//8u//Eu9+tWv1ite8Qq95jWv0f/+3/875cVA15N3paK1FNt0WH+i0KKCcIBN+2HRRO8BG9g5TxMWGh8/2C9qcXExzTCJYT7Gg1tN6+vrWl9f1+XLl7W8vKzl5WWtrq5qbW1N7XY7rS5JLpd7JyPIzYFvfufaxs95vwPYfGsB2t5n33ifoKwiKOQcmxx6e42Pj6d22NjYULfbLYxn+Nv7zFcIlYp7JbnMeuUrX6lnP/vZ+qzP+iw97WlP0w/90A/p7rvvLvDS9ebdCPagqJyHWen+LQ2Ahcsi9ybRpyhGV8ZlfOF5EB6Wz3lXY92OU//c8XguZ2ygg1xWRVnuHlW2iSC/C/6dm5tTvV5PW6YQ6iU8m/NW5Por/i+7xmUL1G639bGPfSxtDeGpEny2trYOreR8HLoqD8pf/MVf6PnPf74e97jHaX9/Xz/wAz+gpz71qfrHf/zH5G34ru/6Lv3Jn/yJfu/3fk/NZlMveMEL9OVf/uX6q7/6K0kHQvQZz3iGzp8/r//zf/6P7rnnHn3d132dJiYm9JM/+ZNXVficgJLyyNWFu9/j7lV3aRN7hxEcLLCrMe/BCvK9RVgeGM9AnG65trYmSZqbm0urUfqUMS8zx3KKaljb+O+cwC9T6C4QnNzFzaD3c3iFYvJwo9FQv9/XyspKio8SEoJp3Yog2bOs73LWVYx1xs9HPvIRffqnf7rm5+fV6XT09re/XX/3d39XqN/15l0XSJ7AVwZOvP7uNaEvYrJrnFrtxHUutH1XaZ9txrXExl2ge/mw6t113ev10oKHjUYjldmnI/IOL1s0KrwNyoh28bJ5KIf6Qu5Bca+gn+NDjhntMD8/r3a7rXa7nfLLWD2TdwO8CWVGABXDQMgIF+6S9Ld/+7f66q/+an3ap32a2u22XvrSl+qHf/iHC3W/nrwbE4mHkcuaYX1XFmr2e10+eIjcnxvzz3xGl3tgoiHANX5fTmYOMwApa6x//EQjmetiHlQO2NEOu7u7qtVqhcUuyQdxjzcf53U/XvY/vjd3XjoA1RcvXkygPDfjijZfX1/X0tLSIYAzjK4KoLz+9a8v/H/Vq16ls2fP6p3vfKc+93M/V+vr6/q1X/s1/fZv/7a+4Au+QJL0G7/xG3r4wx+uv/7rv9ZnfdZn6c/+7M/0j//4j/rzP/9znTt3To95zGP04z/+4/q+7/s+/eiP/uhVbeU9zJqK1+SOIzxpVJjZLR+uQ8D4NGRmqIBeW61WElLcQ4Kgb6y0vb2ddvmdnp5OMyOkQfJh9FC4ReD/o5BwgBGv82u8bZzxckzs593i9/e6F6Df7xeW/5YOcmx6vcGy4RyPXgOfFZBLXIy/vazePrFNvuqrvko7Oztqt9va3t7W4x//eP3hH/5huuZ68y5t433t7t5cXb1vHHy4ZYKgxZKRiuEg2ghrnXf5/jFYYbiNeSdr+fAe+pw8DS8nCl0aeNc8D4VxFRdHy/F8BHNHtQ3Xwz8ooAjG3d3P83mW3xdB2N7enmq1ms6cOaN77rlHly5dSts1cA0eKp5Nm2PAeOjHvYeeE0RZf/3Xfz3JqE6nox/8wR/Uv/pX/yrV/Xrz7jB5k+uPsmMuX3PPjN4UD9t5LoeDdQfq8Cdgm3Z3AJIzBLwMkc9iXeKxXH3dW5LTR9Gb4vf6tV4frpueni7sIi8p7XlGPXx88p0DG/w/CnTyHMC/LyfhMwPdm9Lv97W6upq8p8eljysVfH19XdLBFFlJeuc736m9vT095SlPSdd86qd+qm699Va97W1vkyS97W1v06Me9SidO3cuXfO0pz1NGxsbes973pN9D25T/0jDldYwQYYAAIjQqJXKIOTj7nc6go4maXB2dlZzc3Pa39/XPffco7vvvjvt7otLu9PppIXfSFJkvxLWPdne3i6stBezsONgofxlA6jseI75onJwReAD3u8HyPlmiNE1iYt8b28v5ZsA5BA0CHTakm/vB96bq0v876jdB0YUgL1e75BH63rzLuTtQJ85cIhC1BWXA2zaMfKM9yH8jrCuVCop1EaeCXtGYaVSDpar9jAJQr7f7xdCNQ424RGe60rZQY23RxTiUejnhDwKKd7n7Rd53K/3dgJUUEbAG96lubk5zc7OpvDt2tqaNjY2UrgHkMjsJgeNeF99THl53ACJipNPDE1eb95Fwef6J7a9ny9TfDm55GEYZIoD+TIwG+W2NFi3hed52AhC5uRynPyaoyhnZOQAeATdsb+jx4Rvl62M6ampKdXrddVqtbRKdwxluSwta/Ncn5R5UWJbey6WAxVvz93d3ZSjcly610myvV5P3/md36nP+ZzP0SMf+UhJ0oULF5L70+ncuXO6cOFCusYHCec5l6OXvOQlevGLX5w95x2YE15RCPq5uA26CygUsSs5d1n7ImMIqN3d3TRVFpS7urqakt/wsnS7XTWbzbSzcUxucuuPMueE1TAaBtiitUI7eVu5JwIh6t/eJj6waUviof1+v5B0yeJVPruJ59VqtYLCiPHxMqGBsBkmEOOAe9e73qVms5lA9vXm3ejFyvFuztKibWhXrBcErwMy/97Z2UnCjcTXuBy7Kx0Pv+H9YwsIB/W93kESOB4Ev5/3sxw3lpMrHhfUMUG2TPGVtY+kFFLJCdPIv5TFlVUsmwNd3kc7zs7O6sYbb0xJioAyysaYRj5hVdKPGCKxbJSnbIz//M//vB7xiEckYHG9eRfvML+PorJ60L65ax1MREXpsso9cLRb9FjEvD4vd+Q3D/HcW4qgqQyA5MBVWXv6te4V8qR45/0oS3KhK5ebsY29Tfw7HosrI/u7fGzD++vr6wUPz1F0rwHK85//fL373e/WX/7lX97bRxybXvSiF+mFL3xh+r+xsaFbbrnlEDiJjRvdWRDX+k7F4+Pj6TeCktwQn1HjnpZOp6PNzc2kgH06JivNYjWSEMgMnhtvvFFzc3PJFU78kLJ5/DRalT74nIZZKkcJdh/8DHK3yLkGV15MOJOKqziSwe2Wfq/XS16jvb29gtLEavecBN6DMIzKu8zTkBtM/vuv//qvtb6+rs/4jM+4z/m3jHcjQCkLMUQhRxuzc3BUwt4ngISxsbFkYTUajRRuiZYe99BnHnJA0PsaDJ1Op9CHeHKigQBPeXjIFYRvxunWrbeRU5nCc6AW38F5/tNWEbA4SAAke19gyADA5+fn9aAHPSh5TuO+U7S/jxHKyQrSHm7wOuaU2Ute8hJ96EMf0s/+7M/qq77qq0q47tpQGe+6hy72UVmfOUWLPI5j95r48+gvv5e+ZtZYTgZ6eUnKl5T6MhqxhPs9gRkq+58DlG5oRqPTjY1hRgkED/EeZsf4jMeoH/w9jL+P1/MVf/ukiSiDXU/gXdna2kpLIByH7hVAecELXqDXve51eutb36qbb745HT9//rx2d3e1trZWQPMXL17U+fPn0zV/8zd/U3ge2eZcE8n3+XAaJqhyA8URdoz3+jTMXq+Xkn7IOWGxnLGxMW1tbaWpxUzFxCPiq2Wy9gfKHhcxCgJmIaTkQnCYqzuCjZxwi1afP8MZOWexubD2bxguWiO5nUQJY3mWPWVrNBoJtGxvb2t6ejq5Jn1GB6g7Tr3MeRuGDSpXDm9961t111136XM/93MLHprrzbvehmWKKVdf2sWFsTRY12d8fDxt0ohnA+8F/Od8Br87mOF/XJnSvWI8Awtud3dX29vbaV0GBJLzsltpsV4+Hqj3sN9lfO0g2RVobsxE5eHKkrFNezu/487G6KjX64lX+/2DjdK8r3g/4wivCkZSHHs+Hv3cT/zET+itb32rXvGKV6SEY3jvevJuBCg5oJLrmzIlzr0xvEb75TwBHnqObep96x83uKJCpew5I6fMWIj1zbVDBMPefvE611vebvH5vN835fT6+Bj2ukbDNsrPMiASj/k35SAU6uTgBHnAAqbHpasCKP1+X9/2bd+m1772tXrLW96i22+/vXD+sY99rCYmJvTGN75Rz3rWsyRJ73vf+3TnnXfqiU98oiTpiU98ov7jf/yPunTpks6ePStJesMb3qBGo6FP+7RPu5riHCqbf+fIGcsZmIGAENnY2NDOzk4BtIC0NzY21Gq1VKlUNDc3p0ajkVzm1Wo1KQOej4L2XA0IQZdD1u6pyZU/KjKO5X7nrmGg8jtaNT4Qcu46twhcqJAcK6ngWfJVT3nu7OysGo1Gco+z0ilt4BnqsU5lA9zJQUCv19Ob3/xm3XHHHXrKU56i8fHxQj7I9eZdBmwujJUT9p7k6W5c+oBn4Q2s1WqanZ1N/OezSKLX0UGxW1pclysj/e8el3q9nvKvfE0PF76ep+IAVhosiiaVW5ZRITq5MPR7XCH4+MspJB8TtIGv9BqfRfiKfYg8ZEYfu6cGkAcAxHNLu7gXyuv8Yz/2Y/rzP/9z/fqv/7rOnTt3orzrYRUotnmZEZVThIAOB3E+rZ1zKNxcXlzsW3++870vKkZZ41L40StLHcqeH4l6MvU8tk0MW+VASg4s5MCze7cjb0fvINe7Zyqez9UvfiD3RPl48f6KdfSZbsehqwIoz3/+8/Xbv/3b+sM//EPV6/UUu2w2m8mL8I3f+I164QtfqMXFRTUaDX3bt32bnvjEJ+qzPuuzJElPfepT9Wmf9mn62q/9Wv30T/+0Lly4oB/6oR/S85///CxaP4qcgWMjehJVRKN0KG4yyFfR5DoPSWxubqrRaGhhYSF5Snx1TU8WlAazHTx04RQHocfjAQNu8cXpb7TBcdsqEgqP9nIB7ZaSt7HPdnLvBEAMcIWFKKmwpbyXh6xubztXkmUgKmeJudBxXuj1evqzP/szvfe979VTn/pUjY+Pp/AddL15F0HrC6XlFHJUVNEqoX7wMDxJe8YViV3YRcAORa9HTH6Fl6Mgkg6UF54blt/GW8bsFsZLHCvUx5MHh7VHJA8n8RwHqd4GUTFE/qJ+EchLxfVmCN+yjw7PdUXo749udsaRx++pC/f8yI/8iP7oj/5IL3/5yzU3N6eVlZW0Iad0/XnXgbC3V/ztFIFLBJL0dxzvEQS7UuZ6+sn7zQG0vxs55HLNc4XKFHbkmVivWEcHI9EY9mu9n3PPd2AXjVj+42V2cBfBt4/zqBdz/VIGkuI1sU/cwIheSUlpYbnj0lUBlF/6pV+SJD35yU8uHP+N3/gNff3Xf70k6b/8l/+iarWqZz3rWdrZ2dHTnvY0vfzlL0/Xjo2N6XWve53+3b/7d3riE5+oWq2m5z73ufqxH/uxqylKotiQZQIsdlgOfRJTj0l27GBcq9V00003pY3wfJMwBK40WNmQ58b3OnNE13F0qyPMyvJpchQHQg6cSUVrMAoDj8XHZ0NuYcbZT75WAt8ALyxFrmE/IvfMRJdoHOiR+XPWGfXq9/tpzZPXve51pe12PXkXxU6Yi3WEYhvzXtohZsDTjtVqNYETt2giwOE5OWXu18RzsZ29nA6aeS6LELIwG0qccRN5QVLB++DvKhPa3l4+tuBJH/MulKNio9zOc7nZfN5OlCN6etydzqy11dVV7e/vp714KJN7UPHSkLcFOK9UKnrNa14jSfrar/3aUn663rzrspM2zf2P98W+ysli6fB6JlznciUaJYwPD+G71xr5HEPSZWWN9SmTifEZOfnrocd4fQ7QDJPzztPwG2u7RO9PfI/LVpelR5H3lYPtaDD5M6PnlffcZwDlOMpxenpaL3vZy/Syl72s9JrbbrtNf/qnf3o1rx5aphxI8d9lSBKrH48J3hO8ACQibmxsqNFoqNlsqlarpVVimUIYrdToCnQmyKFXhJW74XPl95yQMqvP28WfUQZS/Nk+2ONspnid19MZNqJ37sGid8WDEiE0NDMzU7Ba3YsVrYaoEKPFHfnje7/3e1P8s91uq9VqaXNzU29605vStdeTdxGQ+/v7yZvD1PKcVSYNLFeO045jY2OH+LEMsEkDwJMDJt6+UThDuWdyLIZtYngPHqcN/P0+XTq+J44hzsd6uhKJXiF/noe0cqDMFQttDXh38MD/qamplPvj3k9mLGxubiZ5Q/iL35SVXWm5Dr7+0Ic+VAht7OzsaG1tTZ//+Z+f6nM9edfbAjpKN0T54+Pc+QtlS33LwEk8z72upPH0RkPR7+d5LkdysiQnW446Fz0nMTwY5WSZPM/JdgcohAk9VOjlyslpf1d8dtknVz9/VjR2PV/R77nPk2TvT+SNUobeXei7cnQrnum/vpDSzs6OWq2WGo2GHvzgB6vRaKQ1EEiQc9eklyVnacYB6pYplpOjUH+GXxst2TLy9+Xiqn7d+Ph4YSVLZywHHQx2gJ0LbJ8Lj6DGonHhHxmW43gSHKDEdvU6eLvSNrFuwwb8cQD3fUWEPwDCq6urmpmZObSviLd7bhl41o4h98ld1W6V5sJI0iCPwi28yCM5SyzytLe/W7+ufCKIj2BT0qEywBsOPHLWod/j73QQRDn9fe565hk5WRKtTLfSkSPejihUEuybzWZapBDPDGPDwVmn01G9Xi+0kYcBcv1xEuR8WMZbThH0uVzjvLddDGM66Mx5fqVB3hByyEEz34wjjE9kmZfRgQqUq1vZsZzx5/04TOlzn3vyvA0572CdGXSeWxMXQzvq3cNkYbwv9pF7vf0az0FximtQDaNTDVAiOMkNkihYucc3nHJ34N7eXtpTp9ls6vbbb9eDHvQgNRqNhMijUM4JUH8f571M0QKOgtOToDyPpUzY5gBLVDSxfP4ctwij8OAabydHyJ4chZue/A6f1icNEuwQJjA2z2amiTO9A8dcmCEHTiLAk/JrH5wUsV8GXhNJunTpks6dO5es7iioorCuVqtqNBqFqezOhy7I4vRCBwcu1KJAKWurMkAoDYSh57JEBe9KGd7KWZXHBeGuLOFRz/GJYyfyOR8X9FEp+hRrfzf1YHVYF8B4B6enp1Wv1wur+pIcjoJhrDD9OMfTR/XL9SDaw2WBdNiAKDMYonJzS9+vp51dRntoLsoAX1gwnqdduc53684p3mgkQNFw8OM5XmUcAICdr+N4zj0vZ2w4UR/4zGWxjyd/pusVf06uH3O6zPlAGqQ0eP94mkTsp+OElKBTDVCgMsaQdIj5o6KtVCppDj0dPTU1pWazqYWFBc3NzaWpmf4c7zh/jzNgZETOR4aMruWcoo2uR39Ort5lYMQFub87umwBEFJRObqQRjC7hcA7PDcihiW4z5NqUY5YNQhoT2LOMbYLpChQvD29bLHvToJ8g0raa2NjI/Gar0CK8nMrpVqtFjx5vuCX1z8HUsu8abGNcmDfP05R4EY+c95BOALMnbdj3gzfkYfK3s+1vV4veal4r7dRrDPPkIoC1+vjAthDM9TNF84iVExIC9AxPT2dwjgkkHu4o98vzvwpa/OT5N3YjzmlCeUMqDLFRdu5fKA9kNn+LJ/JE3P34HP6xfvW5VkESs5vUfZyzOt4FGikH7m/DPzHtogU38+1OcPYZbrXq0w2DNMT/j/2mYNUX+7eAQrlcQPhAeNBcVSd69QIGvjv6G57e1vVajUtWc/qrtPT05qbmytY7k45l3N8twMU6XBMPSqKMqsohkjKFLEfywlePy8dXkVzGLPGmG8EJQ5mxsbGVKvVEsP6FFgQvwMk3wMGS8ena3c6ncLaErn2cYGSEzTUz5XMSQr5snJsbm5qenq6EPaLbY+nyWfpRAHLMz1fItIwkO38Jh22bnN1iQIs3kfZfVzwLsCqz0bIKbfcOInjE4s1ekF2dnYKioyy+5RWnuNlcHnBc2O+Fc/zXVt9mimhNPfWUA4sed7HmPElzcuA2UkQBp0bFg58ocgLHPO+dwXnOT79fr+wT5oDXQeJsS39OuQOz8wBG/7HcZNT+JzPgZNIw0Bb7rjzYxwfkIctMfTiu2gXSVmPKPzkfRaBY+yneIzyMb5c9vNhiQ7OD5Mfw+hUAxTvjDKGKOtgkmJZnp6OYmVH3/wrCoYcio6D0O+LTJIDPByPYCUK+HhdDvzEeueQek45u1KLM5kos7/bpwHHcsGUvu9LTsgAWFj23j05LlRygsHbyAGTt1/Z7/sDQHGB6lbWxsZGWkqd8y6oq9VqCoPFXXIjD+UEHVQGrl3gc128z+vAPZE/XQnRz+5WlopC0V308b1lY83PuyUXwShlxbNBjJ73+X3O5w58+Q8AQUECpKvVamHqer/fT253xgNLlPs067iLMeUpa4eTBipsAhdlRNl4igouhhLcYyINvIs+nVvSof6UijzjStNlTA44uXJ2z0zO0Im8nRsPcey557jXG6xUnrs2jsEIOHLHI2DydvDQW/SqSkWPPeXP9dcw8vvhbzdGnX/R0znAdBSdeoDinRw7IqJgBA9ovdPppFVMaTyECMIjhlX8O1KZwI9WVhR4fqwM7JQpjDKGj/V3is/xAYXg9YQrf1f8hjGhyPzuxvcwhcdKOT8+Pp7c8g506GsHOWWCOgcmvU9yMeqTIOdXF4TV6sGqxpubm6rX64esk16vp+np6RSu8Ofl+LNM8EU+iRR5Llf+YfdKxa0PYll9XDLzhzJFSzGWN/e+2J54ZHiGT2mmXO5N8fV33DUOnwKiWcDRlQ9hSV9RFqXr22kwlR4ZxPIEgBbvQwd/EZydNEBh01Nkprc/VCYLvU70gyco5wwH+k0aKEOpuJyD950DlGi5x7Lm2jKCzzIPbdl4izLb0wfcoI68zf/4O2eYOr8yZsh/ijLOx2DOiMjxWewv/097uJFJHzn/e/mjIXtcOtUAxYVNpJzVIQ1WJ93d3U0rwDr6JAclZ5Xnni0djuWXlSPnuo6K0+9xAck1cWAM8yzkyhrL4gwW129xkFIGnmgzt0hivfjt2547o3vcOSpfBzc+DTcnZLzPvN9i++W8V9eb3Mr3NvM4bbvdLnhWUAp4+aLSLuvrsjBPTiBKhzeOjOWO7/LnxHBP5PkIepzvuC73jmGAKCpH3kGoLCeUUV4+7TkK0pz3hGnTHrZk5lm/fxAyZlNFLEqENnxMP2NZjo2Npe0BvK4ewsj120kRMxxZT4R6QcPApNfR+QVy4OcGIjJZym9s6mE3PDAO9nKy02VMWZv6cvI5oOh1pl6x/g5SYoJ1fF6ZLsmBCF9HR1ICKNFYjzImJweGvdOBjMtt51PqyHL2OaAZdcNx6FQDFHeTR0Xq5J2P9QPiHBsbKyhEvCfcFwdDGThx5orMGgFFFKb+rnjc33mczvV3+zv9vCN8LyfM54rTyxMHlVsWHItWFc/y93isslKpFBZOqlQGO8L6QHNLIaLxMsHh9YzHpePtxHpfUQzduUCB51jEbWJiIvGtg5OowMu8KDwzCrkyCz0CzZwVF3+79ev1iOR8QX8OA0Q5JVBWhshnXhcvI8CCJFVfwVgaWOk+VdPDOPC4W+y82z03Xmbexw7UPoukUqkUDCMP6+U8T7ktEq4n4TXC2GP85to7Kuyc0othjH5/sFp17GsPv3EMvnOFjaxn4U08dRheLruiTOa5cU2hnCx3yoEy7un1egUvoZddOrxAWxyjuef6+Ilhstx7AMPx+S43y9oj6ln4j+fC08yCjfdGg+W4dKoBiiesRWXjjc1/R3wsCgYT+lReKKcIYsc6lVk6zqRR8EeCyZx5nWmiUsqVJaJ3/x3r49OZXTiQoOdC3wc49Y1WCGWN08w45x4hPy+p8E5vL/+QHxOFRSxDrg9yZT4pioIIcsUqHfAq6/GwQzb353i8DKD4sRwwuZr7/Rn8jmAwKqQceV3dnT6szDGm7m3gIMP5FvkAKABUoLgQqAAErF2OxXJCbrUzhnwdJVcgeLFckHtIFeUVp94D1hkPfu6kiDIDuEhy55z3QVR4DkpoO66NssfBnXTYSIIX+HYlCI9MTk6m8JmDIZd59LkDokqlUpi9GZdLkPLGX6Qo+ycnJ1OeUpkMiAZBzsPkBH8BUnJgUBrkWfmmft5ekaLs9THoM6uQUawv4/un5Z51NXL3VAMUrJGI0qXDcW4/7taRC5+YFBu9GDlwEr9jB8Tffn20+HIhiKj4OXaU4C8DJnFQREuP9orx3ei1yCkgt07LrA5JBRTv+/nEcuA5YIXE+Lxc2YZ5u+L/k/Sg5BSet1MEUTs7O5qamirs2+L9k3NhQ3F8lCn5SFFQ+nccX7G/y0ByWTvkVsCMv+P7c+3ldc3JA9ocZVGpDDx67gXxcYeHAIPG2wRAEWe4+SwiB+Xkoezs7KRzyDFXhtFooA5RsZ8EeWjd1/fw8RiBZgQogBz/j/c6jnGXF7wn93y/j76i/ySl/dTwRno5AKW0PflB/px7Exp2PgLA+gqrsX9jfXKUG0/IbM9niiFCPxYXcqOs8R25cnr4n3AfcrrdbmflRu7YcehUAxQXOPz3jo1CShqEIWJuh58fJuz5XwZEfBDllETuWv8NI+eUVE5JxPIdhVDjvfE47eELGDnKRkC6S9KT3Ii9E4qIdXMBgzCIM31c6Pf7fXU6nQLqj/2bU4ZlVkkZ6LreBN/mhEJcVGxsbEyzs7NpMSZJKWchBy7KAEfufBlv+3/KFoVM2XPKeKzsuW4J5wCOl6usf92K5r8nU5I/knt/Lm/GE+XLlBPPcDd7WZ/4PShCxs3U1FRyk3s7xDZw78lJ8i6eKM8fGxsbbB4a+wJyHvJtGyQleVFmFObka46fcgDGwUGlUknWPmViA0tkGjlBUnFGjL/naoky9PuD6edextin1K0sl6NsHPjaMbk+4F259WtyQCm+k/f5hIetra00I3Z7e7tQtghMY87RUXSqAQqCIwpPV0Q5RYUHxT0WbtFGher3+ruPY+kNE1SuoKJleBQIiUAs1pF7cgKz7FisW6VSKYAHqbhHj7vKY1sjrFjLAwsllsmz5H3acqVSKVhnLvxy+RuxbaR8TsL9AZxIOsRrUORD6cCTxLR32ggLnD1dfI2NMt4/CphAOasuApOyZ5TxVDxGPYeB8bL7h5Xdy+B5DLnySsNnArp8kQ57nrw+vMc9IVzrgB8i2Rm+ZiNB+tW9kDzLDYSTzEHZ2dkpgCXyUOJWGfyGKL8rqkqlUsirgiIgGUbHlcN4GNyD4TKIceQA0kHT1YATlzd+nyfL+jk3AF1uxTaMYNrJ9ZgvFRE9zD75oQzklZGHKpHrm5ubarfb2t7eLiyKx7Moq4fajkunHqDExnDG92ORIT1DnE9ZPsVxhHquLGXnI1PmQBTf7i4dphyO00Y5q9QFcK4O7p1yYR5d2l52mBjhG/dgYREq6uOLVLnSkgYgY2NjQ7VarbA0fIzFR5TuwDW26dUi+WtNsf+8bWPohwRKt67hC3e1xnyqCHSH8S/k/QzlPIrHeVYOQPvY8k+ZgsoJ0GHvjN4Yr3sOWDh/x3ZwmVE23iJwl4qhQ+9XB+gQngdX1B5CiTztCYknRewpBO3t7SWPg1Qe0qMuvrYJADsn2yKPROU2jF/ifd7PU1NTheXupYMddvFSAhbd0HH+dCOqTHbHY27UOYCIYNifH2Vujh/iezmPzPVJIVFuDMs98Wf5MQ9RAU7X1ta0s7NT8J74s5znWQh1bW3t0Htz9AkDULzj/FjsWO7j263OGPLJCfijLFN/vv/OCclYFr/Oy3eU8I/gp6ysUTjm2sQHsodxXKDHXZe51qfQ8W53W0MIWrwrXM9eGf5e6UAAtlqtQ6EenhWBCIMnJ+RdoZ90omEczC6MnAfc+qZtIt96uI1kuTKPoAtCF/yRH/zDMf+Ov/mfA8KRhgGeYc/PPSf+jvkoDniHlRPyPoiyJHefgxOAiCfwc0/st9inKM/9/f20aCHvJk9ib29Pm5ubunjx4tB2uS9pe3u7EELwTUOpL+V28rFZqVQKu15DOYU9jB+Oksf0v99LOScnJ9XpdJLcYUYn3qBovDl/+TPLQFMOSEhKSyYAHvweQt/uIXO9lvt420qD2V+ENvHKxRAqwCvXhmVtPDExoa2trVSvzc1NrayspPCOt0POAJydnS19T45ONUCR8slXUaFC7k52AV7mai8DDf6dO1Y2iIYxQRmwyCmKsvuGlYdPGVjLtemwegJUEDiSClYGbRpd3ggyn17pU+QcnXOtpCS05+bmDgFPByJuacb/vkJl9L5cb4qDN/It5Pwa+yLyMcf5pv7eJ7l4ur+zLP8qx39l4PdqQUXuHWVKLvecnJIoA3g53i5TcvFaB81cH4/xLNz4vkZEvMYXIXTPCSEHTyIlGfHKlSv62Mc+plarNbSN70tCGbksQenGKaaQGwj9fr+Q3yMd5onIz2WgN/IA3xGEOxDivI+5qakpTUxMpHwgnhU9bBEE52S9/47/4aNut6upqalD3ijIQWsEJ7FNHfh5f1B+l7EuF1hX6Tjkchvv3f7+vj760Y9qc3NTnU6n8P54L+20t7dXyAU7ik41QIkIMqd8oyCJ3hLoKADh18TnH4VAI8Aouz4n8MsAylHvzD3XB3CkeI52jAlvrhgRqI7CXehKxc25Yigohq9ImvVpxAhsFxxcnwMlfMfBytROX2DrJEM8LnByrtooaB2o0TbRO8J9UASLuZyn3HV+bNj1kYYp+eOMD+eFYfflxlHu3XG8RjqqbPE4SiPnds+9W1IBeDBm/Hl8+7jzJEZ4d319Xaurq9rc3Dw0lq43VSoVbW1tFcbY3t5eWrAuRz5OUZplIPi4PHecY3FdEL69TwiNTk9Pq1KpJI+D82VMus29swzoet0gwmLMuqE8MbQLD7js86nZzo8Ohr2uPnXdy+r35kLCkXw2W7/f1/r6uu66664U3vE2KBtz7LN2XDrVAMWVTC4+l2vw6DHJhVAiM8UBkwM3kcqemROqwzwWubL44IkMUTZYEKY5IBbRuVt8EaFHy8PfE60NXznRhWoEXm7Ve6Is35OTk5qdnT0E0LzMHrbh987OThaYcOwkPSg+DTV+qJ80UF5uuUQgkQPcnIu87vf4e3KKYdgYOIqGKZec8IqAbBjYyZWJ885bZeWhDLlxVUaxbMgZVxzxPdVqNbnyy2ZpuAXrgJrnsyotljbyK4ZGrif1+/1ULtaTgjd9OfdIDggiv8UPVNbvZW0e/5fxHuUgX4uZPKzEKg32CMIIi8ZapCifom5xHu33D0LacQYXs3tcXkdvmvOSe4r53t3dTeWl7A5SPEwcPYBluow2Ipy3vb2ty5cvH/KeHEWdTkfNZvPI66BTDVCcmaS8S83J0XDO+ow0jNEj2CgjH4Tx+mgtlz37apVDWdmPAjSu7D1RywdWrrw5xZIDdT7TgWOuPHkmmfYQ02wpm5cxKnnACd9xQSHWQmDPn5MinwkRPUAegon84tNey4S631t2XRkgGAZO4u/jkIMHP+b/o2ctJ+hz9w0bFzke9+N+/rheHsoKn3GsLHeI9vfZOh665L0oddZHYTZMXDTyODLrehB82mq1NDc3VxhbExMThwBKNHDKgMiwuuUAtX/H66R8ArT3IzQ1NZV2s/ccmtysQ+fPMnnOe+hnD7G4/GJ9JwdGDiJ4JvoqAgna2deScuAM//k90XPsYcUyMEd7kX+ys7OjdrutjY2NtLXDUeCEtvJ9rI5DpxqgxHyDqEQlHWIozsUM5mFIu+yao/5fzf3D3l82OPl9FFAaJtRz7eX5GTCTWwNlFnAsV3QbguI5h5B2JO/WA9cy0B35Q3Fg+jLi7j3Z2dkpAJP7w1RNtzocYPHbQwAOWrwvhiktB+LcGwVtrt/8O/7O/T+uNyIHGnJ8mwPnHM9RmcBzYH1cMFN2TaQYnokWrT+H99O3KMJqtVpQ6p4cyzos4+Pjad+b3Jg6CUI+sPYFrv+dnZ202nH0ZmE05BQhFNtrmAweVv9cOCYnIynbzMyMqtXBfkJebgCG93GuTDmw4iDV5ShyjTabnp7W1NRUSj51MOdTn6NBw8dXy0U+bm1tJWBEWTBunEeRmaxY7OQ6FU9Pq9VKsnRra0vtdruQX3UUUefj0qkHKFge0aKGomUjHUbRRwmw3LOGWV3HsQBy5NfEuHQuFJV7Xk45lCkMP5d7todnYHyuc6sxt+hPVITc62BDKipfv9ens3Ed9zuY8bIwsAEl/X6/sDmkh3ZwhZ4UxRUtpcOJ3t5vkUdzFpZTBDJ+D/9z3/w+Dvg+6vrjeDuOA3Zyzzyugi4D/l7u2NZlZYn/HWTHPssBfviRa1F+KG1PPI+hnBgWOWnCO9lqtQrTdgFX7p2M8iPHa0cB45z8jP2VA+M5+e/PpOzutXJgG68v+x/L5/xEP7rBxVhkc73p6en0G/noXjOXbxGgABClgWcGPuIawozMgvSy5BYYjAY/AArDr9PppNk7Ob1YRv1+X+12e+g1TqcaoNC4cUop5/xb0iHmPUpxH0Vlg2nY/WUAIvc/50Upe/dRXhRn8qPK6i5FHwjuxeC6XDv6u3yQen1c+Hq/+HPigkaUJ7f0tfe/e1Lc3YyVynfZjIPrQWxk5uAq1+/SwFNYZgHG/h+Wd1LmwThKQcT3xv9lHhPqk1MwZYoptsHVejeGlSN3vAz4DwMn3IfioQ9zQN5nrDFTjevYqJT/vpaNA/cyA+UkyBVbp9NRu91OsqHT6ahWqx3yRjjocr6NACX3rty745hxkH5c+YlnghCJh099vEVdkuPro9qLj3uQnUe63a4ajUZaITryai5XhI9PTPBp7cg/+I4tFTynhRyoCDKcn9kbqd1uJy/f5cuXdeXKlYJn9zjgpFKpFKYjH0WnGqB4boF3ag5l51BevO4oof3xCu9hQCIKw7J7cxZmTvDmLM3jDKbo8XBk7u+PgxcXZJkC8uf7LIVce/FOT0zjXgQ5x2J4z0NTPlsnDnpyUU6KCDWVLUmds2ZyibBQBCJl1mR89nF5+yhQW6bkj/vs44DrMqDh15T993cfBXjiu4aNTU8K5VofB/QDgAMQwsJ6bLQXQ5soHc+JiGU4KYK/GI/b29sFgDIzM5P2HPLy5vKdyvo98nuZrMgB8Xg+d5y2L1uhmt/uwTgOkM2939vLaWxssDEi/2dmZg7tFUR5XPY6kJKKi8e5d9rzagjTdDqdgiHnMhnyc81mU+12W51OR1tbW/rYxz6mK1euJKDhZfO6l/Hp1eT+nWqA4jMz4qyIHEWhP0zgHyXE+R8VdrxumGU57N3DgMyw+3PlieU4rteINsIF7aEVb2cHFWXPdLSf83TlmLtSqSSEH61U7vU8JPeg8E3IJ+4fwmJTJ0V4UHD5ezvlLDW+IxDxdiuzTp3i8asB37nzwwTRMOUTx0gci8NAfTx2nPeUgZJhzylTivGc86jnmQA0fIo4vMtOuQ6uATwOwsumlZ8kSIlhB0mFJfqnpqbUaDRKx3jk8ZxsytXRgVwO5AzjdyeWvPeE5Qh0/N5hQCfSMIAUc3PIK/L6cTxuourkoW0HBzmgwPWeVzgxMZHCLL6xoOfa4IGu1WqSpIsXL+rChQu6cOGC1tbWtL6+rp2dnWPpyI+HPmEAiiuoMs9IzOqOwqlMqEcqY8J47jj//fhRll1kgmHgZxiiPY5S8ef4AAD9xoHlwsNBDC5Njvu0yqhocmVCeLDaowOUGL7J5SMBUMhB6ff7KQv9JIU8Hpy4d0WOYnLeUYq5jIevVuAeJYBzx+jPYXUqe2f0lklFyzDnAfJz/p3LazpO2XJ1zHlU/Hm531zrSZaUyxVMBN5RSfr4idsBnBRFA8MTO1F8TNtF0Xq9cu2WAyNSOYAu4+OjAIonnOYAT3wW5S4zZo+S07mQeHye6ywHKXH9E2+vYZM8+M17CevAP4DITqejTqeTwly0C7PJer2eZmdndccdd+iOO+7Q2tqatra2tLa2prvvvrtQJupHHcra5mrpVAOUmPSY855EoZY7X6bUczRsABxX4UVhe5x3DCtzPH4tFG9kcv8dB4kL2Bga8meVKZbcf367dcN7ASa5NQAcrO7u7iZg4uFAwisnLeyxUmJobBjlBLML0nj+qHv9XO53vP845TvutWXXeX/nrGu/Jl7v15WNo+OM8ZyXx++NYy2ngL1s/I/Jzfx2Q8DzT3LvjW1xvSnme/GhnN1uVxsbG7rhhhtUqVSSEnSKM9O8/sPAx1HXQLlzZeBk2H0xVCod3wOd4yPPvfM6Q34seua433nP5a7zkQMS5DEePco/Pj6ePMlu6O/u7qrT6ejMmTPa2trS3Xffrc3NTa2vr2tlZUUf/vCH1W63D8nv+4InTzVAGZZn4MyUY8QIXK4WKESmOkr5+rEyEBWf5+UrOxfvzzH9cSmCLf8d25e4pqNuzvsAjPV2K8Kvyc3mcSBE3N6nA/rKifCA88P+/n4CKAxCVj3MJZ1eTypr26MGeZnVlIvBx/fl+HfYsRwflY2jsneWKdhcmXLPGgacYvmOUiDDyld2zsFPDnTHsuTCn9HChPcccOeu8fdEeVDm/r8eFMeOK0oIQ2B2djYt5MV5FG+UNxyDhvFmmdzOnQf0eXi5DJzEcg0ry7D/zlcu23yWUKScnGeigMtQl6U8J8cPnI/JvzMzM5KUwjq+bQLXnTt3TtPT03r/+9+varWqmZkZdTod3Xnnndrc3CzkRjlgutYy9VQDFGkg4KMXxS2NXHw75zk5SgCWCcSrKWtOaB+HYcueN+y+jweoePvlkpDjQMndK6ngUfGpc1L5+hXxXVJxVVppENJxgAIIcc9Er9crrHvS6XRONDnWyZWffxxwcx3H3Krjk4vLx/fEdx6lCPz3MB7K8XPZu8uuiUAgx9M5YD7s+bFcZc/0eyLPHaV44jXHkQ+5a6IV7CAkl1wZwcD1Jt9oM/KftyHrt9Tr9eS1zMmkaGD5s3J87Xxf1uZ+jefQSflk3Xh/9JwcB6znnuXP8NmRZXwTf0sDUONtDm/EkKFTDC85X09NTWlnZ0fVarWwSnelUlGj0dDU1JTuuece7e7uph3kHZgOG/PXkk41QHFr3gX7cWL20aL36+O1/pzcYDnKCotlPkrQ5Y7HwR8FwrB7jxKcuec689O2LhTc8vfQjg9m96QwddKnxMXncW0UTD5QOeezXwApAJF+v1/ITvdQIHkf9/XAOoo8qdBXvM19PHkNQeEC4ihg7dcdR8gOO/7xXpuj4yiD3LvKhHw87seGjbuya44674Diau+LZYhTXJkSSp/H/j8JIsl8dnY28a2vByMNlGi73VatVtPs7KxarVY258qNnChj42//5AxLPw844R25Z/HfiXv93LBrcxSvz+Wd5O6NgJTfDkLcexJ1gMtm3hm9cb1eL62Tsr+/r6mpqfQ89gdaW1tTq9VK9+/u7qrRaOj222/XnXfeqStXriTAVJacey3o1AMUt/CjByV2pN9XRmWoeBhDD3vGUSDBB9pxhE5OKPt9OUATwUxuADjFfRxyFpu3caxn7joHMEfF170uLphZUMmtCbxneEh8nRNAiSfKEt45aWq1Wtre3k4enenp6cKy2NQB68/Xg3HwSL+WWWXDeLVM2V8v8HYUOIjn47l4T46XcwrlONbfUYon964ybwffPl7i+ZyigWII1WcDnQStra1pdnZWs7Ozmp6eTrsv4yH1cA4gpV6va25uLq2Ue5TMGwY6comtfh3AJBduGwZ+4nNyZRn2f5hn5KixmLvfj0tFb3TOWxLlJfJbKgIbQO/k5GQ6Pjk5mVa0bbVah8I+k5OTmpqa0vT0tG688cbkYfG+jG1zLUD0qQYo0sDd6WEeyIV5zKQvQ9bx2HHe73SUYBt2rkx4RiaP1zjIGfZO6j4MTPgzEThRAeQQe1kdHTg6+UCKVlHuHa6QpeKOnnFZe377OiNYfczeOS4gvK8JYeobl7kQ5poopPh9lLAuA9xldC3AydW2rXuH4nHni+OMrWFgJXfPUeMmlsGvKQMbZfWLQDL3vOgFRgGwEih5VSc5Rf7uu+/WxMSEZmZmNDc3p06nU0jCZGVTD8m2Wq3kScFYiEmyuYUbh338XpdXcUf1KN9zz/DjTsNATKRhx3L8dhygDPkYyQGVOAMuGoUYPf5elz31el3j4+NpZo+Xa2xsTNPT08ljRrLx7u6uLl++fFX18Pcfh049QHFAEi0NKW/VHNWQOXR9nMY/SvCXCdmrBUZlAm7YO4cBH6ejvCu58g6rWzzuIY0IUOL1nkwIMdU5vhvB7UmxCHTeyUZX9wf65E/+ZD384Q/XjTfeqMXFRdVqteRenZ2dTdM0JycnC7M63Drkm+NQTvAO+3a6FgAl95womIeB6zJAHp9/tQLx3tT3qPESn58r6zAgEwG+e0kwrnz7BryAJ7lNQ6vV0gc/+EFduXJFD37wg3X27FnNzs6qXq+npc8nJiYS3wK82+12ssInJibSflQ5sMDv4/z3peGhHE+VgZL47OPI8WHnnXIyMsf/8fqya51yQCXqBgd9Hq7H4KvX6ynHxTeq9HeygFy1erAVw8bGhqrVg0X5Wq1W2mk7ljGnp66WTjVAccvcv72xfNBDZVuVHzUgOFZ2L99HAZHc/+N2YnRXHue+KKDL/nv54+9cOY9TFn8HfeNonmuiJ8CTQj0khDUQyWfw+Hb1vGt7e1ubm5sFgXGS9DVf8zW65ZZbNDs7q8nJybQ5HILW3eZx+qq3l1SurI86FvvsvmqTo4BuPHaUp8Lvvdpzxy3vccZWbiy4rOE7yqkygOLKGo8CIHt6elqVSkV7e3uam5s7NG33elK/309jam1tLYUKqtXizs2MX+dTPCdY5D5u49h0UOE87+Mil6DLvfG77FgZODquHD/qWM5AzgEQb9/cNXEqMeS5JvE++CjKDPgJ75zvEQWxoF2lUilsvwBYnpubU61WS2vflBkCZXrnOHTqAYoPBOmwAIggpcwlzr3cE7+PQtX+jKM64LjAIveOo9D71boNh4GLqwVNZYMtlsf7K85OcYDJefptWNs6iNnc3NTm5maa3rizs1NY+bDMIrme9JjHPEaLi4uHhGyZ8HQ6qvzHqdf/z96bR8mWVXX+34jIMTIycnxjTZQMKoLgQoYSf4JSCwQWQovdyBJFG8WhUBHbAQdo1LZodNkoIjTazWAztNqCQiPLspjULhCqwWZeyFBgVb0pMyMzIyLHiPv7I9fnxPfuvJEvX/Hey5dVsdfKlZkRdzj3nH32/u7v3ufcgwZoLq7bRUZ7r//30tGi8y5U7ukcKAIiRdeLgMYdNp9tb29rYmJCW1tbqtfrmpiYyNUIHIRUKhXNzs5qfn5etVot1aOMjo4m9sR1252jv2SQH++zaL+LAEksOI3B0oUAFP/MpZ/9P58v6Od/9rLP5wsU+l2zqKRBKi62jXoGM+cghuOGh4c1OjqaCmT5bnx8PL0scHh4ONUg7bV9/X58Yj+5VwCUWHtSpLCO5vtF0fGc+N35kHO/7/dC9n7fve5zPiPd75zzRYN7sSd7yV7XLYoAYpuKxoDiLW9XEUtW9Ix+DPudsLRxdXVVzWZzz+e53FJkwKULN57n+2w/3+3nmK/FyOznvq4PRXpeBFyK/t7L0F9o++/pM+9nru31XT9gg607efKkFhYWLrhdF0vGxsZ0zTXX6MSJE5qenk6RdLVaVa1WS28I7ge8scUwnf6CRN9cLP5wfpFj7vf7nny313X3o1N7gecif9APSPfTvX42Oy4+iHrkAb3bVQePo6OjaRxIL7daLWVZbzv80dFRjY+Pp3HmzfPn6w/acSGBwqEGKL4U0x/cB8Cjb2l/KZrzyV6G8kKvGQdrv8fu57h+Ud1egCW2u99xRd/5Z/2+KxoPPitqfwQf/f72Jc9u8JaWlrS0tJSiADcy9ySivlgS0zcuRYYwfl/0d79j9pLz6cKFXu+eyIUC9L2eP47tfp+vSPYD0ovucU/6ar/3Iro9SAbl+PHjmp2d1eTkZAIorOrhByZFUg54+Ao0d4xxlQnHFgGU+Hs/f+/1vR9T9Pd+9K5IzqfHFwJE/LgYAMbP+L/IXsZ7Fj0bYwBDUir1XrPQ6XQ0PDycwIuPqb+KoYjhcnC6XznUAMXZE1/W5h2CxMF29Mj/Rc4iSj/lkO5ZhHZPZL+RYb/nj+2NQGavY+L1+0V+8TMHJ74yyCdIp9PJsSh+jViH4pGU78TJuRjFdrut1dXVdI9L6WgvRPoZQaSIYYrnXYq2XAniulEUYV6o7BeQXiiYKXJY+wH+F3KPfvPuIGViYkITExMp3TQxMZEiaoAJNVWScvVVUh6cF6U4+83TfmDBv7sQsOLn9rtmkey3//vp8fnA8/kAS7850c8P7dUOf3bss6+YxF6Pjo7mrr25uZnAC8CD77HhRe25UN091ADFmRNP80Q2JS4x9oGSdr+qvp+z2CtKutBB2It92K/0a0+ccOejFC/k3kX9sBcwQYooWf4uMh79Jk9kaJyyJLXDCgjeCcL/V5IUGeO9dOhrNZ5fq1PbrzE9H5C9p3PjQqWfg7uYrMc9lXsy168kGR0dVbVa1fj4eKo98UJvL/Ym+o5F3XstkUfONyb7mTvnAyL7mXvxXudr036OuRBmOl67iDnZ6/wISPoBnNgXEUSS9qEOZWJiIrczuNvk2F6ud6FyqAGK573iMst+Slb0P85vL4RedI393CPeR8qnoJzm36+xj8fsZyIXgay9rrtfIFJ0jQgiYnv5zd/x3T38HYtlHWD6Max02NjYSG/hzLJsz9qTy+mQ+slehrKfHu7V7ksFTi7kOnu1oYjZvKf3uRiyHxAjXRjjsd9z/N4Xm3W51MJSYYpiR0ZGEkChQNZrrNyJSdrFmEg9m92vFmsv21x0nb2CoPMBlKLP9wIBRdc7Hxu9l62/EHu+H7vsu/zCjsSN3iLLwo/XBDGeQ0NDaRUWabwi6ReUXMj8PtQAJcuytBRqr0ninduvInyvZZv7+dv/P5+R9pSUG+1+Cl3UpnhOESruNxH7AZa9Jl68b9Hf/a7j14pvJ46buMV7Ol0YwYnvHhu3i19fX9fS0lLhtvZXCjjpZ3j7GcWia5zvHvttSz+5mI5xP8b0Uss9AVn7CRz2c5/9BgdFx0fgdJA6DDiJzImndrC/RexJP/Dhn/djtc83b/qBkb3m1IV+t9f/+5lL0X5Gu90PxPv5vuT4fP7G9chXQxbtSMsxHFfkM6nx8xVY+5G9Atd+cqgBCpta1et1TU5OJtrRl7vFXTrjb6ci9wIm/v9eynq+wWLQ93vuXqDpfFS4/x+XnUVgU3TdIjCyl5PxyeCTwxF4v+eIKR2OjyyKn+ObvvGOHV4IuLKyopWVlX1F7AchFwpQ/Lyiz/o9ZwSQF9oXF7vvzqfD8dj90t2Xk4U4H6Dw8dhPZLwX0D/fMQchBISwJ6R1sLX9lhcjewGUvQCJ/+/XOt+x/WzsXsCkqJ3nk6JzzwdCilLZ+5EiXfPrFrUNO+tMSmSto+3t198wKbxIcL/9caFyKAEKncpa7eHh4ZzT73Q62tzcTNSWo/Ei6jFOogsFJvsZINodl4L5sf0mggODomvGv/06fk4RWt4v2PBji5CwK78zI14Y533gxcx+fNxpFlbEd1JlV9hms5neG8EWzRsbG2q1Wmo2m1pfX+/bZxGIXS7hXgsLC7uW5u1Xj/pJv+f8WmQvAHtPrnW55KCd+F5yT9oW59rZs2fv8bXuqXCvra2tNM+yLMstN2VfDICLB39Iv6LYvUAKv/uBjvMB/f2ClL3sb+yLvQKC2Gfx737fRcYjMu1FdZb9zt3rGLe3bodLpVKywZ46ZzM3fthF1nfrjuPDPeMGc/18YJGUsit5JveRL37xi7r//e9/0M0YyL1EvvrVr+rqq6++LPca6O5ALqYMdHcgh1X2o7uHkkGZnZ2VJH3lK1/R1NTUAbfmnsnKyoquueYaffWrX1W9Xj/o5twjOezPkGU7hbQnT568bPcc6O6VIYf9GQa6e8/ksI+7dPif4UJ091ACFNIFU1NTh3KAXOr1+uAZDlAut6Ed6O6VJYf5GQa6e8/lMI87cpifYb+6e2VtDjGQgQxkIAMZyEAGogFAGchABjKQgQxkIFegHEqAMjo6qpe+9KVp+93DKINnuG/KvaHPBs9w35R7Q58NnuFwyaFcxTOQgQxkIAMZyEDu3XIoGZSBDGQgAxnIQAZy75YBQBnIQAYykIEMZCBXnAwAykAGMpCBDGQgA7niZABQBjKQgQxkIAMZyBUnhxKgvPrVr9b97nc/jY2N6dGPfrT+6Z/+6aCblOSDH/ygnva0p+nkyZMqlUp6xzvekfs+yzK95CUv0YkTJzQ+Pq4bb7xRn//853PHLC4u6gd+4AdUr9c1PT2t5z3veWo2m5el/TfffLMe+chHanJyUkePHtUznvEMfe5zn8sds76+rptuuklzc3Oq1Wp65jOfqdOnT+eO+cpXvqKnPvWpqlarOnr0qH7hF34hvXvmviwD3b10MtDdSysD3b10MtDdPpIdMnnb296WjYyMZP/9v//37FOf+lT2Yz/2Y9n09HR2+vTpg25almVZ9u53vzv71V/91ewv//IvM0nZ29/+9tz3L3/5y7OpqansHe94R/bP//zP2fd8z/dk119/fba2tpaO+e7v/u7sYQ97WPahD30o+/u///vsAQ94QPbsZz/7srT/SU96Uvb6178+++QnP5l9/OMfz57ylKdk1157bdZsNtMxP/ETP5Fdc8012a233pp99KMfzR7zmMdk3/Zt35a+397ezh7ykIdkN954Y/axj30se/e7353Nz89nL37xiy/LM1ypMtDdSysD3b10MtDdSysD3S2WQwdQHvWoR2U33XRT+r/T6WQnT57Mbr755gNsVbHEidLtdrPjx49nv/M7v5M+azQa2ejoaPbWt741y7Is+/SnP51Jyj7ykY+kY/7mb/4mK5VK2Z133nnZ2o6cOXMmk5R94AMfSO0dHh7O/vzP/zwd85nPfCaTlN12221Zlu0Yi3K5nJ06dSod85rXvCar1+vZxsbG5X2AK0gGunt5ZaC7F08Gunt5ZaC7O3KoUjybm5u6/fbbdeONN6bPyuWybrzxRt12220H2LL9yZe+9CWdOnUq1/6pqSk9+tGPTu2/7bbbND09rW/91m9Nx9x4440ql8v68Ic/fNnbvLy8LKn3orDbb79dW1tbuWf4hm/4Bl177bW5Z3joQx+qY8eOpWOe9KQnaWVlRZ/61KcuY+uvHBno7kB3D6sMdHeguwclhwqgnDt3Tp1OJzcAknTs2DGdOnXqgFq1f6GNe7X/1KlTOnr0aO77oaEhzc7OXvZn7Ha7euELX6jHPvaxeshDHpLaNzIyounp6dyx8RmKnpHv7osy0N2B7h5WGejuQHcPSg7l24wHcnnkpptu0ic/+Un9wz/8w0E3ZSADuSAZ6O5ADqsMdLcnh4pBmZ+fV6VS2VW5fPr0aR0/fvyAWrV/oY17tf/48eM6c+ZM7vvt7W0tLi5e1md8wQteoHe961163/vep6uvvjp9fvz4cW1ubqrRaOSOj89Q9Ix8d1+Uge4OdPewykB3B7p7UHKoAMrIyIge8YhH6NZbb02fdbtd3XrrrbrhhhsOsGX7k+uvv17Hjx/PtX9lZUUf/vCHU/tvuOEGNRoN3X777emY9773vep2u3r0ox99yduYZZle8IIX6O1vf7ve+9736vrrr899/4hHPELDw8O5Z/jc5z6nr3zlK7ln+MQnPpGb8Lfccovq9boe/OAHX/JnuBJloLsD3T2sMtDdge4emBxwke4Fy9ve9rZsdHQ0e8Mb3pB9+tOfzp7//Odn09PTucrlg5TV1dXsYx/7WPaxj30sk5T93u/9Xvaxj30su+OOO7Is21nuNj09nf3VX/1V9v/+3//Lnv70pxcud/uWb/mW7MMf/nD2D//wD9kDH/jAy7bc7Sd/8iezqamp7P3vf3929913p592u52O+Ymf+Ins2muvzd773vdmH/3oR7Mbbrghu+GGG9L3LHd74hOfmH384x/P3vOe92RHjhw51MvdLoYMdPfSykB3L50MdPfSykB3i+XQAZQsy7JXvepV2bXXXpuNjIxkj3rUo7IPfehDB92kJO973/sySbt+nvvc52ZZtrPk7dd//dezY8eOZaOjo9kTnvCE7HOf+1zuGgsLC9mzn/3srFarZfV6PfuRH/mRbHV19bK0v6jtkrLXv/716Zi1tbXsp37qp7KZmZmsWq1m/+bf/Jvs7rvvzl3ny1/+cvbkJz85Gx8fz+bn57Of//mfz7a2ti7LM1zJMtDdSycD3b20MtDdSycD3S2WUpZl2aXlaAYykIEMZCADGchALkwOVQ3KQAYykIEMZCADuW/IAKAMZCADGchABjKQK04GAGUgAxnIQAYykIFccTIAKAMZyEAGMpCBDOSKkwFAGchABjKQgQxkIFecDADKQAYykIEMZCADueJkAFAGMpCBDGQgAxnIFScDgDKQgQxkIAMZyECuOBkAlIEMZCADGchABnLFyQCgDGQgAxnIQAYykCtOBgBlIAMZyEAGMpCBXHEyACgDGchABjKQgQzkipMBQDlk8v73v1+lUknvf//7L+k1f/iHf1j3u9/9Lto9BjKQge4O5LDKQHcPRgYA5Tzyhje8QaVSSWNjY7rzzjt3ff/4xz9eD3nIQy7a/f7jf/yPKpVKhT+vfe1rL9p9BnLvl4HuDuSwykB3ByJJQwfdgMMiGxsbevnLX65XvepVl+V+r3nNa1Sr1XKfPfrRj9b9739/ra2taWRk5JLe/4//+I/V7XYv6T0GcnlkoLsDOawy0N37tgwAyj7l4Q9/uP74j/9YL37xi3Xy5MlLfr/v+77v0/z8fOF3Y2Njl/z+w8PDl/weA7k8MtDdgRxWGejufVsGKZ59yq/8yq+o0+no5S9/+XmP3d7e1m/+5m/q/ve/v0ZHR3W/+91Pv/Irv6KNjY2vuR1FeUvozk9/+tP6zu/8TlWrVV111VV6xStesev8f/3Xf9UznvEMTUxM6OjRo/q5n/u5wnbFXOiXv/xllUol/e7v/q5e97rXpWd75CMfqY985CO7zv/zP/9zPfjBD9bY2Jge8pCH6O1vf3thfvVtb3ubHvGIR2hyclL1el0PfehD9fu///v3uH8GslsGujvQ3cMqA929b+vugEHZp1x//fX6oR/6If3xH/+xfvmXf3lPNP+jP/qjeuMb36jv+77v08///M/rwx/+sG6++WZ95jOf0dvf/vZ93W9xcTH3f6VS0czMTN/jl5aW9N3f/d363u/9Xv27f/fv9Bd/8Rf6pV/6JT30oQ/Vk5/8ZEnS2tqanvCEJ+grX/mKfuZnfkYnT57Un/7pn+q9733vvtokSW95y1u0urqqH//xH1epVNIrXvEKfe/3fq+++MUvJvT/v//3/9aznvUsPfShD9XNN9+spaUlPe95z9NVV12Vu9Ytt9yiZz/72XrCE56g//yf/7Mk6TOf+Yz+8R//UT/7sz+77zYNZG8Z6O6ODHT38MlAd3fkPqu72UD2lNe//vWZpOwjH/lI9oUvfCEbGhrKfuZnfiZ9/7jHPS77pm/6pvT/xz/+8UxS9qM/+qO56/yH//AfMknZe9/73j3v99KXvjSTtOvnuuuuy7Isy973vvdlkrL3ve99uTZIyt70pjelzzY2NrLjx49nz3zmM9Nnr3zlKzNJ2Z/92Z+lz1qtVvaABzxg1zWf+9znpntmWZZ96UtfyiRlc3Nz2eLiYvr8r/7qrzJJ2Tvf+c702UMf+tDs6quvzlZXV9Nn73//+3PPkWVZ9rM/+7NZvV7Ptre39+yTgdwzGejujgx09/DJQHd35L6uu4MUzwXI133d1+kHf/AH9brXvU5333134THvfve7JUkvetGLcp///M//vKQdlLsf+V//63/plltuST9vfvOb9zy+VqvpOc95Tvp/ZGREj3rUo/TFL34x17YTJ07o+77v+9Jn1WpVz3/+8/fVJkl61rOelYso/r//7/+TpHSfu+66S5/4xCf0Qz/0Q7lis8c97nF66EMfmrvW9PS0Wq2Wbrnlln3ffyD3TAa6O9DdwyoD3b3v6u4AoFyg/Nqv/Zq2t7f75kTvuOMOlctlPeABD8h9fvz4cU1PT+uOO+7Y132+4zu+QzfeeGP6eexjH7vn8VdffbVKpVLus5mZGS0tLeXa9oAHPGDXcV//9V+/rzZJ0rXXXrvrHpLSfXi++PxFn/3UT/2UHvSgB+nJT36yrr76av37f//v9Z73vGffbRnIhclAdwe6e1hloLv3Td0dAJQLlK/7uq/Tc57znD3RvKRdynippVKpFH6eZdkVe5+jR4/q4x//uP76r/9a3/M936P3ve99evKTn6znPve5X2szB1IgA90d6O5hlYHu3jd1dwBQ7oGA5ikwcrnuuuvU7Xb1+c9/Pvf56dOn1Wg0dN11112uZu6S6667Tl/4whd2KfXnPve5i3oPSfqXf/mXXd8VfTYyMqKnPe1p+qM/+iN94Qtf0I//+I/rTW96U+GxA/naZaC7e99DGujulSoD3d37HtK9T3cHAOUeyP3vf3895znP0X/9r/9Vp06dyn33lKc8RZL0yle+Mvf57/3e70mSnvrUp16WNhbJU57yFN111136i7/4i/RZu93W6173uot2j5MnT+ohD3mI3vSmN6nZbKbPP/CBD+gTn/hE7tiFhYXc/+VyWd/8zd8sSRdlaeBAdstAd/vLQHevbBnobn+5t+ruYJnxPZRf/dVf1Z/+6Z/qc5/7nL7pm74pff6whz1Mz33uc/W6171OjUZDj3vc4/RP//RPeuMb36hnPOMZ+s7v/M4Da/OP/diP6Q//8A/1Qz/0Q7r99tt14sQJ/emf/qmq1epFvc9v//Zv6+lPf7oe+9jH6kd+5Ee0tLSkP/zDP9RDHvKQ3OT50R/9US0uLuq7vuu7dPXVV+uOO+7Qq171Kj384Q/XN37jN17UNg2kJwPd7S8D3b2yZaC7/eXeqLsDBuUeygMe8IBc9bbLn/zJn+hlL3uZPvKRj+iFL3yh3vve9+rFL36x3va2t13mVualWq3q1ltv1ROf+ES96lWv0m/91m/p27/92ws3Fvpa5GlPe5re+ta3anNzU7/8y7+sv/zLv9Qb3vAGff3Xf31uN8bnPOc5Ghsb0x/90R/pp37qp/TGN75Rz3rWs/Q3f/M3KpcHqnmpZKC7/WWgu1e2DHS3v9wbdbeUXexqnoEMpI88/OEP15EjRw7F8raBDMRloLsDOaxymHX3yoJLA7lXyNbWlra3t3Ofvf/979c///M/6/GPf/zBNGogA9mHDHR3IIdV7o26O2BQBnLR5ctf/rJuvPFGPec5z9HJkyf12c9+Vq997Ws1NTWlT37yk5qbmzvoJg5kIIUy0N2BHFa5N+ruoEh2IBddZmZm9IhHPEJ/8id/orNnz2piYkJPfepT9fKXv/xQTpKB3HdkoLsDOaxyb9TdA2VQXv3qV+t3fud3dOrUKT3sYQ/Tq171Kj3qUY86qOYMZCD7loHuDuSwykB3B3JY5MBqUP7n//yfetGLXqSXvvSl+r//9//qYQ97mJ70pCfpzJkzB9WkgQxkXzLQ3YEcVhno7kAOkxwYg/LoRz9aj3zkI/WHf/iHkqRut6trrrlGP/3TP61f/uVf3vPcbreru+66S5OTk5d9a+OB3HskyzKtrq7q5MmTF7S8bqC7AzloGejuQA6rXIjuHkgNyubmpm6//Xa9+MUvTp+Vy2XdeOONuu2223Ydv7Gxkdvh7s4779SDH/zgy9LWgdz75atf/aquvvrqfR070N2BXEky0N2BHFbZj+4eCEA5d+6cOp2Ojh07lvv82LFj+uxnP7vr+Jtvvlkve9nLdn1eKpVUKpX29cIkjrkSkL+3ZXh4WJVKRbVaTSdPntTk5KRGR0c1MjKiSqWi0dFRjY6Oanh4WMPDwxodHdXk5KTGxsbSuVtbW1pbW5MkTUxMqFwuq9vtKssyDQ8PS9oxNltbW+mafN/tdrW5ualWq6XV1dV03Pb2tra2trS+vq6NjQ1tbm6q0+koyzKtr69rbW1Ny8vLWllZ0cbGRm4MLncf39P7dbtdSdLk5OS+z7lYuntfklqtpnq9rtnZWR0/flyzs7Oan5/XyZMnNTc3p83NTW1ububm8/DwsLrdbtLXUqmkbrerbrebllKWy2W1Wi1tb2+r0+no3LlzOnv2rM6ePat2u63Nzc00N1ZXV7W6uqr19fVdSzEPo9BPA929uDI0NKSJiQmNj4+rWq1qYmJCo6OjGhsb0/j4uCYnJzU7O6sTJ05obm5OWZapXC5rY2Mj6dXIyIiGh4e1vr6ucrmstbU1lctlZVmWbH6n09Ha2lrSzXPnzun06dNaW1vT9vZ20t2trS11Oh2tr69ra2tLzWZTnU7ngHvpa5ML0d1DsYrnxS9+sV70ohel/1dWVnTNNdckx3Q+B4Xh48fPwUlnWXbR30BZJCipt2F0dFSzs7OqVqsql8saGhrSyMiIhoaGEjDh/0qlonK5rHK5nABLpVLR9va2KpWKxsbGVC6Xtb29nT7jZ3NzM12j0+nkDP7Q0JCGhoZS+7xPK5WKhoaG0iQpl8saGRlRvV6XJDUajSvS6O9HL3w8LoX00937kqytraler2t7e1vtdlvVajXpS6lU0vj4uLrdrkqlkjqdjra3tzUyMqJyuZx7iyt6OTS0Y7Y6nY6Gh4c1NDSUDPvGxkaaz4gHBPe2XRUGuvu1CTo2MjKimZkZ1et11et1jY+Pp+BwZGQk/T02Nqbp6WnNzc2l3VmHhoZUrVa1tbWlUqmksbGxZGNLpZI2NzeVZZm2trbU7XY1MzOjdrudAMjKykoC5R4UbmxsJBBTqVTUbreviAD7a5ULsbsHAlDm5+dVqVR0+vTp3OenT5/W8ePHdx2PckTZ6yExZOVyuRCY8DeRWZZl6nQ66ed8179YUi6XNTU1lYAFzwqQcEBCW7e2thIKp62c0+l0cgxIp9NJAANjDiiDQcBxwJA4mOPeACJJaSKWSqV0bY9w6buDlkvBml0s3b0viYPi9fV1NZtNNRqNZMhrtZq2t7fV7XY1NDSkbrer1dVVSUpsn/89NDSk8fHxZMw3Nze1traW/oYFBIRzbenK0MuDkoHu5oVAkEBvYmJC1Wo12TOpF8ASOMJ8NJtNVSqVFNiOjIyoVCppe3tby8vLknp2Z3t7O7GA09PTGhsbS/qJdLtdjY2NaWRkRCMjI8kWE2i2222trq5qZGREy8vLCdyg1/dWOZBVPCMjI3rEIx6hW2+9NX3W7XZ166236oYbbviark10PzY2lkPA/DgjwQ/HQuuNj48ncLOXRGam6Afn7kwGoGNoaEgnTpzQ8ePHNTExkSYI6R0HJtzPAReTY3h4ODexYFv8OpJyYILrMAkiKCtq+/DwcKI6x8bGNDExke4zPj6uiYkJ1Wq1XD+SnnL253JHARfTKV1K3b03SqlU0sTERNK1TqejjY0NtVotLS4uqtFoqN1uJx1EpzG+sHacQ0QJte5GfGVlRc1mMwfQASeAlcMo9XpdMzMzX/O8GehuT7C/DlIIat1WcazrEMyIp9+xk7Alk5OTiQUksNve3s4FxaRyRkZGNDU1lYJH/5F6wfbo6Kiq1aqmpqY0OTmpWq2WbP29gVkpkgNL8bzoRS/Sc5/7XH3rt36rHvWoR+mVr3ylWq2WfuRHfuQeXY9BxBmiMO7c4yDyv9dsSEqGdGtrS5ubm+m7CDwiM+MKxTEufk65XNb09LQe+MAHanx8PFHdKLuzFgALJg0gwZ+VycPxPJNPMn4zGZlsk5OTKpfLKT/P5IFu39ra0sjISMqLSjtgp9vtqt1uJ+aESeV9WfQ5x3P/y5Veu1hysXX33iqlUikBbmjwarWa6qeGhoaSLktKhp+5hm67c+D/9fX1BJrR5SNHjmh9fT3pJPqLjsXUz2GQUqmk7/iO79D8/Lze/OY3p/l3T+W+rruwvgSpBKzYzWhv3cZHwMD/MMoEilmWpXQQgBnbXC6Xtbq6muqrSqWStra2cmw/zAxpTz7rdDoJWGE/nW057LUpRXJgAOVZz3qWzp49q5e85CU6deqUHv7wh+s973nPrgKu/QisiUfqjoAjOInUP8425q2hlInQXGJNi3/mACOCGL/n7OxsmgwjIyOamJhIz+Agy69XLpcTwwMypw8w7PE56A/uTSTJRBsbG0uTYHt7O0Wl0Ig+Wf25NjY2VKlUVK1Wk0PAkcRIIAIU/8xTa5cqyr2Y6Z6Lqbv3VkGfa7WaqtVqKuyGtXQQTd0IFDn6SnrBU7CkeCh+BVBTZFur1dRut1M0S4BBWpRi78MkU1NTF43Ov6/qLrbL7S3AmZ+iMoDIWEvKBVljY2NaX19PAIS0JdcYGhpKNX74EwAFKX0ATrw3bWZuwJajvz5nJKW00WED4XvJgRbJvuAFL9ALXvCCr+kaDLw7dgcoEZhE6swNZVGxrOcf3bEjEXQ4qIipFNoFKJienk7AyotiY2rF2SDOB5Cg6C4wHX7PCFo435+H9vI9xYhFKSYm6djYWK7glqjV+7OIRYnApR9QKUqbucRrnI+NuVhA5WLo7r1VxsbGVK1WEzhxti9GpgCNGI0CetGDoaGhBGQ2NzeTM6AgnGtirNFdD1L4u9lsHop0z/Hjx/WIRzxCV199tT772c9etDbfF3S3iOnGpqGLrpMAFJx/tDduLyjGlpQWKaCHw8PDyrIs6bTrHfqJvQJ0djodra6u7mLHoh+SenUzfIav8Oc+zOnMKIdiFU8/AZxEgILTd2cLS+BLtnywiax8cDmXlQRR2VxizYYrDtShMzzQgV6k5ZFlBFl+b29fBEgOHjxS9HoTSYXX4jinMAE3GHyEvh0fH8+laXxlUKTX/ceP5/5+HQcaRYAjAq4IdPw+RWDk3hRlXGlCPRe1Sl7/xVyFsmZlWbfbTYWEa2tr6nQ6WllZyaVwJCVK2wEJoLjRaKQVD1JvjrJkmfm9vb2dot4rXSqViu6880599atfHejsPqSIwXY7io+IgJnv40IBrinl2ZSxsbFkY2Cy/d61Wk1ZlqndbqcUPMfAAFLkTW0K4kEgQnrHg9wi20YbLkdas1Kp6KqrrtLp06dz++VcTDnUAMULYTF+fOYMweTkpB70oAepVCqp2Wyq2WxqZWUl5byhmTFcm5ubknZTfXulbJgIceUNyhQnAhFgNOBFLIwrPuLovIhFgRWSekg7InJ36pzjNQAc49Xq/JRKpVS05askuHZkUuKPg0GfRDFF5OKAJQIUfx6q7QFKh8ER3VsEIM48dGDu4Nwpd4z96Oho0q1Wq5XAiOfbS6VSWhKKkSfyZI4UrcKA7WMvINK6V7KcOnVKf/3Xf31R0pL3VnGmmv/9syL22W0ybDT2MdYiFi1UgBmUduwVwS92B7/C95JyrDegGt0FpANcuA9t8PoSBydFdhDQ7rVbRUHfxZDx8XE9/elP11/+5V/qzjvvvGjXdTnUAMWZB6hkzyuiXCdPnkyUsaSUYgH1oZQU2DUajaRkRSDB6T9nVLi3I3ivJYkThRVE0Yg7HRmRNP874PCI0etQHHjwPdFkBBt+fcCJp4aKGA2We3reM7IoXvleBFJoC8d6AZi3L96/iGXxazNBqauBWh3IpREMNCA77uPjc4dxBpwPDw+n8fE8fq1WkyS1221lWX4pZxz3LMs0MzOT6HJJKbp1fQKkUGN1GGSgtz2JDEmRPXZAEWv4HJz4sa5P8VzE/Qdpxo2NjaSzzvTBinhtoNeTOCACpDhQAoR4XYmDerd9MQUPgwLrEu3lxUoB4cMu5Tw61AAF48YSV19WjNMeGRlRrVZTp9NJBs7PZ0ChiCcmJjQ5OamlpaXcsjBJu5gRR7m+rPd86J3vfHfYyLLw2ycMCunFsT45XflB49FpMyGdOcF4O+jhb98oC+F4nExRigdn43UlnsZxgMKGW0WApui+9EURQClKJ9En94V9Aw5CfBm6r4aIjiCCfTe0AFpYRXSc8wAb6Iqnh1hh5sc74+grLgAmFNAetoLZ+6K4TYupb7fDSKw7iumeuAABHYzX9ZU1SJZlaQM1QLOXC4yOjqbvHXT7PbC/o6OjqYjb2WoEls99kJccROBaBFAiQ40Njgsa7ongfwcApY9Qx8HWxOS8nXkg1z0yMpKcNEsecf4oPcWlk5OTmpub0/r6upaXl3PGz5XWfzDGHBf3MeF/DHg06p7ecWDjxaKkL1yJ+RwjHpG1symeDorO3Z/Frx0pRE/50I6iFJCDkCIWxYGE1wZsbm4mYOjgQtIu9oU28Zvn8sjBgVm5XB44pYsoPneKAEnM/cfVday8gQFltYO0M9abm5upVgTg4rrBcdzX54rT/M4E+nzDcQxA68FIkc3xz53xiKnzyBq4PXPWg2v5uV6o7Sy0B5eeAmIZvKdh2HyNz0hnbmxspM3cVlZWciw51x4bG1OW7RTSOsB2W17EbEvKPaOz7R6E8b3XXjkT7cGiL8XfL1i57rrr9M3f/M3p+fGPl0IONUCBOeHHN1hz5YOGk/KFrlKP/RgdHdWJEyd09uzZRKvNzMzoyJEj6X0JPhCOZH2lTFx1EyeIg5HIqhQBFJ98KHMRJel7llAI68rJNYs2ZOPzmEri2Tjen5FI1oGR96nfP6Z3+IxjvWalUqmkeiCcV6VSSas7iJwdvNAfODNvk0cg/GBEBnLPJdLlntsvotWL5oLn04k+0XV2z6RmROrNVe7PGKIv7XZba2truyJJ7sn56C01A+7cBnJphbF3MLtX+ryIBXFQ4448MgWScjoYmTW+93tFJtDrGTm3Vqtpeno6B8zL5XJ6Jxms/fr6emoLAIQgycGKpBScoaOxliWyKNi5IoDnel/ULx7Iwlz6zuPnq9sbGRnRiRMntL29rc9+9rOXrEBWOuQAxcEJu5p6MRJCng+D6CkRN07j4+O67rrrtLy8nDZ7yrJM09PTaRMoXo7HAAI0pF5E6SDIo8yY/4wgxQ041yxKc3BtJqe3xY/3ja9if8Ro04FQTGshDnT8mf16fMZ9aFMEJ47qGR8A3MTEhCSlqENSDqDgmGq1mmq1msbGxrS5uakvfOELajabKSLwzb2iYfNN5wayf3FjHwvAnRYvAtoe+Q4PD2tmZiYBbtgMT82OjIykJcHj4+PJoDo1zy6zPr8dlMfI2tvPsZIGNUqXULzfPRVCer7I7kSWxD+LzLA7Wrdr/HbmBHHA4eAExqNerydfQUrRwYzUs42kjrnm0tJSAtcAFsoJJCWWGJvIcUhc6uz958DD2R8Pxjx49uu4rXYG0kGK73/lqzBdarWaGo2GNjc39YEPfOCC38N2IfPsUAMUf+NkLI5lMvhyYyIzp4TpXKL30dFRHT16VBsbG6kOharoWq2mmZkZdbvd9G4EUK+0m7IsijKj0XYaPEYJfl0pv5wWcSXlHGcQuBb3dlBWlOLx5/A0CRMYB+FptGgcmIiRyYjpFncc9Xo9bczlIIbJW61Wc4bCa41YBbK5uam777475X853wvWooEbgJTzS4xii8C1665/H/+m70nFepEg+wERTXL9tbU1bWxsJEpZUmLBfJwj0HGAyrxwBiamhb7WbcLGawAAyB1JREFUnPxA8oLN8KW94+PjKbDgFRkeRMVXHsTrYVs8Zcx52BvE7acDHnQhMtvs3zM3N5f2NyG9SAAV9a/dbmtycjIBra2tLbXb7RTgwma4/lPvuL6+ntgVt1Gw05zju3ejs26PAS2wkVGHuS/nxpU9MXCMb1P2jUqHhoZ09uxZzc/P62EPe5g++MEPXiLt2ZFDDVBQdAyX7w4Yc+OgzPX1da2vr+dWGLgTRfFGRkZ0/PhxNZvNZCA5bnR0VDMzM5qenk5K6imgGDH026QqGn3/DHGGxCengyAmTVEdiIMPlFRSYd7RDYUzQJF2pS9pA4ifdjrwiWwW5xFFsRdMp9NJb/F0lE/6bWpqKoEQSTnnODS0s1vj1NSUVldXU16UnW6ZYJ6iYxwHAKVYoo5GQI3eFQHsWKflxyBZluWYSPYv4X90AjBDxO3snAPkTqeTqGZPRbpOOpvm6SWeF+dwsVY53FelVCqll+8RRM7Ozuro0aOanJxMc93HDpvgq76wxxsbG6l2zIGJs+HSDmhgXxFvi9tAt62+wIJXMExOTqa0jrPEAAlpR794cd/k5GQucGu1WjnmWOrZwbgfDykVwLgXnPJ3qbTzChR2RyZFFIPi6DOivXb9dvvsgMa3ZgA0+Q/pp2/5lm/RyZMn1Wg09LjHPU7vete7LpkdPdQAxd/rQaFdtVrNpScitUwqqN1ua3NzMy11hAEAjXe7O6sGJicnNTExoVarlXtPDc6eIqqZmRltbGyo2Wym3KNHDg6anF6M6L4ob+ifu7ixdSDjk8mV16NGrwGJbIr/jhPA00uxbTFlhrhz8D1fyuVy2pWRCcG4YVQmJyfTi9LW1tZ21Z6wGoN7+kqP4eHhtK9NETs1cEJ5iSxTBB5FDEo8HkPrAD0WOAIaiT5jDVaptFMnRCQKY+aOhm3DizZmi2ApAlOpB3D92XGURVT4QM4vgIzZ2VkdP35cc3NziRmFnYBBKZVKWl1d1ZkzZ7SyspLGBfvK+FDrISk5c2y32yTsw8bGRgoW3R56QIff8BfG8joGZy6kfPEsTrpSqWhqaiqxt/iP7e1tra2taWlpKTG/BM+uTzC/pBhjip500OjoaFqSPzQ0pGazmUA4ttP9QgxamYs+/wjc+tlo/IKzk55WL5fL+sQnPqGPf/zjOZvtjP/55D6T4kE5JiYmND09nWoXoPsiJSgppQtKpZ3NoDY2NpLSMihuCFnKWK/XU5QG2nSnByMwOTmZW2YG7ezUstRLyUh5xNsv/eLiLIsjZ/72ttHWohSO38+vEcEHnzkY4lhnc5yJ4lzSZhgCHAF9zXXiKiaYE54pTgR/AzPPvL6+vovm9xSB9+PA+exIEZsXAYpHYM6IxGOdxfSVMlD5WZblwAsvCkQ/cGTs9LyyspJb6YC+xb1W4uohnssNv0eOTne7/ns/+D4SA105v+BQjxw5omPHjqXXEDhLBsj0FMWxY8c0MzOj1dXVxFz7NhFuS2ATAAeVSiUxJtjx0dFR1Wq1BFT8/pzrAMEDSGqZfF8qSamOBF2hjawsq1QqWltb09bWlhqNRgpmWX7c7XbTC1mZO+zxQ1E388Jf/udAid2ZW62WNjc3E7MPEItgm5QVi0Moxu12uymL4HUzMaAAkBEAArjwmzBFW1tbieG50FqU/cihByijo6OanZ3NVT57sR5GB4eGk2InwLW1taTk7KXiaNFZlaGhneXJROxFjlzqpZ68MloqXs5bhIBdnIbmGKe6kaL6lL2+j8wSvyODEp/PHZLTlVzTgYzvlBvzy1L+3UXxHjE369XltIHJTFS1sbGRq7VxYObP6nUz90WJ7EgRSxLHW+rVVHmakh8MvRdAYuR5nYRHcrVaLedouAfFrpOTk2q1Wsnwt9vtdA30AeBAYbXTzA5KoNYpZkQ/3ajTL26wHZzwU8QQ3tcFsDg5OanJyUlJSmOCDYBJgAHwYKVUKmlmZkbb29taXV1NoNRX02BXmN849KmpKUk7m/mxuAFbPjU1pWazqXa7ndsjCzu1ubmptbW1XJqf60q9V6lQL8XLXJ1F9uL+crms2dlZzc7OamlpScvLy7sCvJiuRweZJ16vIvWC7XK5nN7dtrq6mth9ygtoByBnYmIi9ZukBBilnZ3VYR75kXqg3lPiXA/9r1QqKW23urqqcrmsVquVgkn3BxdDDjVAgZpjky8MlNdQkDeDPnMn5S8k63a7arVaSQk5hkkk9Qppx8fHE9Pi1CRRpNQDEhMTE4l5gX1xZ+nC/bimG0kcAcrrQILvyWsCihyJR7bEJ0oESUVGOLbL2+fOAGBCkRltjGNCG3wC85nnRZ1udwPlBbSVSiWBS9C+F+46W4TgsO4r0g+ExILtIjAXv48AxRkw3+p+amoqp7MOABz0YOgJAoaHh9Vut9O57pwA7L6cnv9jXYqziLQfXeTasX8wwk5tR5AyqFHpCQ6MLR5gnNfX13NsGfoR0xDj4+Mpmif940Bjc3MzgV5pxwZzP8DP8vJyqkGbmppKwGNzc1MzMzNJn9hXh4AUNoSAE3aB79CvarWq6elpLS0taW5uTtIOkIatYR7AANEeqQdy6AdSziyNR9+3trbSCsS4GskDb+pkuE6lsvM2eYA8rCT+jusA2PCFrVZrVxGs23e3s85WU38JqNvY2NCZM2d01113aXl5OfW7p9i+FjnUAAWwMDQ0lAqKPCXiDp9O9yVcQ0NDaYkqg4ni+TU88uc4No3iWhhCIjpnJogk2WXwfHsveOTaL9XjUSR9wTWdbXC2gmP9c6e0uS7HuPRjjHwrcSaQU6P+TEwCHIH3mQMSru8O0ycMxgsj5c9MPYsX1iFsuMQ9L+UGQwcp3ocOLjw1U8ScOOhwRx6BjadSPHqE9q5Wq5qamkrbf3NvX6rZ7Xa1srKSzpuenk7Of2trS0tLS1pfX0/3cfCTZTsFtqyEkJQz7OiVA2TvCwcuDuDRL67BnIlAJTIr91VGBRbTXwpJaoBxAaiMjY1pdnZWR44cSTabQLBer+f2NpqdnU1pE6m3BJx0CsBmZGREKysrKXCEqSPVjq50Oh1NTExoeXlZktLnOGhsNjbB6zC4/7lz5xI4JuXvoJrjsyzLLarwVDYvB4S1RxYXF9VsNtVqtZJtQx9ZSIAfIr3EMZOTkyqVSpqfn0/3dn2P9ZkTExOpP1utVqoHi2UF7kMkpVS9r8QCjFx11VX6hm/4BjUaDS0tLencuXM6c+aMzp07l8bwnsqhBigADI/KPOp2kOERvFP/0GoYLfJ2boQ93eCV5GxzzPdQhCDzmBckN+87ZCIOJKT8KgWew1NFfl0UqsgAR6cT8+mcSx8UsSzusPiuVCol2pDCLqrqY96YyRUdXjTwfMe9nW7vdDpp4mdZpsnJyeQAcTI4MAwFRWWkgFwYo8MoMe0SU29+nLNc/ndM0cS54jRzEZjh+ryqAQMIOMFZoRPQ++i1U/1xKwDmVGQJO52OxsfHcywhTgKDDxCS8i8u9IiWOepAzkGJr27zOeNApYhhua8BFYIuryEilTM+Pp6cGT+kz1nd40vEqR9kHOfm5tRoNNJ8B/iwCdrIyIi++MUvqtFoJKaaFTiAGQBQu91OuoOz583XsKisAPLl6p4KkpScP3oyPj6ebBM6RCE/gLkIGBPMUSdz6tSp9EZgrkv/wpRUq9UUYFNrR9/Mzs6mGhM2iCuVSmks0OP19XVNTExofn4+MdwRjPj+LIyh22+YMGeZSKOtr69rZGREc3NzCRidOnUqvUsLoQ/2pWMXQU8PTDA2nrfzOhOKh9z4SvlCUJC305FS7303HOcvGfPBhBlwupmJx4R1QXGk3lp6xI10ZIIQN9rOLDDgvreDMxUOMpym5jkiAEEcKBU5DRQRMOYpFepDmKgOfCJQYixi6otoGeMApen7J2BQGG9fEue7APMZK0Au5Q6IF1tgIhhv0h1IBCr+eWRSHMT4ePa7VgQ/sB6shsAZVKtV1Wq1XXUqtJNcNuAWZtELKlndw5Jz7kf7iHi9yFXq1TONjIyknaMBOxhbp9XRe4y+s3kRpEg9nXVQgh0oSgXd24WIGubE3yw/NjammZmZtG8UzpB+39ra0vT0dCpmJe3ChptsA3Hs2LEEVnG0gOAvfvGLOnfunMrlnX1CVldXtb6+rqmpKR07diwBFVZqIoAVWLuNjY20WIIxBDxQFwLo4LkJbHgeQBXb27NRW7fbTYsvSH1xHiUJy8vLiS10QABwk5QAOVsyMOcmJyfVbDa1tLSkyclJzc/PJ9BEECz1UvLb29taWlrS+Pi45ubm0v1ZMedpUuY2fQibIynXtnK5nMBTqdRbaUn6i604fJfdiYkJLS0t7UvPDjVAifUY/O/Rj0fhHqlL+foUlMIdr+eoub4zFh51xZSJI1EMsLfHqWoMrqdhPLorciJSz2g6Qo/gJkbB/SK/CE6cbSpiejgmAjD6Iiq9V4fHIuTocB1AUfzKddlfgba444QmdschKUVrMSqObb8SBf0CWLECjZobxsMZqiKQWwRe4pj3Y1X8O4ohyXP7Kh2KoT2V42ykp2B4Fv7GuG1vb2t5eVmLi4u5l7DV6/W0RQDX8+WqnsLyVT+MPSs3FhcXc33jK3XQC4CwU/0xhdrpdHKF+UU/92ZGxRkTZ1HGx8c1OzubnDgsBUWdrOZqt9uamZnR5ORkqqGIe4t48AMbsLKyojvuuEPLy8u5MZd6jCErggA1LFff3NxMLA4AmKBzdXVVq6ur6na7qcA0LriIc8rLAra2ttIS48XFxWT33UdIPWDXarW0uLioRqOR+pNlykXsN3bUGXb61IE2us99SHe3Wq1UgHzmzBk97GEPS2x+q9XKMUMAIfSXuU0qTVKqqUTXt7e3NTw8nAsqnGFjXrFL730GoDCAXojnjtvBSPwfp8i7EaRe+gflRBzceMGtR6Zx1QiGj10wPXKVelu5cx6GkfvFNBXX5dhYCwCDxLmx3dGBIZG18POg86JgPHyyMrGY/LHNnv5xo0LkwPco/crKSpp0fmwEbzg/b7eDnHK5nHLGHAOav9IExsFXK0Bf09+eXpN6Y+ErFPyNvc74RbDLGMUCWR9XSakQGebDN9PqdDpqtVrJ6ABGaT8GM75vh+tGPSEt44XQ/HaKfHR0NBXT0nfUQXmKEN2i3SsrK2q32yly9mDCASxtiwWHXkTrzArMadw/4t4GVOhHT+3we2pqKleXxvxFL2G5AAYAbsaMVxvAzExPT+eYCuo0ALZuG6h7oiiW7dgRnGipVFK9Xtfa2poWFxdTkDg8PJz0mA1AeRYPKpeXl9Mz+ysW0HuAAWyB6w6pmYWFhTRfYBZXVlaSzfeaHKn3ag5nrTudTgKDgDVAfbVa1fr6euqH9fX15NM6nY6+9KUv6UEPepCuuuqqxFphEx14+35S/l4ibMTKyooajUYCP7BhnjLzOT82NpYCzP3IoQYoMZ8ckbQ7ZMSZBl9e5XloKb8LqhtzBjE6ZhTYDSPXhSZzVoZropwxAvbUTHyGCIIQojuO8eNpk/dPZGu4hvcH7cXQeoTqoAdwBKqm7Zwf0018FoEbk3x7ezt95xPTU2/xmWLkz/1Jt42Pj+fYoCsNoAwN7WxMNTMzkxiSer2uqampZPTYG4Rno/9xBl5EWLQk0pcQ8oOgTw78u91uiowZe873cfb6qFarlWqsGLd6vZ7o+Xq9nmoAarVa+pxUK2CM4ncAixdKAwQAHhzv4MJ1HD0kOgfIrK2tJcMaa08crDhzEkEL57GaMIIUr127WHKQoCeyJ/T98PBw2l4B/USXnKmWlKJtQEOlUsmBEVIMGxsbWllZSfpG4TTjy7hOTU0lRm5tbU133nmnTp06lZbfwsBJveAIZo5lurCq2DGKWikCRtcBGAAr6lvQT08zotukmUgBtVotSb0gG0Di9YlZliUgyLOvr6/nmELsLWBK6i25RkcBSTAgBJF33323vu7rvk6zs7PpMxhrbCuri0jdSb1aSApgYZxI86DzBCVuS6gD2q8caoDCxPDVNFK+CIe/o8N2oOL/exEck8frRHyCRSly/M6AuEH37wA3sQiv6Fk8zeTtcao6tlXK15LEiLAfy0T/MPHoD1+lA+igiNX72il+DLt/56ulvA+ZjIwxE94ZAj8ewQhSJOYAFGDJdXEoV4LADJ04cUJzc3Mpn48jYDtuqNbTp0+nJX2MD86d6zkQxEFgYByA4IRhEzDUHMd7rqCZW61W0jVWpXmum2Pa7fYuQEGRs7RTBAn9TruJ/qClieoc5PpSUUDF0NBQMsqwLug3htzZJtJTrVYrgbm1tbW0zDOCk3gtX93AZxzD37QjghRnXQ6rOGvi+92wygaAiMNCD51lwFFubm4m8AsQRd9WVlbSKiD6ldoOvw67fWdZptXVVX3pS1/SmTNnUspQklZXVzUzM6P5+fkcUIJ5gRnBzjBesACbm5uanZ1N9TTYQ8bW9Zh7AgpKpVJK37RarVS8z5xYW1tL10Gnpfxux+gLYJ++ppaFNI7Pda9pqVarqe+kHb0lTXPdddepUtnZvr/ZbGp5eTmlvNiIrVqt5tJppOPm5+dTu2dnZ9OyYwAcfhVbA2Dbrxx6gBIjSaTI0TowiEpaxMBEVsVTFH6c1HPW3M8jMW8D+UJ3tJ7b9BQHxtkNZhzwIobHIzZ/Nk/DxH6j4JfnitEjTjDeD2Mbl6rxzB7tcH2nWp0FcbAVV/1gxCLY9HHleTySdkDmoBQDd9BSLu+sHJufn8+9wp120rcU95HD5Y2iCwsLaeVBqdRbKeYMgussTsNTdOVyORl41x/YvU6nk+qJOJfVEOzFgO7Sz1wPvYK+xwAPDw+njafQK8ZndXU1p0/u8HwZObK8vKxGo5GWavq8wfG5Y6HQEBbFI9Vms5lbRURgQTs8BRzngpQvpvWgIwYfEbAcpjSQpxTRNaJl73c+d/3wlDQ2wNOVADucuNtDAC7R+dDQkCYnJ1Wr1RLA+NKXvqRTp04lxsVZX4pCYVsY0+HhnTdrV6tVNZvNVItCe9HPRqOhbreblvZ63QjsGfOEbRAAXZIS0PGVZzCiLNktqiWDeZiZmUkpHU+ZdTodLS0taXV1VZISEGOeeq2mM6YUui8sLORYV0AVha7sZ8T9CARgoNlQkTlJkXSpVEqb1Um9QIxVSvuRQw9QmAg+wR14xKgdR+b5cxy+58CZWFJvMkm9CYTR97RFdLTejggskEgfe+TlYIJ7e/ThdSZu+HxPGO7r6aoYPUeg4yyPGxTuVbRiCafg9/XIFYPizJCDIsbRNw2K/Ud07RPYxY8DyPjeKz5OPr4HJRgBKGAYBIyfL932H5iKer2u6elpraysJMo4GmXfb8JpXo71aIZ+9XdasUKC/nbdguHA+PO/1NshE3Dozp69INAPQI4zD14bgiMA2DJ+RI0LCws6ffp02n7bHSXzk9z3yMhIWiVEP0Lh40xgZxyAO7jwousILmKw4E7GX2HvS6WJ0gFGV7p4WsdBiNs3InlnTTxg5DNAMKtcqGdaX1/PMQ3YOgDi0NBQShsODw/rzJkzOn36dHqp3ujoaG7uo/Obm5taXFzU9vZ2Sk34knhWHq2srGhhYUFS7/1elUol7cDKqrB2u50YOam3MpP7Ml+xlej28vJyaq/bZeYE9xgfH09bKrCPiQd3GxsbaR8VdPH06dNqNpu63/3ul1KoDqDdBjOfV1ZWND09rWq1qqNHj6rRaKTUEfo7MTGRAiXsKefzrL6Cslar5cC+P9N+5dADFGcHIiCRindn9bXhkTlxiXUgTn3zv3c+9+NaDKQvB6UtnrP3DYOckXBAggHwVTHeTn4iePLVQZ7KiT8+mSPF6PdyxoX70a9SL0J3EIgy01/OrHi/uAF3YOMT3VN6THwvRHQmwfeogYr21A/3OCjxSJ53Bbk+kt7BCKNnsFn0/dGjR1Ou3gua0S3SMeg9+kRdixfEAU7c+XoURk0PQJH/GQeiL87Hmfu+J+xoCXXP9xyzvLycmCFPw/m+Eg6eWGLKNYtAAw7Q0wW0e3l5OS2RBqywd46ncwCU5PQxztyj6L6eBuA5cVR8Rz2Op62uZKEPsS0ONhz8O0h23ZF69WFZlqXUBClYaq3cuXlA43uhDA8Pa2lpSc1mM30Xt4Jw34B9W11dVZb19kuhHou2zs7OanJyUqurq2q1WkkPmS8Acpg590PoC/rG3ERXFxcXtby8nBgTUjLYJ0/T+GsjCJy5BzpK37sfabVa+vKXv6yRkRFdd911qtVqid3xzQ0bjUZaTQVTChACyJOGozYHRglb4zrgugsz5Tt+80z7lUMNUHxAY3oigg0mBA7UaXEHMJyHUjv6xQDF2g3Od5ACVe9MANdFwaUek+ARGoPc7XZTDpaoxY2eU/k4hciu+LO44/BJ6ys9nIr19yt4PYcXWjkDRb/HcXFAI/V2BfUXWDmqpw/9GvRhnASRIZOUWyLnNTJEfTz/QTIoTFanyhk3+th1YWJiQrVaTeVyOdX6UOTZ6XTSChvy9lK+b+JSbeoIFhYWUl0JlC3REuABChp2QlKKdEm5+Fu8ubaDdM7jOWHDOMdX67AvhDsVz38PDw9rbW1NjUYjUcheJ+W65v1Nf1BwS4DDip4sy1I9A3s4YCdwQjhn9B+mBYAGK0IfMQ7oozNAHgBROEwNVdEzXClSBE6Ijj34cNsUg0ZPlUm9d8W0220tLS3lgDb9j/1l0zdWl7AKM7LbBFZsfe9sibRTsEqk707TVxjx3hpWqUj5/aoA65JyQNSDoE6no2azmZhOgDH2j35jxQu74NKP1JPg3Gkf+ghzSOrNWbw77rhDk5OTOnbsWGJLAddZlqU6E86lT+v1emI6CKJIceEbsFcOQqUeawoDw14wADbfl+a8urbvI69AiRRajKKl3QWBDjSKUi4uDlb8h+9cEdxBR8fn0ZX/jZJ4CsfTG1zLN3Tz/COTnPOdvXCHj/J4rQhAhJyoR7CS0u6bTGoicE87xWJZ/vcJ6uMSmapouGgTzszZFo+8+o239xv388I1JggphYNkUPwNz6yGGB4eToV4HpHwBtNut6sjR45oYmIibV43NDSUWyI4NzeXojMMB0Ybo0/e/vTp02o0GmksWQWRZVlaosm10ROp5zCmpqa0sbGhpaWlFIFm2c5221DSHhQ4zd5oNDQ/P78LLHrtVLlcTsvKnQlcX19PNScAiFqtlt4v4oAXHfJ0rq82wLE6U+ksD9EoKxswsJ5q9R/SFA6Q6XuYE9+xlP7JsiwtfV1aWkq1CQQjLuVyOQGag5CY2iHgIMrmewcrvh9OtJWk4NALaXdqEH3w/o/2i7Fmbw9no3DCzvzRpmazmfS/VqslEM1cYK8W9lJhzADEtA077frqzKIv5mB+8PLZoaGhXK2Hs8gOKBYWFnL1aKR8vNZL6i0ukKQ777wzt2Ge74iLHyLIYAO4crmctsVnhRJj73OWQMJ3ePbxIi0ba5X2rWsXRWMPUIpYEITJAWPilGx0lu7YPHp3qtudYryXR/ieTnFmhM+JjCmq8lxsLJrz1A4I3ilTZ0v6tdWZEZ6d3DdLy1ja5tS/K1m32921Dh6n4swS/RrBV2SbiDS9FoTrMBl8kvq4RKo4UrjeJ64DPBtpj4NkUIhWHKDMzMyoXq/nWCl3Ymtra2q326m4rVKpqN1uq16v52qPjh8/nvZn4BlJ/5ADPnfuXCqOo9hwcnIysSZnz57VmTNncjtisvwXoI/Dnpqa0tbWVtpTgvmGk6hUKsnwM55ElbBaOB+MLDU1sEzoHvs6NJvNZOgBUjiIra2tZMSduSCdsL29naJRVkjNzMwkg1+pVJLToJ7FNx0EOJXL5dyqMH6cBSxyNhhrxp0dVBlD9pYAqLDbKACR5bEHBVAic+JBjK+g8+M8LRRZFfrirrvuSjaBPnOwSiEn11lZWUlLkLe3t9MKlKWlpQRYIliNKTl0rt1uq9lsKssyTU9P5+w89poCdRhigkWWGjuQJDXL/i7MdYAEfcPGdfgFwIOzvZubmymNSbBQKu1sULi0tJTuTz96+hIwt7CwoBMnTqS5zvHRp5HWhLnJsizNaWyn+z4PUv35YGx97Hw+7VcOPUDxaDpG43QQVf+O4F1ROd7P9Yi8KCccWQFQOX87WHDQ4SwKIAWkj8J7CoaIhCJKnKs/g4Mud86eYvHnIhfueW932l6PggL6xmtOdRP9OdvkYxPb6f3sDgShn2h7HA/G0MclppN8HGkHz0YulmsdlPhKCBzlzMxM+p4ozJmWSmVnaSyFcxTA8RZujBkpFQw3S5jZTRIanfGr1Wqq1+vJMdxxxx06depUrkCRc6enp1Wv1xPI9eLVmZmZVDjoc452TU1NpRUXHik6S4DOO1OGDrbbba2srKR3f/jeGOgnbJNvyuf6x/PQR76aC+CF02GuAhzOnTuXHPC1116bCyroO6LRIsaUcYepAhwBVkml+btYiGjr9bruuuuu9F6Wer1+eRS1QIrSOwBmDwacSeEz7IYXbuP4Wq3WrjlP33rx+Pj4eKrpgMHzmg7sJ/bFA1NPjXvtFfc6ffq0ut1uAv2AC9q0tbWV25SuXC6nvV9gvGgnDMny8nIK/kiP0I/MLeat11zBtqHnzl7gH7Dj9Xpd7XY76Q9F7q6bKysrabUSYId548X4HEudD8DJU5KMHb7AV/hxHECH/vYasH3r2teurgcnThXyP4JTwmBg8PZCbzHKd3TZ71j+9uui+G4M3Ug5gADFovg4Ik/rYLA9f+oO2p22swju6D0/j9K7MfWUgrMPgBSodTfoTDqMkjMZ/frJf+gTFNmP9XHgb4+m3MD4/ekbj74cwLCXCAbhoISx5gd2wg2mMyzOhpAjhhWQpHPnzuV2gcyyTHNzc7nN7qgXaTQayViMj4+na21sbOiuu+7SqVOnUm2L6xhFddvb26mgFPEaJp4DZo5xJf/OywTRdeqsOI90I47bQQ7LMWlbq9VKO8P69tseIGBUcfazs7O5dwZlWZYD6qw+QKDFAe+dTkd33323HvjAB2pkZEQLCwu7mE8PXIgcGUf/3PvF03BSD8xgH1hdQRHjQYnXmGAP6E9P53l6XVJii2LAMTw8nJaW+zyXlLumb7ZITcfZs2cTWPUUdgwSscOe4kEvACHMO16zUK/Xk30qlUo5fY9sGXrvASK6RZ+RNidIbDabu2r4+L/T6WhhYSGlpnH0zsC7DwAkko7kVQLs8QJgY6UgaWLAt9QrEaCfVldX035F/pZn+tdrTfAFrHjCDklK6TF8yYXsP3WoAYpHYu7cUL7t7e0ETiJ4KYr447WR6Cj9773AiTMEDixQAgaVSbSxsZHy4b5Kw9tD8aFPujghnYVw+s6jQd862SNBvy5OUlKiP4n+oGo93eQGies5s+H/+w995UDLxytG3KQWoBTdoPmxkSWBlWBlSQREl1MwiDhqxt37Je414QWaLG8kAp2dnVWj0VCWZanAc2JiIhX4EakRzeH8SDM0m02dOXNGS0tLu1JvzpwBVtnUiu3Fpd7+P4CJSqWS6iq8GJZNrXghm9fckBJCrxi/crmc3usCyG40GmkFDM7JWUuPZEnpAI4chNPm9fV1nTt3Ttvb26rX6zpy5Ijq9XpiMiSltCzAiPfI+P4rPu/oZww240Uenudh3gFa/GV31F3E/SkOSjy1A8CAGeP5AZY+33llg2+7jkMjtYHQh9jCTqeTwNr6+npaVgwg9YUGrgvOxFKD4jbfbSlgHpCCHpTL5ZQarNVqOfvoYCQuBCDl4iuA0BtPsWCLObbZbKb3+QCKsixLy/25lgeMzWYz9Sf7xywvL6diX8CJBxHS7he3ekDXbDZ15MiRxBx5eoffnm53n+EsFrbNmbf9yqEGKFE8WmLgpTwgoTM9F+psSXTqSFF078rP8U7tFqUbPMp3ww94gKLDQeG8HWQ5IHLE7kjZ+4L7ej0ME9pf5OTXJeLb3t5O+W8vnPV+JepjggHaMP48vwMp2stEdlAVAaX/7cDHx9EjCjcS3r8IS+gOGqA4AMFJ03bP10MLOw1LDQ857kqlkjaQYtwALDANHpGxdXWlUklLH3mZGnUdcYlt1F3qlnDAXoDsS06htH0nWlIzPKczB9wPHXKmpNls6ty5c1pdXdXy8nJydh6p+r4mtMPTWe6ICAzYPRMdhDq//vrrkwNGOp1OrtB3eno6pWhI23S73ZQ29X7zgkMH7l7XQtEmfezLR6khOGiA4ukdVpBRtO2gBKc5NTWlbrers2fP5oq3pR5wcEHHYI1hn7a3t3Xq1KmUbnM2DZsH8HZGxmumsDv87/aGuSRJS0tLKpVKqWDa97BhXHmzMPfxd/A4A10ul5OuEhAAlrgOdWaNRiMBOreNDqzwY+5vGo1G2siN65ICoyh3a2srvWCQouYYyDP3mKOMQVGKx1lK5irj74AEG+CBz37k0AMUVy7/21+25J+7E+f/CCa4lv9dlOqJNQ+e1vFrxlSR50a9LZKSkntBobMKABkmv0eLOK7YftrAbyZ8fD7OwWlubGzsoiG5VwQ0PoncAXhdjI8F7fHcbKTHI7vlzJPnmpkAkS1yAOnghzTPQQMU3+MAA0VbYU3cYPiGUfS9F1eSNvBVLhSr0Wc8P8s6qd/AwETw6OlJ9BW9g6UkLeXjsLa2lgO5WZYlIykpt38ERhKGBF3xdCJb0cMG+ZymkDa+r8f3ywEoARB4Ht/ZE2FOrqys6Atf+IIe9KAHqVarpbcnOxu0vb2dloYS7bI/xsjISNqjI8uy3G69OHJWj0hK4IvVSfxwTQAkIOigBL1AD1l94sDEGTdWhZw6dSoVIqNzRPfYzchQcy36ttlspiJY31XW3xiPw8UHOLPCdf2elUol9+6qcrmc9kDx9CN65naGeUrAA1Pnu8cSPHAfZ4IdJLEKDT2OfsdZ5HK5nOrG8BkA+enp6bQRIczd0tJSujcMKrbT7YmzlpLSu4gYC9I3MPmR5Xe94Dowfryp+UJS64caoDgw4TcRvS//KjpW0i5D5xIBiSuLXzMCn36MBuLsBX/zDhSptz8GDsnBDcqJQiOeo8eBxefmeaV8xAIydtRLdON5Ye4TGSanCL0/3AFxbBEj5c7ICyUd3EQQ6Y4Uan5rayvt3eFMjYMajh8e3nlD8EGtgpB6IJAfNkejHzzHjxEplUo5ZoJjMci8G2dhYUGNRiO3J4TXteDcnFX0l/8RPXmO2oGwFw3SJvSoVqulTa64t6cQqcdw9ojjlpaWkh47KEcfPS1TKpXS6hecF/UFnkphPmEkSQtSmMj1KVaNjEyr1dIXvvAFTU1NaXJyUlJvhRoMB/tyXH311SqVSqlOxx1WpVLJ7VfhkXWr1VKj0Ui1FN63gFPSkl5YfVDiqcjh4eEUkXuqFWGMT58+ners0C+3H0hkUXHg0k567dy5cwl4+FJaHKzb2lKplFY+RlvE94gHYTCCQ0O9naulHkOMgwZ4A3Sl3rYOzswAcKhvqlQqmpmZSYB8YWEh1dJkWZaYUE9H+f4+0U4Ahpm7pIv4Hjbv7Nmzmpyc1ObmZnqDMedE/xgDEE9d8qyAOuyHn+cFvaXSzj4/fr/9yqEGKFIx0xFZhCJwgrjjiwpc9Jk7ST8mMic4Dl+hwMT0NfE+qR3VOzvDc7njdQaFHwbenbsrBMaO85k0GBrOYU08b81lkvHMTGYMbMz7I1DWOK8I+pwVKgKEnOd9EL/np9PZWbYaQYobPP8MZ3VQggGkJmZ8fDwxZ1K+AJkozSlzT324LrBLpYMzDAhMDekiXw1DqoPllkTxnlJz3XZ2w7cpX1hY0Pr6uo4fP572eEDfaCcMjtcxjY6OploVQAM6inGkHoTVS8wt2AWYCfSE9pEO4x0iRO9egDs0NJRWxmBImQ8bGxv66le/qgc96EEaHR3V9PR0AoUenW9sbKharWp6ejo9CxtfsRspUS/zEKof4Ob2AudMiongxB3zQQh2hDEZGRlJtgL7RJqPJe30ab+Ub9SxCNBKpVJaVgyj4gwTgh1iBYzrMStNor2p1Wq5l+t5/QgBLzqJDqJb29vbWllZScAamyflC3xhXgA4tVotLZGmKBdg48CAYnXaHplobLEHO6SHAFD4HFai1ev11CYYVmfrvS/xBwB+xo6+B/h7msjHmOvU63UtLy/ftxgUKR9NS0qDghSh5Ugj7nWsizMEzs54Li6yI3yGEeQ+zrIwCTme1QoAA5+4TGae2w1p0eT2e/p1/Hk93w3Vvry8nKvu9qWPTDomiwMTnqFU2snjk58FnLnj7Meu+BjFaMpRuadx+K7VauW2hvcCLs/bkic+KMFQUUhKxMFnGCw3Wk6f+2odnD7LLfncgSHnVKvVRPUCThhvN+bometqHIMIUGlrp7OzXHN6ejqxgc5oAZxJV3jNCudTkwFrAUMEIIks6djYWNqvAYNKP7K3A+1F16I+ZFmmmZkZlcvltOrAdyw9ffq0rr766pTS4ZX2XJP3oVCMSxqCPD4ACDACOJF6zgy2yYGav93aUw4HJTzz0NCQZmZm0pyPgdD4+HgCvK6L6IGzmlI+MPT0B+fxMjx3prAcjDl/ox++jYOnwt2WUmiLnrL5GXOR1AQgGNvBvPJaGmpSfL8PwI7rf7fbTddgZRP96C9KLJVKqW6LvqJ/SZl633vQOjc3l3tDeaez81oF3uzM88UgLqblvXasUqkkYM6mgjMzM5qZmVGj0ci9j8trHlktiH7sVw49QJF6D+xLpqTddRdFKQoHHZFN6fe5lEea5PdRKgbFDbwDp5hvJVKkJoBrcS9nPeK9Od+fzZ2KT37/DiWXeltBA45WVlZyu8o6s+JI39uA8gKIPOoALLhziIDEBafnY+WpJO9bNzb8XltbS0aG543ALMuy5PwOQgAfIyMjmp6eTmAUMOJ1Hk6pu4Fl/xH2IaDy342g329kZCTVUfAG0jNnzqjZbObYPo/WGFuchQMUJAJkIsDTp09rYmJCU1NTuXSlg2pSHuS5AbKwNLSDuSXlX4jINdlw0BlDQJfUA4Tojz8bz33mzBmtra1pdnY2GX6AF1Fis9nU1NRUjiJn2fq5c+eS06jVapqbm0t7Tki997gANFjF5PtnANZoE3OIokb+v5CVEBdb0D9eCYBTcvvECrOVlZXcOXHPG8bbU3pS/sWoklIaFyFNzRb0vhIKxtDTmxEUSb26OV8Wj+4xhqVSKQHj+HJAwCO2GqbLazZIB3o9iM9hnon+4jkBQ9TzeerRfRl9R6oRtsKZGwJQwPDi4qKuueaa1GbGgj5B0H+3DQA+5gIv7Dx58qSmpqZ2ZRKwBdvb25qbm8utRNqPHGqA4g8KenYWJHa6O3lkL0fJ95F9cTAAteXbicf8qrMqKJU7av72CJLnQdEotnKAFKNkv15kHfw5vF0YSj5ji22u47SnTyqnZZkIACm/N4CGz5zxclbH2x1BjD9D0fPF8Qbxk0t2I+HXu5Bc6MUWopeJiYlUKOjOB2PuTsvrNTwvPDY2lnbhxPk7IHb2hGssLy/rX//1X9MGV9zPGTCuw5h5YZ+UB7+e6wYMbG1tpZVEvF+EeSD1XvbpwAdnDEuAI65UKrlllbAc5PEx9LSZ955A00tKq46YX/Sj9xe74bJ/BMvqJeVWvDlo8XcfkVpgfGCQADPQ5L41O8/MPMJG0MfoKgzQha6EuNiCbszPz6dndqcL28MbcZ39c1uHrXAmzO0mBdeVSiW964n/qd2gbsODPn58nNHPfrbHbSsAgTollqmvra3lNkZjtZCk3O7Obqt9DpKeZT8ilsdPTEzkduF14ABocd/mrB16ArOIMKfwD9hwAjhYPQe6+Ef6CF3zPVCcVcEebG5u6s4779RVV12l6elpLS4upu+8pIHamguRQw9Q3BEyGfiO3zFy9/Oiw4vX9v+lPHsBUse4+eRykOKTgXSPR8MOWJwm53hXdn4oOPM0D89X1D8+WVH6+K4PtlL3Cevb23N+XLKHgYfejGDDwZH3q/dp/MzFnykyIQ7U3CD4jqpFy1jd0R6E4HDm5uaS4fCKeiI7nNbExERuDBlzdAUHiEHyMUOnoFhbrZbuuuuuZIB9I0POoy6EdvYDuego/Qnz4SsToPgpaIUehjmBPicNw/k+F3y3TiJR6GuvOWOPEvZaiXNS6umvO0+pB/parVai5ZeWlpITio6U6HljY2PXvRYWFpRlWdpHguNZYsqYU1fizpN0pH9G33gx5EFJqVRKlD1OEb1jtQvgEVCFbrrd8373YIpnxnkODQ2lOg/6lhQ0+ufpBL8PwpzypfOIp4GoRwEUELyxlBxg6isBKZJmfsSCXGfrfD5iv+m7zc3NtE8MbA11KlJ+UYeDWECes/ALCwsqlUoJaFMfw2qntbW13NJfhHsAnPlMUm68vCiWfr/zzjt18uRJ1Wq13KsGJKX+nZ+fT4XL+5EL3krzgx/8oJ72tKfp5MmTKpVKesc73pH7PssyveQlL9GJEyc0Pj6uG2+8UZ///OdzxywuLuoHfuAHVK/XNT09rec973mJir0QQRFI7UQnF0HKXk6Qz+OPf+45Vu7pkT0T0VdfePGSF1dxHc89s2kWFKKDGp/UPvDevvhsrjy+Ugj07lEHSsdkAZxsbW3lolTQP9Ser5zgM682px1IUarCJ3PRjz9PHK+izzxiRi8qlYq+/OUv63/8j/+h3/md39FLX/pSfe5zn8udezl1FxocA4JB8CiZFTekSKTem6DpR9IFGD53BPwNU0N0dPr06bQjK2NN/nxyclLT09OamprS7OxsbtdXjKovkR4Z2XmxHv3Bdvbovi87hhF0IMb/zCcYGGqX6BuKGAFsc3Nzmp+fT8yMpLS7aKfTSRFuDDI8VciYx2g7y7K08RrOkf8BN/789Ktft9vtqtFopKJOgIyPsz8/c54VXTBr3KfRaOgf//Ef9c53vlNvfetb9S//8i8HprulUim96DEGhbwXZmlpaVew5GDQP9+LIcUGwVIvLS0lG+OAHGbO/4Y15GdmZkZHjhxJO6ySxvE0SrvdzqV6JKXPYTb91QrYdgKKGGR4mwgG/PlIzzabzdxLQdfX19NbvR2w+Yo+9IzvHPRyzaWlpbQEmiCNDRzpc0/Xo0vOMDsLJPVKFGIQura2plOnTqV+53hSTKTeL+Q1DRcMUFqtlh72sIfp1a9+deH3r3jFK/QHf/AHeu1rX6sPf/jDmpiY0JOe9KQc/fQDP/AD+tSnPqVbbrlF73rXu/TBD35Qz3/+8y+0KTnkWeSo4t97HVN07aLfRDcxmkUpPRXCPaMjlnp1K3E5NFExtKKnR3A2vgrAaTz+dwDgbfDcrIMqvnNHxbJLB0oAFMAIfzud59Sos0pF4gCkCJC4uPHvN3YO4mi3L5/d3t7W8ePH9bSnPa3wHpdTdyuViubn53MpDDdA6MDs7GzqU4As38MkACyj4BAAveVyWY1GI+0wCXDh1eoYWAdAbmwZB1JO9DGGnOiyVqtpcnJS8/PzmpmZUa1WS04cQ066ycfMn933iGHOSb2lnhMTE5qdndVVV12l+93vfmljtnq9rqNHj2p6ejoteeb5YPh4VwkFw148Sxu73a7a7XYqYFxeXk7UNdEn+13E7QA8fcTbopmv7nDoX186zBj7ahIv4H3c4x5XqP+XU3er1aqmpqZy7AljU6lU0i6s0m7n5v+7c/N3J/E9Oobd8aW4HOf1UQD+er2e9qVxfSblxvL06elpzc3N6fjx4zp69KiOHTuW3lxMmop5g70D0DPO7OiKnXEdctYW/XUwxw/L+ZkXsIwUifM89XpdU1NTmpubS88HyPJt9v3+XgDvtYz4DGfo3S8wFm6/nSV1IOnBULPZ1NmzZxNb6H4Tpmtubm7funbBKZ4nP/nJevKTn1z4XZZleuUrX6lf+7Vf09Of/nRJ0pve9CYdO3ZM73jHO/T93//9+sxnPqP3vOc9+shHPqJv/dZvlSS96lWv0lOe8hT97u/+rk6ePLnvtkBdMfjS3ikCR3wRMPi5PkkiwHCE7obH0zScizJ6dOU5wyL0GulNpyxjO7mWP5+UL1qUlCY5zAf3jcwQFfEe6bhi0TZYFN+x0AsXoUy5titzPyASxySCufiMRdcpApPdbjetJnrwgx+sr//6r1eRXG7dxUC6s8KQEonWarVEZ1PgyjHkuSnwi+LRC8V+nU5vqS3X92iI8aNPvZ7KnQhGTcrviQGQgObPsiztH7K6uppjdIjouDbPAgDCoTCGbHzlb2v15cM4dJwSbAyAh2XWvqLOV6O4MfZn7nQ6KYpvt9taWFhINUOsbCNP786LMXBwGYMp11faThsAZzjIa6+9Vtdcc42OHDmiv/mbv8kxsZdbd+fm5nLODT3jJX7oq/cD85v//cfTdBxHio3ImwJmPxZgh9PF0Xe73ZT+QdccTHtgR40ENtIBDYGN13xwTVIl2NMsy3KrgbCf+AcCEA8KJycn02Z/AObR0dH0Jm9nMLDZtIPAg3b4nJKU+oB7kfI8efJkjh3xoM+ZE56fzxyUud9h3nsaa3FxUdKOjQPAoQNra2s6evTovnXtor4t7Utf+pJOnTqlG2+8MX02NTWlRz/60brtttskSbfddpump6fTJJGkG2+8UeVyWR/+8IcLr7uxsZHWwPMj5VftOCKX9l66WiRFLAfCIDt6dNTo1/RUEoPr4IDcor+Zlfwc4gbMrweo8Gs7KInGsVTq7SfhuUXQOgyNo26WyLGSyCcgRonjODYWt/lz82xxIsR27sWm+PHuRGLRpl/T//YVVv1Ys8utu3Nzc7mlwq5/MB4YewfGODl/L4aPrT83KSCcO9E7usv4A4YpLmZ/lFarlV6ihy6srq6mdi0sLOjcuXNaXl5Wq9VKDBw1FYCDUqmUSxfBkBAlMyawiQ7U0GGiSVJIABHOnZub0/T0dCrEQz/4Yc8fnA59zvzA2Nfr9ZQC4NUOHIPxhRXhWTy15j/0c6vVSs/pG8753PUxY0y9FscZJT/nIHR3cnIyOWP6kI0GWUkW56z/HZkqX9pO36AfXJMUNffkjc6wB7E+gzGRlMCss8ex/2kL58D0wQZ6ipFxYfWO23i/B8DIATyBCGmlRqOhM2fOJD8GAPPncMYSPUEXXA/HxsZSQAD7Rm2XpLS/EX0CeOKa0eYW2VgvC4gsq/uXU6dOJQbS/Q+LSvYrF7VI9tSpU5KkY8eO5T4/duxY+u7UqVO7ENTQ0JBmZ2fTMVFuvvlmvexlL9v1udedFLEeLv2+j0YlOrtYu4Iye/TnTtNXQoCOQfU4Sq/RIKJiEJ1u9iJBZwWc9XB62SeEPzeOir4mWgDgOZtD9On95/3Fdx5pF6W23OCwGZAfsxdjwj2LfvqNpV/PP4u6grOO97zcusv+EbH/MDS8MMxBKgYLcEL/FgFl+oCVTER4GAfA0crKSgIgni+vVCopfYSx4jw3whhnCmGnpqZS9Eu/E5nymW/XzhJdWBJ/5xDg1/UJx+Hzng3heHkcbzbmvgA638kSR+H9F4tz6Tf63lf6MCdxHDCFDn6cIeB6vlMsc96dou/h4nYipm2deb3cuost89TJyMiITp8+neqMYsrMI/Eiu+nBA/OUyJ/6H3QH1pD5A0MGECEl5DWCCMdSwwKDRsoxprUdJPA978hhVVkEXZFdjwwjdn95eVmnT59Oz8JmfthM6mjwBR4Y00/MFdfBUmmncLdWq6W5IO34jpWVlfReJD5z/4IeooP87ePu/VIERGFK7r77bp08eVLj4+OpMJb5sF85FKt4XvziF+tFL3pR+n9lZUXXXHNNGsAi6ceU9Du2KFqPThOl9QjI6WacvVNgXkzr6RCUAuUCJGxvb6fogc2pXBEAMV4sFRG7GwE+82K+oaGh3PI8ahig40jRRIPCZ14D45MSwx77lnt4m/uNT/w8MiQRnBQdUwRSMP70RdH4Xgrpp7uSUmTv40nRK9vw40xxkN5uH+MiAZiiZ6urq0nveCnZyspKblMrj2L9Oh6hur46hc2+CMvLy5qZmUl7ibheoh9eRCv16he8Fgpj7UaR53ajL0ntdjvpLmmRoaGd3XKXl5eTHrpDBVTRDgomnTaHzq9UKlpZWUngns2uaKfX6XCegyueGYfg9D1OzGvbvCbHgxOuRXrpUko/3fW5XC6XkwOC7XPWgOf3oMn/dxvCGPu2BtRLDQ/vbKlfBJZ5RxMbDXr07+kVd8YeaJLKhCFBb/0aPk/ZYykuv/XaMJ7f5xXHcT9WTaKj7XZbo6OjKS0o9QJS5jIF5QBYbJwHf51OJ/Xh6Ohoeh5pR9+Wl5d19OjRBPY9FeTAxNM8nMtc9JSXB0tea9Nut3X33XfrxIkTOaYm2pe95KIClOPHj0uSTp8+rRMnTqTPT58+rYc//OHpmDNnzuTO297e1uLiYjo/CgVpUfbzoHuxJX7M+QTj4OAkghIU0QdM6tFikfFhwJ0Sx3B5rpSJ49Ql14loH3FFcMYFBXLa3/fBgO0g4kbh/b08RBLQnvQP16fQD/DIZCdqoU3+24FHv88jIImMSRzLCFy63Z0iRadKkcutuxsbG7m3VnsNBg7VDZ0bBAwHz4gBc+PgkR/OGNaMF9g5OxL7yfvXnY2kZPwcZNMWaphWV1d3bf2NIeUY/yw+S78cOXrEnMMhOQOEoWQVQ4wQpV4NmBt6X73BSiTa4Ft6S0p7BUnKgUBnvHxuYhuGh4fVbrfTOHn+XuqteHBnQQEkfSApt8ngQdhdnL6nKgBeRcwooMSZBgcMrm++B0i73U4rxdAphDdQR5YagSXE9vpcoy/pZ1iLmDplbGFM/N1PgGyehTSc6677hJii3djYSLuvcg8Yc4CIAz7f68eDY4phS6VSerN0pVJJq8aw1QSY6+vrWl5e1okTJ3JpUtrMvHCft1fNirfFAWCpVEpvUp6bm8ttZ7Bfuag1KNdff72OHz+uW2+9NX22srKiD3/4w7rhhhskSTfccIMajYZuv/32dMx73/tedbtdPfrRj75H942OyzsOiaCEz/hddGw0zhwDI4CixWJCHywiT2dQ3DCx5JdlZpwHOo+bZxU9gzuxIkcd+8r7htUDAC6vicAJMYloG285phYBR+eOn/OZABgJpxaL2lM0rnGM/bN+x/T7ger38ZcORncxcG6Ul5eXk2Fx9sSfIQLtos+4JsYUI+Y7x0o9gIthcao9OpMIBgFBvicEOktOHv3odDppuSb1WE71eiTrQIwxdfagSB+Wl5dzqymazWbaJA5d8z6NDtH3OllbW0sbFvo9KpVKWj1BqjY6PZ+HcYyYI75LbWQaSPF5mikCRCmf4jkou4tT9r7uFzT4XI0Rt9tabIakFCwxNpzfarV09913q9FopLSlO29sclxZQwDmtorrx1osbJW/WZqxgx3wHV8daDIPCBi8H3gv08LCgprNpoaHd3afnZmZSbrF+8ToX0AgtoL2sJfV+vq6VldXtbq6moKPmDrsdruq1+tpVRo2gDkcx8eDHg+mPTByX+eBO8+MHtx9991aW1tLq/kuBKBcMIPSbDZza/C/9KUv6eMf/7hmZ2d17bXX6oUvfKF+67d+Sw984AN1/fXX69d//dd18uRJPeMZz5AkfeM3fqO++7u/Wz/2Yz+m1772tdra2tILXvACff/3f/8FVZIj0VD1i8SRyKAUfc8A+YRD+TC+IGMMsqNuR8xcE0Tsxs5z/q7QExMTOWMM8nQ0HZ1xbHs0jO5sHIDAdrBpG+3BmVM5z7O5oYXuJhpn2VtM4/iKpKIoi+eIfR/HNTJmbgT76YOPK2/6RUijfPWrX9U3fdM3XVbddYaDXP7y8rLW1tZ2UeRu4KBvfXw9ReAgwwsNV1dXde7cubT/gYNlX43FKhmMFlEk+uqUdnRC6IOPNUZe6uk184d7xNSVOy/a6J95oADNv7KyoizrbR7I+1M8NeUgCzDAZ+ilR9XsfzI/P59e5lgq9V5ayFb1Pr+LDDCF6E71w5pyPwdn1OjwLICmxcXFRP1TN3IQuiv13rre7e5snObsaJG43XF22QMWT6txzvDwcFoiS0S+uLhYuEoQHfSNLrmXMxuADWclJSU9d32jjklSquUgQOt2u7v2rHIW01cmYUu9DgxwVC6X06q3tbU1jY2NaXp6OqX4V1dXE/sOm+F6S8BF//EizVarpbm5udxCBmwCDA7tj4EHqdtoexyMRBDmNgkpl3dWOt11112q1+tJ7/crFwxQPvrRj+o7v/M70//kKJ/73OfqDW94g37xF39RrVZLz3/+89VoNPTt3/7tes973pMrTnzzm9+sF7zgBXrCE56gcrmsZz7zmfqDP/iDC23KLiddBDo8gooSj4sOz52oMwyR1vL/Je2aHBhHDBXK5ptscQ+MoEcS5Bw9ZVL0vG7wIohxlsJZl1hPwuTsdDppN0iMtxsWj5ZjhOhGhknlOc6icYljwe84Hv49E83f7wD17YYHOXXqlN761rem/2+55RZJ0m//9m/rzW9+82XVXcaTdBmRj68+iCCOv2OKxzetcvDpL55rNBqFdSblcjm9U4VrQnOjj9FxSD362vWyXO7tCOsMCA4jphwBNK4fzkC4E6NtknJBQbfbTasgOLfT6eT2YKC/0VnvIw9A3NHQB0NDQ2n1il+TDcm4Fm+GLQqAvKiTue81Z16wvr29rUajkfa8qFar2tra0pe+9CX92Z/9WXqe17/+9QequxSrssdGP3arKFDiO57fmSTGAHuD7WFreyJ/BwPoHoCX99r4lgmk8qLzxN7R99zXx8lTXdvbvXfQoDewL4w5NhEGCEfuz+9pTD4n/UdRtds5ZzKdeaJveJZarZaelXnnW0JQk8LnjGfRGPv4SbvrhXw+u08qCg5Z9XfkyJEL0rULBiiPf/zjdzUgNuY3fuM39Bu/8Rt9j5mdndVb3vKWC731LnGlp8M8UvLjYqTd71p+nFNkvhdIjOb4iQVYscIb9OhsCopIPp3fXqEeJRpy2sh3/n9R+sQdnR/jjiEyRQ5yXGGZHE6Pep7YJ2HM/cb2+HdxbP0zpNVq6dy5c2q1Wmo0Gjp27Jiazabm5+eTofFzrrnmGv3iL/5i+mxra0u///u/r9e85jWpHZdLdzFqIyMjarVaacfRqL/9ALODO6dz6ScMZrlc1tLSUm65YalUSjQyxzPeMCzoF/rpztvBqAN1SbkUBuLpD9rEUnbG1iNPLzLFAHsg4CCAZdDsjglztL29naJSB9EeJfdj8pjXzo6wHcCJEyfSOb5Ev99SY0nJUbhDpd+IZH3st7a2dO7cObXbbc3Pz6tWq+n+97+/fu7nfk6jo6M6ceKEjh49qmc/+9kHoruwJ2ypHu1gtMdFwIRzvOAVh0ufMZ6ANk8DOuCjsJl7OVvg/Q5Q9LGFcXEGBN0nJcS9kLiCk31MeD5JuT5hbB18wYQSGDCfJicnU/qcVB/7OHFdbDJ67Ds887+kxBh3u920cSL9ybJwdAfdY8wAa/5MHrgUjakfGwPibrers2fP6n73u59mZmb2rWuHYhXPXuKTgUHjc8SNvSM8Zxn8en6O1L/YCSPlOe0iFsPP5R5Eehg1X4Yp9RCsG1La5RSfP0+//6Pyxe+IglkFweT05y9ylBzrxsFZFc6BRiwaizhGPgbxdxyTpaUlffrTn9ZHP/rR9Bzf9V3flV53HydS1At/Y/PlFuoeNjc307LVWAAdQbMb/RiZSvn+YaUSER8plXq9nq7DmDBebphj+pHtstFpQKkzg+g4Rh/HDegG7LCTJ/rj0bfrN6CLeeKgiLawLwvP5KkuQKqDNfqXOeVpHsCBG2mpxwxl2c4KiOnp6Vy/xzHxceBZHIA5e8I9PLhi+3Pqd44cOaLx8fGUmuD4gxJAHju7Sv3rAOOcdabWo3AH2A4aKOqmgJlrl8vl3ItMcfoOepw9cVDtaUJsO8vxHRxTQ8UOryyL960YImPguoDeAcBJtQDunHmESSdtxkqpra2ttEiCvgOswJKUSqVUuzIzM5NWAXngubq6mopl6X8PULyvHDR6YOqsJWNVBEz9HJe1tTWdPXt213L4veReAVA8gotG/XyRKJ3s3/vnUn5FjZQHNkWf7zU5vS1ese9GFeWJ+T0vOvVIOypCfFZ3Kh4N0wZf/4+wrM8NvaTkVGg313Lw5iCH6NDTUz52RePgCh5BCgZ+e3tbq6uruv322zU2NqaHPexh+sd//Ed9+MMf1lVXXbUr9dRPdw5KWMq6sLBQuC9A0bhG4yD1DKKDdDc+1BaNjo5qenpaKysrCZhhdPz9SmzWBkjZD+AfGhpKKwdw+FIvrcKmfhQjTk1NJZ3BIPLbV01wfQw7e4RIO3OSVyr4Ml8MNsXnXmTpBZn+DOgzIBFw5yCu09nZfRfgMDs7m0BfHDOPmlmBE20ES/od2Dkoww40Gg1tbm7q2LFjqtVq6bhory6nULO2tLSUPnN9jLbO57lH/95XbpfQgSzL1Gg01Gw2c6CDzb/QUYrKXffoJ28b92Bu+GsAsFNsPkk7pN6+PWxDzzVoOzrgdtXvz/38BXvoh7PltBUWkjmJ7vv3sJDMLXaZJqXr6S2Ax8rKioaGhnT11VenZ3B987RaDN7juEaJoMQzDK4HjOd+5VADFEdssRq8CKQgRdF7jEL5HQuBPJ/px0Vn6oPjVeEe6bkjwUB7ZCrtLh7zSDA+pyuUK1h0dDGXiLOg6p18Je0hp8u1IuApSv1wrrSj/PGNr86oeLrCxyMqtz+bJJ05c0bb29uanZ1N915aWtLy8nKasJFFKeqrgxBqG/zt0d6uIkAg7aZO6Xf00Q09Rhw618dje3s7vSmVSD6uovFCOaeUHSjFtAttYPMr2gIQjoXUzrah+x7Z+ZwjouT+0NBjY2MpNQUl32q1Ev3PCjTXd98XiNUyzDH6d2hoKG1Hzv+AvtXVVc3Ozu6yB34Pv15kiWLa1L/jHNpEMffx48cTmItz5nLLwsJC2leIsfIUt+sN4+tBDmmIGIWXSqVcofPS0lJK8Y2MjOjIkSPa2NhItXGuNwR6rOqJqSdsJo4dp1+r1SQp1WcwF6enpxPTB3MCa0PbWcEm9dKTbvel3SlOSTk9HB8fV6vVSrs1w85gj9vtdg4oexDCvJqZmVG3200rz+LKHNKJjUZDMzMzaaNI2E8PeL2tXs7gJADXdNbKfYQHTO5vWNq+Xzn0AIVOYtDojCLFR/pFHx7lIDFi9WO888mH8rfTw75fiqei/Fq8VyLmshn8mFaKBVbutNxZOIUeI22+x5F5NOOpGu83jDn/R6Dlysn5jBHRrhuMoj7tNy5RMBQYFd+TwAt7r0RhozTa6cux93JC7tjcGfh4+iof/sa4DA8Pp23L3cj7Ci5PzcTonnnm+oWOIyxtbrfbKpfLaaUCeXffHZlnJsXpe0tg/Hw+SL08PCsVVldX05yiYNqX6rZardQWDwbYbAtHgeMCvHialeJr+okN7uhTIt0iIO3jw/exaNLZSwdlAIBz585pfHxcx44dy+2wexDSbrfTXj0xmAA0OisSAxovVvXf/tySktOuVCqq1WpJP0ulUtrYD/aPY13nPeWI4MRpJ4BgbGxMs7OzKf1C/7I0lusyv6IuS0p6F4MurxtxZ44NoL6JTQ6Hh4fT24zZzkLqsWqAf+pOfAzK5bKmp6fT3MAnASazLEvzhWtK+fow/ndgEf/uB0CiT2Rs3T8d2Fb3l1ucPXFayqNFP/Z8ICV+5h3L/whGmf0QyLM74pSUULFPGKm3dBhFgOpDwXFa7tx9QyinL6MR78cS9PufYlPQN5PU171j7DGa3BvA4ptJeeQUx4hIyPs8GimPyL3P4nHHjh1LxZFHjhzR9PR02rJa6jmBfoD0IOXs2bN9606cYXIdjODSv6e/PYfOHhUcT9Ec0a/Ty5FVdMfJPdnkzoGkO2X+hjqHuUHXHXy02+3UZkm5tAo/1Fzg1EjbrK6uJhqb+wIyut1uemby+B65A9YAZfS/6+fW1laqk5F6DoZdRInuV1dXdfTo0ZwDjAGR2yQHWP6/O/EiNqVS2dnc7u6771a9Xtf8/PyBApSlpaVdqV6pB559SayU7xMHnm7/pB64lnqOjEJn7GilUkmMw/r6ulZWVlIAGNkST7l4isR1fnR0NL2na21tLS2F3d7e1vLycqr/IMUHiMUWuh32ueeBcqfTSaCIbRlarVZaAbW+vq7h4eH0jiffJ4dVPfg3AImzJyMjI2q327k9cwBPvFcLRo7+4AWWUn63ap7FbW+RbnrQzHg600IAEQGs68V+5NADlIjiipgFj9bP56yKQEwEKRgxX+nCYPkSOCarO2spX9MCFed0JUg9Onm/hrcxFtH2YxwiWKD+4PTp08moY9gpCnQK3g1spZJ/gRWf0XaeJ97fo6dId3p0vtczAIyq1aqe8IQn6IMf/KDe+c53an5+Xt/2bd+WKxCVtAvMXQmApdlspl1WvX3ex24onAWJANz7CiMZ8/GLi4sJhEZ9xfm6o3UjHlM93J/7Mu9wLug137GpFE4AXUPfmQPR6TqljE6ij16gOzExkVaTTU5OqtPpaGlpKQfeuA7jzzPB6vkqtCzLUp0DIBIhSgawFbWb47zPfKxi38bzI9uCMwKkXHXVVYU7vF4uWVxcVLVa3QWq6V8AitenScqBTRiIaG895UBtExE//b62tqZWq5U2tpSKX+gKCxgZDcZ1a2srvXTQAQ7PxJ4zsCS+nNdBEM/njB/PQ9+wJT/tZi8V3h0FyCKNOTQ0lFgjAmFJiTWhbz3Q9WCCuY2Nju+AougdW8p3zkDxLB5w8zwxI+DsUEwXuw+LQOd8cugBCh3mBWuxI9x535N78JuB8fym1MvFRWToA+TpDqfDpN7kYhL4SgWWmTnKdQfe75miIkQgRxt4h0ZcUeFpKiaNI2I3kHErbqJZJo07Sp6TSDo+ixszogZvL1Iul3XkyBF1u13923/7b7W2tqbx8XF1Op3kpHxSRZDlY3tQ4lFeNNTeFzEKd0fLMf58pAylncjx1KlTqd7EI3ePYl3fIkuSZVlaRulMjaTEunGsb0CGMWcsiOoA7TBvkf1zNiPL8hS9M04esdIGDDF1U+gAYCI+m2+w5vpWKpXSW8epTWAeA449TRvHwG0Q1/M5Hp22izt8dMSZp4WFhQtaqnmxZX19PQdQaLPbQ9ir6Og4hu+l3h4mcT7AiEk79SHtdjulPaKt5bquy4wV9/frouvoH4WwvLxS6tkgn2tFqQ70hlS5A16KeNn1FZC9sbGRAJbv35JlWWIHKcjlf9JE9CksqG9PwetHSN/SJ756D3/pz+lsHscxr7i2nw8QiSwK7XLQ5gDR/d5+5NADFI8CieKjcy4yIkUSgYw7ONgSHxCPcl08KnZxZ+IOnc/cGftKC8/pOirnXpEZcMflRsEnFWDLV0IQ+RCteX+5wWXyr6+vJ3TPC7T8mVhB4Xu5MKF9AkRD5xPei21jZFkul3Xs2DFtbm7mNmjzMeKz6AT3Ymkuh0R6GHF98meJYDOmVhx4OHty5swZnTt3LjFi3u/lcjk5Gr8nEZT3O59LPeA9PDysiYmJlNJx5oaAYWZmJi0x9vQb9/S8OtegLW7U/H8/39MCAA1/bQBGHF3iGL+GR94eibZarbSV+MbGhiYnJ1NBJUwK7SvSK3fK7qS93qvI1vgxiDtvdhw+KHHAKe1OQ9KXknI66fOQgMdtZRwXnPfIyIgWFxdTzZYzJFmWpe3rub6PJYyA76bq/e4AkECL/VOYMw7kPTClrdG+OrjEVkr5t5ajp1mWpSLver0uaWdDSfyZpzGd6XQGHn0pl3eWE1NU6/V+0g5o9zSP22EPVOKmhxTrFgEzZ0zwk94HfnwkDvYjhxqgSLsLZWNHFHVGdObxf47ht4OTeD0cOsf5NX2JYWQvvO0eZaBAoGFAFwpT1L4iZiDSyvH5HRX7uy5QbJC51NuqGwPLb/oEdA9QiKkLqec03YB5sa1HX/x20Fb03AgRtiN5/9sLwTjXHfxBSBzTfuMo5Zk413MfD3fYvqxxdXU1FRLCgI2Pjyfd8r0NXH+dpXCaF3aG63ldiTMLMBZTU1PpvPHx8RSl4uA8pckz8eNL7XEkzCnahfEkBdTtdnOGmTfsxt1svbbK9dAjbOpkyuVyeuVDqVRK6R/mvu+JEcc4gsLIeHmA4tGtR6Q+tjin5eXlS6KX+xHmbwRmfBcDGfopRtJs5R6Biffp+Pi47rzzTjUajfQZ4uAC/QQEwNBJSuDDAy2YDnSCZfIe8fN6g263m9tzBcfNc8TAh2fh/sw1xhe7C/Dl/VStViutdPOXe9JmlrnDFkfgRP9QED45OZm2M6C/qKPx2iza6qw5+ojvi77UfYj7R4qPoz33mpX7FINSFGU6yxCZDAcj/M85iBsOZ2cignRHQa6vKJpyp+7/exTpk9pzgNCFvqGUPzvtdUfHdaJSRUOCsPUxEx3DQGHu2NhYoiUdBLrh9CJGqVfw5mDJCyGZ4LHvI7iKY9QPcDr4i5OB9vry7YMEJ1I+InZDE3XH9Qyj4dGhlB9/HG65XE4rFDAwGCuiJB9PirKl3brlDsnv5yCCca/VaqpWq2q321pZWUnpCDamY/k3AJWVO3E+SHk9cQdNv/EMOJWxsTFtbGyk4lxeoka7nRnyuUBUSn5/eno6Fb9LSiCoUqlocXFR9Xpd09PT6na7Oafm4+bj4/2Iw47sioMTB41u0L3tRXvnXE4hBUEfRHuDzjg4iSDOGQHG1lMjpVIprTZzxkXKL+kFGDPHYaABL7wM1VOFMLvj4+MaHR1VvV5PrysA4IyNjWllZSUBFBy+63+RHaZ9PDf3p82jo6OpvkXaKTrmPN6PU6/Xky1Gl53VQB9d92A+6E+Wp8/OzuZ2umXvFMT7hmsx3/3VFX48P+wcHvXWfZozvm739yOHGqB40aBHHNFBx8+l3UAFcSdY5OQ8sofidCPizrFIeWmzI3UmuE9UXtrGJItV40XtKTIC/lzRgGIQqN1g2V2n00nr/yuVSipUAyVzfRSPbcvdOHAPX4/PRIiKyySMfenPEVNVjtD9eoDJIsTuDj2Ct8stDpwBhzESIwLtlxqM/Sj1XswoKVG9OGwHOL78GHBJJESbsixL1Dj96foq7dDGvP9DUmLQOI+iXN+AzQGRG3meDX3a2tpK51Fki5GLb7ClzUS6W1tbaRtxcv/opwcSvrTYo3ycoVPtBAuLi4s6fvx4jvVxe4JTjvqFPvpxMeUKmJTytW0RxB6klEqlHGhznZTyc9iZQk8v+DP7C+vcXpCi83MYF8YOJsFBtO+lUy6XU586w4IuAk6mp6fT+d7HOPbJyUlNTk6mQBTb6MFC/AGEeuqzUqkkwEUfOMhnbkxOTiYAwOrOCEqxtTyX1Esruq9pNBpJxxk/T8nzWQyqff8uZ/29vwlcpfzSeffBPm/dnu1HDjVA8Y7ioSNj0k/6OXEkOjZHzVIeiPS7BgbIHUik9Jl0Uj6H706byeirZrhPP2DiRpDfGAmMvtRb5+95cd4UOjExkSJcnD+RpTMoXq3vK2egGlmuyWTFCPUz1rE/nT0okhiFxlQP4o7poAEK4vU2Lj6xpd3j6c+GkfMIkv6q1+taXV1Nxs8jcOqIoJMdgLjBB2w44HRAyzGkPpweL5fL6RX1rsdSPjXHuOBAJO16lwr6h+Fst9tpG/9ms5nayUZezLtqtZoiRnaXRRdpK9uEd7tdNRqNlKb0l2XShq2tLa2srGh+fj71vc9BL/SM6Z3oxJ32j6kdZwMZe7/+QQoRc2SCPFCQeoDZ9dYBjTtFB2Dr6+tqtVqJIZF6gI1CUPTIdddTNthWB8alUikFfJ5aZJ8Q9vBBf0lDAcS5Ls/U7ebfis29+N6ZZI73VU4TExNpV2E/xpmfUqmU258FUCLlg2iADuOCvxgZGUlb3U9NTaXvuX6RTYwMawz4HVhH0OG1LdgKgiHGar9y6AFKlOiki6LOIkce/460qu+uGveOcEbBByEaHb53RQaUOODw4rH4I/WcWhFq5xq0xx1f0fO7Q8IYtNvt3IodLz70vDorjlBEX7LK/XAmcTJwTpG4MfO2+1j69w5O+hl3nLM/90EKhl1SIQUe0xtFElmkmLrwe7mDZakjO6zG6NbbBnvAxljen9yTtm5ubqY9F/y+HjxwL78P+uC65LUvbhABJu12O+2H4vVhsCds4AbYhtXgfixhBbDTTpjDLNtZatxut9NGb65DrMygX73I12tnfPycKo9RqDMnzgy7bjtbcdD6y/yPaUFPVTlDxzHuuPjM61T4fHl5OfUJdgeWC131PmbvEsYI1qzb7eZWr1EPAovob9elT7FrFIHzLh7015/HAy0fG3SYduJDXOepDWPZtNTb5NDnDuc6M+0F687yRRvgvqXZbKaXhMbvPAjvdDqJsWSs+R2ZbPZ1ybIsFZB7kOjsie+mvl851ADFI75+qyK8M/eiR/uBGQxqTNu40aHjPR8XUWJEjtyr09nZyhjF8aVkrjT+LK6A/VgTP9ev1++5o5OQlCZEqVTaFYFXKpXEvmCQmLhc1ycZL8dyJ9gPYPpzOmrvB1ziTzTsPgY+gQ+SQYmgQspHl0WsoKdD/BlcVz1yYjxwugsLCykqxYDCunC8s2OuO94+znXKnHlCn7M5IREfBtUZtAiq/TMcMmwPc4XUTgQxvLdkbW0t50iIRilI9DQP7Mnq6moq7CXthEMYGtrZ7h6n5/ekiFbqgUxP+8SAJ4I7HCXt9Bw+50TQHfvtIMRZH/Ym8c95Lmc9vW4CvfUIm/ofSQmEMmZZlqUaE9dP32QPtoMVZdjgaENhDd2pY9tY0cauwNi3arW6a0fZ2B/ov6/S8bnDcV5USh+QagJgwKZwHACOt3RzbQcv6DT9Mzo6msARfbC9vfPixZmZmTRvK5VK7r096KHXnPnYOvDgeRYXFxOD6gGJp9oJXC/U5h5qgOITw1kDd4TS7n1REJ8oRcc7Y8Hn/PYdZP23b3fPsTh0n7iOcD2F4oYXpBsBj0eaXNufod/v6NycESLXS5+yoRb1C56GQpmdjmdyF7Wf+xKJe/97Gx2EeN9F2a+BLgIv3v4rAaD4/w469qJBvYYkRjkUVDNeGNPFxcWUDvF7YmycrXEWgDZxnDNo6MDExIRqtVqqJVhbW0vMRNSd6KDisxcBIk+ZUFibZVmuVkVSrqAPI02/8DZgdx6AqFKplPrG93GhP3ACrrs+d9wx8V3UfafBi0C3s30xZeK2ywH3QQntoyAZp+SBSmwvfcUqrBgY+Z4ppDBw4mzrTqQu9fYoAcTgyNFbd/5u6zjXXxeA/W00GoUAs9VqqVqt5rYyYJ64zfMi/AhGsyxLwIj+o+B2fHw8xz7TB+grtplU0/b2du4t0l4MDBAheOcY+mRjY0Orq6u6+uqrJe3e0t73MHFgHMEnz7G5uZleGjk8PKypqanEQPkc8eDgPsOgYCSZEBQTSeenxeP3Eek6vewCAnemxAfUf/tE9VykG3i+Q9lxMDhSjDxOtQh88Pl+0ibO9PgbbHEigBVysvxN9IMx8QJH7o+hZuJ5G52i970wisbHwUpkS+ivokgyjqFPPGe8aO9BGntnSoiQ/HnjmAMWPIp0x+XsCcdIO1R5o9HI6XJMM3o0yxJPSbmI1oEDOuo6hdGPANiZHV9S6uyasyhcT8oDa1Iy3AvdxPDhsNi7gjbiNCkS5F09EZzhBM6ePZtWtflYEOVSb+DjElfY0Xaf67GAMOp1pMO9b/m5EmpPaJMHaTyrOzB/Tk8/+OoR9C8CV2yS7/khKaUZu92d3WRXVla0vr6u0dHRxBrCuEn5fWhw/hyHPYO5KZfL6d012DKvVxodHdXU1FQqXmV+up77mMLs+Pjx48DMf2fZzu61AGsPAmDau91uqo9ykOT1YuysjN2W8vvr+PJ5Akwv0I7j5+DEr4P/A9xXKpXcNv0IRcFsL3CfASgYai9ic6MWo3GXaCAcuPiE4zqgQCaPMyeIb+TGtbiO1EPujqJ9knokISmhYq95iSCoH/vj/0f06+1zSpLjHVi12+2cwUTpaSsFtxzDs3hdhbfdo844Fv3GKBr1GFH2izh9gnmkCki5kGKtSyEOGNxIeb9FPZaKGTWMqvf7uXPn0jJJ30DNrwfQRCcZO/4GWDjDAhDxpZzOcqBPUM7o8eTkZE7f0LnIyvk1pPwLEJ26HhoaSq+l59mJoD0yxDl6KstrcojCHYBAs1NM6YCuWq2qWq3monUftwiAI6MaAx/XzaizPm8P+iWBCPMYlsOBJT8c58eyvLzo2b0Obm1tTaVSSfV6Pe33gt5tbW1peXk51W9Ivd1avd8dDEhKS+w5FkZjamoq53B9P5Ctra307iWOd1ALeCmyN56O9YCB9sJ8wAiOj4+n2j/6j0LVtbW1HCvq4xDBM3NjdHQ0zVtfAccc8zcke1sZi2hz4li6L+HYdrudAgauCWPjGYT7DEBhMDY2NnJ7PLgUReD9ruXfe3TtqRsG2r9n4PxaknYZYJwIFeI4dYynL0VDUT3ydFSNskVhEsaohva6Y4iG0B3S8PBwbmtmv7ZHGd1uN62r9ygIY+7ULW0BTbvzjX/HMYvsQr9IlGNjBMrnGCP686DFgZuDuZgyiOAMx+CrJGA8hoaGtLS0pGazmQwCzhvH659FFsXfp4S+eb6f84eHhzU2NqYjR46k8Qe0+PjUajXNzMykl6wxF3hOj+YisCXq8nkC4HDnWCqV0k6ZgGqWxjuTwioirwNwAE9NijvgiYkJTU5O5uYSe2j4uPi8jyDao8849i6uB57ycaYtBiWXW9wGUl/k89sBG/2Ore7noDxNxJh5UTPnw5p52pD5wDkeBEpKxbV+nguAnw0ISUUDliiUBbz4faX+KyndPvN8XhCMvlOES/t87vG/1HtrNn0A+0NfA97RK/cnPBffeYrI/aYHCgCrfmwg41+pVBIL7/vIMJbr6+u5RSYXYncPNUBx5+oO+3zsSZEUgRMGyAfEnYgrg9SjvuN1Il0HFR/ztU6NE/lBdXp+U+opUtFzRkcSDSPHOgKG+mTVA3T6yMhI+swLfV2pPWJ2gEL7vF7CI0JPeUWwsZ/xKnom2kO/85zOUOB4DppBkXazQzhtvnPWw8cSA+U0sW+Ex6qAaKi5NmMFQ8B5jJ3n8aX8u1MAJt1uN0WARJrlcjkZWnSWezgVz3zgeg6Y0O1Y90L6ib9Z8QBr1263NTw8rNnZ2fS2Vow61yLCY7Msj7Z5q+za2lpqJyuCut2ujhw5kus/QBnjhuPxtLP3ZWQWilIDPg4OnnBWPrcOSnwOeQDjARwMAwEkY+VA0W2o6zfjzWfch/022JDP6z24rttX9JGUiTttdL9eryegCZsGY45eAhI8aPBgKqa40V8AFm2hT7Kst3u3BxWScgWy7CHEucwfrhkDTTbWpA1Sz06Pjo7mlki7f/D+pu1uV4pSdviuVquVG4dWq5UDI4wd3/OzXznUAEXqRRm+BHYvR9cvao/HoCQoiEdF7nwxUBQXEZm7kXWD4u2lIIoJS57caxKk3atz/O/zRVLRsRUxDu70AER+3chCeB+giP7eimh8pB6LFI1tUVt8DIq+j4Y7sisRCGEYHLj4Vv4HJa6HDvxc13iWyEpISqso0EN0kpSFR62S0ooUxs7HAL1DXFcYN4w6+sHfGGb2U/FaA68DcAPnhpLjmGdueCXlABv9Boimj5j/UNekU2FWuf76+nqi0n2LdHe6EfwCzldWVnTkyJHcjrQOEr0g06Wo/iTOR2cZHcz7ahRP7R00g4JeOSsRAQr6V8RgeopXygeI2F3GzZlcru91h5zrheGkTRz8wOAxVhMTE5qens6lnvwFhcw5dImCYJ7VAzN+e7pe6hXgehANkPAAodvd2bPI3/3kr6fA0fucJLCkr7wvsAvOoHqfFKVoImBkXKLtRU95AaIH1ixl9powfwZ0Z79yqAGKT2jfHt4/L3J4/YBJdHRMCJ9gUGnuBEGIktJg4FQQpwT9M8AJGw951BcRbczzx7bH/6Oi8Vz0jaN9HLaDLhyN7zHgz+GOwfudaNsnMzUDOCyu55G0j2vR2Pg4uoF3pso/x9A5aPHr+7hdbikaL4/G+IksAv2FE4DFcCfuhoPnhvWQlN794YCR6NL11wE6c4wiaujper2+y0Dj/DGOznJGlo3f6J3rCADei7idfXHgxTL9VquVImmAKM7dWQ6WHkv5JbAeaKDbnt5aWFjIvePE5yR7sLjRdwY2gs4iww/bJ+X3VaI/78leEhdbaJcvGHB9dlBCOlfKBxeuG/5DoMR1eGWCr3Chr1kejAOWeiw2AMADTOqlsKv0Nzor9XYB9vY6Mw445/mcaWAeejDEvHJbHHdA5jcbBgKimQfNZjOlLj1IBjj5knjGx/dMcaad1WgOXpDIZhWJ6y+pVM7NsizVoXBP9B828j7JoGDMXCL7gETDyGdRfKUE16EWxL9zwwtqjNE9EulgN24ok9cE+L09xRMBij+rsxucT994pAjqdqrQDWeWZYm6l5Rb4kd05HU/XIOco+c/HTjGmpTY/3Esiow4bY1jEEGMv6fFn5njDxKg0E76AMfkegz4jek0Byk4LwcwvKGaNATXdiDizh1Q46CbMWXMSK/4VviA6Gq1mlsdRVtx7qx+wMnTFu8HZzmYN9FQOpVPwTrUv7863g0+KRpfdec72Xo06CtHcIKMiRvmRqOha665JjeP3Qk4LQ7gieAZid953U9kUACIkX283IIN8eXd3gcOyEjlcl78cfHnI8XBcdzLbaUXjrLCx20f44kOA9ABQLxPCNsaU0fcT8oXcvt89HkVx9Z1gzbw98TERNrt2P2Agz0ANvN1ampK6+vrqViXmi9sKrrjy+lrtVryW9gJ7EJReUEcZ9oRfYPvfuv9wB42pLV8ZVBcWbQfOdQAhSgZpYmA4HznSsVUKQPtnR+jPimf+vCI0893as8nEH/7O3fcyEH7xYja2xNBSgRczoS4U/BncHYGg+6gywGP03M8kxsj+j8al2q1mttJlnZ5FBUNVr//+/24w+Nv3hBKxODADyB1UOIOj36NLAQAhb7jPCn//hlnDLJsZ6lip7OzJfjk5GR6YR50M+O2tbWVKGUfZ3TRDZ8zC/4DnQv9zNJM9kKoVCppF05nWpwhkpRbLeNARcqDUa97oA3xnSKdTiftOQFzFNkgryUpl8uamZnZtcyS/o3At9PZWVo5Ozu7K+J2JsDv6ePtdiF+x3m+4ymG3yPkg6yf8lUu2GC3P/SZg13Xc0+vuQ2lBg7WABYQewcbw318SwmujW7Fd90AQklj+yoXwA9BTZZl6Z1OIyMjmpycTAydg1Ipv0WEsyfoMG3h+twP+8M7nvx9UA7oNjY2Uj0ZAGZ0dDQBKS9M9d2IpZ05tbq6qm53J30UN0v0VKrb4Kjv/jfjV7TxqKTErOAH2C4fvfZ3aO1HDjVAAcX52nokdmz8rgiY+CA4OIjFaZ679qXHMeIh8vQIEYX2yeCFgT7RPb8v5RkSf64i9Ousiiucf+7IvoiW9pVEbMLle6g4Lcr53W43RQH+wzt9PCIpGpv4DEURV/yb35Fu7HZ3XktfqVR09OjRVNhJMddB1qCgK+4QPYpmMtOnjAPPF6lb+haj4LtLFjlYDCdFgc7KRB3jf3L7rhO+Bb6vEvD9SVqtlmZmZlQqlXLUe4wuPUqNY0770TOOk3acBEWHgDmWAHsKjOfkHP8ZHR1NKykAi6VSKc1tn/8jIyO5t3YXRdzMAwcinvrwsY7AxdNvrheertxr3lxqoS2k3hhLByiAbF/9yP/YxrgnCs/J0lRALw6VsaC2yPvaU2Nur71uBxAv7YxbtVrNBYIe2HBtwIkvQae9fl5k/BijGKzCgMA+OlvHMmrOqdVq2t7e1tmzZ3N1ivQvusju0Dyfg0JAjG/A5sL3bquLbK3/OBPiAJJzWbXjQaAzn/cZgOIGI07YyC4UGTwp7+D8HI/iokGg472YicHySYqiEcETbXS73V0rWDzC8PZzX6eueW7+diUpOtcNuhtISUmRPPfP9xhr2odxgXJ0hS9ymp5/Z58Jru3ovQgw+mTfa8zij7eJ52GpIOCQVRkHbeT57brjEcr6+vqupaz0nfeP6ze1Ph51k68nmsGAu1H0iDbLstxYOXhwsL29vZ3YEdpSLpeT46K2ygsH0RP0jecuWqUW+8tBgvcH5/Pbtx1oNpupvZubm1pZWUlOjiJfVpiUSr1dPSWlVRNsu+45f5yNR9L0AVGyp1SjHXH2oOiHFUlFAOWgUzwOoPnfmTnajF1EnxkHryXx8ec6y8vLKY3B3PDAD/vpNW7oI+f4Lsa0h/oL12dvl9RLyzBua2trmpmZye2O7MA4LoWW8uyy90e8vtRbLOFp8+Xl5XQedV7+4k0PDAE4rKhxFok5wf1ardaueR6DXtofgxrXQVgQZ+QdoHCMg0P601f17EcOPUDZ2NhIu/v1m7RFji4OTvwcZ+EOj9QFNKQraLymC3Q03zuij5Q314lt9u8jGIkMSlEbuJYjexSIwkKMu0fsTDZH5pVKJU109qVwY+KMD45ye3tnB0O2xHdH4+2O41T0DEWRdXw+Z7uazWbar4Gx87TJQYjXw0j5CJK+8ud0I+j95pE4RomUi9ffrK2tpffUcJ6kNI7uRH1eeGTsFDt9SGoGI+i64G+I9fy7A1mfAxF0s++E6zj38R2Waau/g4h7YNC3t7dVr9fVarXSzpZczyNcX+rMPScmJnZFrgCe6GjRdx8Xnzv+Qz95WpgfaHv6Q+oBg71s3eUQb3cEDx6pR5DluuwBnLODa2trajQaqW89jcAKFPo2AluvnYrAYGRkREeOHMm93wdbxvygVsODU0/J8JwUQ7vuuQ2Ojpu2uS77HKatHlB4gFGr1bS0tJRWqJVKpTT3/HkJvggwfA4DHNbW1hJzRBsjwJLyttRZXV9dVPScnEsfuzCe1ADtRw41QAGZk5uNnVQk7vCRoujd/y6Xy7niJAbVv3eqzw2LTx4pv38JEZpvuAMt7wW3Hp36b+4RFcSftchpeySAsqCEKKCfC2vi0QvALMt6L/LyiNGr3ZlsAAbPIxe1fT/jWPScsc08Kw4betFTCAclDn4jUMFgQoHzTHzvzIGzKV6/wji4MeG5MYA4Z6eGi9oj9aJUQEClUkl7SLDUkXnom2YNDw+rWq0mJ+/siYs7fu7JnJB6tD15ek9/AIRgfQDN6Ky/Q+XEiRPJAXrqgT5AN2kP0Sp6BNviY0gf4gS8bc52FIGTmAJwJhWn4+fGlYUHIc4QSb09cmgfQIUxiAwCv+PfRPmk7nn2oaEhzczM5AAD57ij5KWYbFCIHfBN1phXY2NjKV3JGFFQjY0H0Hufo2s+J4vsMvMTttkZSLdPHCv1Vt+gc6SkqSXjnTceJDAetLlarebGxplQnr/ZbOrYsWO5gNoDEY73+QErwpJvApF+THRM40Sgs1851ACFYqdo7Fy884pAyfmACkpDVBSRZRwcDLBHU858ONjwKM2V1o29I243dB5t+r0BCYi30cEM92fpnSs1Kxr8el5oijIDbohkfKtld6JuoGL7ioAVz+jt7scIFRn/mDaJ+XDvy4MSZ9HieAGEpd17pLg4QJGUW53T7XYTW0Cfx+gTx8rnsT7EmQyKXdlRtVwu5wr7MMB+TSj1ubk5TU1N5VYTuH5I+U3keG76R+rV2EhKRZbsA8N12XWW8+kv9rDwVMDi4uKumgJJaaMpQJzPF8AWczxKtAdFVHrU0SI2AQPujA4AylM9ByXO5HQ6nQQmaFepVEp7zUT2xMfVUz7YDd4Tw14hjB0pDEmJ8VtfX8+ljGDOxsbGUkqkVColBoQUB8CfVAXg1pfm8oztdjttmIY4axIDnQhSPCD0dBL65vMAPRsfH8+9SX5sbEz1el3T09M6c+ZMAkmlUin3Ekw/Hv2VeuCeVT9xpZKnuLxt+C+AycrKiprNZipgdlYp6mORfY3Adj9yqAEK6DJG0NGRu4FwxYjOMSoLEwXljFGAGx8YD6lX2e2TJDIdTACcQmyPp4UiY1KE1GP7XGlitOLX8s/jUlMmCYo1Pj6eHKjvCOrtwqHhrNwJcBwOpp/sl93YC7T4JPDVSF6jcZBCeyJTQZQTI2cHFRwff3z/HMAJYCOu4JHyRYMAVWcnHKQMD++8qRTxFA2OgmcCtIyMjBTuk+LONuqvM0KdTq9YlXdSOdhykFCpVNJutjGy63a7OWCFrpOCIGL3oIL+8KXGMEDuAPrNpwic+dufO/7trIqnTegPHMlBbzKIY6Kv2XmX4lLABNG72ywPjvihj4nOpV4gQ/qQvpB6Bchub10/AKycQ7qD+3japtvtampqKqdvUs+p+y7LzsjGtHxRoMW8Y/xxzhS7xvFnPqFnPE+lUlGtVtPs7KwajUYqPGXRAsAHu+speAcFbo99+wJ/FtoQn42aOL9WBOTns9ne7/uVQw1QpPxqkH4OK1JXUr7eoeh7DFXMzcdzYnrHjayjUhSHdvI/gvPkmfgsou0i5qRocriCFfUJ1/HIF6OPYgPMvBrb2RbAlRd5+bg4u+U1Bq7Y8XfRMxWNUT8H4D/RqHmU5f16EOLg2Z+dYlb2n3E6P7JTXEfKv+BrfX09bW6F+PbTTn8DPti23VMV6Ch6jdH2fXW8cBojznleJEubY60JY+sOC3Gg6+2F7cGhYMRpG0squ91uqhnj3LW1NbVaLc3Pz+tf//VfE6CDtWTeO2ighsZ/SJECtmNEzd8+3g42449/Tr+22+3cdvqMs3Swmww6m5xlO5tzeU0XqREPziTlxp0xR08kpaXhrpOc4wXd6BnXZH5gjwAs6AcgVFLOrrEz7NTUlMrlctq2HV2rVqspjYnespLN7+9MSQRiCG1Cv7yGij5F/7CdrlMECLOzs7rjjjty6SKfXx4gADYAJL7PjwM8QEsRq4Jtp19ch/cTRLpk2U4a7T5TgxKjFaSfA+P/6JiKmJRIW0VHAaXs98C4cD9P0ziNybkoEooNReq551iwF58hRtE+wfb64VyeCyX16CTLepuZMbGcrvR3rvgkjtF0TGM4kIvP4GMQj99rTIv+dyo6Rqox+r3cEseT9i4vL+c2BuM3x0XHxzXcSDUajcTC+N4ZHh05K8Bxfm2iM9claF10gSXGOHB0hWui4wAfnsH7f69xpN1FINZrPTxSxejylmN3Vj6XuMa5c+dy7xnyNjmAkPKsUbm8sweM61ERs8l3nnrqx6p4+oZ0x9jYWAKrPr+bzea+9OxSSFzuzH5DUq8eAudPXzkI9f5yHYWt5h05XJ9n5nhAjG/jAIvgbJ2zvBzH9arVqq655pqcHSK6xy5yfQeg2D/GSMrbUf4vCiBpF+wJCxIiewlDBVuG3xgdHdWxY8e0sLCgxcXFlPryNKvPX6mnb6RCYVSpK4lBhbebz/04rlkEsM8nbpP3K4caoBR1zF5gxA38XoyLU6tuYDge2tEjUq4d3+8RGRYMnKc+3HD6ErLzAYwiKQIsCArsRbj87xMkFlrRRndiGAWelRoPdgx1UOXsUTT6FyqRui9iYhhD/+37NvDs3jcHIRg22kxaZmJiIkf1Sz2GhHOiMDZOk2PIici88BL95d6eAvIiafLd9JtHXuiCGzb0gZf1TU9P5xwH57luFgFnqbioFMPqFD0GHB3mXGcp/R0s1JiUSjvFnHfddVdyAOxO6kWzPDc1DES0rCqJKczIBjFeRUY9BjeeOiHdNz4+nrsW43xQ4u1mbsE+oEvS7oJYZwRiP/kz1Wq19DoG1xXqiOgv2DMvZKY9Xjhaq9VUrVYTMAYEsZ08rAjHo0eAJ+y31wx5AOlAimdhPvp89fPoJ+8P7gdrMTo6mtg/Uu61Wk0nT55Mm6FR/Os2lvqfWq2WxgjGj4CC1BxAzMEk7XM/E1e3cYzXoOwHpNynAAoK1Q9wxEgF6efkPbqLLIVTejEa4pjYjlKplJC9I35H5VLP6Pi9YrQc00bRoPvk98+cgvQohJUXFIxRTInCUmjmURuFaaB+jsFgUIsASIm5Tc/H7qXQRQ7Kx7AfmxKNvaQERjD2TqUepHg7AXvLy8tpp0icMMbJiyVjvzlDQSRL9MV4SsrR3lF/OM9BHfrikbIzFHNzc8mQ0k7vd4wnSzs9unXnhLGOcwfhnJhu5XOfP77lPcfE+e5GttvdKSZuNBrJkNNfkSbn2FqtlpyaF+96sbDXKfh4F4EVB2EOVHw7fxwMx19IoeHFlqIgw+sgpN2LEHwMfOzpM64xNjaW2xF1fX09t0TdxxS2Af1h1RA6Xq1W0/WZS+Xyzvbvzuxh0wG97DJbq9VyzHB8Fk+9ecDjAWl06AANZ6adjQcgUftCMIxtb7fbOnLkiNbW1nTnnXemtvgSaOYc7CH3LpV2VrRxL38VCH3MMzhYoZ8coPi86hfs99Od+8w+KHtNUqfu3IG5skTDFekqp3Sh5YhwooJyXtykxtkYIjcUGBrUQQDKIil3fXcY/lkRs+J/O9DhHi4YCacTeV6W5PneFt4vnOvV+140Fx1RROgRmPlYxPHx5ygCly4+joARXwWAETvfdS6l4IwAEaurq1paWkrROgaZKB5xkOeMAOPHuU6Fw6BAK9MvOEJWTnBP3y3Wo1LfL6dcLqdxRreYG+xNRIpHUgJetIdzHFTzTJISMxOBrNea+L4S3kc+rt4HXjvjBpZnajabuTnGPKCNRKrtdlvz8/O7lkszd+nXCIQcgBQxKMwjbAcAJa5Wcdt2EOJ1TFF8/Px/PnNb5XbE56unFnCivm8HNonUHKwf+jsyMqKJiYmkE84woMfsdDw6OprYYoAD7eO+vAXYgYw7c7dlzqLQXuxRUb9xnLMK1Ns4+w5rR+3V/Py8VlZWEivDcdgLbDYMXKnU2zsF0EOK3kF4BNkOth10F9nr/erOfQag+CR38YkfOzEeu1cnOzUe8/Ecj/HybZ+9XR7plUqlXS81IwLziVmkLFHxY9tjhFIEXnwCee5RUlJ8Im5SVYuLi7nrxRQLRtOdDU6KrdD9vu5g43P0AyNF41gkPu4OMjF2FKd5XcpBCbvZwko1Gg01Go1d0R395UbEjQVGFoDioD1+T3TmkRyFidvb26mmZGhoKBWycWypVEo1F7ApjL+DcSmvi6QPpd3zNYJqxMcOB+JA3udGjMo539OZTstHZsUBFM86PDyc9tQAzDhgZBm4z1kH+j5GtMnZH2fOnDGhD/1Y3tcSGRQPXi63OMPsczEynW4PioI+/83eOfS3AzEvbI9sS6lUSmkQ5g0670Wy6+vraY8Tt3XVajUBdGqnADFjY2NpCfX4+HiOzSENRD94Wohnj33gQa0HjYBa+g4f4atyvPAV3dnY2NDCwkJiF1m1x2o2QA8MjYMe77vp6emcTfHyAxZFeIo/ArELCfQIkvYrhxqgRIcUJ0MRSDnf9XBabuziGng+48dRsUc2rowYcjcuTvsCcDieScp1HGQURSIxoioCbW4c/T4Yc1ILPCN523K5nLYI9wp+ogomWDRWGFbfPZbniWPTb4ziWBY9X9GY+3j4zoxEzJGNutzCu4DYY2BpaWmXs6L97vA8N87fXk8BmIjRv9TLI7darbQhlm+gJ+04UrbaZpt99IaUBoCBfVDQW19ZA9hxA+5gAt2T8sWfkeVzRhF2UsoDHzf+gGjmWEyj+JzBEE9PT6e+aDabGh0d1eTkZPrMVy854I3zryjI8ADDAxivh4h2xPV5bW0trZJxBuUg2b/INCPYRW9nZMe8v7x/cNYe9LhD91RluVxObwMGNHiNEVtPMEakdmEhaKs7WHSOolMPNEkPe+rPbYfrcXxWB8M+H/wc2kJ/uA3wOc5c5S3zMzMzWl1dTXNVUm6jN/cXvmwdXZyYmMjt/YIO+w9673ocWbILEQKj/cqhBihFedx+Ds2laIJH1sWVNoIDDKWnb/waPrFwLF7E59fz9ApOKeYz+V0UcZ7PUPXrh1iE6QbbJ3OtVksOhpUDvkeL7+LpdCGRK1vMA2YibXk+cQdbBFKKruERngMo8p/kaQ8SoFBvglNkgzBPl7kjd4CCHnlxGwCl2+2mVRDO6mEcYZKcLYvRPDQxcwAdI9L0XYW5rxtcloj6C91od8znc45/5g6LtvnzS73cvc/XCMQw8Og6z+hzFD2fnZ1Vp9PRqVOnkl7RXgdybuBJZUVmy+8daXHGgL4G9Hta2O3Z5uZmen09+nGhNPnFln7pHUm7bHG0qVI+MPL6Emy5O03OiSkgbCT94uAD/eaHQIm5gF7y+oL4jipngLhHZC2l/g462iyeHR2MYMX7ydkjqbcfi9RjRFm+z94oZ8+eTSwLaUE/3ouASbUC4j1Y9eCDpdnosS9Fjv5uv7accVxZWdnXsdIhByj9oomizjpf1LEXOEFpMCZOx8VC3Xi/mJvkh3wiQIbJ4waYNuAs/Ie2ST3wUgTSXBzR+zP7hPT2gKBZ1cMryNfX19OzM9Gk3rbKsVCOScHnknIRtbcttvt8gKTo+xi1SfllnuwM7O253LK4uJiAbrPZTI5dUiEwKUrtOEiRemmKiYkJra6upg2Rut2dZalcxxkB9BlD4/d1cEORK8aI/vMtr8vlctr6HoDiIJD2Iui36xDiTKGna5zud9aHfvNniTVdPi8cBGGAZ2dnJUmnT59O4A3qnxUkjBPL7P0a9FVkvRgvHw/6nesAUDzVA6BeXV3Nveiu3W4feJFsP/E5GB2X2x+cIP1DcMO1PXVIP0RmZmxsLB1H0MMuqc5QEZBsb2+nwlmeg+8jiGVs1tfX08Z8tJdz3Q5Hu+ygGx10wOr+hvvxDIAETw9ia7kGc2x6elrNZjMFmsztWq22az6Xy+XEBNXr9ZyvY55FJoW+BaC4j6AfLpRJuRAG5YJCyJtvvlmPfOQjNTk5qaNHj+oZz3iGPve5z+WOWV9f10033aS5uTnVajU985nP1OnTp3PHfOUrX9FTn/pUVatVHT16VL/wC79wQUuPEJ8I8bO9nBwSkaC021g6gi9SYv/Mj/fIKU5Yv34sniLC8mLcokkewcZe4pOH/2MEE4+ReqwKCNwNQ7VaVa1WS4VXPLMXx3qfx4hvr7bHtnKN+J1fvx84KZVKue3eMWLnzp3btVTzcuru6uqq2u22VldXc063348bEHd8fIYeOWvBuRsbG4nmZsM9jDRgzVc5lMs7754C5PibZdGHiYmJtJplbGxM4+PjOZ1woyop1//+HDCK8TmLaGWeF/F6A8+v+9xwIBKvVyr1tuNHb9FtTxmg/9VqNfdmcgo4MehxTJzB8+chmm6321peXk5LaiNIAWQtLi7q85//vG677Tb93d/9nf72b/9WX/7ylw9Md88Hjorsqn/n4+sMM6tPCI7QDUk58F6p7OwazCZqY2NjidHCZvlybUmJ+XMw5AEm36ErDkY8GCvSy8j+RT2lDzwwRP+87sPPkfJ1ig5qOL5araZ5R9Ev9SSkgugfggovdncmO84P19miYCmyRJdKLgigfOADH9BNN92kD33oQ7rlllu0tbWlJz7xiWl1hCT93M/9nN75znfqz//8z/WBD3xAd911l773e783fd/pdPTUpz5Vm5ub+j//5//ojW98o97whjfoJS95yQU3HqPXz0FFiR1aRMX591IPQEj59+xE6o6BdhCC8nMvL47rB1ycrYl0aUToSGRU9iMe5Xl04Ebd6ziIVlBY0jZTU1OamZlRtVpNUTPHOFAhCipyHrHPi57FjysaY+8rZ59wJN5vjFk04JdTd9vtdnJM9HEEINExFzlg+tqjd66XZTvLEkkhUPcC1evFwoDI9fV1NZvN1C76OjpyjwQx3l4A568yiBG368ZeDFlkPJh/gGI38gAlWIYikBeBAg4BffZN6yi89D7GAXBv6HS+c732AsfIeHkNw/r6upaWltRoNNLqkviOExz28ePHdf3112ttbU1///d/f2C6ez7ZK1iIYNTZjPiWeA8aSbWRfqRotFwuJ13mmvGN7F6/gv57cEbKA90aGhpKuuRBJsDIx9ZTH0WBXvQl9IUzDzH48DoZ9xceuHqNDKtDt7a2NDExoSNHjiSQNT4+nupTPDXnLz30ujUPrCMgc8arXx3SxZYL4rjf85735P5/wxveoKNHj+r222/Xd3zHd2h5eVn/7b/9N73lLW/Rd33Xd0mSXv/61+sbv/Eb9aEPfUiPecxj9Ld/+7f69Kc/rb/7u7/TsWPH9PCHP1y/+Zu/qV/6pV/Sf/yP/zG3XPB84gPYD6hggD1adyBS5NRxYM5s8HlULP72ehRnBzzHijKVSqWc8nuUwHkOOhyhx2coAiv9lMavFcESkyPS2Hw/PDysycnJhL79Wr53BDR2bAfUpad6isbEx9b/dkfqnzmQcn3g+qSjxsfHdzEm7jgvt+72Y5TQCZ6niF2IEQ19DbVNP7ARk6dhJOWOcYeJgyb96CDDrwFgB0Q7+PTX1jubxjOR83fKmB8H/a4fPu9ge9AzQEZ0ErQZhiAWhsfxd9A9MTGhpaUlra2tqVarpf7xdwwB6Nrtdup7HxdniGCeYJYAkzhCapB8XKgVYg5ubGykQHBkZCSXx7/cuns+KQo6fGxjH/HM/koCdJBrULzqtVFu+73GArvNmHlRPNdBR/ifdIbbLdg+2BeO8dSi62vUJ/TCP5OUs7P+GZ87k+Lfc01n1303cp7T/YgHDc7I0H+wVx6wRpYW/fcg1hm+SwlSvqYk/PLysiSl3O3tt9+ura0t3XjjjemYb/iGb9C1116r2267TY95zGN022236aEPfaiOHTuWjnnSk56kn/zJn9SnPvUpfcu3fMuu+3jhj6Q0OYsKsqR89fL5Oq8f60Dnu8Pzc1AmEHocVCm/3FHSLsPlzsgnA8riEaErc7+/+33n1GLR8/sk8ud19gEFZYI4de7fsw2+T3YfC5azevu8vUVRdNE47nUM9+x0dnY0JVJjMhb1xeXW3TgG/rvob/+J7IobbEm5VUC+6oq8OqkYcuukR7wYzoEQBl9SYll4LlYROE3daDRyKRPu4+MUQbd/5npQFExEwOptlfKbX9F+wJSUf38L12HOwo6MjY2l2pBKpZIYJA8mfFWRA8nIgsEGsMoJp0jxJiDFXzHhLBfP1Gw2EztwpejuXlLEenqkTj8BTnx8PPBjPCcmJlK9iAMOruXFx+vr6zl71Ol0cvtOUdPiY8RYAkAAArzB2h0ywMBBSmQ3+XFf4gABifV4kbWh36rV6q43K/u8pW0sbkC319bWkj10W08NlfucGARFvwbg80LkKxKgdLtdvfCFL9RjH/tYPeQhD5EknTp1SiMjI5qens4de+zYMZ06dSod45OE7/muSG6++Wa97GUvK2wDHUw02K+zIlvSD5igGFwzRnQgVUm5gcPAeq6wKBKMx8RUh9PTMdqIFGJ08B6luJGPhsKv6+1zponf8U2YvN479hfH46jcqcUx41qxrfGaRZFYkTP3Z/PzqT3BCPK7CPBcbt2N4gauCBDHdAWCTpLGwbF5X6Bf4+Pjqtfrmpqa0uTkZAIjGEz+5rrOtrGFvqd5Op2Opqentby8vKsol/HBUfg+EW7EPQfuz+u/EZ9rtNHnK3U0Um9XVz/Pl/nSfhycz2FSSCzFxujHYKBarSYw4fR3zOUj6D1sCvU9HqUyjkXBkc8p9uiQDl5395KiuRaBHEDMQbYzAdvb27mN0nC2vrLKa046nd4bg3HysC+RSaSPHaizB47UCyp9oYLba57PbQztdyDs9jGmN2GMeK5SqZT0wO21H+vtIwhwZtt3kI0r+TiPLQ64Z/Q5UZf524HNpQQn0tcAUG666SZ98pOf1D/8wz9czPYUyotf/GK96EUvSv+vrKykFz2hlO5892JO+gETV7jY8TGC9eItlNDz+bTHBxrHHPdP8GsWRYNFCtqPMUGc3aBNPrEcyMU+QwkdjTvaZ0UPS059vwuPikH10u4aBCZvbLeDlQhcIsA837jS3/3Yhssl/XTXZS9djaxJEVjFiOPwYipsZGREMzMzaetu30DPadt43yzLcmwYBh+HzLVnZ2e1vLysRqORQAxtdTDjBYkR+BeNLXrI/JF6NWEOYvx8v49HyFmWpeXQXp8g9Rgn5glpHupLSqWdugaWd9K2SmVneb2vUovG3YMRryfBIXKOt1VSjvEpksnJyQRQLpXsR3f7iTtf/ndgyTPTt/Q97CxjCNBgHBgrlgtz3ZGRkbTJIXaL66CrpVIppaj5n80bef+Pp5q4BuCmVqsl/QFMoktut2Kg4babYMCDCO8fn9txEUZMA3EMekhKF9aUd/lMTk5qdXU11050b3NzM/W/L5hwO+Pj5c9yOeQeAZQXvOAFete73qUPfvCDuvrqq9Pnx48f1+bmphqNRg7Nnz59WsePH0/H/NM//VPuehQrckwU3o0QxRmComi7n0TAEZ00Bh5nFq9JFIRTQPFizQoKQYU+EweAADvBoEOFS/mK7/1KBC4OUuIzO9KP4I7zPQL0PTY8cixaQuzsDM4pgq44DnsxXzFaid/7fd3x8Zz+4/VEfv7l1t1+z8rv6Jxi2sDHEYPdbDaTkUKvpqenNT09rWq1mluqigFmKTD94akPDDmsGEDIdYXof3h453XwGxsbCbxKvbniLJCL6wXi84dnZ36hd67fUm/1nbcz7oAZbUQE8R48sKwY442uRwbUaX7GJ+b0ub7T8bFtPgacuxdAcZr/StBdl6L56oFktC3UiXGM12fUarWUSuNc+ntsbEz1ej0xUthV+h1Gj3tlWabp6enk4IeGhlIai7Rbs9lMoMWLZalxYV7EIAGgUORb6APXawfa0T7iT2BF2IcH4XtnCdFj/Mfm5mZKTfHcrDrzwuQsy9Ku1pExcUbFbTpt8LG+VHJBACXLMv30T/+03v72t+v973+/rr/++tz3j3jEIzQ8PKxbb71Vz3zmMyVJn/vc5/SVr3xFN9xwgyTphhtu0H/6T/9JZ86c0dGjRyVJt9xyi+r1uh784AdfUOP3cl79EF5R1B6v4Z3vxUAohtRjAUDpHO/r+VnPjmLGfDzX4TeFhtCJXsDoyuIOuIhB4f5F4CRGqw7QcCTOBrmC0mba5QArOk43thjx6KDiZPbP+gHO/SB3f1YmXalUSoawCBRdbt0teqYiwB3BVlFUQ0Gsb/ZVLpd1/PjxZFxjCmJoaGjXDr/uqAHbOFQcr7OH3n/oNIAVI4/+Q5/zO4IwN+Y+B/ncddH7Kp4br02hKXMqOn50xMEJoGp8fDyBlCzL0l4wvKnZ2+hGvN84cY+4xDaCt/0wfO6wDlJ3+4kzxm7jfCNCQIQDFAe26J6/XbtSqWhubk7VajXVUpXLvd2icdJxbPjfnbqkBKizLEt1QIwLAIjN+KK/Qbdpd9yyIdoqQC77ltAP+BjXG58HgG50kM+5H/7HU+vsd0LdSpZl6S3G7sPQb3xV1N34vzM6V1yK56abbtJb3vIW/dVf/ZUmJydT7nJqaiotOX3e856nF73oRZqdnVW9XtdP//RP64YbbtBjHvMYSdITn/hEPfjBD9YP/uAP6hWveIVOnTqlX/u1X9NNN910wWg9Mh5FEXY/KVKgGNnzN8qIAXTE68wJ5xPB+b0weHzndRgAG0f9IP64rLnfs9B+wImzP/SRF3n5s2G0MRqAFI9mYpTN5MDo+MoEByfcx7dBd+BUNKZ7fRZBaBzHCHq4H5ERlHzUlcutu/H5+jFDReAyPvfW1lZuFUiWZTpy5IhmZmZyK3EwNiwZxwDFSE9SMmTOAjhVzm/0nHHnFfbdbjc5+M3NzdxmV/5cEZR5/Ur83JlNdKkIyNJXHmAwr+IcIfJFP2EKcRjDw8O5IsP19XWNjo6q1WqpWq1KUm6OxBobZxbdAfA7OjXaeD6Q4umdg9TdIvFx87ofbEW73ZbUs5PokDNH2EwHjoAFNlujHgoHXpQ6Ruc8wHMWFQaRNs7NzeV2U3VAH5cUo2Mx7eptAAw5W8Lzevrcg1vXTw/oaAs66qDWbR2sy/LyclqU4LVLXnPG/NjY2MhtEeHP4SCbfWouBziRLhCgvOY1r5EkPf7xj899/vrXv14//MM/LEn6L//lv6hcLuuZz3ymNjY29KQnPUl/9Ed/lI6tVCp617vepZ/8yZ/UDTfcoImJCT33uc/Vb/zGb1xw44sYlAgu+I7/i76XinfEcwTriuSRDk6d76DuMHooMblRz7f6xPFngNJjAhYxDBEE8J07kKJnj8beC6f8Oi6OmLnmyMiI1tbWcqkiB2kRNMT0RNE9Y9vjmPRjVeJ1ohEpl8vJKO61i+Hl1F0Xfx6PyJzqLgJdAFwvdJOkI0eOaHZ2NoECp6Qx6B6F+b1cN4tAvPexg3PAtUd7DoClnkPi+6gLMf3m94sOnOMBAM6eFAG+CM6LPvNovVQq5V75ENNOXjzuziTuwRINfSw+xNE6hb6fQCtusHZQuttPHFgCQnBsa2traXWd19r4+KJb7P7Kz+joaG5PJmxsfI8YNgcb6uPsxcbMiVJp52WYklIqjzohapFoJ+lSt8FxzBH0lufERpLio52ut4Ao7wcABWAp7pPl7BS22QvCx8bGUnt8JRTn+lLkIhtKG3kn2+UAJ9I9SPGcT8bGxvTqV79ar371q/sec9111+nd7373hdy6UIocGAYjGsEiiRFLdK4ogxsiSTkFYjJwP4+I4j2gMiUlo+TG258LdOusDNeL144AJz5jURTuz+3fST20jwHwvSRwKEzeVquVayNUti+NdiqbNnlbiwBVP4TeD0wVASJ/rmuuuUbr6+vpp2g1z+XU3ShFbEJRJO1jidGAoi6VSpqZmdHMzEzact6BjEeAPLdvcOV678yKG+fobH1Vm9RbLu+Ffb5PjpSn2eM88rmEPnId10s35n5svKZ/5kaZZ4o/1FixIooaM+8brk0BcQQpEYhIvfdrxbmIE2W+FAGp/chB6u5eElOG7Pi6srKSq5dygAyA7na7mpyc1OzsbC5FSIG3F0CzcodxcsZDyqcKvXiZlI4zwoyFv0HYUzJRX2OQGsE07Ah2s1TqrULyIBbQ5LaJN457+9wOoyv+3i2uxfVISbKgQVKqb2FeM0YOUPx3pVJJO1I7sLnUcujfxeO/4997iTs0VwjOJ8XCILvSeTGsO2ev3fBcKmCj0+mkwiWnBb3wEEXhTbI8ExMrMimRQXGKNBp8xJG+O0I/1qMQPqfGAafDkmMU3fc+wfF522L9QnQs+x3jou/9+aMDiJOtH2A9SImgJBqZCOY8MoOVGx0d1dzcXFqlg+75zpSMpztVqed4I4BBvBjPxxBQ6vrmc8MLbB1w8wz8HVM7jB3zyJk+Lzz1PpHyRb5FjIkzPh540N/ofLVaTbv9SkrbqAO0ePUDKz8osnS2Ckfo0a/rI//jpBgXxvywittA/9v7f2NjQ8vLy8kJU39Xq9VS3dDU1JSOHTuWs5lsKOd2SeoFJRHs8Z2kNO7YSBg/txcUMEdAybmsHOK6znxF2+z21HWBv7e3t1PQ6gDc/QvXpJCX5yINxf/uOxyg09cUzeLXAIIwhqQ3/f1ZtJ9zSJM76LzUcugBioOKGH3ymbSbeYiOMh4PcIhFQb6SgOPcQGKsoNqYmDHK9PoTR8Q+6B4BFBl2xJ1W/D/+zfeu3L4ZVIzyeMYsy3IRCpEGEy2CHu8zjzKYgFzDnyGOq/+/H13w/vFo1tsWQd2VIA5G3GlGapxjpV5/kRMulUqanZ1N75Eh4vLVDRhZZ0NiVOlGkvu4Djp48X4kCpWUa3OcV0SOkaHxYxD6gTbHiM1ZMgfG7hT5jutIvY24YrG6p3Hoj9HRUS0tLaW8vq9ao13Q6ePj47tSOHE++RzEuXlajPqCwy4RbLv+8kOxaHyn0fb2tmq1mo4fP56Wxcdl2EX2bGhoKKUwPVjiGOYE90cPALwsu3XHXS73lhNTk1JkGz2A9ACPZ47vWmJ+8Dn1H25DHXQAZlyfqS8ZGxvT1taWxsbG0qstmMs8M7see2EtNl3qFfDS1w6gJanZbGphYSEV1MZl0pdKDjVAiSi9CKi4uBOM0ZujbQbQrxVBitRTTnJyTkFyrOfrKpVK2pjJjRKOw1kFULVHp3tJEfgqAjLxu8ia8MzxHJ/UnMteBP7uC85xSpdnj87OI4QIULzvY5v8uHheNEpFAMWf6UoQHGs0Xjjz9fX1tLRbygNJnGO1WlW9Xs8VtnrEJCmn195vbnS9PoXj6KtoPN1h0C701tOgPu4OxrlHZEcik7IX4KTvfJWOO3kcE84lPlPUGX+WVqul6elpzc/Pa3l5OW1/T9uoE2MFlUfKtMXbXRQkueMk9XjYJdpft9P+/Gtra7lXBYyMjKjdbqtSqejo0aOp5sRZEQfIrheRqaPPsb8+9rHAGvHXdBBc+p4i6BEAwfWT5/bf3hdSb7dt5oantVqtVqqB8e+iLaTtnuqZmZlRpVJRu91O/kVSbg+iUmmHbV1dXU1Ls6VeKsztN6s0seErKytaWlpK+g8jcznkXgFQPOKILArGnO+is3eA4jlNv5YbDYCKK5mnR6Teigacs78QDiVFeWIE6wofUxRFBs7FHUkEO0VRnBuNCFQ4l36IkYJP4Ha7nZay0d/ej5GZgXVxQ1MEKvcCJ7EP/NnO59TOB/YOQgAmHukQCVJUyCvSpV4dFG8xrdfrKRoql8spzeOAwPVWyjtqT0VQRBeBanTwkYlyMAIDiQH2Y5hPXrxYNC5F4GdrayvpWtRR5hSrUvYz7n5vj/RxePxMTk5qZmZGq6urCRQ5iKRNkTkpup/3oUfE9xb2RMo75phqc3C5sLCQ3hQNKzs/P58DBL7dQhT62u2ptyHaQp8LtM1ZGV/hQv2R754MS+NAOtpJ1zUCBH/XEfUfXt9Iqpx0FnU2vpoTNoU55m+YB5iPjY2p0+mklWeVSiUHvDxopC887cPn29s7bz1eWlrS8vJyAim+p9flkEMNUGKETSf3Q7JFBsNBBgY4Xt8dOoPphaN+jE8IjJWjfyabp0tQdlcm/ywaWqk4zxmZgRhxxJx9jFQRByPxWggTF4ob+tHbBsCin4qWIJ9P0YvGNT5Dv+i0KIJ1Y3QlCc6Xoj1WOeC4cIgYc4wN79ahSl9Sqj+Rev3skVfsh/hDf8UUXGQ3fAyccfSaqjg2Ti3HMSoCld4G6m18B0/O89UcknaBfe/nCJh4Pu+bUqmUCmZ5zrGxMU1MTORAidR7E28sMoz3d3sV28XGcpfL8F9q8YDD9cTnaLe7836hlZUVHT9+XOVyOb0ZnVRN3L8n9iGgwXet9kAN3cQWRd/ggMVT0NgbgAX64CwK1/G/4/NK+cUWpKooYvc2SEo6BxMUl2lzD1+xJCktv15dXU26RH/4Zm+81ZyN4LxvYyEzgWe73dbi4mKqQYkryC6lHGqA4tFXkeHpZxDckftqA79GnFAofKxJkXqrVyIDIeW3fOd6TDqnCfkNgve2OiNRNDHi8/m9/BoeJUdD6JGc92EEKQ7isixL0eXa2lpuxQPtc0BHVBAnNH/7dYskMiyMB+3ypbax7yJIuRIBCkYIHcMhA2oXFhaUZZke9KAHqV6vS+rt5eDP6itmGItonCMoiQCXsYv95bR0jPZd/2OKlLawdbnrUQTe3nZ3GtDjDt5pH6wP6R6vWXD7ENOKruOuI75XBceMjIykLfBbrZbGx8dTbQBs1sTExC6wF/uZfvFx9zTRvUH6AbEiWV5e1tjYmKrVqqamphJDG8cRvfZ5TrAHmC1iwD1Q4n/XA/SVYwAEnBeXA7s9htXoZ5tdT31e+GcOQGDReP7x8fFdepNlvfeMedBIH7ouMY+lnTqSc+fOpZWMzoRjb3z5PL99T5WieX8p5VADlDho/O1Is2iCuCKhqBjdyB74sdLuVQJu1Dy14xGrKzQKFVfEIA5QIsvQD5BE48c5Hil7dBgdSZFTd6AVjaYXleFw6vX6ri2To4PgeR1QxGeI/R3vX9SmaAz8OSIwuRLBCeIRU1HkVC7vbDh39913a3Z2NoFdB6CuS0UgNBpq/45+cX3meAeqnuZ04OzzyY9jye7o6KhqtVoymD5urqvRsdNe0jdcD/GIlhfIeb/w28Gf2we/D+32voh1PAQYbG7FW3J9a3V+x7RC0c/W1pYWFxcvW17/ckicp9Ee8zn2YGFhQdddd13qb8bPbYmDEvSPsfBAz+8Zxz8yqA7IscnMK76HOfH55eyd+5CoT1yfIENSepN1s9lUs9lMhe4EcePj46rVapqamkqvo/B+o40+D+kX7DFMI31cLpc1OTmpiYmJxIa0221NTEyka8Zl88yXVqultbW1A7GfhxqgOBCRig2yfx6Vx4EA1/FrehToyNGNVXSErjA+IUGm1AVQuc4GbrQLZfSIMTqO+IxFEZo/fzzOqdIYQXJsvxSMo2cMxMjISHqJIMad6MdBX1E6LMr52JP4U2QUiliTyARciSDFHWh0plJvDNvtthYWFnJ7KEi9VV+RKfFzXWLE5/3kFfzxelEnabuPNbroGxP6ahy/tutuBE7oJn0S6xG8rb4qBz30CNLBd9TjyBS60G53jKST2KMCXS+KnovmrduTU6dOaXFx8V5TfyLtrh+Ldsl1lpQHu8wCvv34yET5/OYY7hPtcPztuhaZvsg+Ms7cC9vZr9YottH/Zi8SANmpU6fUbDYl7X7jdqvVytW8uO4BlOJSZPdHrOxxxlOS6vW6xsbG1Gw2dfr0abVaLdVqtRzgcXCysbGhpaWldH1fBXQ55FADlKLo2kFEUfTvEunqCEI8hcDxXsfBZ+RK+c6NnVOATiH6MjjoRXJ/Tm0irvgOrIocT1EfuXOhLbSTv/25YoRc1I8YYAAKhVmxPziWZ4VpYtL1A5nxnkURWWyP/479VhQtX0niIC4CSCnvYFdWVlStVjU5OZmWGHqUKfWWyxaBXM/V+3cerUbAG4G397dHkdDFvgmcF6B7JOvX5VpxfBxEFzGOnvbhuWMU6O2gvb4U2p+3H9D3+UA7sBG85TjW+Pgz+f15rna7rS9/+cuXNa9/ucSDvTjP0WlqTY4dO6Ysy9RoNHLLuLEX0u5+dLY0MjQRHBT5Cs51AB0XSsQUT1EgFO0c149/A2TZX8ftOQGp28h2u50YFPrA20obEE95+nvgnD3kxYrUgDUajbRTrttW5jAb6vkcLgosL5UcaoAi7Y6s42cu0UHFeguAgw8CxogCNs6nSMmNlIOSGHWioG4wGXDQsNRb6sYKjriaoh9r4M+4FwuBIXQlc6PsztBBTdHnPolHR0fTK+DdaUQWihoBp773GtPIkvG9/y46P45h7KMrGaS4sfU+cseXZVlaUTI7OyspX8Qd6WwHExEc8rlv044UOfAYNboRhCrmeq4vAFev13I99mtHB+9Fkr6Mn+iW8x1sez/4vTwSLnIkPhb+O57PZzxvXJXk/efBDZFop9PRV7/6VS0sLHyNWnPlSlGQIfUYrtHRUc3OzqbanXK5rNXVVXW7XU1PT+9KFReBBA9+IvD12ivXM453h7/XfHFQ4I7amTOer4hh5FqScswGjArfMz9oZ7vd1vj4eGLWo/2NtkJSCn6l3tykloX9TqSddziNjo5qZWUlxwJyTLPZ1NLSUiEou1xyqAGKI+N+kbUrp/+Ox3jlNuLGxdEy/7uhjYaIyeabbEWn7AVgbkizLMulS9xo9gMnRc/lxxcBOdrI/eOxtNn7g/Ni6qFSqSRaMTo0+lfK0+XeF/2iraLxjAbBvyvqnyIwciUDlAgKvK1Rh9rtdqqD8D0Wot4XnRuNb6TLXSeQCCj4zNvtNDnPRAqG6NivF4GBAwGu6TUBnibytA7fe/oIg+vzg+995UcEKi5Rj7wPIlhxfXVGlXTd+vq6lpaWdPr0ad1xxx36zGc+s+f7oQ6zxPnreom9Y6+TuGpxe3tbjUZD29vbmp6e3qWnRcAnjou0e54DonHiAJgiwFOkDwBvnLnb0GirOD8ufOBv0uOlUim1yWtOuA/Fq758nnt5MEzQQZtc1wmEeW6ux8647JRM/6yururcuXM5HxT79nLIoQYovpQqApR+oCVGNlJ+91eAiqPgOBl8eRjXcoftS7Y4H8fs1CTf8XIqF79/pO793tGJ+cQqctYOsjgm1hrwv2/q5deMCB6JE9fX+fvzMRH79S+f9QOd9Hk/0BVX9BRd/0oVdAnBIPRziBidRqOxiymI/RLHsR84iQa6CETE9sY540JUGXcDlbSnYXcH4mlQaHe/VgTUrsuuKwAc5pTrqLc39qP/9rEocmTeBw7QWf0DQLn77ru1uLi4pz4cVvFgjT5w3UYn6vV6qsdjXNGVUqmU3v1Sr9fT8lvGLc7/OD9isOnABN2KwETaDTTjc3nq0m10fDZPp7q9je1Hp31ZNddgNQ865DsYc4zrp4Mmru/b+eO7fCfzycnJ9Ey8Gf306dO73kOFXM7g7lADlHPnzml+fl5SMQjh8+ioURqOj+8w8Mni4p9xD5aFOVgCoTq6jrl9P5br+SSamJjILUWLBjg+J0K6ie+jY4rnotT+mTuG+LZR72Nnj7xGgDd1Ymh8yRv39HYUsSQReNBfEbjE33vpQT8neyVJfKYINtwAS8otsWw0GmkprDMOEfzGcXbaNjrior6UlJsvDqL6CffCEEu7U6yxLoZ2eYSKTjEP45iit0V1AZHhcaAXQYqPQVHE7tf2Nnug4k55c3MzbbjXbrfVarXUaDQuW7Hh5Ra3C14L5P9Lyr1ZF130tA59zwrBLMtSyiMCd7frERg5YI366naW6xVtJQGwiDoabVdRP3AfdHdiYkILCwva3NxMoGN4eDhtNe+AHtDir1BxG43P4r0+USfj/KbfnV3EjjSbTTUajeTPOCfa0sslhxqgLC0taXFxUVNTU7uUsih69L/5zp2rAxQ/JjoGjmNXPZ+AjmRjcRVtImrz60f07mxLP5DRT4qiPb9PdHp+ntQzyBGE8D9GNdbeeORAPzHRolLzfD5G/SZ6HFs+i/8XPdNezMCVKjHV2A+klsvlXHREWpBXEIyNjSVa2K/lRr0oX75XBOnzJc4r/y3lV/24A+JeRePKNRzYM2f47QWD0fAWRcHuiAgC/B4cgwPwZ4hsjz9bTP26g3QH5+/xAagsLS2p0Wj01YF7g7hddEDrP0Ugw0GK1HPsRPgeAAIaYmG3212/dtH/DlSLQLfb/wg+pby95Do8f0yfcx3e24QN7XQ6qRiWjerQV2fsu91u2syRH2emCJapNcRPOXMeF37wfCyzjqUFRcHj5ZJDDVA2Nzd15syZ9AbXfpE34oaHwaJmAmXyl425gQNx8h0787nT4PpsY4wh9aKleGxUhGh044SKz1EEQjyaiM64CAQwSWIEyX39eKfQ+d8ZGzf6js5jRFs0RpE9iONZ9OPRWNG53i+Xc2J9LRJThvE5GQN3+ByPzmFseKU77zTxKLUItEcdQHxOuF5EXfTr8Tf64NFnHCd/LgdOcX75XkORtXFgXAR4vU2xLyWl7cRjYBOBN/3t1/Xj/LmwMZubm2l3zpWVlZTfvzeLp87RaRyg1Et9Oxh13XSAgsP2oI2iWN+6PV7L7WMECVGHY2DjuunHx9oTB0WRUSnaxA1WhF2KeWO2pLTDKys5vegdm0o/cjyAzcEgq3gkpeXb/m4ezudVGo1GQ6VSKa1G6xdw7GUjLoUcaoDS7e7swHjq1CnVajXNzMzsMkzRmLqB9GWGPvhuWNg0iO+ZHGyIg3iuXOoZPt8wp1Qq5d7LQ1QZDbdP3BgdxBRPBCgu/ZiCaFQjC1FkvOkvnhWj45S6OznejMkE5jXmCH0Zx8bv57/5O4IT/+1tLrpe0TWvRHFA4oxFdGjOzLnDdrYPh4uTBKwgPt5FgNGBXmRcivQu6qOPR0xxxvOLHEmMYN0ZxOvwf5HjL2qPR4+cTw1VEUvE/9EBRWfmABP2BHCyvLysu+++OzEA92ZBZ4tSPO7osK9FNSHYX5y178PhQANg7ilBt5f+uad5vK0RZERwyne+D4/bUXQ8MhCua7AnkjQ3N6e1tbVUR1atVlWtVjUxMZEDZBTJErw60IMtoY7FP4NpoX1sR4DfbLfbWl1dTRsfAoroL+8X1+0Bg3IB0uns7HR35syZVFDkEpEgyhJpRwcnWZal/UgoUJKkiYmJHEIuirTc2PsLoTiu3W7nVrSgcDh9Kb+6J0YY0aC7cUViu2I0yzHR4EbFi+c5W8Lx3pdMAkmpStwne1z15GxRvKe3p4g52etzntlztEXXvFKlCKC4kecYxgQQ0g8MYOjQ8/jbdaAo4iyKRv1YlyIAHUFAUSrJo0zXdb++667/7dctAhGua/E8Kb+pG8/Lec5GFumdlGdI+e0vf1xbW1Oz2dTi4qLuvPPO3Hur7s3idrUIcJP+kvI2z8eCwlEHGEXznPPOl9aJixQi+CzyF66zDpIcxPo2/L4yiDa7DhIgjIyMaHp6WkePHk27yAISaKv7kyLmAqCyvr6eAzLOiHN/SWmFULvdTsdGJtZTUzEgjIz1pZZDD1BwirxnYGhoKDEpUnGaxKlHlN0HlGiUJZHkBqOxKoo4HQBhKIkQXFn9nhgyd+I+cdzo+ud+T28D0s+h0Iaiyejn0k6f3KVSL1fv7UO8wM3PL5V6Lxf0PvKlcX69/fx4G33yxOeIz3ali4O+GIEWpeJ8ky//zg0x/1Ng53rh4yTld6T0/z1XXwQcYr+7zvqP09ZxxUWcrzgkIkSOi+Cz3/24toMxPou0ve+jUQS0vJ0xqnQAhE1aX1/X2tqalpeXderUKd111125JcWHSSfvqXhKwn88uJF6DIcHZL6qJeqrs8te61cEStx+Ma5RfxzcIlF/PPWErsG0O4Mc06d+fe7tS4z5zPWnyC/xv+s8bSiXy0nn6G8ASwwOxsfHk08qlUq5YzwF58/u4zVgUC5A3PhsbGyk5ZZzc/9/e9cWGmdaht+ZHOaQySRNs2ksbrGgILIisrq1emlwPeAJrxYvRERZ7V4I4oWIermC4I2Id653LgjuCrIK0q6HhW51S1fdA1VErUrTko05NJlJM5nPi/B8ef4n7z9J62Yyf/M9MMzMf/hO//u97/O+3+E/HlcL6AMFIcB9IAls+Gq1WuatmnnDRJy+Kkc1pNxZMKdlc3PT1tfXY/7obJwuhxg9wsHH2EPsdY3naWq9cIx/QzFgqIqXvCFtGB2Mg/JW0frMYKSUZOV9vKgXG28z21Uefb4euRwkQEZ5dZnWmT0cHdJQ5WyW3aaa5QltwcdVoXneqCcXnDfq4fURJZFepEvro781EqLEQY2/13+88rLXyUaFn40OUYCQwMjAUMBp+ve//22Li4uZ6JfW614FdJxu44CPziXiKAfveGqWnfzPRENll2WRyTXLgPdccY+SC3VImaDoah9P17OscrTT61dcT7QdrldHVSd183Vc7m63GyMzeNM5yoS5lFwfLoPqWXZO+4FCExQWNgg/3mNQLpdtcnIy8z4bPBQwS7Ps9vVQ/Fhzzy+JysvXbPcKEq8ToINgbLFUKmXWta+trcU5L0NDQ5mNt5SQaDn4GpTHG0NHvhBqHm7RdLnsauxh7HQpmho7EEEsCeROgXKwsKtiQN5KMHsNzbES9AiOpjmowNJUJimsKNB+OkRjtpsoQ0GzMsd1HjlR5ZlHTvKOmZn7bPF8+KWReXKGMnJ0iBUmX8dKGe2hSlSNBRNpJrR5iprrxHKG4xsbGxbCdrT01q1bdvPmTVtcXLTFxcV4jut4FMiJ2XbbYPVSHuFGuwFKMvWboy16TMmJRk44D4/4qo7l56WrMb3fuIdJCvdBno/o6XLWi1iVx/0C9YINQ948Jwd9mlcCwSnGvMByuRz1MNLm58HPQUlKP3VnoQkKCwcaHQ8XW/UiBAgmjgePsJbOsj527Fjcg4RZNwuJlsErDx/XjsPXw9iXSqW4HAyKsxe79joX//c6tZInZv56v5nlKnmMs5pZhn0zhoZ21u1jcpYSHRBKHXZQJa7/OUSs4VXPSwNYMRaBoCBMywSFw6zsYZntjuSxlwkZYzlUcsKTBz1S4pFlrz9oP+DnyJ6m9i+9Pm+8GwrZbPf7qDgaw7KPc+xRcz9g4Homgzy+r2QRuqbT6Vij0YhvqPVC5dx2RwX8plyODDIR1MnG6lSwvLKMcmTQk1ed0NrrGeTpWc4PZfZkR/NnwqHpeKt78A1Z475vZpkRAZbRUmlnqTWXh2W0XC7HybdmO6/FQHpMjLheLOtKmPqBQhMUs93zI5QAdDoda7fb8S3C8OoRkkVjDw8PW7PZtEajkWHdqjT5G0KSN/dBiZMKJIxGt9u1er1u1Wo1Gl/2KNQQaCfkcvE1+s2dhbdfxiQ/DlkDbPzV8KCdoFxQdhZiMHh4zWbZSVtqgJR8oeysnOCFwOBxuZnt64QxJmWDTlBCCFFOWaGrEuGVVerpo80979JTmkxC9vrkEW4+5j1LluMQdrbi1vNqoADND8+bZYt36WSSwktUubweUEfIHdqTV0lAznQ/JPQvNXhHjZgALI86t4qfM8sGjLhZljiAbPci0PjWZ8AyoQ6R6m4mS7iX+wyXR426Ruy5X4IcK/nCdUzkWFdBj3HaSri5vkqGyuVy3IkX+pLJmzqsmi8Ty37iniAoeDh5qw1wHVb8LC8v2+rqavTcR0ZGbGZmJg5FMNlRJu0Jt5ZHOwcUcR4BQPqI9JhZpk559VFj0ctr9eYpsGeJsWCPSOE7z6PBnBRuD7QrDAd2TOTnw8ZW65hXZ+xVwcMc2qnYC4HhUHIy6ATFbGcokid0K7nCc9MQ+dbWVmx/JhNMNnuRD5YP7VMatUCeyAPgvACVZxgC9A/tVzx8g/+86sYsq/hRZt7KGzLKQ5wqz2pMtH2wGo8nFEK2We+gbF4bcfsUgSS/XuBoJusjjqJwP+YoMk+OVv2uQ3YsAxoFBFTHeN8eceByoa/xJH+OCnN5ANWjSJ+dYI6Och15CBvnsIQY8/tgbzjSAZJTKpXiPkhcHrQX569lVHLpRTQPEvcMQfHC0xoCxETajY0Na7fb8TXT9913XzTSqhxZYWrn4IfqhR7NfIXHiomNLAQUy5v5za+9Opt2MOSnxlg7BytfJTHefRrew3F0Wg7X8jtTcOz27duxk3iKWsmJHjPbWSWEV4CzEdS5KRj3ZsWoEZdBBnvnGkHhOkExQUnqknWVSV6tkkcI9yIvfJ2SEFbsntL3dhb27lMii99eebnPMknhfqvkmmXQmxyo/Q1LTBGxYflXj9ubtwYoObrXwXLLv9E3Ibd4xmzc4WywLKjx93SFfvRa/NboCV+jzppZlmBzGpALPs56G+lxVE5lTIkJ+jVWfum1iIog71qtFu0b6z3uc6zTUR91Ath2aPSk3zJbaIKihEANORqf2SUb0RCCTU9P2+TkZGY8jhWQp2B5aWSvdfdmu19Xz0aVf+tET7xQT6MOGi3RDqhlVULFeSlJYcLFbexFKXjJKYzi8PBwHHtHXhsbG5GU8HwTjtbA2/cUBV8LjI6OxlVEfA/aLYQQN8fCi8jYsPfbC/h/gI3+mHyxsjfbPSlP5Ujbey+F7hkAyH0eGc5T8nweafML+rQPaJhf0+WhVM9QsE7g/NUDhcPCChikGlFMvhbAplpoX/buuUxeP+Xy9Hs1xGGCDR47B/z8maCAWEK+EalQWQDySAHLVh48edZzZjvEVydoK2kAcdAhGB2a9QgqDxdx5AQEmt9WzmQd91ar1cxKMi4rdAHv2cPzV0CCtIxKJhNBuQPkEQM9BiMP44kHPzY2ZtPT03FmM+ZTmGUjIpwuM04+zwoK3xx65vL26gyeQlOF7DFtAMLNaeE/GyhWCLgGUSTcy2lyPfIiLRwuhCHCEEWtVrNSqRQ3r0Mbczk8IofOzp0Fc3XYm0b90AkxvONNMuX7Bt2L1RUQPH7f7XZj9IuNr1l2CI+JqRcB8ZR0r/7EafL12pasRDXCyIqXDZFZ9oVukEtWuF7fYBKheXpA2ZAm6oMhM92fh79BsNhY8FCDF6lhMsnh96MCL4Ki+shrDyWtnozqf48w671m+St5VK5Vz2p/yxuGQfnZEdNyaDqwQbgHLxbkl89yRGNraysux0Y7Yd4lJtDDKUQf0og5Dw/nDcUd1pBkoQlKr1AfKy4ObeOhVKtVm5mZiW9+1TCwDhWxoHK4TMPnyJ+NP5cpr5NomI2Jld6blybfz1EHvZ7PQSHjvM4UV4PHxhEKHUMQ5fLO68FhVNEWrVbLRkZG4koHJnbsVXlGUNuMl2brMJyuFNBP0QxDt9vNDFVxPVhR4hwItIai8wiMypR6hl5aQJ4RYKOMazA0h7KADPMyYu5/2u8w92ivPsDpcFqoG+fHileNBq7XSBXrAB4S1tB9r2gXnt9RArcHyyxHC9jI45kiMuiBnxnrME8nqoyobCi5YZlgco98mETz9dBpZtlVYCxTqLMXQcP9ujqHdS8PX29tbWVeDIpdi9fW1jLb3fOu6EwQOR9On69LBOUu4SlZFVB462aW2dp3amrKJiYm4gY2qmxZGL2wIZ/zlLfH+j1yotexIPPSUC+fXspZCQ0P8SB9jX7wVvQ4rt4CCy+O12o163Q6trGxEQWa3zWCSAo2sOJwJIc1vXZEO3HbmFnsjKwoOFKg+4cc1iz01wM8UZZDrlwX3iiMhwYBHgJSrzCPPDM5MfPn7HjPS2UaSjfPKCih0HkGTJb5ek4D+XIZdU4Dk2yeQAjoxHbOh6ODvDKN68kkRIc0cBwkuohy+P9AI5jop9zOTPhATvJ0nPc/TxczVD96jqGSE7Pe0ThcB9nw5JplQXUwp+GtXOJrtra2t7XHHEqNBm9sbFir1YrzUEBSNjY24ssJtW+prHvz3RJBuQuoosNvjmro/BMMEUxNTWU2TcMD4tBuHkGBwmTlzWVST5W/8+oAsELkengdRDuvp1i1szBp0AgR8mcFwoafFYcexwqkWq1m4+PjVq/XbXFx0drtdrwPRmFjYyOzoZB6u3spArPtCBhWDvGzYQPOH97YiNuqCMBEOS+KYrYzp2FzczNGA/EcuX2VVJvtjlSw4vZItipz/q3KXyMHZrZrgmwe4dbnUyplvTzvekCJEJwS/Eaomz1D3l2TJzvy/TwMCnLNL3FjgsUrVNgwc6TgKEHrrv/VoMNQc7SaZcnTbwDLqkeGPVlheHqW+w7PT+Q+osNAnJcaeC0j60cmc3y9EnnWd9ABvFOt5sP3MRlk0q0yqyS737gnCAr/5mNMUNhrmZyczLxfh8Nu+O0RFKSvSryXgfWEPe83C7Duw8KCrIYgj+R4Rge/NeSuJITJiHoBXCb2CtB5mawsLy/bf//738z4JzoSh9w1lKsdS4erqtVq7ETIF+lwFAdzUTAfRb3mIoAJiEaFYExByvj5sceuc6QUnlz3Uv55aSm54DR5tR3Kjbw4iqaEXOWfQ+B5pF2JEUfR1GtF2rzaj+VaCYfX93nIVKMFquxZXxwVcN09Q6jtiW0J+Po86DB7noPYS9/ycaTB32a2y15w3SDDrMdYVgEmZHn5qc5VMqNONL/QFhFU/Ic84i3mkF92WjgPb4jHcxj6hUITFG0wjgho5IHH68bGxjJje2a2S+l4XqUqcNy3l7Dzf08wvU7Uy0iwst4PUGbUC6TNY8ceAeJOo8ZPIylKnEZHR61er9v169dtdXU15tPpdGxsbCx2gs3NzdjR9OM9a3i8rVYrs8SPIyggJljN4z2TIgDtr/uigLB4q05wD0/6BDyZ9s5pGbzr9io3/9ZJeUgDS9RVxsx2hot4uIblQnfP9MoaQti1K6cOn2KlGWSay6P9RBU315WH37xJzfgcNXA78vArIlD8UkAlq/qM83Qx56W6lJFHVFT3sZNmlo06sxGHk4WILvqjF4VkkqvQcnJ9cB7OX7m8/dI/3nCTl77jWhDyer0eI4Hohyg3R128qOed2JrXG4UmKGrwIbD8G+fwMPAmR10yyfdqKDyPoGio3PPOPSbP8AS4Vx5c3jwWnmdweF8SjoZoWblj8gZa6s2oV6T5Ic8Qgs3Oztro6KitrKzEez2D6s0a12/kVS6X4wRdjgZBATI5KbLHqt64TgQ2y06+47piubpnxBnad3BMybdHlPm45/nxtRqF0OtU7rVfef1c09d82Stko6VEifuERhd1aInLy/dzpIv3jmCP9KhNkDWzXW3AjgnaHLoJ0ZNeUSclJ+pUeQQ8TwerrlKSYrZNTngrBE9XcR1RNp67hE0j8wgSkzEmylxfnreHyAhHIYeHh+PcPKSLF9PyxFrUgVdDwtFTh/QwcU8QFFWiZrsVHYwYWCeuQTqqFPk4KzUmMSpoeQw4T+l7HQXHeQ6KV19NkxmwWdaL4P1gcE7JgRepQEdAukgPeejYO3csrhsiI/AulpeXI2nEOY128ZAMKwA20GYW31+Ee3l4B3uIFB0gW2zgOJoSQogKnRUT73qqzwjwyCwfz3umKrssbyzbmheepToPGh7HvXyODZwSCs9R0D7AZdDJjJwHl1sJtBoitDd7o7y8Xe/DuaMIHZqELGMIkndoNcuuRGQoSTXzyTL/VlvhRWT0elzDJMNzqjgqBlnSKD4PLebJKMs0yxfaAm2j6WA+ydDQUNzOnnUu5rChnVh+NzY2MkSKh9+89uk3Ck1QAPWovOiD2fa8BTBOj1zw/Xwcv/O26eb7NYqxXwZvlg3RKzHaq0Nx1MdshzyAlDA54TSVnHA0hK+D8LJC1xU43IH5Pxh8qVSKu3Gur69H0sgEhYfdQDJ4eSk6JCbfIqyK/PLmGhQdPGsfCh4rp2q1mlUqlYzhZy99rzF8j/Tq+b3+q9Ln47heVyigT3mTRlXpm9ku2fT6BMsy7mOZwpCXEihv+AV9kcvB3ifnBULCO/+qhw1ieRSHeMyykVBuH560zDLjDT8D+gyVFHuRZy6DyibLjupbM39YT9PkvHAdLzRgUpOXDg/ZoEwgHKVSyVqtVuwvvAkl7sWLblm3c//isjIZYnugq60Oi5yY3QMERQ2bKj/8Hh4etlqtljkGI84KrBdR0SEgVexMWvi895vBgsj10mtUqPcyKigLv5SQjYkSFO44SlpUwDkcqp6ldnT2jtCGw8PDtrKyEifO6o68HD3ioZpWq2WtVsvW19dtYWHBWq1Wplx3Qkq4noMOeEG8fJC99XK5bNVq1cwsEjeMmWuonCNfSqhZDlWZe7/zlLXKGfojb3SoS5g1PVaQnoxr9E5ll8PpnCcrXW9uC9+nCl0NJ9LEcIW+SFCjXkdteTGAduVJ3viA1OFdaBxJy4tqadqApyPzwCSFvzUKzc9Yjb+mo7YDssRDh6p3tMzQlexkahRmfX09OmlmO69WWF9ft2q1GtvYKxvXDeliHpgS68NGoQmKZ9D0P45hvxMoSY18cFoe6dDjnD9+c7TBIyS9yIRHPPi3pqsfM3/CLS879SIx3Nm8ztfrPzoeR1J4fojZTidDp+t0OlapVOK9iKJ4zwDtzpO9Njc3bXV11ZaWlmx9fT0TXeG21vb1vJyikBOzHS+93W5HUgKj2G63o2ybWWZcn8erPe/JbLe8eW3Vq1wM73rICM+BYpKkipAdBya/3Be8fLV+HlnS/qJpwEDqcBO3k3qVXFZ+gzZ/eFjjqII9dG6Lbrdr7XbbGo1GPMfL0fOeN855Dl8eUVESy8e88xrF4yFUjv4y4UVfZBli4qvOAfQcE3JEREulUowY6+oyHO92tycZ1+v1mB7my+DD5VE7pxFMz3HJs10HjUITFM9o50VU9G3HZvlvafWO6xCKPrhe5MW73oNHUrQcOKdRHE9p8soNLy/2EFiBKynhNDVSwuRHjQ63m9nOy9tQznq9Ht+pg2cGwsL7TrBx4wnOnmLqVd+iA8qdhwqgqHgPBZ0bZLb3uDwfz1P6OIf/eh3/1igLh6k1D1XYbABAZFG3OyWV+4n2cMQE5dHojdfHWU9UKpU4BMd9SduQo7VHCdDBIyMj8UWo6NO8qpD1NXQ27uP/vGSdN5nUD+fPDiTLkep0s6yR1oiiRrpRXvRNLRte7+FFz9RR5nzMLENKoNMhbyAnmEuC42a2yxHgSd+cHvLEnJVKpWK1Wi0Or7fb7bhL7cjISN/nTxWaoJj5y3FZEeDDGzGpcmQSomTFIyxmvYnJfr71mCrS/Xz0eiCvYzH54ON7RU28IRzvPNJnzwgdA8AYa6mUXarHzwAdER0C4ceRkZH4YSWQh71ISZFIC7cJkzcobij+4eHhuL01txdfp4qfX/VgtntOVi8iiGfuKVg8W85LCQYUKBQf9194qFDAmk8vEqXzXdRYsTFk+WNDpmPweh+Ob21tv0kWyrzT6cTdlaHcMfRz+/Zta7VamU0DjwIqlYqNjY1Zo9GI3/g9NjZmlUrFqtVqbLdarWa1Wi3u34EPtmxnkqKEQJ95no5kGwCojuT72Rnj4VO2HWx3WG6UhHnOg0egkDeICiIhZpYZSkS5MPes0WjEfjA8PJzZAwXpsr7FpqXNZjOWnSNeiNRi3ku/UGiCouRCvW2eAe0NI+CcDgd5hOVOyAnSBbRz7EVW8M35c5peWRSsrPMiJN413n8ocZzj3+qFekqXoy3M5EFW8jo5niNCmGxodSv3Xkb0XkClUrF6vR4VOt6/UavVrF6vW61Wi/v7QOFAueM3kxj1TFXOepETNdr4VoKC3yzLSJ9JBMsZ92V4gfBM8xyBXnLH13hGiifpqnHSOTs8URLGALI6Ojpq7XZ712Z5/J4qEC7en+cooFwuW6PRsGazaRMTEzY+Ph5/g6RUq9VIWkBQ2HOHHFcqlV0RVv5WOTPbe3iHvwEvIq1gQsROITtOPNTKUU3+7hVRw/A2T+CGPkR+HIUulUqxvVBfjTyx8wcSDdK1ubmZ0a9cPxCipaWl/4tc5/VXt/53ncsAAIpCoyVMVLzhHgiMmbnnPcKC/PCdR1L0vB7jdPLqxPBIiVcGM38SWS/icSeRFCU2SmDyjnH6OrmQCQoPwaGzMEHpdrvRyEJp5U042y+K4sGOjIxYo9GwiYkJazab1mw2ozIfHx+3RqMRSQqTERAS/s9RGA2V5xFulbs8Ba/nWBZ0WI6NCLw8/Of+iWO8LwZ7mnmyz8d7kVekp/vJ4IM8QWTghfKus4iQwFDAY+U6IXSOemxubtrNmzf3LwQFRrVatePHj9v09LQdO3bMms2mTU5O2tTUVCaCMj4+bmNjY7FNQUpYlhHt46GVPH1t1lvv9iIHe0U6NF0eNuHINRMmHTZUR5HBx3h/EqQbQohRJ94hu1QqWb1et6GhocwGlVwfTLjHpG60I16+2mq1ogNUr9fjylf0h7W1tSjrdwMQoX1de9e5HCLwoDqdjrVaLVtbW4sKBBMINzc3bW1tLXqZZtmJTt6qEZxTpatCnEdOPG9S7+H/WiePnOQZi70IimcoVMD1vJ7LIywaQeFjOhyECYPoGDjGS2WxGyo6FTxMTAjlF16tra3FlSw6aSyPmecd13bpB+4mr1qtZhMTE5GgsFJnJQ7DDiOqipFn9cNQKjEHWM484qsEQGWQwekjisAbRLGiZsPDuNNl43mkNc/wcBSFSQrajye+cmQF8wvMLHqemAcAIoLhSewwurW1/cK3hYWFu540i4jOYcluL0dAy9RsNu348eN2/PjxKMMsyzCC1Wo1kmjoAzXwOidDh+dQNo3yefKqcq2y4ekN7QPoMxxBRvqsC/mePFLS63yenGDrDI7UoI/hOKJ4INpmuyf7lkrbkRde6crOO9q7XC7b4uKiLS4uum3C8NpuaGh7r5bl5eV9yW4hCcprr71mZmYLCwu2sLBgf/vb3w65RAmDgLtV1qurqzYxMfE6l8YHZPdOsLKyYisrK/aXv/zlAEqUUETAYB2W7N5JX5ufn7f5+fmDKFLCAGC/sgDHZHl52cz2J7uFJChTU1NmZnbt2rW+dc7XGysrK3b//ffbv/71L2s2m4ddnLtC0esQQrDV1VU7efJk3/JMsjsYKHodkuzeHYr+3M2KX4c7kd1CEhSEnBAmLDIwp6DIKHId+q1ok+wOFopchyS7d48iP3egyHXYr+wevQX5CQkJCQkJCQOPRFASEhISEhISBg6FJCiVSsW+9a1vxdnyRUSqw9HEvdBmqQ5HE/dCm6U6FAulUJTNIBISEhISEhKODAoZQUlISEhISEi4t5EISkJCQkJCQsLAIRGUhISEhISEhIFDIigJCQkJCQkJA4dEUBISEhISEhIGDoUkKN///vftTW96k1WrVTtz5oz9/ve/P+wiRfz2t7+1j370o3by5EkrlUr29NNPZ86HEOyb3/ymveENb7BarWZzc3P217/+NXPN4uKiffrTn45v/fzc5z5nt27d6kv5H3/8cXv3u99t4+PjNjMzY5/4xCfs6tWrmWva7badO3fOjh8/bo1Gwz71qU/ZjRs3Mtdcu3bNPvKRj1i9XreZmRn76le/ap1Opy91GGQk2T04JNk9WCTZPTgk2c1BKBiefPLJMDo6Gn74wx+Gl19+OXz+858Pk5OT4caNG4ddtBBCCM8880z4+te/Hn76058GMwtPPfVU5vy3v/3tMDExEZ5++unwxz/+MXzsYx8Lp0+fDq1WK17zwQ9+MLzjHe8Izz//fPjd734X3vzmN4dHHnmkL+V/+OGHwxNPPBFeeuml8OKLL4YPf/jD4dSpU+HWrVvxmkcffTTcf//94fz58+GFF14I73nPe8J73/veeL7T6YQHHnggzM3NhStXroRnnnkmTE9Ph6997Wt9qcOgIsnuwSLJ7sEhye7BIsmuj8IRlIceeiicO3cu/t/a2gonT54Mjz/++CGWyod2lG63G2ZnZ8N3vvOdeGxpaSlUKpXw4x//OIQQwiuvvBLMLPzhD3+I1/ziF78IpVIp/Oc//+lb2YGbN28GMwu/+c1vYnlHRkbCT37yk3jNq6++GswsXLx4MYSwrSzK5XKYn5+P1/zgBz8IzWYzbGxs9LcCA4Qku/1Fkt3XD0l2+4sku9so1BDP7du37fLlyzY3NxePlctlm5ubs4sXLx5iyfaHv//97zY/P58p/8TEhJ05cyaW/+LFizY5OWnvete74jVzc3NWLpft0qVLfS8zXo2NN5levnzZNjc3M3V461vfaqdOncrU4e1vf7udOHEiXvPwww/bysqKvfzyy30s/eAgyW6S3aIiyW6S3cNCoQjKwsKCbW1tZR6AmdmJEydsfn7+kEq1f6CMvco/Pz9vMzMzmfPDw8M2NTXV9zp2u1378pe/bO973/vsgQceiOUbHR21ycnJzLVaB6+OOHcUkWQ3yW5RkWQ3ye5hYfiwC5AwuDh37py99NJL9txzzx12URIS7ghJdhOKiiS7OyhUBGV6etqGhoZ2zVy+ceOGzc7OHlKp9g+UsVf5Z2dn7ebNm5nznU7HFhcX+1rHxx57zH7+85/bs88+a2984xvj8dnZWbt9+7YtLS1lrtc6eHXEuaOIJLtJdouKJLtJdg8LhSIoo6Oj9uCDD9r58+fjsW63a+fPn7ezZ88eYsn2h9OnT9vs7Gym/CsrK3bp0qVY/rNnz9rS0pJdvnw5XnPhwgXrdrt25syZAy9jCMEee+wxe+qpp+zChQt2+vTpzPkHH3zQRkZGMnW4evWqXbt2LVOHP//5z5kO/6tf/cqazaa97W1vO/A6DCKS7CbZLSqS7CbZPTQc8iTdO8aTTz4ZKpVK+NGPfhReeeWV8IUvfCFMTk5mZi4fJlZXV8OVK1fClStXgpmF7373u+HKlSvhn//8Zwhhe7nb5ORk+NnPfhb+9Kc/hY9//OPucrd3vvOd4dKlS+G5554Lb3nLW/q23O2LX/ximJiYCL/+9a/D9evX42d9fT1e8+ijj4ZTp06FCxcuhBdeeCGcPXs2nD17Np7HcrcPfOAD4cUXXwy//OUvw3333Vfo5W6vB5LsHiyS7B4ckuweLJLs+igcQQkhhO9973vh1KlTYXR0NDz00EPh+eefP+wiRTz77LPBzHZ9PvOZz4QQtpe8feMb3wgnTpwIlUolvP/97w9Xr17NpPHaa6+FRx55JDQajdBsNsNnP/vZsLq62pfye2U3s/DEE0/Ea1qtVvjSl74Ujh07Fur1evjkJz8Zrl+/nknnH//4R/jQhz4UarVamJ6eDl/5ylfC5uZmX+owyEiye3BIsnuwSLJ7cEiy66MUQggHG6NJSEhISEhISLgzFGoOSkJCQkJCQsLRQCIoCQkJCQkJCQOHRFASEhISEhISBg6JoCQkJCQkJCQMHBJBSUhISEhISBg4JIKSkJCQkJCQMHBIBCUhISEhISFh4JAISkJCQkJCQsLAIRGUhISEhISEhIFDIigJCQkJCQkJA4dEUBISEhISEhIGDv8Dc4eRxj7sKjIAAAAASUVORK5CYII=\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "dI5rmt4UBwXs"
+ },
+ "source": [
+ "##3. Running the Model\n",
+ "\n",
+ "In this section, we'll set up our chest X-ray image classification model using a technique called transfer learning with the [InceptionV3](https://arxiv.org/abs/1512.00567v3) architecture. This means we'll use an existing model that has already learned to classify images and adapt it to work with our own set of chest X-rays.\n",
+ "\n",
+ "Building a good model to classify medical images from scratch requires a large amount of data. To overcome this challenge, we can use a pre-trained model that has been trained on a large dataset of general images. For example, the InceptionV3 model has been trained on [ImageNet](https://www.image-net.org/), which contains over 1.4 million images across 1,000 different categories. While these categories are not medical images, the model has learned to recognize many visual features—such as edges, textures, and shapes—that are also present in chest X-rays."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Define our example directories and files\n",
+ "base_dir = rootdir = \"/content/medical-ai/images/\"\n",
+ "train_dir = os.path.join(base_dir, finding, 'train')\n",
+ "test_dir = os.path.join(base_dir, finding, 'test')\n",
+ "\n",
+ "train_pos_dir = os.path.join(train_dir, 'positive')\n",
+ "train_neg_dir = os.path.join(train_dir, 'negative')\n",
+ "test_pos_dir = os.path.join(test_dir, 'positive')\n",
+ "test_neg_dir = os.path.join(test_dir, 'negative')"
+ ],
+ "metadata": {
+ "id": "xby4d2nuqoWK"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "BATCH_SIZE = 64\n",
+ "IMG_SIZE = (299, 299)\n",
+ "IMG_SHAPE = IMG_SIZE + (3,)\n",
+ "train_dataset = tf.keras.utils.image_dataset_from_directory(train_dir, shuffle=True, batch_size=BATCH_SIZE, image_size=IMG_SIZE)\n",
+ "validation_dataset = tf.keras.utils.image_dataset_from_directory(test_dir, shuffle=True, batch_size=BATCH_SIZE, image_size=IMG_SIZE)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "fyJnspjbAUyt",
+ "outputId": "779cac3a-b4b7-4f13-bd78-3a19b60caae1"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Found 232 files belonging to 2 classes.\n",
+ "Found 60 files belonging to 2 classes.\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "###3.1 Define the Base Model\n",
+ "We use the InceptionV3 model pre-trained on the ImageNet dataset as our base model."
+ ],
+ "metadata": {
+ "id": "mCkcjGL1Pr-X"
+ }
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "Fl9XXARuV_eg",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "59c4c7f5-2fe0-4a4b-e28f-d3d64a11e8a2"
+ },
+ "source": [
+ "# Define the base model using InceptionV3\n",
+ "base_model = tf.keras.applications.InceptionV3(\n",
+ " input_shape=IMG_SHAPE,\n",
+ " include_top=False, # Exclude the final classification layer\n",
+ " weights='imagenet' # Load weights pre-trained on ImageNet\n",
+ ")\n",
+ "\n",
+ "# Freeze the base model to keep the pre-trained weights unchanged\n",
+ "base_model.trainable = False"
+ ],
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5\n",
+ "\u001b[1m87910968/87910968\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 0us/step\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "###3.2 Data Augmentation\n",
+ "This part help us create more data by adding little tweaks to the data we have."
+ ],
+ "metadata": {
+ "id": "_v6IS2MiP5Ba"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Define data augmentation layers to prevent overfitting\n",
+ "data_augmentation = tf.keras.Sequential([\n",
+ " tf.keras.layers.RandomRotation(0.10), # Small rotation\n",
+ " tf.keras.layers.RandomTranslation(0.05, 0.05), # Translation\n",
+ " tf.keras.layers.RandomContrast(0.1), # Contrast adjustment\n",
+ " tf.keras.layers.RandomBrightness(0.1), # Brightness adjustment\n",
+ " tf.keras.layers.RandomZoom(0.1, 0.1)]) # Random zoom"
+ ],
+ "metadata": {
+ "id": "m3Y5r7fnqr4k"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "###3.3 Putting it together\n",
+ "Here, we put it together.\n",
+ "\n",
+ "We compile the model, telling it to focus on 'accuracy' as the evaluation metric."
+ ],
+ "metadata": {
+ "id": "CYhfPpTmP9Rh"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "inputs = tf.keras.Input(shape=IMG_SHAPE)\n",
+ "x = data_augmentation(inputs) # Apply data augmentation\n",
+ "x = tf.keras.applications.inception_v3.preprocess_input(x)\n",
+ "x = base_model(x, training=False)\n",
+ "x = tf.keras.layers.GlobalAveragePooling2D()(x)\n",
+ "x = tf.keras.layers.Dropout(0.5)(x)\n",
+ "outputs = tf.keras.layers.Dense(1, activation='sigmoid')(x)\n",
+ "\n",
+ "# Define the complete model\n",
+ "model = tf.keras.Model(inputs, outputs)\n",
+ "\n",
+ "# Compile the model with appropriate optimizer, loss function, and metrics\n",
+ "model.compile(\n",
+ " optimizer=tf.keras.optimizers.Adam(),\n",
+ " loss='binary_crossentropy',\n",
+ " metrics=['accuracy']\n",
+ ")"
+ ],
+ "metadata": {
+ "id": "so1cmo9oP_cN"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "###3.4 Define Callbacks\n",
+ "Early stopping helps us to prevent overfitting (memorizing the data) by halting training when the validation loss stops improving."
+ ],
+ "metadata": {
+ "id": "2Fp79SXXQAe2"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Define early stopping callback to stop training when validation loss doesn't improve\n",
+ "early_stopping = tf.keras.callbacks.EarlyStopping(\n",
+ " monitor='val_loss', # Monitor validation loss\n",
+ " patience=5, # Number of epochs with no improvement after which training will be stopped\n",
+ " restore_best_weights=True # Restore model weights from the epoch with the best value of the monitored quantity\n",
+ ")"
+ ],
+ "metadata": {
+ "id": "-DCAvRAbQGTy"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "qEC1AL7iVRLz"
+ },
+ "source": [
+ "##4. Train the Model\n",
+ "Finally, let's train the model using the features we extracted. We'll train on all 80% of the labels we have, and verify their accuracy on the remaining 20%."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Set the number of epochs for initial training\n",
+ "initial_epochs = 40\n",
+ "\n",
+ "# Train the model with early stopping\n",
+ "history = model.fit(\n",
+ " train_dataset,\n",
+ " epochs=initial_epochs,\n",
+ " validation_data=validation_dataset,\n",
+ " callbacks=[early_stopping]\n",
+ ")"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "yU0RoseZQKhr",
+ "outputId": "3c84e489-0347-440c-9eb4-306d273b07d9"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Epoch 1/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m31s\u001b[0m 4s/step - accuracy: 0.5216 - loss: 0.7806 - val_accuracy: 0.5500 - val_loss: 0.6979\n",
+ "Epoch 2/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 443ms/step - accuracy: 0.4692 - loss: 0.8087 - val_accuracy: 0.5333 - val_loss: 0.6791\n",
+ "Epoch 3/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 500ms/step - accuracy: 0.5601 - loss: 0.7120 - val_accuracy: 0.5833 - val_loss: 0.6774\n",
+ "Epoch 4/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 849ms/step - accuracy: 0.5569 - loss: 0.7535 - val_accuracy: 0.6333 - val_loss: 0.6449\n",
+ "Epoch 5/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 454ms/step - accuracy: 0.5357 - loss: 0.7457 - val_accuracy: 0.6167 - val_loss: 0.6277\n",
+ "Epoch 6/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 446ms/step - accuracy: 0.5959 - loss: 0.7060 - val_accuracy: 0.6667 - val_loss: 0.6203\n",
+ "Epoch 7/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 415ms/step - accuracy: 0.5599 - loss: 0.6837 - val_accuracy: 0.6500 - val_loss: 0.6418\n",
+ "Epoch 8/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 401ms/step - accuracy: 0.6517 - loss: 0.5987 - val_accuracy: 0.6833 - val_loss: 0.6263\n",
+ "Epoch 9/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 513ms/step - accuracy: 0.5644 - loss: 0.6873 - val_accuracy: 0.6333 - val_loss: 0.5988\n",
+ "Epoch 10/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 614ms/step - accuracy: 0.6230 - loss: 0.6626 - val_accuracy: 0.6667 - val_loss: 0.6020\n",
+ "Epoch 11/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 455ms/step - accuracy: 0.6143 - loss: 0.6597 - val_accuracy: 0.7167 - val_loss: 0.6211\n",
+ "Epoch 12/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 501ms/step - accuracy: 0.5928 - loss: 0.6783 - val_accuracy: 0.6667 - val_loss: 0.5914\n",
+ "Epoch 13/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 456ms/step - accuracy: 0.6638 - loss: 0.6107 - val_accuracy: 0.6500 - val_loss: 0.5828\n",
+ "Epoch 14/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 456ms/step - accuracy: 0.6657 - loss: 0.6035 - val_accuracy: 0.6667 - val_loss: 0.5927\n",
+ "Epoch 15/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 694ms/step - accuracy: 0.6510 - loss: 0.6524 - val_accuracy: 0.7000 - val_loss: 0.6109\n",
+ "Epoch 16/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 500ms/step - accuracy: 0.6373 - loss: 0.6242 - val_accuracy: 0.6667 - val_loss: 0.5799\n",
+ "Epoch 17/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 455ms/step - accuracy: 0.6939 - loss: 0.5834 - val_accuracy: 0.6667 - val_loss: 0.5705\n",
+ "Epoch 18/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 407ms/step - accuracy: 0.6753 - loss: 0.6045 - val_accuracy: 0.6667 - val_loss: 0.5792\n",
+ "Epoch 19/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 417ms/step - accuracy: 0.6778 - loss: 0.6127 - val_accuracy: 0.7167 - val_loss: 0.5895\n",
+ "Epoch 20/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 661ms/step - accuracy: 0.7278 - loss: 0.6034 - val_accuracy: 0.6667 - val_loss: 0.5661\n",
+ "Epoch 21/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 557ms/step - accuracy: 0.7293 - loss: 0.5569 - val_accuracy: 0.6667 - val_loss: 0.5623\n",
+ "Epoch 22/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 406ms/step - accuracy: 0.7115 - loss: 0.5966 - val_accuracy: 0.7167 - val_loss: 0.5672\n",
+ "Epoch 23/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 467ms/step - accuracy: 0.7299 - loss: 0.5412 - val_accuracy: 0.6833 - val_loss: 0.5527\n",
+ "Epoch 24/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 458ms/step - accuracy: 0.7477 - loss: 0.5251 - val_accuracy: 0.7000 - val_loss: 0.5472\n",
+ "Epoch 25/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 414ms/step - accuracy: 0.7484 - loss: 0.5467 - val_accuracy: 0.6833 - val_loss: 0.5484\n",
+ "Epoch 26/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 628ms/step - accuracy: 0.6872 - loss: 0.5939 - val_accuracy: 0.7000 - val_loss: 0.5461\n",
+ "Epoch 27/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 501ms/step - accuracy: 0.6854 - loss: 0.5259 - val_accuracy: 0.7000 - val_loss: 0.5425\n",
+ "Epoch 28/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 462ms/step - accuracy: 0.7427 - loss: 0.5110 - val_accuracy: 0.7167 - val_loss: 0.5388\n",
+ "Epoch 29/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 457ms/step - accuracy: 0.6923 - loss: 0.5629 - val_accuracy: 0.7167 - val_loss: 0.5461\n",
+ "Epoch 30/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 817ms/step - accuracy: 0.6970 - loss: 0.5766 - val_accuracy: 0.7000 - val_loss: 0.5467\n",
+ "Epoch 31/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 503ms/step - accuracy: 0.7084 - loss: 0.5539 - val_accuracy: 0.7167 - val_loss: 0.5319\n",
+ "Epoch 32/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 508ms/step - accuracy: 0.7370 - loss: 0.5369 - val_accuracy: 0.7333 - val_loss: 0.5312\n",
+ "Epoch 33/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 415ms/step - accuracy: 0.7510 - loss: 0.5358 - val_accuracy: 0.7333 - val_loss: 0.5408\n",
+ "Epoch 34/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 686ms/step - accuracy: 0.7510 - loss: 0.5220 - val_accuracy: 0.7167 - val_loss: 0.5327\n",
+ "Epoch 35/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 503ms/step - accuracy: 0.7522 - loss: 0.5227 - val_accuracy: 0.7167 - val_loss: 0.5312\n",
+ "Epoch 36/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 466ms/step - accuracy: 0.7180 - loss: 0.5338 - val_accuracy: 0.7333 - val_loss: 0.5255\n",
+ "Epoch 37/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 462ms/step - accuracy: 0.6535 - loss: 0.5819 - val_accuracy: 0.7333 - val_loss: 0.5265\n",
+ "Epoch 38/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 462ms/step - accuracy: 0.7403 - loss: 0.5197 - val_accuracy: 0.7000 - val_loss: 0.5306\n",
+ "Epoch 39/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 601ms/step - accuracy: 0.7491 - loss: 0.4945 - val_accuracy: 0.7167 - val_loss: 0.5372\n",
+ "Epoch 40/40\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 462ms/step - accuracy: 0.7560 - loss: 0.5445 - val_accuracy: 0.7333 - val_loss: 0.5337\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "###4.1 Fine-Tune the Model\n",
+ "Right now, our model is sort of smart. We'll change the learning rate so it doesn't jump to conclusions too quickly."
+ ],
+ "metadata": {
+ "id": "sh2ISxd3QRXh"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "base_model.trainable = True\n",
+ "fine_tune_at = 249 # specific to this architecture\n",
+ "\n",
+ "# Freeze all layers before the fine_tune_at layer\n",
+ "for layer in base_model.layers[:fine_tune_at]:\n",
+ " layer.trainable = False\n",
+ "\n",
+ "# Recompile the model with a lower learning rate\n",
+ "model.compile(\n",
+ " optimizer=tf.keras.optimizers.Adam(learning_rate=1e-5),\n",
+ " loss='binary_crossentropy',\n",
+ " metrics=['accuracy']\n",
+ ")\n",
+ "\n",
+ "# Set the number of epochs for fine-tuning\n",
+ "fine_tune_epochs = 40\n",
+ "total_epochs = initial_epochs + fine_tune_epochs # Total epochs\n",
+ "\n",
+ "# Continue training the model with fine-tuning\n",
+ "history_fine = model.fit(\n",
+ " train_dataset,\n",
+ " epochs=total_epochs,\n",
+ " initial_epoch=history.epoch[-1], # Start from the last epoch of initial training\n",
+ " validation_data=validation_dataset,\n",
+ " callbacks=[early_stopping] # Use early stopping\n",
+ ")"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "eqQe9NngQTar",
+ "outputId": "b4e22e2a-6390-4b1c-d007-929c08f0e27c"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Epoch 40/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m22s\u001b[0m 2s/step - accuracy: 0.5137 - loss: 0.7856 - val_accuracy: 0.7167 - val_loss: 0.5188\n",
+ "Epoch 41/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 580ms/step - accuracy: 0.5313 - loss: 0.7499 - val_accuracy: 0.7167 - val_loss: 0.5134\n",
+ "Epoch 42/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 538ms/step - accuracy: 0.5273 - loss: 0.7044 - val_accuracy: 0.7167 - val_loss: 0.5079\n",
+ "Epoch 43/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 543ms/step - accuracy: 0.5670 - loss: 0.6836 - val_accuracy: 0.7333 - val_loss: 0.5043\n",
+ "Epoch 44/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 600ms/step - accuracy: 0.6478 - loss: 0.6255 - val_accuracy: 0.7500 - val_loss: 0.5006\n",
+ "Epoch 45/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 656ms/step - accuracy: 0.5788 - loss: 0.6656 - val_accuracy: 0.7500 - val_loss: 0.4974\n",
+ "Epoch 46/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 589ms/step - accuracy: 0.6825 - loss: 0.6162 - val_accuracy: 0.7333 - val_loss: 0.4937\n",
+ "Epoch 47/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 548ms/step - accuracy: 0.6690 - loss: 0.5953 - val_accuracy: 0.7167 - val_loss: 0.4892\n",
+ "Epoch 48/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 547ms/step - accuracy: 0.6606 - loss: 0.6076 - val_accuracy: 0.7333 - val_loss: 0.4861\n",
+ "Epoch 49/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 821ms/step - accuracy: 0.6684 - loss: 0.5482 - val_accuracy: 0.7333 - val_loss: 0.4834\n",
+ "Epoch 50/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 625ms/step - accuracy: 0.6464 - loss: 0.5874 - val_accuracy: 0.7333 - val_loss: 0.4796\n",
+ "Epoch 51/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 539ms/step - accuracy: 0.6813 - loss: 0.5579 - val_accuracy: 0.7333 - val_loss: 0.4778\n",
+ "Epoch 52/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 544ms/step - accuracy: 0.6729 - loss: 0.5681 - val_accuracy: 0.7333 - val_loss: 0.4755\n",
+ "Epoch 53/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 606ms/step - accuracy: 0.7316 - loss: 0.5318 - val_accuracy: 0.7500 - val_loss: 0.4726\n",
+ "Epoch 54/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 645ms/step - accuracy: 0.6747 - loss: 0.5465 - val_accuracy: 0.7500 - val_loss: 0.4701\n",
+ "Epoch 55/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 590ms/step - accuracy: 0.7276 - loss: 0.4942 - val_accuracy: 0.7500 - val_loss: 0.4690\n",
+ "Epoch 56/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 498ms/step - accuracy: 0.8087 - loss: 0.4422 - val_accuracy: 0.7667 - val_loss: 0.4693\n",
+ "Epoch 57/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 540ms/step - accuracy: 0.7099 - loss: 0.5385 - val_accuracy: 0.7833 - val_loss: 0.4678\n",
+ "Epoch 58/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 500ms/step - accuracy: 0.7660 - loss: 0.4612 - val_accuracy: 0.7833 - val_loss: 0.4682\n",
+ "Epoch 59/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 595ms/step - accuracy: 0.7905 - loss: 0.4628 - val_accuracy: 0.7833 - val_loss: 0.4688\n",
+ "Epoch 60/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 496ms/step - accuracy: 0.7793 - loss: 0.4739 - val_accuracy: 0.7667 - val_loss: 0.4697\n",
+ "Epoch 61/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 543ms/step - accuracy: 0.7821 - loss: 0.4306 - val_accuracy: 0.7667 - val_loss: 0.4710\n",
+ "Epoch 62/80\n",
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 492ms/step - accuracy: 0.8249 - loss: 0.4180 - val_accuracy: 0.7833 - val_loss: 0.4729\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "###4.2 Plotting the progress\n",
+ "Let's plot the training and test loss and accuracy to show it conclusively:"
+ ],
+ "metadata": {
+ "id": "JD6qZNbvQcjA"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Combine histories\n",
+ "acc = history.history['accuracy'] + history_fine.history['accuracy']\n",
+ "val_acc = history.history['val_accuracy'] + history_fine.history['val_accuracy']\n",
+ "loss = history.history['loss'] + history_fine.history['loss']\n",
+ "val_loss = history.history['val_loss'] + history_fine.history['val_loss']\n",
+ "\n",
+ "# Total epochs\n",
+ "total_epochs = len(acc)\n",
+ "fine_tune_start = initial_epochs # Epoch where fine-tuning starts\n",
+ "\n",
+ "plt.figure(figsize=(10, 10))\n",
+ "\n",
+ "# Accuracy plot\n",
+ "plt.subplot(2, 1, 1)\n",
+ "plt.plot(range(total_epochs), acc, label='Training Accuracy')\n",
+ "plt.plot(range(total_epochs), val_acc, label='Validation Accuracy')\n",
+ "plt.axvline(x=fine_tune_start, color='r', linestyle='--', label='Fine-Tuning Start')\n",
+ "plt.legend(loc='lower right')\n",
+ "plt.ylabel('Accuracy')\n",
+ "plt.ylim([0, 1])\n",
+ "plt.title('Training and Validation Accuracy')\n",
+ "\n",
+ "# Loss plot\n",
+ "plt.subplot(2, 1, 2)\n",
+ "plt.plot(range(total_epochs), loss, label='Training Loss')\n",
+ "plt.plot(range(total_epochs), val_loss, label='Validation Loss')\n",
+ "plt.axvline(x=fine_tune_start, color='r', linestyle='--', label='Fine-Tuning Start')\n",
+ "plt.legend(loc='upper right')\n",
+ "plt.ylabel('Cross Entropy Loss')\n",
+ "plt.ylim([0, max(max(loss), max(val_loss))])\n",
+ "plt.title('Training and Validation Loss')\n",
+ "plt.xlabel('Epochs')\n",
+ "\n",
+ "plt.tight_layout()\n",
+ "plt.show()\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "id": "DhOzbB6kBDY_",
+ "outputId": "9c0a4d60-be0f-4185-8a04-b864b70caa40"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPeCAYAAAARWnkoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hT5RfA8W/SvaGDUuiCslfZeypbQBD5ISBLRUFQFHGiqLgVBzLEgYpMZYPsvffetJROVgfdI21yf3/ctlDbQkfatHA+z5OHm5s73qQhybnv+56jURRFQQghhBBCCCGEEEanNXUDhBBCCCGEEEKIh5UE3UIIIYQQQgghRAmRoFsIIYQQQgghhCghEnQLIYQQQgghhBAlRIJuIYQQQgghhBCihEjQLYQQQgghhBBClBAJuoUQQgghhBBCiBIiQbcQQgghhBBCCFFCJOgWQgghhBBCCCFKiATdQgghSsWoUaPw9fUt0r4fffQRGo3GuA0qY4KDg9FoNPz555+lfm6NRsNHH32Uff/PP/9Eo9EQHBz8wH19fX0ZNWqUUdtTnPeKEEIIUdZI0C2EEI84jUZToNuuXbtM3dRH3quvvopGoyEwMDDfbaZMmYJGo+HMmTOl2LLCu379Oh999BGnTp0ydVPydPHiRTQaDdbW1sTGxpq6OUIIIcoxCbqFEOIRt2DBghy3bt265bm+bt26xTrPr7/+yuXLl4u07/vvv09KSkqxzv8wGDZsGACLFy/Od5slS5bQsGFDGjVqVOTzDB8+nJSUFHx8fIp8jAe5fv06H3/8cZ5Bd3HeK8aycOFCKleuDMDy5ctN2hYhhBDlm7mpGyCEEMK0nn322Rz3Dx06xNatW3Ot/6/k5GRsbW0LfB4LC4sitQ/A3Nwcc3P5ymrVqhU1atRgyZIlTJ06NdfjBw8e5Nq1a3z55ZfFOo+ZmRlmZmbFOkZxFOe9YgyKorB48WKGDh3KtWvXWLRoES+88IJJ25SfpKQk7OzsTN0MIYQQ9yE93UIIIR6oc+fONGjQgOPHj9OxY0dsbW157733AFizZg1PPPEEVapUwcrKCj8/Pz755BP0en2OY/x3nm7WHObp06fzyy+/4Ofnh5WVFS1atODo0aM59s1rTrdGo2HChAmsXr2aBg0aYGVlRf369dm0aVOu9u/atYvmzZtjbW2Nn58fP//8c4Hnie/du5dBgwbh7e2NlZUVXl5evP7667l63keNGoW9vT0RERH0798fe3t73NzcmDx5cq7XIjY2llGjRuHk5ESFChUYOXJkgYcwDxs2jEuXLnHixIlcjy1evBiNRsOQIUPQ6XRMnTqVZs2a4eTkhJ2dHR06dGDnzp0PPEdec7oVReHTTz/F09MTW1tbunTpwvnz53PtGxMTw+TJk2nYsCH29vY4OjrSq1cvTp8+nb3Nrl27aNGiBQCjR4/OnsKQNZ89rzndSUlJvPHGG3h5eWFlZUXt2rWZPn06iqLk2K4w74v87N+/n+DgYJ555hmeeeYZ9uzZQ3h4eK7tDAYDM2bMoGHDhlhbW+Pm5kbPnj05duxYju0WLlxIy5YtsbW1pWLFinTs2JEtW7bkaPO9c+qz/He+fNbfZffu3bz88stUqlQJT09PAEJCQnj55ZepXbs2NjY2uLi4MGjQoDzn5cfGxvL666/j6+uLlZUVnp6ejBgxgqioKBITE7Gzs2PixIm59gsPD8fMzIwvvviigK+kEEIIkJ5uIYQQBRQdHU2vXr145plnePbZZ3F3dwfUQMDe3p5JkyZhb2/Pjh07mDp1KvHx8XzzzTcPPO7ixYtJSEjgpZdeQqPR8PXXX/PUU08RFBT0wB7Pffv2sXLlSl5++WUcHBz48ccfGThwIKGhobi4uABw8uRJevbsiYeHBx9//DF6vZ5p06bh5uZWoOe9bNkykpOTGTduHC4uLhw5coSZM2cSHh7OsmXLcmyr1+vp0aMHrVq1Yvr06Wzbto1vv/0WPz8/xo0bB6jB65NPPsm+ffsYO3YsdevWZdWqVYwcObJA7Rk2bBgff/wxixcvpmnTpjnO/c8//9ChQwe8vb2Jiorit99+Y8iQIYwZM4aEhATmzZtHjx49OHLkCI0bNy7Q+bJMnTqVTz/9lN69e9O7d29OnDhB9+7d0el0ObYLCgpi9erVDBo0iGrVqnHr1i1+/vlnOnXqxIULF6hSpQp169Zl2rRpTJ06lRdffJEOHToA0LZt2zzPrSgK/fr1Y+fOnTz//PM0btyYzZs38+abbxIREcH333+fY/uCvC/uZ9GiRfj5+dGiRQsaNGiAra0tS5Ys4c0338yx3fPPP8+ff/5Jr169eOGFF8jIyGDv3r0cOnSI5s2bA/Dxxx/z0Ucf0bZtW6ZNm4alpSWHDx9mx44ddO/evcCv/71efvll3NzcmDp1KklJSQAcPXqUAwcO8Mwzz+Dp6UlwcDA//fQTnTt35sKFC9mjUhITE+nQoQMXL17kueeeo2nTpkRFRbF27VrCw8Np3LgxAwYM4O+//+a7777LMeJhyZIlKIqSPc1BCCFEASlCCCHEPcaPH6/89+uhU6dOCqDMnTs31/bJycm51r300kuKra2tkpqamr1u5MiRio+PT/b9a9euKYDi4uKixMTEZK9fs2aNAijr1q3LXvfhhx/mahOgWFpaKoGBgdnrTp8+rQDKzJkzs9f17dtXsbW1VSIiIrLXBQQEKObm5rmOmZe8nt8XX3yhaDQaJSQkJMfzA5Rp06bl2LZJkyZKs2bNsu+vXr1aAZSvv/46e11GRobSoUMHBVD++OOPB7apRYsWiqenp6LX67PXbdq0SQGUn3/+OfuYaWlpOfa7c+eO4u7urjz33HM51gPKhx9+mH3/jz/+UADl2rVriqIoyu3btxVLS0vliSeeUAwGQ/Z27733ngIoI0eOzF6Xmpqao12Kov6trayscrw2R48ezff5/ve9kvWaffrppzm2e/rppxWNRpPjPVDQ90V+dDqd4uLiokyZMiV73dChQxV/f/8c2+3YsUMBlFdffTXXMbJeo4CAAEWr1SoDBgzI9Zrc+zr+9/XP4uPjk+O1zfq7tG/fXsnIyMixbV7v04MHDyqA8tdff2Wvmzp1qgIoK1euzLfdmzdvVgBl48aNOR5v1KiR0qlTp1z7CSGEuD8ZXi6EEKJArKysGD16dK71NjY22csJCQlERUXRoUMHkpOTuXTp0gOPO3jwYCpWrJh9P6vXMygo6IH7du3aFT8/v+z7jRo1wtHRMXtfvV7Ptm3b6N+/P1WqVMnerkaNGvTq1euBx4eczy8pKYmoqCjatm2LoiicPHky1/Zjx47Ncb9Dhw45nsuGDRswNzfP7vkGdQ71K6+8UqD2gDoPPzw8nD179mSvW7x4MZaWlgwaNCj7mJaWloA6DDomJoaMjAyaN2+e59D0+9m2bRs6nY5XXnklx5D81157Lde2VlZWaLXqzwu9Xk90dDT29vbUrl270OfNsmHDBszMzHj11VdzrH/jjTdQFIWNGzfmWP+g98X9bNy4kejoaIYMGZK9bsiQIZw+fTrHcPoVK1ag0Wj48MMPcx0j6zVavXo1BoOBqVOnZr8m/92mKMaMGZNrzv2979P09HSio6OpUaMGFSpUyPG6r1ixAn9/fwYMGJBvu7t27UqVKlVYtGhR9mPnzp3jzJkzD8z1IIQQIjcJuoUQQhRI1apVs4O4e50/f54BAwbg5OSEo6Mjbm5u2T/M4+LiHnhcb2/vHPezAvA7d+4Uet+s/bP2vX37NikpKdSoUSPXdnmty0toaCijRo3C2dk5e552p06dgNzPL2teb37tAXXurYeHB/b29jm2q127doHaA/DMM89gZmaWncU8NTWVVatW0atXrxwXMObPn0+jRo2wtrbGxcUFNzc31q9fX6C/y71CQkIAqFmzZo71bm5uOc4HaoD//fffU7NmTaysrHB1dcXNzY0zZ84U+rz3nr9KlSo4ODjkWJ+VUT+rfVke9L64n4ULF1KtWjWsrKwIDAwkMDAQPz8/bG1tcwShV69epUqVKjg7O+d7rKtXr6LVaqlXr94Dz1sY1apVy7UuJSWFqVOnZs95z3rdY2Njc7zuV69epUGDBvc9vlarZdiwYaxevZrk5GRAHXJvbW2dfVFHCCFEwUnQLYQQokDu7UnLEhsbS6dOnTh9+jTTpk1j3bp1bN26la+++gpQA7AHyS9LtvKfBFnG3rcg9Ho93bp1Y/369bz99tusXr2arVu3Zif8+u/zK62M35UqVaJbt26sWLGC9PR01q1bR0JCQo65tgsXLmTUqFH4+fkxb948Nm3axNatW3nssccK9Hcpqs8//5xJkybRsWNHFi5cyObNm9m6dSv169cv0fPeq6jvi/j4eNatW8e1a9eoWbNm9q1evXokJyezePFio723CuK/Cfiy5PV/8ZVXXuGzzz7jf//7H//88w9btmxh69atuLi4FOl1HzFiBImJiaxevTo7m3ufPn1wcnIq9LGEEOJRJ4nUhBBCFNmuXbuIjo5m5cqVdOzYMXv9tWvXTNiquypVqoS1tTWBgYG5Hstr3X+dPXuWK1euMH/+fEaMGJG9fuvWrUVuk4+PD9u3bycxMTFHb3dh61IPGzaMTZs2sXHjRhYvXoyjoyN9+/bNfnz58uVUr16dlStX5hjKnNdw6IK0GSAgIIDq1atnr4+MjMzVe7x8+XK6dOnCvHnzcqyPjY3F1dU1+35hhlf7+Piwbds2EhIScvR2Z01fMFY98ZUrV5KamspPP/2Uo62g/n3ef/999u/fT/v27fHz82Pz5s3ExMTk29vt5+eHwWDgwoUL901cV7FixVzZ63U6HTdu3Chw25cvX87IkSP59ttvs9elpqbmOq6fnx/nzp174PEaNGhAkyZNWLRoEZ6enoSGhjJz5swCt0cIIcRd0tMthBCiyLJ6FO/t/dPpdMyZM8dUTcrBzMyMrl27snr1aq5fv569PjAwMNc84Pz2h5zPT1EUZsyYUeQ29e7dm4yMDH766afsdXq9vtABTf/+/bG1tWXOnDls3LiRp556Cmtr6/u2/fDhwxw8eLDQbe7atSsWFhbMnDkzx/F++OGHXNuamZnl6g1etmwZEREROdZl1ZYuSKm03r17o9frmTVrVo7133//PRqNpsDz8x9k4cKFVK9enbFjx/L000/nuE2ePBl7e/vsIeYDBw5EURQ+/vjjXMfJev79+/dHq9Uybdq0XL3N975Gfn5+OebnA/zyyy/59nTnJa/XfebMmbmOMXDgQE6fPs2qVavybXeW4cOHs2XLFn744QdcXFyM9joLIcSjRnq6hRBCFFnbtm2pWLEiI0eO5NVXX0Wj0bBgwYJSHYL7IB999BFbtmyhXbt2jBs3Ljt4a9CgAadOnbrvvnXq1MHPz4/JkycTERGBo6MjK1asKNDc4Pz07duXdu3a8c477xAcHEy9evVYuXJloec729vb079//+x53f8t49SnTx9WrlzJgAEDeOKJJ7h27Rpz586lXr16JCYmFupcWfXGv/jiC/r06UPv3r05efIkGzduzNUj3KdPH6ZNm8bo0aNp27YtZ8+eZdGiRTl6yEENNCtUqMDcuXNxcHDAzs6OVq1a5TlfuW/fvnTp0oUpU6YQHByMv78/W7ZsYc2aNbz22ms5kqYV1fXr19m5c2euZG1ZrKys6NGjB8uWLePHH3+kS5cuDB8+nB9//JGAgAB69uyJwWBg7969dOnShQkTJlCjRg2mTJnCJ598QocOHXjqqaewsrLi6NGjVKlSJbve9QsvvMDYsWMZOHAg3bp14/Tp02zevDnXa3s/ffr0YcGCBTg5OVGvXj0OHjzItm3bcpVIe/PNN1m+fDmDBg3iueeeo1mzZsTExLB27Vrmzp2Lv79/9rZDhw7lrbfeYtWqVYwbN+6BJfyEEELkTXq6hRBCFJmLiwv//vsvHh4evP/++0yfPp1u3brx9ddfm7pp2Zo1a8bGjRupWLEiH3zwAfPmzWPatGk8/vjjOXqG82JhYcG6deto3LgxX3zxBR9//DE1a9bkr7/+KnJ7tFota9euZdiwYSxcuJApU6ZQtWpV5s+fX+hjZQXaHh4ePPbYYzkeGzVqFJ9//jmnT5/m1VdfZfPmzSxcuDC7fnRhffrpp3z88cecPHmSN998k6tXr7Jly5bsHuss7733Hm+88QabN29m4sSJnDhxgvXr1+Pl5ZVjOwsLC+bPn4+ZmRljx45lyJAh7N69O89zZ71mr732Gv/++y+vvfYaFy5c4JtvvuG7774r0vP5r6VLl2IwGHIM0f+vvn37Eh0dnT1K4o8//uCbb77h2rVrvPnmm3z++eekpKTkqDc+bdo0fv/9d1JSUpgyZQpTp04lJCSExx9/PHubMWPG8Pbbb7Nnzx7eeOMNrl27xtatW3O9tvczY8YMRowYwaJFi3jjjTe4ceMG27Zty5Wwz97enr179zJu3Dg2bNjAq6++ypw5c6hduzaenp45tnV3d8+uJT58+PACt0UIIUROGqUsdUcIIYQQpaR///6cP3+egIAAUzdFiDJrwIABnD17tkA5EIQQQuRNerqFEEI89FJSUnLcDwgIYMOGDXTu3Nk0DRKiHLhx4wbr16+XXm4hhCgm6ekWQgjx0PPw8GDUqFFUr16dkJAQfvrpJ9LS0jh58mSu2tNCPOquXbvG/v37+e233zh69ChXr16lcuXKpm6WEEKUW5JITQghxEOvZ8+eLFmyhJs3b2JlZUWbNm34/PPPJeAWIg+7d+9m9OjReHt7M3/+fAm4hRCimEza071nzx6++eYbjh8/zo0bN1i1ahX9+/e/7z67du1i0qRJnD9/Hi8vL95//31GjRpVKu0VQgghhBBCCCEKw6RzupOSkvD392f27NkF2v7atWs88cQTdOnShVOnTvHaa6/xwgsvsHnz5hJuqRBCCCGEEEIIUXhlZk63RqN5YE/322+/zfr16zl37lz2umeeeYbY2Fg2bdpUCq0UQgghhBBCCCEKrlzN6T548CBdu3bNsa5Hjx689tpr+e6TlpZGWlpa9n2DwUBMTAwuLi5oNJqSaqoQQgghhBBCiIeYoigkJCRQpUoVtNr8B5GXq6D75s2buLu751jn7u5OfHw8KSkp2NjY5Nrniy++4OOPPy6tJgohhBBCCCGEeISEhYXh6emZ7+PlKuguinfffZdJkyZl34+Li8Pb25uwsDAcHR1N2DIhhBBCCBNJSoIqVdTl69fBzs607RFCiHIoPj4eLy8vHBwc7rtduQq6K1euzK1bt3Ksu3XrFo6Ojnn2cgNYWVlhZWWVa72jo6ME3UIIIYR4NNnYwKxZ6rKrK1hYmLY9QghRjj1o2nK5CrrbtGnDhg0bcqzbunUrbdq0MVGLhBBCCCHKIQsLGD/e1K0QQohHgklLhiUmJnLq1ClOnToFqCXBTp06RWhoKKAODR8xYkT29mPHjiUoKIi33nqLS5cuMWfOHP755x9ef/11UzRfCCGEEEIIIYS4L5MG3ceOHaNJkyY0adIEgEmTJtGkSROmTp0KwI0bN7IDcIBq1aqxfv16tm7dir+/P99++y2//fYbPXr0MEn7hRBCCCHKJb0edu1Sb3q9qVsjhBAPtTJTp7u0xMfH4+TkRFxcnMzpFkIIIcSjKSkJ7O3V5cRESaQmhBBFUNDY0qQ93UIIIYQQQgghxMNMgm4hhBBCCCGEEKKESNAthBBCCCGEEEKUEAm6hRBCCCGEEEKIEiJBtxBCCCGEEEIIUUIk6BZCCCGEEEIIIUqIuakbIIQQQgghSpmFBXz99d1lIYQQJUaCbiGEEEKIR42lJbz5pqlbIYQQjwQZXi6EEEIIIYQQQpQQ6ekWQgghhHjU6PVw4oS63LQpmJmZtj1CCPEQk6BbCCGEEOJRk5oKLVuqy4mJYGdn2vYIIcRDTIaXCyGEEEIIIYQQJUSCbiGEEEIIIYQQooRI0C2EEEIIIYQQQpQQCbqFEEIIIYQQQogSIkG3EEIIIYQQQghRQiToFkIIIYQQQgghSoiUDBNCCCGEeNRYWMCHH95dFkIIUWIk6BZCCCGEeNRYWsJHH5m6FUII8UiQ4eVCCCGEEEIIIUQJkZ5uIYQQQohHjcEAFy+qy3Xrglb6YYQQoqRI0C2EEEII8ahJSYEGDdTlxESwszNte4QQ4iEmlzWFEEIIIYQQQogSIkG3EEIIIYQQQghRQiToFkIIIYQQQgghSogE3UIIIYQQQgghRAmRoFsIIYQQQgghhCghEnQLIYQQQgghhBAlREqGCSGEEEI8aiwsYPLku8tCCCFKjATdQgghhBCPGktL+OYbU7dCCCEeCTK8XAghhBBCCCGEKCHS0y2EEEII8agxGCA0VF329gat9MMIIURJkaBbCCGEEOJRk5IC1aqpy4mJYGdn2vYIIcRDTC5rCiGEEEIIIYQQJUSCbiGEEEIIIYQQooRI0C2EEEIIIYQQQpQQCbqFEEIIIYQQQogSIkG3EEIIIYQQQghRQiToFkIIIYQQQgghSoiUDBNCCCGEeNSYm8PLL99dFkIIUWLkU1YIIYQQ4lFjZQWzZ5u6FUII8UiQ4eVCCCGEEEIIIUQJkZ5uIYQQQohHjaJAVJS67OoKGo1p2yOEEA8xCbqFEEIIIR41yclQqZK6nJgIdnambY8QQjzEZHi5EEIIIYQQQghRQiToFkIIIYQQQgghSogE3UIIIYQQQgghRAmRoFsIIYQQQgghhCghEnQLIYQQQgghhBAlRIJuIYQQQgghhBCihEjJMCGEEEKIR425OYwceXdZCCFEiZFPWSGEEEKIR42VFfz5p6lbIYQQjwQZXi6EEEIIIYQQQpQQ6ekWQgghhHjUKAokJ6vLtrag0Zi2PUII8RCTnm4hhBBCiEdNcjLY26u3rOBbCCFEiZCgWwghhBBCCCGEKCESdAshhBBCCCGEECVEgm4hhBBCCCGEEKKESNAthBBCCCGEEEKUEAm6hRBCCCGEEEKIEiJBtxBCCCGEEEIIUUKkTrcQQgghxKPGzAyefvrushBCiBIjQbcQQgghxKPG2hqWLTN1K4QQIk8pOj1W5lq0Wo2pm2IUMrxcCCGEEEIIIUSZ8c3my/T+cS+Hg6JN3RSjkJ5uIYQQQgghhBBlQvidZBYeCkGnN6DTG0zdHKOQnm4hhBBCiEdNUhJoNOotKcnUrRFCiGwztgWg0xto6+dC+xqupm6OUUjQLYQQQgghhBDC5AJuJbDiRDgAb/aojUYjc7qFEEIIIYQQQgijmL7lMgYFetR3p4l3RVM3x2gk6BZCCCGEEEIIYVKnwmLZfP4WWg1M7l7b1M0xKgm6hRBCCCGEEEKY1NebLgHwVFNParo7mLg1xiVBtxBCCCGEEEIIk9kXEMWBq9FYmml5rWtNUzfH6CToFkIIIYQQQghhEoqi8PVmtZd7WGtvPCvamrhFxid1uoUQQgghHjVmZtC7991lIYQwkU3nbnImPA5bSzPGd6lh6uaUCJP3dM+ePRtfX1+sra1p1aoVR44cue/2P/zwA7Vr18bGxgYvLy9ef/11UlNTS6m1QgghhBAPAWtrWL9evVlbm7o1QohHVIbewDdbLgPwQofquNpbmbhFJcOkQffff//NpEmT+PDDDzlx4gT+/v706NGD27dv57n94sWLeeedd/jwww+5ePEi8+bN4++//+a9994r5ZYLIYQQQgghhCiOlSciCIpMoqKtBWM6VDN1c0qMSYPu7777jjFjxjB69Gjq1avH3LlzsbW15ffff89z+wMHDtCuXTuGDh2Kr68v3bt3Z8iQIQ/sHRdCCCGEEEIIUXakpuv5ftsVAMZ3qYGDtYWJW1RyTBZ063Q6jh8/TteuXe82Rqula9euHDx4MM992rZty/Hjx7OD7KCgIDZs2EDvrDlJQgghhBDiwZKSwM5OvSUlmbo1QohH0MJDIdyIS8XDyZpnW/uYujklymSJ1KKiotDr9bi7u+dY7+7uzqVLl/LcZ+jQoURFRdG+fXsURSEjI4OxY8fed3h5WloaaWlp2ffj4+ON8wSEEEIIIcqz5GRTt0AI8YhKSE1n9s5AAF7rWhNri4c7oaPJE6kVxq5du/j888+ZM2cOJ06cYOXKlaxfv55PPvkk332++OILnJycsm9eXl6l2GIhhBBCCCGEEPf6be817iSnU93NjoFNPU3dnBJnsp5uV1dXzMzMuHXrVo71t27donLlynnu88EHHzB8+HBeeOEFABo2bEhSUhIvvvgiU6ZMQavNfQ3h3XffZdKkSdn34+PjJfAWQgghhBBCCBOITkzjt71BAEzuXhtzs3LVD1wkJnuGlpaWNGvWjO3bt2evMxgMbN++nTZt2uS5T3Jycq7A2iyztqSiKHnuY2VlhaOjY46bEEIIIYQQQojSN3vnVZJ0ehpWdaJXg7w7Wx82JuvpBpg0aRIjR46kefPmtGzZkh9++IGkpCRGjx4NwIgRI6hatSpffPEFAH379uW7776jSZMmtGrVisDAQD744AP69u2bHXwLIYQQQgghhMibLsPAzB0BaID2Nd1o4l0Bi1LqbQ6/k8zCQyEAvNWzNhqNplTOa2omDboHDx5MZGQkU6dO5ebNmzRu3JhNmzZlJ1cLDQ3N0bP9/vvvo9FoeP/994mIiMDNzY2+ffvy2WefmeopCCGEEEIIIUS58fWmS/y27xoAP+4IxM7SjNbVXWhf05UONV3xc7MvsWB4xrYAdHoDbf1caF/DtUTOURZplPzGZT+k4uPjcXJyIi4uToaaCyGEEOLRlJICvXqpyxs3go2NadsjxKNOUSD0EMRHlOhpzkbE8esedT61bbWWbLlpS0ySLsc2Hk7WtK/hSvuarrSv4YqLvZVRzh1wK4EeP+zBoMCql9vSxLti/hvfCYHTS6DT21CGe8MLGltK0C2EEEIIIYQQphK8H3Z8AqEHS/e8GjOUxkO5Uudldt60Yl9AFEeCY9BlGHJsVs/DkQ411SC8ha9zkct7vbTgGJvP36JHfXd+Ht48740SbsKe6XD8TzCkw+BFULdPkc5XGiTozocE3UIIIYQQQgiTizgBOz6Fq5mJpc2twbMFaIw/v9oAnIuIIz4lHXtrcxq5maG9fkJ90MwSmj8HHd4g1cqFo8Ex7AuIYm9AFBduxOc4jpW5lha+ztlD0etWdkSrfXBP9KmwWPrP3o9WA5tf60hNd4ecGyTHwP4f4PAvkJGirqvWCbp/Ah7+xX8BSogE3fmQoFsIIYQQQghhMrcvws7P4OI69b7WHJqOhI6TwbFKiZxy+ubLzNoZiL2VOetfbY+Pix2EHYHt0yB4r7qRhS20GgvtXgUbdeh3VGIa+wPVAHxfQBQ341NzHNfFzpJ2mUPRO9R0xcMp76kqQ389xIGr0TzdzJPpg+4JotMS4OAcODgL0jIDfM+W8PgHUK2j0V8HY5OgOx8SdAshhBDikZeUBL6+6nJwMNjZmbI1QjwaYq7Bri/hzN+AAmig0WDo/A44Vyux0+4NiGTE70dQFJg1tAl9Gv0nsA/apQbfEcfV+1ZO0O4VaDUOrOyzN1MUhauRidkB+KGgaJJ0+hyH8nOzo0NNN9rXcKW1nwv2VubsC4ji2XmHsTTTsmNyJzwr2kJ6Chz9DfZ9D8nR6s7uDeGx96FWjzI9j/teEnTnQ4JuIYQQQjxMohLTOBMeS4eabgUv+5OUBPaZP6YTEyXoFqIkxV+HPd/Aib/AkKGuq9sXukyBSnVL9NS3E1LpPWMvUYk6hrby5vMBDfPeUFHg8kZ1bvntC+o6W1fo8IY69NzCOtcuugwDp8Ji2RcQyd7AKE6HxWK4J7I012po4l2ByIQ0gqOTGd3Olw9714KTC2D315BwQ93QpQZ0eQ/qDQBt6ZQuMxYJuvMhQbcQQgghHgZJaRn8tvcav+y5SpJOz1cDGzK4hXcBd5agW4gSlxQN+75Te3QzModl+z2u9uZWbVrip9cbFEb8fpj9gdHUqezA6vHtHpwEzWCA8yvV4e8xapZzHKtCp7eg8TAws8h317jkdA4GZQ5FD4wiJDo5+zF7Sw0Hn4jG4dB0uBOsrnTyUrOT+w8BM5NWsi6ygsaW5fPZCSGEEEI8otL1BpYeCWXG9gCiEu+W+rl0M8GErRJCZEuNh4Oz1XnKukR1nXcbeOwD8G1Xas34aVcg+wOjsbEwY9bQJgXLOq7VQsOnod6TcGox7P5KLWO2biLsnwFtX1F7wPPgBPTUQs/aQG11FM6FGwncuHmD3kkrcdgYqG5o5wYd34Rmo8DcOOXIyjoJuoUQQgghygFFUVh/9gbTN18mOLMHydfFlvpVnFh/9gbhd1JM3EIhHnG6ZDjyi5qFO+WOuq5yI3h8KtToWqrzlI9ci+G7rVcA+KR/A2pUcnjAHv9hZgHNRqpzzo/9Dnu/VXu+/329wIdwBXKkQrN2gnavQauXwPLRGl0jQbcQQgghRBl3IDCKLzdd4kx4HACu9lZM7FqTZ1p4sS8gSoJuIUwpQwcn5qvzthNvqetca6lztuv2K/V5yjFJOl5dchKDAk81rcrTzTyLfjALa2jzMjQdAYfnQuB2UAwP3u9eGg34doA248GmQtHbUo5J0C2EEEIIUUZduB7Pl5susedKJAB2lma82NGPFzpUw85K/RnnWVEt0RN+Jznf4wghSoBBr2Yi3/UFxIaq6yp4Q+d31R5ibQGGcxuZoihMXnaam/GpVHez45MnGxjnwFb2akmzjpONc7xHjATdQgghhBBlTFhMMt9tvcLqUxEoCliYaRjWyocJj9XA1T7nHMiqmUF3QmoGcSnpONnkn+gom1YLzZvfXRZCFJzBABfXqsnGotQh3NhXVgPSpiNZez6KWTP2Mby1D8Na+aDVlt6w8nn7rrHj0m0szbXMHto0++KcMC35KwghhBCi3ElKy8BMqylYYqByJCZJx6wdgSw8FIJOrw7h7Otfhcnda+HjkvccSFtLc1zsLIlO0hEWk4xTVacHn8jGBo4eNWbThXj4KQoEblNrWt88o66zqQjtX4cWY8DSlptxqby74gxJOj0frDnPpvM3+fppf6pWsCnx5p0Ki+XLjZcAmNqnHnU9pFJTWSFBtxBCCCHKHINB4XZCGqExyYREJxEWk0xITDKhMcmERicTnaTDzcGKlePa4uVsa+rmGsW+gCgmLDlBbHI6AO1quPBOz7o09HxwEO3pbEt0ko7wOyk0KEjQLYQonOD9arAddki9b+mgzlFu87KaICzTtH/Pk6TT4+Niy634VPYHRtPj+z180Kcu/2vuhaaEkqnFpaQzYfEJMgwKTzT0YFirApYPFKVCgm4hhBBlVmq6niu3EmjkWcHUTXmkKIrCsZA7JKSml8r50vUK12NTsgPqkJhkwmKSScu4f7KeyIQ0Xph/jBUvt8W+HA+hVBSFefuu8fmGixgUqFPZgSlP1KVDTbcCH8Ozog2nw2JlXreiQMQJSI4q/L62rmrt5FLMMC2KKPoqRAeWzrky0uD4n3B1u3rf3BpajoF2r4OdS45Nd166zYazNzHTavhpWDOsLbRMXnaaE6GxvL3iLBvP3eTLpxpR2cnaqE1UFIV3Vpwh/E4KXs42fDGwYYkF96Joyu83lBBCiIdaQmo6Q389zNmIOL4f7M+AJsXIvioKZfnxcN5cfsbUzcBMq6FKBWt8nO3wcrbFx8UWb2f1Zm2hZcivh7l8K4HX/z7Fz882K9V5k8aSmq7nvZVnWXkyAoCBTT35bECDQg+bv5tMrYAZzJOToV49dfnCBbB9CEYLBO/L7Ik8XPRjeLVWyzuVYi1lUQjRV9WkZWeXA0rpnltrDk1HqvO2HavkejhFp2fq2nMAPNfOl3pV1KHdy8a2Zd6+IKZvucKuy5F0/343H/Wrz4AmVY0WGC88HMrGczexMNMwa0hTHK0LkNdBlCoJuoUQQpQ5qel6xvx1jLMRanmkH7YF0LdRFczNJOFTSdMbFObsugpAdVc77K1L/qeCRqPBw9EaHxfbHMF1lQo2WNznb/7z8GY888shtl64xXdbrzC5R+0Sb6sx3YhL4aUFxzkTHoeZVsOU3nUZ3c63SD/EPSuqQXOBg25FgZCQu8vlWcRx2P4JBO1U75tbg1udwvVYKwpEXlKHDv/ZG/weg8c+UHu+henFhcPur+HkQlD06jr3hmBWSqGMewPo8AY4V8t3k1k7AwiLScHDyZrXutbKXm+m1fBiRz+61K7E5GWnOR0ex6R/TrPx3E0+G9CASg5F7/VO1mWw50okn/x7AYC3e9bB36tCkY8nSo4E3UIIIcqUDL2BCYtPcigoBnsrc8zNNIREJ7Pm1HUGFqfWqCiQrRduci0qCScbC9a90r5MZ75t6l2RL59qyKR/TjNrZyC1KjvQzz93D1RZdDwkhpcWnCAqMY0KthbMHtqUdjVci3y8R7Js2O2LsONTuPSvel9rAc1GQofJ4OhR+OPFX4c909V6y1d3qLe6fdVay5XqGrftomASI2Hfd3B0HujT1HU1u8Nj74OHv2nbdo+AWwn8sicIgI/61c/zc7OmuwMrxrVl7u6rzNgewNYLtzgWHMO0JxvQt4CfW3qDwvnrcewNiGJvQCQnQmKzEy4+XqcSz7fP/6KAMK2y+00qhBDikWMwKLy94izbLt7C0lzLbyObczI0lq82XWLWzkCebCy93SVJURR+2q3+cBzRxqdMB9xZnmrqyeWbCfy8J4g3l53G18W2zOcAWHIklKlrzpGuV6hT2YFfhjfH26V4w7u9MoPuiDspKIrycM/njAmCXV/CmX8ABTRaaPQMdH4bKvoW/biOVaDPd9D2Fdj9FZxeChfXwcV/1ZrLnd+5b0+nMKKUWDgwEw79BOlJ6jqfdurQf+/WJm3afymKwpRV6v/nrnXd6VG/cr7bmptpmfBYTR6v684b/5zmwo14Xllykk3nbjLtyfq4/KccIKjlA/cFRrEvIIr9V6OyEy1mqVrBhsfqVGJyj9oP9//7cq7sf5sKIYR4JCiKwmcbLrLiRDhmWg2zhzaldXUXGlZ14pc9V7kWlcS/Z27Qv0lVUzf1oXUoKIbTYbFYmWsZ2dbX1M0psLd61uHKrQR2Xo7kxb+Os3ZCOyo5GjdRkTHoMgxM+/c8Cw+FAtCrQWWmD/I3ysWNrOHlCWlqre4KtpbFPmaZExcBe76BkwvAkKGuq/ek2hPtZsSpBc7VYMBcaDdRrcN8cR2cWQrnlkPTEdDxzTzn9Aoj0CXB4bmwfwakqtOLqNJEHerv91iZTHK3/Hg4R4JjsLEw46N+9Qq0T10PR1aPb8esnYHM3hnI+rM3OHwtmk/7N6SNnwsHr0azLzCSfQFRBEfnHL3iYGVOaz8XOtR0pX0NV6q52kmwXQ5I0C2EEKJMmL0zkHn7rgHw9cBGdKvnDoCdlTkvdKjON5sv8+OOAPr6V8GsjCTMikpM4/W/T9GplhsvdKhu6uYU28971Lncg5p74ppHj0tZZabVMGNIE56ac4DA24m8uOA4S19sXaZqeEclpvHyohMcuRaDRgNvdKvF+C41jPZj2drCDFd7K6IS0wi/k/JwBd1JUbD3Ozj6290hxjW6qUOMqzQuufNWqguDF6rZ0Hd8qmavPvY7nFoMLV6A9pNyZa8WRZSRBsf+gL3TISlSXedWR/0b1+lTJoNtgDtJOj7fcBGA17rWzL74VRCW5lomdatFt7ruvLHsFFduJTJ24XG0GjDck2bBTKuhiVcF2td0pUNNV/w9K8iIr3JIgm4hhBAmt+BQCNO3XAFgap96ueZuj2jjwy97ggiKTGL92RtlZt7u15suZc6ti8LNwYonG5ffXviLN+LZdTkSrQbGtPeF8GOQllD4Azl5gWsNo7fvQRytLfhtRHOenL2fU2GxvLfyLN/+zz9nUKvPgPCjkJFa+BNUbgh2RZtzfS4ijhf/Osb1uFTsrcz5YXBjumZeVDKK9BS4fRGvCllBd/LDUas7NQ4OzIJDc0CXqK7zbguPfwA+bUuvHVWbwvCVap3mHZ9A6EE4OEstI9X6ZWg7IUed5hKRVQotLb5kz2MKMUHqRZX4cPV+RV/o/B40fBq0ZefCWV6+3HiJO8np1HZ34Lkizqdu6OnEulfa88O2AH7efRWDAtXd7OhQw5X2Nd1oXd0ZB8lGXu5J0C2EEMKk1pyKYOoatczKq4/VyPOHi4O1Bc+3r8Z3W68wc3sAfRp6mLw81LmIOJYdD8++/9byM/i62JXbzLFqEiCFN6qH4bPiCbhxuugHq9svM/lUHaO1ryB8Xe2YM6wpI34/wsqTEdSu7MBLnfzAYIDzK9VSQ0Wt7WtpD8NXgVfLQu225lQEb684Q2q6gWqudvw6ohk1KjkUrQ3/pU9Xh1rv/hoSbjDLsjofagcQHlOA112juVsyrKz1IuqS4MgvsO8HSI1V13k0VoNtv8dN117fdjB6IwRuh+0fw80zsOdrOPortHsNWr4IlkYuvaYo6vl2fAI3Thn32GWNgwd0eguaDAez/IPMFJ2eZ345iAIsGdPaZLknjgbH8PexMAA+G9DgvpUWHsTK3Iy3e9bhuXbVSNcbqFLBxljNFGWERlHKe52IwomPj8fJyYm4uDgcHR1N3RwhhMglLjkdNOBkU/aubCuKQmRiGgmpGVQ3wjyynZdvM2b+MTIMCiPa+PBxv/r5HjM+NZ12X+4gITWD2UOb8kSjImQnNhJFURj8yyGOXIuhr38VUnQZbLt4m0oOVqx7pT3uZXA+8f2E30lm8vSfmGT2Ny21l9WVFnaFT0qlGNSyS9nJrTKTTxUnuVURzD8QzIdrz6PRKKzumoD/lVlwS72wg3UFcCzkiITUWIiPACsnGLm2QEOa9QaFrzdd4ufMjMadarnx45Amxvl/bdDD2WXqRYQ7wbkeDreth+fTX0D1zsU/V2nKSIPj89V520m31XWutdUhxnX7lq2LAwYDXFyrzvmOUkfpYO+uzvduOhLMjTC8P+SAWgot9IB6vyj/J8sDc0toMFAdsm/x4GDz602Xsssajmjjw7QnG5R0C3NJ1xt44se9XLmVyDMtvPhyYKNSb4MoGwoaW0rQLYQQZUhYTDJPzt5PUloGo9tVY1xnv1IPvtMy9ITfSSE0JpnQ6GRCY5IJiU4mLEZdTklXa6T6udkxtJUPA5tWLdL80WPBMTw77zCp6Qb6+Vfhh8GNH9h7/f3WK8zYHkBtdwc2Tuxgst7ujWdvMG7RCawttOx4ozMO1uYM/OkAV24l4u/pxN8vtSlT84nv6/pJApe+TY34w+p9c+vizVfNq4xTdvKp0rlQoigKvy2YT7PAmTTVZvZsWzlC21eh9ViwKmRPsy4JFg5UhxXbOMPoDfctIaUoCu+uPMvSo2ov2NhOfrzZo3bxcxEoiprUa+dnmRc3ALtK0HEy1OvPuVVfUf3qQmw1mfOefTuo2Z4L2Ttf6vQZaqKyXV9CnPqaUcEHOr8Ljf5XtocYG/Rw5m/1AkismiAPJ2/1YlOjwUWrI339pPp/KHCbet/MClqOgfavF3mKw8Piyq0Ees/YS8Y9k54XvdCqWOX2imLu7qt8ufESznaWbJ/UiYp2D1EOBVEoEnTnQ4JuIURZpcswMOjng5wOi81e52RjwYQuNRjexsfoQZzeoLA3IJLz1+MJiU7KDrJvxKdyv28GrQbMtdrs2qBW5lqeaOTBsFY+NPWuUKDe7wvX4xn8y0ESUjPoXNuNX0c0L9DQvLjkdNp/tYOEtAzmPtuUng1Kv7c7NV1Pt+93ExaTwsTHa/J6t1oAhEQn8eTs/cQmp/NkY/UiQpnOKHv7Euz8VA3igHTFjKhag/Ho+4FxMjNHHM9MPrVDvW9urQYO7V4v2eRT4cdg+zS4thuAFMWSFZZ96fPSF1RwLcY86tR4+OtJuH5C7dEcvRFc/PLc9Pd915j27wW0Gvjuf42Ln3FfUdQkXjs+VQMyUHvs202EVi+BpR0Au69EMvn3LbznuJEB+s2g16nb1uqp9hZXbli8dhibwQAXVsPOzyE6QF1nXxk6vQlNRhint7i0ZOjU+t57pkPiTXWdS014bArUfRK0BRh6fPtSZrb0tep9rbk61Lrjm+BUfvNFGIuiKAz++RBHgmPoWtedyk5WLDwUStUKNmx6rUOpzXsOi0mm2/e7SU038O0g/1w5SMSjRYLufEjQLYQoqz7fcJFf9gThaG3OB33q8eveIK7cUpMHVXGyZlL32gxoUrXYvWW34lP5+2gYS4+Ecj0u74RStpZmeDvbZt98XGzxdrHD29mWqhVsSMvQs+bUdRYdDuXijbuJfepUdmBYK2/6N6ma7w+g4Kgknp57kKjENJr7VGTB862wsSz4BYVvt1xm5o5A6no4sv6V9qXe2/3Trqt8tekSlR2t2TG5E7aWd3uyDgRGMfz3I+gNCm/1rM3LnUs/odgDxVzLrHH8N6CgoGGlvh0bnEfx22tPG/9CQfA+dYhs2CH1vqWDmniq9ctgbcTv4Zvn1IDl8gb1vtaCFP+RDL7YljOx1rT1c2H+cy2LNe+S5BiY31cdqu7oCc9thAreOTbZcyWSUX8cwaDA+0/ULX5W+5CD6nzekP3qfQs7aPMytJkANhVybHo1MpHHv92NnaUZ5ybVQ7P7azi1SB32D+oQ3s7vqYnukpOhRQt1/dGjYGvkucj3oygQsBV2TIObZ9V1Ns5qT27LMQUaYlxm6ZLVOd77voeUO+q6yg3hsalQs1veQ+Rjrql1wc/8nfm30qg9/J3fAefyXxXBWJYdC+PN5WewsTBj66SOVLS1pOeMPYTFpDCkpRdfPFXyQ7wVReGF+cfYfuk2rao5s/TF1mX74qoocRJ050OCbiFEWbTj0i2e+/MYAD8Pb0aP+pXRGxRWnAjn+61XuJEZHNd2d+DtXrXpUrtSob7oDQaFfYFRLDocwraLt9FnDs2rYGtBl9qV8HHJDKydbfF2tsPV3rJAx1cUhVNhsSw6HMq/Z66Tmq7+uLe1NKOffxWGtfKhoefdrL634lMZ+NMBwu+kUKeyA3+/1KbQw+djk3W0+3IHSTo9vwxvRvf6lQu1f3HcTkjlsem7SUzL4PvB/gxokruHY8HBYD5Ycx6NBn4d3ty4WaqLI/66Olf2xF/ZNY71tfswOOBxjiW78+OQJiWXFT47yPpETT4FmUHWa9BiTPGST0VfVXtKz60gey65/1A1IVNFHy7eiGfgTwdI1ukZ2caHj4s7/zMxEv7src7jreir9nhnjgwIikyk/+z9xKdm8HQzT755ulHRf5BfP5U5xHiret/MKnPY/+tg75bnLqnpeup8sAmAkx90U4e8RgWor8/5lepGGjNoPBSavwKemQnXEhPBzq5o7Sys4H3qSISwzOkMJXURxtRS4+DgHDg4G3SZVQC8WqnD/X3bq/fjb2T+n5x/t+54nT5qEkL3gtV7flTcSdLx2Le7uJOczru96qgJEoFDQdE884t6QW/+cy3pVCvv/xvGsvn8TV5acBwLMw0bJ3YwXlJEUW5J0J0PCbpFuXcnWJ3DZ+wMqcL4FEX9Ye5a674JgG7EpdB7xl7uJKczqq0vH/Wrn+Px1HQ98w8EM3tnIPGp6g+zVtWceadXHZp4V7xvE6IS01h2LJwlR0IJjUnOXt/CtyJDW3nTq7ol1jb2Rnk/xSWns/JkOIsPhxJwOzF7fcOqTgxr5U3HWm6M+uMIV24l4uNiy7KxbajkULSEY1mJdBpUdWTdhPal1tPwzoozLD0ahr9XBVaNa6v2skdegeToHNv9sucqWy7cwsbCjM+eaoh3XrVb7VzBtWbJNzopGvZ/D0d+vVsqy+9xeOx9/gp1Zuqa83g527Dzjc4lX/vVYICLa9QgMDv5VGV1TrJ7IYNhJXMu7clF6jJA/QFqT65brRybZv1QBvh8QEOGtvL+79EKJ/46/NFL/Tx2rQWjNhBnVoEBs/cTFJVEU+8KLHmxNVbmRZgSEnlZ7bG/sEa9rzGDpsOh41sFGmLc4rNtRCaksW5C+xwXvLhxRj3uFTUoR28Bn2a+by9sB9sS7l3WJaoBaNBO9b65tZrtu/3rYOtcsuc2pbz+/1XvouYEOPb7Pf8nH1OnAFRtZrq2lmFvLz/D38fCqO3uwL+vts8xYuWjtef580AwlR2t2fx6xxLLg5KYlkG373ZzIy6VCV1qMLlH7RI5jyhfJOjOhwTdoly7sgWWDFavlo9aX7aTywi1l2rPN2rypu6f5LlJht7A0F8PcyQ4hgZVHVkxrm2+P9TjktOZszuQP/YHo8tQe5R7NajM5B618XOzz95OURQOBkWz+HAom8/fJF2vfsw7WJszsKknQ1t5U8vdAaIC4dfH1HmTI/81WnknRVE4GnyHRYdD2Hj2Zvbc7yyVHKxYMa4tXs5FD/RjknS0/2oHyTo980Y25/G6Jd+bfP56HH1m7kNRYMW4tjSzCFaHTV/dXvSD1uyu/tD28DdaO7OlxqlBzsE5d3vavNvAYx+Abzsy9AY6T99F+J0Upj1ZnxFtfI3fhvzoMzKTT30JcaHFP17NHpmvY/7DS2ftCGD6liuYazX8OqI5XepUKt4574SogXd8BIp7A142/5iNV9PwcLJmzYR2hb+gdCcYdn2lJhTLGmLccJA6xDifueN5GTBnPydDY/lpWFN6Ncwj50HYEbWn+coe+CLzffGuA1iW0hBZrQU0GwkdJpdaYr0yIf66Ot/73l5tAK/Waim0rN5vkcvR4BgGzT0IwPKxbWjum/MiTYpOT68ZewiOTubpZp5MH1QCn6fAp/9e4Ld91/B2tmXL6x3LT7JMUaIk6M6HBN2i3EpLgNmt1LI1AL2+VhPoiLLpxhn4pbPaA6fRwgvb8uzB+G7LZX7cEYi9lTn/vtIeX9cHD/G8HpvCD9uusPx4OAYFzLQaBrfwYnRbX3ZfiWTxkVCCIpOyt/f3qsCwlt708fe4O//YYFDnpobsU+/bV1YzMhfix31BxCTpWH48jMWHQwmOTsbJxoJ/XmpD7crFH5L3xcaL/Lw7CH9PJ1aPb1eivd2KovDML4c4fC2GF+voeM9mRXYCMrTmaqbl/5xfb1CIiE0hXa9gY6HFw8nm7iaKogZZ9/bQdplinJ5vXbJa43j/D/fMKW2kDmut0TW7nWtPX+fVJSdxtrNk/9uPFWpevdFkpKnD3U/Mh/SUwu9fsZqaZMq71QM3VRSFV5eeYt3p62g18E6vOozpUL1475uoQDXwTrrNKYMfzytTmD+2Kw2qOj143ywJN9WLc8fngyFdXVf7CTUBl3v9+++bh1eWnGTd6etM6V2XMR3zmQ+sKHBuIzR6Qr3/jT9YlfTfX6P+nTq++XCWvSqomGtq8B0bol6QzW+etwDUBKN9Zj64NNex4BgG/XwQRaFELsSevx5Hv1n70RsU/hzdgs61i3nRTjw0JOjOhwTdotza8BYc+RnMbSAjBSzt4eVDUMHL1C0T/6XPgHld1SzDWX8v9wbw4i4wuzvsbX9gFM/OO4yiUKT5tFduJfD1pstsu3gr12N2lmY82aQqQ1t65x0AHJ8P614FC1s1EVTkJXDyUuenlsB7ymBQOBUeS2VHa6pUMM4w1qjENDp8tZOUdD1/jG5BlxL8EbTp3E0+W7SBSRar6G+2D012sqPB0PntfJMdXb6ZwFNz9pOk0/Nsa28+7X9P9uj85iJ3fjtXcq4Cyc6e/A0kZr4nXGupwXzdfjmyJyuKwhM/7uPCjXhe71qLiV1LYZh7GZCWoeeD1ef451g4AP0bV+HLgY2K1WO1eccOWuwejrMmkWiX5ri8tDY7m/h9JceoybaO/Kp+RoA67PixD8Cz6EOMv9p0iZ92XX3w/PWkJLDPHCFTmnO6hSiErMSVBSnNlZWM1M3Biq2vdyxSKcu8GAwKT/10gFNhsTzR0IPZw5oa5bji4VDQ2LKEJ28JIYwi7IjacwUwZLE6HE2XCOsncd/aTsI0Ds9VA24rJxizXU0YdescHPgxe5PIhDQmLj2FosCQll5FSmBVy92B30Y255+X2tDUuwIA9Twc+WxAAw5P6crnAxrmHXAn3IQtH6jLXabAyHXgUkOtj/tXP/VxI9NqNTT1rmi0gBvA1d6KZ1urwemMbQGU1DXktDvhpKyeyA7LyQzQ7lED7rp94eWD8NTP980uXLuyAz880wSNBhYeCmXBoZC7D7r4wdPzYOw+qN1bHVJ8aiH82BQ2vAkJuS+m5Mmgh1OLYVYz2DBZDbgreEP/n2DcQajfP1e5on2BUVy4EY+NhRkj2vgU4VUpn6zMzfhqYCM+7lcfM62G1aeu8/TcA0TEFqGXHTgeEsMr29MYoXuHNDM7XKKPwdJhkJ53VQBALT2260v4oZH6mZCRAp4t1f+HI1YXK+AG8MrMHxB2p2jPSYiyIiwmmRnb1dwP7/Wu+8Ba2JO61cLPzY7IhDQ+XHveaO1YcjSUU2Gx2FuZM7WvJLgTRSNBtxBlXYYO1r4KKNB4mJpspe8MMLOEgC2ZvWSizLgTrCYrAnUet3t96PmFen/XVxAViMGgMOmfU0QlplHb3YGpfQo/hPReLas5s2JcW8593IP1r7ZnWCsf7K3M899hw5uQFgdVmkCrsWBfCUasVYdIxwSptYiToorVptLyYkc/rMy1nAqLZW+AkducFA1b3sdsZlMGZGzCQqMno1oXGLMDBi9UEyEVQLd67kzuribc+XjteQ5c/U87KzeAIUvghe1QrZM6xPjILzDDH7Z+qPaI5sVggPOrYU5rWD0OYkPV+tG9p8OE42qGarO83wdzd18FYHALrwf+kH3YaDQaRrb1ZcHzLaloa8G5iHienLWPI9fyeZ3zERGbwksLjqPTG/Cs1xaLESvVcl5BO2HZKNCn59whPQUOzFT/rru+UOfZuzeEof/A81ugWkejPD/PiuqFrfA7yfffUKMBHx/1JsObRRmjKAofrj1ParqBVtWcGdj0wUkErS3M+PZ/jdFqYM2p62w6d6PYbVh1MpzP118EYHL3Wrg7Fi35pxASdAtR1u3/ASIvgq0rdP9UXVepDnR4Q13e+Hb+P8pF6VIU+Pd1SE8Gn/bQdIS6vtFgddioPg3WTeSnXQHsDYjC2kLLrKFNjDKXVqPRYG9l/uD5qRf/hYtr1YzI/WbeDcqcqsLIteBQRR1qvqD/3fnAZZibgxXDWqk9tTO2G6m3OzUedn6hBkcHZmJuSOOooRa72vyJ+cjVRcou/HJnP55sXIUMg8LLi04QGp1HQOTZXP0bjFgLni3UHtD9P6jt2P21mtcB7pbf+qUTLBupZgG3qQjdpsGrp9Q6x+b5B9Jnw+PYHxiNmVbDCx2qFfq5PCza+rmydkJ76no4EpWoY+ivh1h470iE+0jWZTBm/jGiEnXUqezAt//zR+vTGoYuVbNyX9kIK8eooxAydHD0N/ixCWx5H1Ji1JElT/8BL+2BWj2MGvTeDbpT7v//wdYWgoPVW2nW6BaiADafv8WOS7exMNPw2YAGBc690NirAmMzy4lNWXWO6MS0Ip0/MiGNFxcc5/W/T5Ok09OmugvDSzPZpHjoyJxuIcqyyMswtz3odTBwHjR8+u5jGWnwc0c1QGo8DPrPMV07jSH+BjhULt89LqeXwqqX1Hq64w6Aa427j90JhjltID2ZdzPGsCSjC18/3Yj/NS/FOfmpcWoyvoQbapmerh/l3iYqIDMxVCRUba4Od7UyUh3S+OtqLgIj1+K9HZ9K+693osswsOiFVrSr4ar2+iZFFv5gwfvUebaZFxwirGsxJb4/0ZU7smZCe7VEWBGlpusZ/PNBTofHUcvdnhXj2uJgnU9pG0WBK5vVuta3zqnrbF2g5UtqT2qomskXS3toM169WRcsedf4xSdYf+YGA5pU5fvBjYv8fB4WyboM3lx+hvVn1F6xoa28+ahvfSzN8+6XUBSFCYtPsv7sDVzsLFkzoR2e95aEC9gKS4aoIxZqdlc/x2Mzg3knLzUbeaNn8h2FUFz31uo+8UE3nB+xkQyi/Ctuaa60DD39Zu7n8q2EIs3B/vfMdT5YfY47yelYmGmY+HhNxnbyK/mSiqJckkRq+ZCgW5QbBgP82Vv9cV2zuzoE8b8BadgRmNcdUGD4avDrYoqWFt/ur9Uh2X6PwzOLwaLkhm+l6PSsOBFOj/qVcXOwMt6Bk6JgVgu1F+vxqXdHItwjedcMbHdNJU6x5buaC/lo2GOlVl8agH8nwbF56hzkcQfAIp/51bfOw59PqIGnT3sYtqx4dbxjrsHur9QSUZb20GYCtHnZeME8d+u0PumVxIxKG+D8quId0LUWYY0n0Xm9PXpFy7KxbWjxnzI1RXEzLpV+s/ZxOyGN1tWdaV/D9f47KAZqRG6jdchcKqTcU1rL3Frt0W73Oti5FPj8IdFJdJm+C4MCGyd2oK6HfA+CGkjP2XWV6VsuoyhqHfs5w5rl+RkxY1sA32+7goWZhsVjWuf9vriwVh1inpWd3q6SmrW72UgwN+LnTj5afraN2wlprJ3QjkaeFUr8fEIYkzFKc52LiKP/7P1kGBRmDmlC3wLkTYlJ0vHB6nOsP6tegKvn4ci3//OXz0lxXxJ050OCblFuHJ2nJkqzsIPxh/PPKL1+Mhz9VS3BMu5g8YIjU9j/I2z94O79Wr1g8IIcWb6N6c1lp1l2PJza7g6seLnt/ec+F8aKMXD2nzyzlIP6o/7FPw/zyrWxNNJeI6NOP8yfWWCccxdEyEH4o6e6PHLdg+ePRpxQ53anxat5BIYsLXywEH9DzaT937q0oPbatn8dWryQf/BfCLfDAtjz62QGaHZjplEADTh5qv8Who0TtH4ZpeEghs47zsGgaJ5o5MHsocbLVnsqLJb//Xwwu9Z6QZih5ymzvYww28IpQw0u13qJMU+0w8elcBmnp6w6y6LDoXSu7cafo1sWtukPvR2XbjFxySkS0jLwcLLm5+HNcgStG8/eYNyiEwB8NbAhg1vcJ8v8+VWw7wc1kV3LFwuW0dxInpqznxOhscwZ1pTeedXqBkhJgY6ZnwN79oCN8ZIcClFUxizN9f3WK8zYHkAFWwu2vN6RSg75X9DffP4mU1adJSpRh5lWw/guNZjQpUa+I16EyCJBdz4k6BblQvx1mNVSTbTT8ytoPTb/bVPj1URK8RHQbqI6r7O8OPKrmm0Z1CHy51ZARqpas3jgPNAat27s4aBoBv9yKPt+17ru/DK8WbGGDAMQsA0WDVRLPj2/Lc/sw/P2XeOTfy/gbx7KaospaBS92qtf54ninbsgMtLUaQpRV6DJcHhyVsH2Cz0ECwaoc9RrPwH/m1+wiyFJ0bA/qxRSZhZnv8egy/vqMNudn0F0oLrewUPtAWwy/L7zkPOVcAv2fgvHfs+ucXzMujXNR32rJigroi3nb/LiguNYmmvZPqkTXs7GvZh1LDiGVScjMBTyKzgyQcf2S7dQFLAw0zCslQ8THquBq/2DL4hEJqTR7qsd6DIMLBnTmjZ+Be8hf5RcjUxkzF/HCIpMwspcy5cDGzKgiSfnr8fx9E8HSUnXM7qdLx/2LV4CxJI0celJ1py6zru96vBS5vzWXKRkmChjjF2aS5dhoP/s/Vy4EU+3eur3/X9Hl8Ulp/Ph2nOsPnUdgFru9nw7qDENPQs2XUeIgsaWJTOhSAhRdIqi9l7rEtQ5tS3H3H97a0d44ltY8gwcmAUNBoKHf+m0tThOLrwbcHd4Qx2SXX+AOhfy/Cq1vvWTs3OVOioqXYaB91erc2M71HTl8LUYtl28xbdbL/NmjzpFP3Baopo8DdRM4HkE3KfDYvlyo5r99OkneqFJvKkmyFr/Bvi2L/Bc3CLb+60acNtVUjOqF5R3azWr9qL/weX16nz1p37N/2JIahwcnA0H56jvX1DL2z3+gfo8QX196vaDM0vVsklxYeqIjv0zoMt70HBQwS62JMeo5ZYO/6xeFADSvDrw7LVuHI2twT8pVShqP25ahp7PNqh/rzEdqhk94AZo7utM8yIOVz9/PY6vN11m95VI/jwQzLJjYbzY0Y8XOlTD7j4jN+YfCEaXYcDfqwKtqxd/qPzDys/NntXj2/H60lNsv3Sb1/8+zanQWLZdvE1Kup4ONV2Z0rtgmetN5d5kakKUF/eW5vqgT/FLc1maa/n2f/70m7WPrRdusfpUBAOaeGY/vuPSLd5ZcZbbCWloNTC2kx8Tu9bEyty4F/yFAMleLkTZc3GtGuBozdXs0gUJQGr3UgNWRQ9rXwF9xoP3MaWzy9V2ArQaB49lDi+v2Q0G/aFm1j69WA3KjTQY57d9QQTcTsTFzpKZQ5rw1cCGAMzeeZU1pyKKfuCdn0FcKDh5qzWv/yM+NZ0JS06Qrlfo1aAyz7b2URMpVaymJjTb9nHRz10Qty/C3u/U5d5fq1muC6N6Z7U8ltZCHYmw9lU138C9dMnqMNoZ/urcbV0CVG4Ew5bDc5vuBtxZzMyhybPwynHo9Y16MSA2RA3qf2qrzofN7++elgC7v1HPte97NeD2bAEj1mL1/L/UbPYYAD9uDyjc87zHXwdCCIlOxs3BinGdazx4h1JWv4oT859ryeIXWtGwqhNJOj3fb7tCp292suBgMOn63MPWk9Iy+OtgMADjOlUv3VwC5ZCjtQW/jmjOhC7q33/+wRAiYlOo5mrHrCFNy3xCpazEbg8sGyZEGRGZkMZXGy8B8Eb3WlR2Mk5ul7oejkx8vCYAH645z824VOJT03lz2Wme+/MYtxPSqO5mx4pxbXmrZx0JuEWJKdvfGkI8alJi1RrKoM53dS/Eld5eX4N1BbhxGg6V4Uzml9bDyhdBMUCzUWoN63sDgLp9YcDPgEZN+rXl/WIH3mExydlB2JQn6lLB1pIBTTx5qVN1AN5afobTYbGFP3D4cTg8V13u8z1Y2ed4WFEU3l1xlrCYFDwr2vDlwEZqsGNhA/1+VDc6Nk8dxl0SDJkXYQzpULs31OtftOPU6g5Pz1OHz59aCBvfUv8mGTp1CPmPjWHbh2riNddaMOhPeHG3ehHlfsGduRW0ehEmnoLHP1Tfv5GX4J/h8GsXCNx292+fnqr2os/wh52fqnPN3RvAkL/h+a1QvROgluYy12rYFxjF8ZDCl9KLTkzLfq+82aO28eb8l4C2NVxZM74ds4Y2wcfFlqhEHR+sOU+373bz75nrOcpFLTkSSnxqBtVc7ehWr7IJW11+aLUaJveozeyhTbGxMMPJRg3EnWxLJt+EMUlPtyhvPlt/gfjUDBpUdWR4ax+jHntsJz/8PZ2IT83g5UXH6fn9HpYdD0ejgRfaV2PDqx1o4l3IC9JCFJLM6RbiXoqiBg62Jhp6ufZVNemUS00Yu6/wWbxPLIC1E9Sh2S8fBOcyVoM3cJs6fFyvU2tX95+b//DxE3/d7Q3v9LY69LgIFEXhuT+PsvNyJK2rO7NkTOvsXj69QWHMX8fYcek27o5WrJ3QHnfHAr7m+nT4uRPcPg8N/wcDf83xsMGgMH3LZebsuoq5VsPycW1p7FUh5zHWjFeH2bvWUv/exs5qfPgX2PgmWDqoyficqhbveKf/VnujUdSRFRHH1dJcoPb0d35H/bsWtRRSSiwcnKUOT09PUtf5tFPrGB/+Wc1bAODsp74f6j+V5/vnnRVnWHo0DBsLM3xd7fB2tsHHxQ4vZ1t8nG3xdralakUbLPLorcxKNFa/iiPrilkirDSl6w0sPRLKjO0BRCXqAGjk6cQ7verQ3MeZTt/s5EZcKl881ZAhLe+T/EvkKTZZh6JAxXJSfutalJql3sbCjAvTeuQ9skHmdJcLiqJw+FoMiw6HsuvSbWpXdmBoK296N/QoUlbvsmh/YBTDfjuMRgOrX26H/3+/K40g4FYCT8zcl53A0sfFlumD/I1SlUI82iSRWj4k6Bb5Sk+FpUPh2m54+g+o1690zx+8Ty3TBDB6I/i0LfwxFAX+6gfX9qjDgoevLjt1r4P3wcKnISNFndP79B8PDs4O/6z2qoJaU7r964U+bVa2YQszDRsndqRGpZy90Qmp6QyYc4DA24n4e1Xg7xdbF+yHzN5vYfs0sHGGCUfB7m7pp4TUdF7/+xTbLt4GYGqfejzXPo8LIMkxat3spNvQ6R3o8m6hn1++4sLVY+sSoff0B+cGKKhjf8C/r929b++uJkJrOsJ4Fw0SI9Wh40d/A33a3fWOntD5bfAfet/3TlhMMv1m7eNOcnq+22g1UKWCDT4uahDu7WyHo405H6w+h0GBv19sTavq5S/RWFJaBr/uDeLXPUEk6dRyVbXc7blyKxFXeyv2vd3lofmhLvKXlqHW6lYUOP5+V1zySrQnQXeZFpusY8WJCBYfDuFqZFKuxyvYWvB0U0+GtPLGz80+jyOUD2kZenr9sJegqCRGtPFh2pNFT4D5IIsOh/DZ+osMaubJ273qYGtZdkcyifJDgu58SNAt8pShg7+fhYDN6n07Nxh/pPR6vNNT1bmsMVeh2Wjo+0PRjxV9VT1WRir0/wkaDzVaM4ss7Cgs6K8GgDW7w+BFBc9Uve972PaRutzra2j1UoFPm5iWwePf7uJWfBqvPFaDN7rXznO74Kgknpy9n7iUdAY0qcp3//O//5zXqED1NdanqUPh/Z/JfigoMpEXFxwn8HYiluZavhjQkIHNPPM/1rmVsHy0Omd67F6oZIQETYqiJta7sgm8WsHoTUZLSAeomcIP/6I+75YvllyZurgI2PO1Ovy+2Wh1OkIBR3+kZegJi0khNCaJ0OhkQmKSCYtJJiQ6mdCYZNLuU66rd8PKzBmWOyFeeRKZkMasHQEsOhxKhkH9mn+rZ21eLoNz1EXJaP35dm7Gp7JmfD49h0lJ4OurLgcHS9BdBiiKwonQWBYfDuXfM9ezP6dsLc14snFVnmxchWPBMSw5EkZE7N2pA22quzC0lTc96lcuNyWubieksuxYOEuOhBJ+JwU3Byu2v9EJR+uSnb5hMCjlZgSTKB8k6M6HBN0iF32GGvRcXAvm1mBfSR0y2+RZNXt2adg+Te05ta8ME44UP5t1VqBqUxHGHwV7N6M0s0hunIH5fdTM1tU6wtBlhR82v+MzNfgC6DcLmg4v0G7T1l3g9/3X8HGxZfNrHe/bw3cgMIrhvx9Bb1B4p1cdxuZXZsdggPl9IWSfWgbr2ZXZowl2Xb7NK0tOkpCaQWVHa+YOb5Z7SPl/KYo65P7KRvBsCc9tLn6AfG4FLH8uM5DfB5WKkZ39IWQwKEQmpmUH4KHRSYTGqIE5wKyhTala4eGoWRwSncSM7QHEp6Tz/eDGOJTwD1pRdjz90wGOhdxh1tAm9GlUxdTNEfeRkJrO6pMRLDocyqWbCdnr63o4MqyVN082rpLj/67eoLD7ym0WHw5lx6XbZF5Xw9XekkHNvRjSwhtvlxK6GFoMBoPCwaBoFh0OYcv5W9kXBB2tzZk5tCmdapnwt4oQRSRBdz4k6BY5GAywepxavsjMUi2PZOkAv/cAFBixRh2mXZJunoNfOoEhQ80SXbdv8Y+pT1cTUd08Cw2eVpNgmcLtS/Bnb0iOVntcn12ZK9lYgSiKmlDt4CxAAwN/g4ZP33eXcxFx9Ju1D4MC859rWaAv878OBjN1zXk0GvhtRHMer+uee6Pj82Hdq2Bhq86br+iLoijM3R3E15svoSjQzKciPz3blEoOBby4EBeRORQ8ofhDwZNjYHZLSIqEzu+q86yFEI+c15aeZPWp6/e/iChM6mx4HIuPhLDm1HWSM6eDWJlr6etfhaGtvGniVeGBlQYiYlP4+0goS4+GcTvh7nScjrXcGNbKm8frVDJ5tv2YJB3Lj4ex5EgY16LuDpVv4l2BYa186NPo4ZmfLh49UqdbiAdRFFj/uhpwa8zUjMs1uqqPtXgBjv4K615TAyuLEur1ys4unQF1+hgn4AYws1DLjf36GJxbria3qtXdOMcuqOir8NeTasDt0RiGLStawA1qT3L3T9XyUMd+V7Ofm1vl+3rpDQpTVp3FoECfRh4Fvno+vLUPl24msPhwKBOXnmLly22p5e5wd4OEm7Als7xZlylQ0ZcUnZ63Vpxh3enrAAxp6cVH/eoXruyIU1Xo+qFaIm3bR2oJOKf7DEm/ny0fqAG3a+0izYEXQjwcpGxY2ZSsy2Dd6essOhzKmfC47PU1KtkzrJU3TzXxLFSG/KoVbJjUvTavPF6T7Rdvs+hwCHsDothzJZI9VyJxd7RiaEsfnmvvW6ojXRRF4WjwHRYdDmHj2ZvoMksZ2luZ079JFYa29KFeFen8Eo8O6ekWjyZFgc3vZZbWyqPnNDUe5rRWsyW3ew26lVAt5YNzYPO7YOWoziF39DDu8TdPUXuHHT1h/CGwcnjwPsYQGwp/9Ia4MKhUD0atN878eINBzfh9erE6dHrIUqjZNddmCw6F8MHqczhYmbPtjU4Fz0iOmgX62d8Oc/haDN7OtqwZ3+5uxuJ/RsCFNVClCTy/jfB4HS8tOM756/GYazV82K8+z7byLloNZINBHWERfgRq9VSfW2GPE7RLvdCBRh2m7t2q8O0QQjwUlh4J5Z2VZ+lc240/R7fMvUFKCvTqpS5v3Ag2D8eUirLq0s14Fh8OZdWJCBLSMgCwNNPSq2Flhrb0pmU156J9d+QhJDqJJUfCWHYsjOgktZqBs50lE7rUYFhr7xKtRR2Xks7KE+EsPhxKwO3E7PUNqjoyrJUP/fyrYFeGSzEKUVgyvDwfEnSXQyVRxmv7J7B3urr85Gx1/vZ/Xd6oJqPSmMGLO8HD33jnB7gTAnPaqKWR+nwPzZ8z7vEBdEnqxYPYUGg1Fnp9ZfxzZIpKTGN/YBRnLlxi3LVXcE2PAJcaaiZ2+0rGO5E+A1a+AOdXqXPwB84Dt7sJ0qKT0hj1x1GS0jJ45bGaDGhS+DJZsSnpjFt4nFvxqTT2qsBXAxthcf0YrHlZfT+8tJtDyVV4edEJYpJ0uNhZMmdY0+Jnu759Cea2V+tq9/kBfNsXfF+DXn2/3rmmjtR44tvitUUIUa7tC4ji2XmHqVHJnm2TOuXeQLKXl7jUdD0bzt5g0eFQjofcyV7v62LLkJbeDGruhXMJlqFLy9Cz6dxNZmwPICgzA7qXsw1vdKtNP/8qRksopigKp8LUBHDrzlwnNV3t1baxMKOffxWGtfamkWcFo5xLiLJGgu58SNBdDm16V+2RrtENHnsfqjQu3vH2TIcdn6jLD5o/u2yUGtx5NIYXthe9/vB/6ZJgwVMQdgi826o9wcbMLn2vwO2w8ClAA42HqSWXKhS/Tm9qup4j12LYFxjF3oAort6IZojZDiaYr8ZNE0eowY15NWfzwhMd8HI2ckIXfTr8PVxNPlbKlHavs8B+FNPWXSDDoFC/iiO/jGhuvMRbO7+A3V8WfX+HKmpNbmv5fBPiURYclUTn6buwttBycVrP3L2oEnSXmKuRiSw+HMry4+HEpailC821GrrXd2doSx/a+rmUagbtDL2BZcfD+X7rlex53/U8HHmnVx061HQtcg97YloGq09GsPhwKBduxGevr+3uwLDW3vRvUrXEs5ELYWoSdOdDgu5yJni/mojrXvWeVOfTuuVd/um+soZzA3SbBu0m3n/7hFswu4Waebv7p9D2lcKf87/SU9UeyaCdYOUEY7aDa83iH/d+soaZgzosu/lo6DAZHPJIFJYPg0Hhwo149gVGsS8giiPBMegyDJih5ymzvUw0X4mnJgqA2xaePJU4mXClEpZmWp5t7cOEx2oY94p+eqqa0OzK5rurDApJmcP27K3NMS/mUL10vUKSTj2ejaUZFlX8+cDuQxadUOtv9/OvwlcDG2FjacShehlp6vsj4kTh97Wwgf5z1KzqQohHmi7DQO0PNqIocHRKV9wc/lOrW4Juo9JlGNh8/iaLDodwKCgme33VCjYMbeXNoOaeBU+uWUJSdHp+33+NubuuZg9xb1fDhbd71ilUT/S5iDgWHwllzckIkjITwFmaa+nT0IOhrbxp5lPRaEPlhSjrJOjOhwTd5Uh6KsxtB9GBUP8p0JrD2WWAAhot+A+BTm9DRZ+CHe/4n7AuM8ju9A50ebdg+51YAGsngLmNmlTNuVpRno3q3h5aCzsYsRq88phrVxLCj6k9/EG71PvmNmrN63YT8x26fys+ld2XI9kbGMWBwKjsuWEAGgwMtTvJRLNlVNKFqivtK0Ont6DJcM7eTOHLTRfZHxgNgIOVOS91qs5z7atha2n8+Vyp6Xp6/rCH4OhkRrX15aN+9Y1y3Nk7A/lm82XMtRpquTtw4UY8Gg2807MOL3asLj8shBBlVpsvtnMjLpVVL7eliXfFnA9K0G0UodHJLD4SmmP+tFYDj9VxZ1grbzrWcsOsjNWFjknSMXtnIAsOhmQnOOvTyIPJ3Wvj65r3+yBFp2fdGTUB3Omw2Oz11V3tGNrKm4FNPe/mPxHiESJBdz4k6C5HsuZd21dWh8vaVIBbF2DnZ3DpX3UbrQU0GwUdJ4ND5fyPdfpvWPUSoEDbV9Ve7oIGS4oCf/WDa3ugehcYvqrwCa5AnYu84nm4sFqdizxsOVTrUPjjFNe1PeprG35EvW/lqPbgtx6XI9HaidA7DP31UPbcLAA7SzNaV3PmmYoX6Rg2F6voC+oDNs5qpuyWY3Jlet8bEMmXGy9x/ro69MzNwYrXutZkcHMvo5Yx+X7rFWZsD6CSgxXb3uhktCFtiqIwcekp1mZmJ3e0NufHIU3oXNuI89SFEKIEDJp7gKPBd5g5pAl9/f9Tq1uC7mI7FRbL/34+iC5D/Z50d7TimRbeDG7hRRVjTTkqQWExyXy/9QqrTkWgKOoQ+KGtvHn18Zq42qsjI67cUit6rDgRTkKq2jtuYaahR/3KDGvlQ+vqxksAJ0R5JEF3PiToLidunYefO6qltP63AOr1y/l4+PHMXtud6n1zG2j1oppp/L+9thfWqHOzFQO0GAO9vyl80Bx9FX5qCxmp0H8uNB5SuP0NBjUJ1+kl9826XWoURR2WveMTuHVOXWfrAu0nQYvnwcKG5/48yo5Lt6lRyZ7eDSrTvqYbTQ3nMN/1KYQdVvexdLgbsN9nDrHBoLDuzHWmb7lMWEwKoF4df6tnbXrUr1zsL+ygyER6/rAXnd7A7KFNeaKRcbPAp6brGb/oBHEp6XwzyJ9q+fQECCFEWfL636dYdTKCt3vWYVzn/9TqlqC72Mb8dYytF27h7+nEy11qlIma2EVx4Xo8X2++xK7LkYB6gf2Zlt6cCY/laPDdBHBezjYMbenDoOae2UG5EI86CbrzIUF3OWDQw7xuEHFcrV39zKL8t722Vw0cs4JAK0doMwHavKz22l7ZAkuHqtmgGw+DfrOKnrBs3/dqDWWbijD+KNgXrPazWg98klpfWmMG/5tvvHrcxWUwwIVVsOMziLmqrnOoQmTTV2mzuQp6jTk73uhMtbRLau94QS5y3Icuw8DiwyH8uCOQmMxheI29KvBurzpFzvytKArPzjvM/sBoOtVy48/RLeSquxBCAN9uuczMHYEMa+XNZwMa5nwwKQkqZY7YuX1bgu5CColWE9UpCmyb1IkalexN3aRiO3A1iq82XuL0PfXDzbQautatxNBWPnSo4VqqCeCEKA8k6M6HBN3lwKG5sOntzNrVh8Gxyv23VxQI2KIG3zfPqutsXaDxUDj8C+jT1DnhA38DbTESXunT4ZcucOssNBykHu9BFAW2vJ+ZxCyPeuBlhT5D7YXf9SXEhwMQYqjEHtdnGF4pqPDD+R8gITWdX/de47e9QSRnJmF5rE4letavjJezLT4utlR2tC7Ql/uaUxFMXHoKK3MtW17viI+L/HAUQgiAv4+G8vaKs3Sq5cb850opf8gj4uN15/ljf3D+ddDLKUVR2HD2JutOX6euhyODW3hR2cm0CeCEKMsk6M6HBN1lXGwozG6t1q5+4jt1qHNBGQzqfOmdn6nJ17LUfkLtXTYzwhzfiBPw2+PqUPVhy6Fmt/tvv+Mz2PO1utxvJjQdUfw2lKSMNFIOzSNp65e4au5e6S5S4roCuJ2Qyo/bA1hyJAy9IedHkaWZFk9nG7ydbfFxts0Mxu3wdrbF29kWG0sz4pLTefy7XUQl6pjcvRYTHivhLPBCCFGOHAiMYuhvh6nuZseONzqbujkPjYTUdNp8sYPEtAzmP9eSTrUKOPJNCPHQKWhsafwUwkIUlaLA+jfUgNu7DTQbXbj9tVpo8BTU7QdnlsKBmVCpLgz42TgBN0DVptD6ZbXn+t/X4eVDYJXPkLK9390NuHt9XfYDbgBzKxYaevJdmjtvOu1itNUONJ7Noct7RSvR9gCVHKz5tH9DnmtXjQWHQgi8nUhYTDLhd1LQ6Q0ERSYRFJmU575uDlZYW2iJStTh52bHmI7Vjd4+IYQozzwr2gIQcScFRVFk6o2RLDsWTmJaBjUq2dOxpqupmyOEKAck6BZlx7kV6jBxM0vo+2PR516bmUOTZ9VbSejyHlxcq/bK7/gUen2Ze5tDc2H7x+py14/U0lzlQIbewJ8HgknBGtvH30TTcmapnLe6mz0f9r1b4itDb+BGXCqhMcmExiQTEp1MWEwyITFJhEQnk5CaQWRCWvb2n/ZviJW5EWtlCyHEQ6CykzVaDaRlGIhMTMtZJzo1FQYOVJdXrABrGUJcEHqDwvyDwQCMbucrFzKEEAUiQbcoG5JjYOPb6nLHN8Gtlmnbcz+WdtDnB1j4FByeq87R9mx+9/Hj89U56QAd31JLaeVh6ZFQ/j1zg28GNcLDqWyUFtl28RYRsSlUtLWgf5OqJmuHuZkWr8wh5e3yeDw2WZcdjLvaW9HGr2hJ2IQQ4mFmaa6lsqM11+NSCb+TkjPo1uthw4a7y6JAdly6TUh0Mk42FjzVxNPUzRFClBPlr66BeDhtngLJUeBWV82IXdbVeBwaPQMosPZVNckawJl/YN1EdbnNBLVXPA/Jugw+W3+RfYFRfLD6fOm0uQB+3x8MwNBW3lhblN2e4wq2ljTyrEBf/yoScAshxH1kDTEPv5Ni4pY8HH7fdw2AIS29sbEsu9+TQoiyRYJuYXpXd8DpxYBGTTZmbmnqFhVMj8/VLOm3z8P+GXBxHawaCyjQ/Hno/mm+9cDXnLpOQloGoPYubz5/sxQbnrdzEXEcuRaDuVbD8Na+pm6OEEIII/CsqI6kCr+TbOKWlH8Xb8RzMCgaM62GEW2Ml1RUCPHwk6BbFF2GrvjH0CXDutfU5ZYvgleL4h+ztNi5QM/M+dy7v4Jlo0HRg/9Q6D0934BbURQWHAwBwMdF7YH4aO15kjKDcFP5fb969b53Qw8pDyKEEA8JT2fp6TaWPzK/J3s2qEyVCmVjWpgQonyQoFsUzf4f4VM3WDIUbhVjePSuzyE2BBw94fEPjNe+0tJwENToCnodGNKh/gC1t/4+SeBOhsVy4UY8luZalr7YGi9nG27EpfLDtiul2PCcbiek8u/pGwA8176aydohhBDCuLJ6usNipKe7OKIT01h96joAz7WT70khROFI0C0K7/ZF2D5NXb68Hn5qBytegOirhTvO9ZNwcLa63Oc7sHIwbjuLICZJx85Ltylw+XqNBvp8D+4NofEweOpXNXv6fSw8pPZy92nkgYeTDdP6NQDU+dQXrscXq/1FtehQKDq9gabeFWjsVcEkbRBCCGF8WUF3hPR0F8viw6HoMgz4ezrR1LuCqZsjhChnJOgWhWPQw9pX1F7d6p2hXn9AgbPLYFYLNalYXPiDj6NPV4+jGKDBQKjVo4QbXjCvLjnJ6D+PsiAzMC6QCt4wbh/0n/PAeuB3knT8e0btUX62tTofrEudSvRuWBm9QWHK6rMYDAUM+I0kLUPPosPq8x0tV++FEOKh4pWVSC02pdS/Xx4WugwDf2X+LniufTUpEyaEKDQJukXhHJ0H4UfB0gGenAP/mw8v7YGa3dX5zCfmw49NYdO7kBiZ/3EOzoabZ8G6wt150SZ24Xo8+wKjAJi9M5DUdOOXUFl2PAxdhoH6VRxpck+P8tQ+9bGzNONkaCxLj4YZ/bz3s+70DaISdXg4WdOzQeVSPbcQQoiSlVWrW5dhICox7e4DdnagKOrNzs50DSwHNpy9QWRCGpUcrOjVwMPUzRFClEMSdIuCiwuH7R+ry10/BKfMOs4e/jBsGTy3GXzagT4NDs2BGf6w/RNIic15nOirsOsLdbnH52BfqdSewv1kJUgBuBWfxrJjxg1+DQaFRYdDAbWX+94r5ZWdrHmje20Avtx4MecPoxKkKEp2+ZMRbXyxMJOPBCGEeJhYmGnxcMqc1y1DzAtNUZTsRKMj2vhgaS7fk0KIwpNPDlEwigLr3wBdIni1Ukti/Zd3axi1Hp5dCR6NIT0J9k6HGY1g73egS1KP8+/rkJEK1TpB46Gl/lTyEpWYxprTaoKUAU3Uiwlzdl0lLcN4vd17A6MIiU7GwcqcJxtXyfX4iDY+1K/iSHxqBp+vv2i0897PkWsxXLgRj7WFliEtvUrlnEIIIUpX1UeobNidJB1vLjtttAvnJ0LvcCY8DitzLUNaehvlmEKIR48E3aJgzq+CK5tAawF9f8w/O7dGAzUehxd3weCF4FYHUuPUHvIZjWH1OLi2G8ytoe8P+ZbVKm33Jkj54qmGuDtacSMuleXHCzA/vYCyEqgNbOaJrWXuZGvmZlo+H9AQjQZWnozgwNUoo507P1lX759q6kkF23JSH10IIUShZM/rvrenOzUVBg1Sb6mpJmqZcSmKwuRlp1l2PJw3l59hyZHQYh/z933BAPRvXBUXe6tiH08I8WiSoFs8WHIMbHxLXe7wBlSq8+B9NBqo2xfGHYABv0BFX0i6DaeXqI93eQ+cq5dYkwtDl2HITpz2XPtqWFuYMbaTHwBzdl5Fl2Eo9jmux6aw/eItAIa1yv9Kub9XBYZnJlh7f/U5o/a0/1dYTDJbL6htGt3Wt8TOI4QQwrQ88+rp1uth+XL1pi+575rSNG/fNbZfup19f8qqs2w4e6PIx4uITWHT+ZsAjG7vW9zmCSEeYRJ0iwfb+gEkRYJrbegwqXD7as3AfzBMOKaW1qroC36PQevxJdLUolh/9nquBClDWnrj5mBFRGwKK08Uv7d7yZFQDAq0ru5MTff7l0ab3KM2bg5WBEUm8fPuoGKfOz/zDwRjUKBDTdcHtkkIIUT5dTfofnjndJ8Ki+WrTZcA+OTJ+gxp6Y1BgYlLT7I34D6JXe/jr4PB6A0Kbf1cqFPZ0ZjNFUI8YiToFvcXtAtOLlSX+/0I5kUcWmVmAc2fg4mnYfiqB9ayLi1qIrFgIGeCFGsLM17qqPbEz9oZSLq+6L3dugxDdkbyrDJh9+NobcEHfeplnzs4KqnI585PYloGf2e26bn2UiZMCCEeZp55DS9/iMSlpPPKkhOk6xV6N6zMs619+LR/A55o6EG6XuHFv45zIvROoY6ZrMtgSWby0+eknKYQophMHnTPnj0bX19frK2tadWqFUeOHLnv9rGxsYwfPx4PDw+srKyoVasWGzZsKKXWPmLSU2Dda+pyixfURGkPmeMhdzgbEYdlHglShrXywdXekvA7Kaw6GVHkc2y5cJPIhDTcHKzoXq9gJbn6NvKgQ01XdBkGPlhzDkUxbm3VFcfDSUjLoLqrHZ1quhn12EIIIcqWrJ7uiDsPX61uRVF4d+UZwmJS8HK24YunGqHRaDDTavhusD8darqSkq5n9B9HuXwzocDHXXEigvjUDHxcbHmsTtmosiKEKL9MGnT//fffTJo0iQ8//JATJ07g7+9Pjx49uH37dp7b63Q6unXrRnBwMMuXL+fy5cv8+uuvVK1atZRb/ojY9SXcuQYOVeDxD03dmhKRlUhsQB4JUmwszXgxs7d79s5AMorY252VQO2ZFl4FLjWi0WiY9mQDLM217A2I4t8zRZ+T9l8Gg8KfB4IBGN3OF622bCSzE0IIUTI8nKwx02rQ6Q1EllJJytKy8HAoG87exFyrYeaQpjjZWGQ/ZmVuxtxnm9HEuwJxKekMn3eYsJgHZ3A3GBT+zPx9MKqtfE8KIYrPpEH3d999x5gxYxg9ejT16tVj7ty52Nra8vvvv+e5/e+//05MTAyrV6+mXbt2+Pr60qlTJ/z9/Uu55Y+AG6fhwEx1+Ylvwfrhm8sUfieZTefunyDl2dY+ONtZEhKdzJpT1wt9jsDbCRwKikGrodClRqq52jG+cw0Apv17gfjU9EKfPy+7rtzmWlQSjtbmPNXU0yjHFEIIUXaZm2nxcLIGHq6yYReux/PJvxcAeKdXHRp7Vci1jZ2VOX+MakFtdwduJ6Tx7LzD3E64f7b2PQGRXI1MwsHKnEHNpZymEKL4TBZ063Q6jh8/TteuXe82Rqula9euHDx4MM991q5dS5s2bRg/fjzu7u40aNCAzz//HP1DknWzzNBnwNpXQdFDvf5Qp7epW1QiFhwMwaBw3wQptpbmjOlwd263vpDD8hYeUueDPV7XnSoVbArdxrGdq1Pd1Y7IhDS+3Xy50PvnJWsO+zMtvbGzKhtz64UQQpSsrCHmYTEPx7zupLQMJiw+gS7DwON1KvH8ffKTVLC15K/nW+LlbENIdDIjfz9KXEr+F7L/2B8MwP9aeGEv35NCCCMwWdAdFRWFXq/H3d09x3p3d3du3ryZ5z5BQUEsX74cvV7Phg0b+OCDD/j222/59NNP8z1PWloa8fHxOW7iAQ7/BDdOgbUT9Pra1K3hXEQc768+y61449URTdZlZNfvfFCClBFtfKhoa8G1qCTWnS54b3eyLoMVmXW+C5JALS9W5mZ82r8BAH8dCuFMeGyRjpPl8s0E9gVGodWoz0sIIcSj4W4ytcyebltbSExUb7a2JmxZ4SmKwvurzxEUlYSHkzXTB/mj0dx/CLi7ozULnmuFq70VF2/E8/yfR0nR5e60CbydwO4rkWg0MLKNbwk9AyHEo8bkidQKw2AwUKlSJX755ReaNWvG4MGDmTJlCnPnzs13ny+++AInJ6fsm5eXDBO6r5hrsOMzdbn7p+Dgfv/tS8F7q86y8FAo4xYeL1YW8XsVJkGKnZU5L2T2ds/cEVDg3u41p66TkKaeo0MN1yK3tW0NVwY0qYqiqK9FYXvb7/XnAXWOWs8GlbN/gAkhhHj45SobptGAnZ16e0DAWtYsPx7OqpMRaDUw45kmVLSzLNB+vq52LHi+JQ7W5hwLucPLi3L/rsjq5e5W1x1vF/meFEIYh8mCbldXV8zMzLh161aO9bdu3aJy5bwzPHt4eFCrVi3MzMyy19WtW5ebN2+i0+ny3Ofdd98lLi4u+xYWFma8J/GwURT493XISAHfDtBkuKlbxOmwWM6ExwFwIjSWb7dcKfYxDQaFPwqZIGVEGx+cbCy4GpnE+rMPTmqmKEp2ArVhrbyLnYTlvd51cbQ251xEPAsOBhfpGDFJOlaeULOwj5byJ0II8Uh5WMqGBd5OYOqa8wBM6laLltWcC7V/XQ9H/hjVAmsLLTsvRzJ52ensjO6xyfI9KYQoGSYLui0tLWnWrBnbt2/PXmcwGNi+fTtt2rTJc5927doRGBiIwXD3quSVK1fw8PDA0jLvq5xWVlY4OjrmuIl8nF4KQTvBzAr6zigTV76zAtcalewBmLv7Krsu553dvqD2BEQSVMgEKQ7WFtnzxWZuD3hgyZVTYbGcvx6PpbmWQc2KP7rCzcGKt3vVAWD6livcjCv8UPslR0JJyzDQsKoTzX0qFrtNQgghyo+7Pd2Zw8vT0mDUKPWWVj4ymqem6xm/6CQp6Xra13BlXGay0cJq7uvM3GebYa7VsObUdT5adx5FUVh6NIyUdD11PRxpXb1wwbwQQtyPSYeXT5o0iV9//ZX58+dz8eJFxo0bR1JSEqNHjwZgxIgRvPvuu9nbjxs3jpiYGCZOnMiVK1dYv349n3/+OePHjzfVU3h4JEbC5szXuvPb4OJn2vYAccnprDujzqH+amBDhmfOi570z+lize/+PXPo2KDmhUuQMqqdLw7W5gTcTmTjubzzDmRZkHmxoE8jjwIPe3uQIS28aeJdgcS0DLpM30XPH/bw4l/H+PTfCyw4GMzuK5Fci0pCl5F7CH663sBfmT3ko9v5PnDumxBCiIeLl7Pa0x0Rm1mrOyMD5s9XbxkZJm5dwXy87gKXbyXgam/Fd4P9MSvGKLLOtSvx3eDGaDTw18EQpm+5zF+Z5TSfk+9JIYSRmTQl4+DBg4mMjGTq1KncvHmTxo0bs2nTpuzkaqGhoWi1d68LeHl5sXnzZl5//XUaNWpE1apVmThxIm+//bapnsLDY/O7kHIH3BtA21dN3RoAlp8IJzXdQF0PR5p6V6R+FSeOhdzh4o14Ji49yaIXWhf6CzfwdgJ7MhOkjGrrW6h9Ha0teK5dNWZsD2DmjgB6Naic57DxO0m67Lraw4uYQC0vWq2GL55qyIh5R7idkMalmwlcupmQezsNeDjZ4ONii7ezLd4utsSnZHArPg03ByueaORhtDYJIYQoH9wdrDDXakjXK9xKSMWjnCXlXnf6OkuOhKLRwA+DG1PJwbrYx+znX4W4lHQ+WH2O2TuvAuBiZ0lf/yrFPrYQQtzL5B+5EyZMYMKECXk+tmvXrlzr2rRpw6FDh0q4VY+YgK1wdhlotNDvRzCzMHWLUBSFRZm9xc+29kaj0WBtYcbsoU3oM3Mfh4JimLkjgNe61irUcbMSpHQtYoKU59pV4/d917h0M4EtF27Ss0HuAHbZ8TB0GQbqV3HMs2ZocdSp7Mi+tx8j7E4yoTHJhEar/4ZEJxMWoy6npOuJiE0hIjaFA1ejc+w/vLUPVuZm+RxdCCHEw8rcTItHBWvCYlIIv5OCh5uVqZtUYCHRSby78iwA4zvXoH3Noicn/a/hrX2ITdLx7VY1Z8yw1j5YW8j3pBDCuEwedAsTS0uEfyepy63GQdVmpm1PpgNXowmKSsLeypz+jatmr6/uZs9nAxrw+t+n+XF7AK2qudDGz6VAx4xN1rHihFrC60FlwvLjZGvBqHa+zNwRyIztgfSoXznHEDSDQWHRYbUU2bOtfUpkeJqluRY/N3v83OxzPaYoCpGJabmC8ZCYZKwttFImTAghHmGeFWwzg+5kWpSToDstQ8+ExSdJTMughW9FXuta0+jnmPCYOjf80LVoRhdyFJwQQhSEBN2Pup2fQVwoOHlDl/dM3ZpsCw6qvdxPNa2K3X/mXQ9o4smBwGiWHQ9n4tKTbJzYARf7B/94WHo0LHu4enESpDzfXu3tvngjnq0XbtG9/t1s+3sDowiJTsbBypwnG5f+8DSNRkMlB2sqOVjT3FeSwAghhLgrO5laTApQPhJqfrnxEmcj4qhoa8GPQ5pgbmb8dEQajYZXHq/JKxg/oBdCCChndbqFkYUfg0M/qct9vwer3D2npnAzLpWtF9VScs/mMyf64yfrU6OSPbcT0pj0z+kHZhNP1xuYn5kgpbiJxCrYWjIy80r4jzsCUJS7587Ktj6wmSe2lnJNSwghRNlR3sqGbTl/M3ta2PRB/ng42Zi2QUIIUUQSdD+q9Omw9lVAgUaDoUZXU7co29KjoegNCi2rOVPL3SHPbWwtzZk9tClW5lp2X4nkl71B9z3m5vM3uRGXioudJf2MkCDlhQ7VsbU041xEPDsuqSXMrsemsD37YoF3sc8hhBBCGJOXc2ZPd2yyiVvyYBGxKby5/AwAL7SvxuN13U3cIiGEKDoJuh9V+2fA7fNg4ww9Pjd1a7Kl6w0sOXJ3TvT91K7swEf96gPwzebLHA+5k++2WVfKh7XyNkqCFGc7S4Znzo/+cbva273kSCgGBVpXd6ZGpbwvFgghhBCmktXTHRaTAra2cPu2erMtfGLRkpSuN/DqkpPEpaTj7+nEWz3rmLpJQghRLBJ0P4qiAmH31+pyzy/BznhZQItr+8Vb3IpPw9Xekp73zJXOzzMtvOjrXwW9QVG/oJPTc21zOiyW4yF3sDDTPDCQL4wxHapjY2HG6fA4tl28zdKjYQAMb+1rtHMIIYQQxpI1p/t6bAp6BXBzU29lrCb1d1uvcDzkDg7W5swa2hRLc/m5KoQo3+RT7FFjMMC6iaBPA7/HodH/TN2iHBZkzoke3MKrQF+yGo2Gzwc0wMfFNnMo2ukcc6wB/th/DYC+japQybH4dT2zuNpbZQ8jn/TPKSIT1DrY3evLEDghhBBlj7ujNeZaDRkGhVvxqaZuTp52X4nkp11qzeyvBjbCy7ls9cILIURRFDro9vX1Zdq0aYSGhpZEe0RJO/kXhOwDC1vo832ZurodFJnI/sBoNBoY0rLgc6IdrC2YNaQpFmYatly4lZ0wDeBWfCr/nrkBwOgilgm7nxc7+mFlriUhNQNQe94tSiCzqhBCCFFcZloNVSqovd0RN2Nh/Hj1lpZm2oZluh2fyqS/TwFqbpTeDT1M2yAhhDCSQkcHr732GitXrqR69ep069aNpUuXklZGPqzFAyTchC1T1eXH3oeKZatmc1Z968dqV8qed1ZQDT2deK93XQA+33CJcxFxgFp6LMOg0MK3Ig09nYzbYMDNwYphrdTXUVvIiwVCCCFEacseYh6dAHPmqLeMDBO3CvQGhYlLTxGdpKNOZQfef6KeqZskhBBGU6Sg+9SpUxw5coS6devyyiuv4OHhwYQJEzhx4kRJtFEYy4Y3IS0OqjSBVmOzV1+LSiIkOsmEDYMUnZ5lx9Q50c+2KdrFgFFtfelWzx2d3sCExSeISkxjcWZStpLo5c4yrrMf/p5OvNTJL7sHQQghhCiLsoLuiDJWNmzWjkAOBkVja2nG7GFNjZL0VAghyooij4Nt2rQpP/74I9evX+fDDz/kt99+o0WLFjRu3Jjff/8917xaYWIX/4WLa0FjBv1mglb9MruTpKPPj3vp9v2e7HJXprDuzHXiUzPwcrahU023Ih1Do9HwzdONqFrBhuDoZPrP3k9Mko6qFWzoXq/k5lm7OVixZkJ73pbsqkIIIco4r8yRZBGxZSfoPhQUzYztVwD4tH8D/NzsTdwiIYQwriIH3enp6fzzzz/069ePN954g+bNm/Pbb78xcOBA3nvvPYYNG2bMdoriSI2DDZPV5XYToXLD7Ic2nLtBkk6PLsPASwuOs+70dZM0cWFmArVhrXzQaos+z7yCrSU/DmmMmVZDeOZV/JFtfTCXedZCCCEEns5lq6c7OjGNiUtPYlDg6WaePNXU09RNEkIIozMv7A4nTpzgjz/+YMmSJWi1WkaMGMH3339PnTp3e/kGDBhAixYtjNpQUQzbPoKEG+BcHTq9leOhNSfVILtqBRsiYlN4delJktIyeKYU5yafDovlTHgclmZaBjUr/pdtMx9nJnevzVebLmFjYcbg5jLPWgghhIC7tboj4pJN3BIwGBTeWHaaW/Fp+LnZMe3J+qZukhBClIhCB90tWrSgW7du/PTTT/Tv3x8LC4tc21SrVo1nnnnGKA18ZMWGgYMHmBX6T5RTyEE49ru63HcGWNydcxwRm8KR4Bg0GvhnbBvm7Axk0eFQ3ll5lsS0DF7oUL145y6grF7u3g0r42JvZZRjvtSxOnZWZlRztcPJNvd7VAghhHgUZc3pvhlr+iS4v+4NYtflSKzMtcwe1hRby2L+5hFCiDKq0J9uQUFB+PjcP9GVnZ0df/zxR5Eb9cgz6GHx/8CQAV2mQN1+oC3C8Oj0VFj3qrrcZDhU65jj4ayh5C19nalawYZP+zfA3tqcn3cH8en6iySmZTDx8ZpoSrCsWFxyOuvOqO0YXsQEannRajWMaONrtOMJIYQQD4NKDtZYmGnI0Jk2986J0Dt8s/kyAB/2rU+dyo4mbY8QQpSkQkdyt2/f5vDhw7nWHz58mGPHjhmlUY+86KvqcPCoK7BsJPzSCQK2QmGT0+39Vj2GXSXo/kmuh1efjADgycZVATUR2Ts96/Bmj9oA/LAtgM/WXyzRpHjLT4STmm6gTmUHmnpXLLHzCCGEEOJure5UC0tO7j4B166BTelW3ohLTueVxSfJMCj0aeTBkJZepXp+IYQobYUOusePH09YWFiu9REREYwfP94ojXrkudWCiWeg0ztg6QA3z8Cip+H3nhC8v2DHuHUB9n2vLvf+BmxyBrSXbyZw6WYCFmYaejesnL1eo9EwvksNPuqr1sf8bd813l15Fr3B+IG3oigsyhxa/mxrnxLtURdCCCGEyquiLYpGS5CdG/j6Fm00XREpisJbK04TEZuCj4stXzzVUL7/hRAPvUJ/yl64cIGmTZvmWt+kSRMuXLhglEYJwNoRurwLE09D21fA3BrCDsGfvWHBAIi4T010g14dVm5Ih9q9od6TuTZZe1rt5e5UqxIVbC1zPT6qXTW+eboRWg0sPRrGxKUn0WUYjPb0AA5cjSYoKgl7K3P6N6lq1GMLIYQQIm9Z87rD7pR+MrW/Doaw+fwtLMw0zBrSFAdrybsihHj4FTrotrKy4tat3PWcb9y4gbm5JMAwOjsX6P4pvHoKmj8PWnO4ugN+7QJLh8Hti7n3OToPwo+qveS9p8N/riArisKaU+o86icbV8n31IOaezFraFMszDT8e+YGYxceJzVdb7SntuCg2ss9oElV7K3kvSOEEEKUBs+KNljo02n842fw5pug05XKec9FxPHZevV3y3u969LQ06lUziuEEKZW6KC7e/fuvPvuu8TFxWWvi42N5b333qNbt25GbZy4h6MH9PkOJhwD/yGg0cKlf2FOG1j5IsQEqdvFhcP2j9Xlrh+CU+4e5BOhdwi/k4KdpRld67rf97S9G3rwy4jmWJlr2XHpNqP+OEJiWkaxn87NuFS2XlQv3jzb2ngJ1IQQQghxf54VbTHX6+m87i+YPh3S00v8nIlpGUxYfAKd3kC3eu6Mautb4ucUQoiyotBB9/Tp0wkLC8PHx4cuXbrQpUsXqlWrxs2bN/n2229Loo3iXs7VYMBcGHdQzWqOAmf+hlktYN1rsPYV0CWCVyu1ZzwPqzNrc/eoXxkbS7MHnrJL7Ur89VxL7K3MORQUw7DfDhObXLyr4kuPhqI3KLT0daZ2ZYdiHUsIIYQQBZc1vLykGQwK12NTOHg1mjf+OUVwdDJVnKz55ulGMo9bCPFIKfSY3qpVq3LmzBkWLVrE6dOnsbGxYfTo0QwZMiTPmt2ihFSqA4MXwPWTsONTCNwGxzPLtJlZQt8f80yMkq43sP7sDQD63Wdo+X+1qu7C4jGtGPH7EU6HxfLML4f46/mWVHKwLnTT0/UGlhwJBWBYa+9C7y+EEEKIovOsaGu0Y6Xo9ITGJBMak0xIdBJhMcmEZN4Pj0lBp7+bD8ZMq2Hm0CZ55pIRQoiHWZEm0trZ2fHiiy8auy2iKKo0gWdXqFnNd3wCoQfV2t6V6uS5+b7AKGKSdLjYWdK+hmuhTtXIswJ/v9iGZ+cd5tLNBAb/fIiJj9ekXQ1X3BysCnyc7RdvcSs+DVd7S3o2qPzgHYQQQghhNJUcrLA0K3zGcl2Ggc3nb7Lz8m1Co9XgOjIh7b77mGs1eFa0wcvZlmdb+9DMx7mozRZCiHKryNmrLly4QGhoKLr/JN/o169fsRslisC3HYzeCCl3wDb/L7Q1mbW5+zTywLwIX7i1Kzuw7KU2DPvtMNeiknjt71MA1PVwpENNV9rXcKVlNWesLfIftr4gs0zY/5p7YWX+4OHtQgghhDAerVZDlYoFH6kWGp3M4iOhLDsWRnRS7ulljtbm+LjY4e1si7eLLd7Otvg42+LlbIuHk3WRfm8IIcTDpNBBd1BQEAMGDODs2bNoNBoURa3fnDU3R683XnZrUUgazX0D7mRdBlsuqMnL+jUueokuX1c7Vr3clt/3B7M3IJLz1+O5eEO9/bInCEtzLS18K9K+hhsdarpSz8MRrVZ9fwRFJrI/8P/s3Xd8jXf/x/HXyd5TFkWM2EHNoja/GFVUS5USo9Oo4i7utlapamkVvatD0aFUi1LUKopq7T2KxiiR2JFEhuT8/khz6khC1skJeT8fj+vR61zX97q+n3Nc5XzOd13GYIBn6qtruYiIiDWU8Lr7uO7klFTWH4nmmz9Os/n4JdPxAA9HutR6iCrFPf5Jrl3xdNHwQhGRu8lx0v3KK69QpkwZ1q9fT5kyZdi+fTuXL19m2LBhTJkyxRIxFkm3UlI5fy2BUr75N+5q3ZFo4pNSKOnjTK1SXnm6l7+HEyPbVmJk20pcik1k64lLbDl+iS0nLhF5PYGtJy6z9cRlJv8MPq4ONCznS+OQYuw6fRWAFhX983VMmYiIiGRfca/MW7rPXbvJwu1nWLDjLNH/dB03GKBxiB896peiZSV/tVyLiORQjpPubdu28csvv1CsWDFsbGywsbHh0UcfZdKkSQwePJg9e/ZYIs4i5czleF76ZhcxCcmsGdI0WzOMZ0d61/KONUrk66yhxdwc6VizBB1rlsBoNHLyYhxbjl9ky4lLbDt5mStxSfy0P5Kf9keartEyYSIiItYTEOBD674f0bpKAMMcndh0NIpvfj/DhmPRpKZ1YsTX1YGudUvSvW6pfG0EEBEpanKcdKekpODunrbEU7FixTh//jwVK1akdOnSHDt2LN8DLIp83Ry4GpfE+esJzNxwnP+EZT4pWk5cjUti058XAej0cPZnLc8pg8FAeX83yvu7Ed6oDMkpqew9e43Nxy+x5fhF9p69RtXinjSp4GexGEREROTuHvJ15bhfaWISHflxyibOXbtpOtegrC89HinF/1UJxMFOrdoiInmV46S7WrVq7Nu3jzJlylC/fn3effddHBwc+PTTTylbtqwlYixyXB3tGPt4VZ7/ahef/voXnWqWICQgb2tZrzwYya1UI1WCPCjvX3DrYtvb2lA32Ie6wT4MbV2Bm0kpONjZYGuj9TlFRESsJX2t7qiYtC7kns72PFX7IbrXL0U5PzdrhiYi8sDJcdL9xhtvEBcXB8D48eN57LHHaNy4Mb6+vixcuDDfAyyq/q9qIK0qB7DuSBSvLz3IwucfyVOX8B/3nAegYw7W5raE/OoqLyIiIrkX6ufCB0eWcislFbs3X6dtrdJ3XXlERERyz2BMn348D65cuYK3t3e+jhO2lJiYGDw9Pbl+/ToeHh7WDueu/r4aT+v3f+VmcgpTnqrBk7UfytV9zl27SaN3fsFggN9GtiDI8+4zloqIiMgDLi4O3P5p0Y6NBVdX68YjInIfym5umaOBOsnJydjZ2XHw4EGz4z4+PvdFwn2/ecjbhSGtQgB4e+URrmayNmZ2LN+X1spdL9hHCbeIiIiIiEgBylHSbW9vT6lSpbQWdwHq+2gZKga4cyUuiXdWHc3VPZamz1qeh7W5RUREREREJOdyPCXl66+/zn//+1+uXLliiXjkDva2NkzsXA2AhTvPsuNUzj73YxducPTCDextDbQLDbREiCIiIiIiIpKFHE+kNnPmTE6cOEHx4sUpXbo0rneMAdq9e3e+BSdp6gT78HTdkizYcZbXlxxgxeDG2Ntm7/eSZfvSWrmbVvDHy8XBkmGKiIiIiIjIHXKcdHfq1MkCYci9jGhTiTWHo/gzKpbZWyJ4sWm5e15jNBr5cW/hmLVcRERERESkKMpx0j1mzBhLxCH34O3qwH/bVWb4on1MW/cn7UODKOnjctdrdp+5yt9Xb+LqYEurygEFFKmIiIiIiIiky/GYbrGeLrVKUL+MDwnJqYxddoh7rfa29J+1ucOqBmp9bBEREfmXkxNs3562OTlZOxoRkQdajpNuGxsbbG1ts9zEcgwGAxM7V8Pe1sD6o9GsORyVZdnklFRWHIgE4HF1LRcREZHb2dpC3bppm76/iYhYVI67ly9ZssTsdXJyMnv27GHevHmMGzcu3wKTzJX3d+eFJuWYueEEY5cdolH5Yrg5Zvxj3HLiElfikvB1deDR8sWsEKmIiIiIiIjkOOnu2LFjhmNPPvkkVatWZeHChfTr1y9fApOsDWxRnmX7znPmSjzT1v7JG49VyVDmx3/W5n6sehB22ZzpXERERIqIpCT48MO0/VdeAQetcCIiYin5lo098sgjrF+/Pr9uJ3fhZG/L+I5VAZjz2ykOnb9udj4+6Zap6/njNUsUeHwiIiJSyCUnw2uvpW3JydaORkTkgZYvSffNmzeZPn06JUoowSsozSr60z40iJRUI68vOUhq6r+Tqq07Ek18UgolfZypVcrLekGKiIiIiIgUcTnuXu7t7Y3BYDC9NhqN3LhxAxcXF77++ut8DU7u7s3HqrDpz4vsPXuNb3ecoUf90sC/Xcs71ihh9mclIiIiIiIiBSvHSfcHH3xglsjZ2Njg5+dH/fr18fb2ztfg5O4CPZ0Y9n8VGLf8MJNXHeX/qgRiZ2Ng058XAej0sGYtFxERERERsaYcJ93h4eEWCENy69lHSvPD7r85eC6Gt1ceoU6wN7dSjVQJ8qC8v7u1wxMRERERESnScjyme86cOSxatCjD8UWLFjFv3rx8CUqyz87WhomdQjEYYMmec8z85QQAHbU2t4iIiIiIiNXlOOmeNGkSxYplXPfZ39+ft99+O1+CkpypUdKLZx9JG88deT0BgwEeV9ItIiIiIiJidTlOus+cOUOZMmUyHC9dujRnzpzJl6Ak54aHVcTP3RGAesE+BHk6WzkiERERKbScnGDDhrTNycna0YiIPNBynHT7+/uzf//+DMf37duHr69vvgQlOefhZM97T1anrJ8rg1qEWDscERERKcxsbaFZs7TN1tba0YiIPNByPJFa9+7dGTx4MO7u7jRp0gSATZs28corr/D000/ne4CSfc0q+tOsor+1wxAREREREZF/5Djpfuuttzh16hQtW7bEzi7t8tTUVHr16qUx3SIiIiL3g+Rk+PTTtP3nnwd7e+vGIyLyADMYjUZjbi48fvw4e/fuxdnZmdDQUEqXLp3fsVlETEwMnp6eXL9+HQ8PD2uHIyIiIlLw4uLAzS1tPzYWXF2tG4+IyH0ou7lljlu604WEhBASorHDIiIiIiIiIlnJ8URqXbp0YfLkyRmOv/vuuzz11FP5EpSIiIiIiIjIgyDHSfevv/5Ku3btMhxv27Ytv/76a74EJSIiIiIiIvIgyHHSHRsbi4ODQ4bj9vb2xMTE5EtQIiIiIiIiIg+CHCfdoaGhLFy4MMPxBQsWUKVKlXwJSkRERERERORBkOOJ1N58802eeOIJTp48SYsWLQBYv3498+fP5/vvv8/3AEVERERERETuVzlOujt06MDSpUt5++23+f7773F2dqZGjRr88ssv+Pj4WCJGEREREclPjo7w00//7ouIiMXkep3udDExMXz77bfMnj2bXbt2kZKSkl+xWYTW6RYREREREZG8ym5umeMx3el+/fVXevfuTfHixZk6dSotWrTg999/z+3tRERERERERB44OepefuHCBebOncvs2bOJiYmha9euJCYmsnTpUk2iJiIiInK/SE6Gb75J2+/RA+ztrRuPiMgDLNst3R06dKBixYrs37+fadOmcf78eWbMmGHJ2ERERETEEpKSoE+ftC0pydrRiIg80LLd0r1q1SoGDx7MSy+9REhIiCVjEhEREREREXkgZLule8uWLdy4cYPatWtTv359Zs6cyaVLlywZm4iIiIiIiMh9LdtJ9yOPPMJnn31GZGQkL7zwAgsWLKB48eKkpqaydu1abty4Yck4RURERERERO47eVoy7NixY8yePZuvvvqKa9eu0bp1a5YtW5af8eU7LRkmIiIiRV5cHLi5pe3HxoKrq3XjERG5D1l8yTCAihUr8u677/L333/z7bff5uVWIiIiIiIiIg+cPLV034/U0i0iIiJFnlq6RUTyLLu5ZY7W6RYRERGRB4CjI3z33b/7IiJiMUq6RURERIoaOzt46ilrRyEiUiTkaUy3iIiIiIiIiGRNLd0iIiIiRc2tW7BkSdp+585pLd8iImIRhaKl+6OPPiI4OBgnJyfq16/P9u3bs3XdggULMBgMdOrUybIBioiIiDxIEhOha9e0LTHR2tGIiDzQrJ50L1y4kKFDhzJmzBh2795NjRo1CAsLIzo6+q7XnTp1iuHDh9O4ceMCilREREREREQkZ6yedL///vs899xz9OnThypVqjBr1ixcXFz44osvsrwmJSWFHj16MG7cOMqWLVuA0YqIiIiIiIhkn1WT7qSkJHbt2kWrVq1Mx2xsbGjVqhXbtm3L8rrx48fj7+9Pv3797llHYmIiMTExZpuIiIiIiIhIQbBq0n3p0iVSUlIICAgwOx4QEMCFCxcyvWbLli3Mnj2bzz77LFt1TJo0CU9PT9NWsmTJPMctIiIiIiIikh1W716eEzdu3ODZZ5/ls88+o1ixYtm6ZtSoUVy/ft20nT171sJRioiIiIiIiKSx6voQxYoVw9bWlqioKLPjUVFRBAYGZih/8uRJTp06RYcOHUzHUlNTAbCzs+PYsWOUK1fO7BpHR0ccHR0tEL2IiIiIiIjI3Vk16XZwcKB27dqsX7/etOxXamoq69evZ+DAgRnKV6pUiQMHDpgde+ONN7hx4wYffvihuo6LiIiIZIeDA8yZ8+++iIhYjFWTboChQ4fSu3dv6tSpQ7169Zg2bRpxcXH06dMHgF69elGiRAkmTZqEk5MT1apVM7vey8sLIMNxEREREcmCvT2Eh1s7ChGRIsHqSXe3bt24ePEio0eP5sKFC9SsWZOff/7ZNLnamTNnsLG5r4aei4iIiIiIiABgMBqNRmsHUZBiYmLw9PTk+vXreHh4WDscERERkYJ36xasXp22HxYGdlZvhxERue9kN7fU37AiIiIiRU1iIjz2WNp+bKySbhERC1K/bRERERERERELUdItIiIiIiIiYiFKukVEREREREQsREm3iIiIiIiIiIUo6RYRERERERGxECXdIiIiIiIiIhai9SFEREREihoHB5g58999ERGxGCXdIiIiIkWNvT0MGGDtKEREigR1LxcRERERERGxELV0i4iIiBQ1KSmweXPafuPGYGtr3XhERB5gSrpFREREipqEBGjePG0/NhZcXa0bj4jIA0zdy0VEREREREQsREm3iIiIiIiIiIUo6RYRERERERGxECXdIiIiIiIiIhaipFtERERERETEQpR0i4iIiIiIiFiIlgwTERERKWrs7eHdd//dFxERi1HSLSIiIlLUODjAf/5j7ShERIoEdS8XERERERERsRC1dIuIiIgUNSkpsHt32n6tWmBra914REQeYEq6RURERIqahASoVy9tPzYWXF2tG4+IyANM3ctFRERERERELERJt4iIiIiIiIiFKOkWERERERERsRAl3SIiIiIiIiIWoqRbRERERERExEKUdIuIiIiIiIhYiJYMExERESlq7O1hzJh/90VExGKUdIuIiIgUNQ4OMHastaMQESkS1L1cRERERERExELU0i0iIiJS1KSmwpEjafuVK4ON2mFERCxFSbeIiIhIUXPzJlSrlrYfGwuurtaNR0TkAaafNUVEREREREQsREm3iIiIiIiIiIUo6RYRERERERGxECXdIiIiIiIiIhaipFtERERERETEQpR0i4iIiIiIiFiIlgwTERERKWrs7WH48H/3RUTEYpR0i4iIiBQ1Dg7w3nvWjkJEpEhQ93IRERERERERC1FLt4iIiEhRk5oKZ86k7ZcqBTZqhxERsRQl3SIiIiJFzc2bUKZM2n5sLLi6WjceEZEHmH7WFBEREREREbEQJd0iIiIiIiIiFqKkW0RERERERMRClHSLiIiIiIiIWIiSbhERERERERELUdItIiIiIiIiYiFaMkxERESkqLGzg5df/ndfREQsRn/LioiIiBQ1jo7w0UfWjkJEpEhQ93IRERERERERC1FLt4iIiEhRYzTCpUtp+8WKgcFg3XhERB5gSrpFREREipr4ePD3T9uPjQVXV+vGIyLyAFP3chERERERERELUdItIiIiIiIiYiFKukVEREREREQsREm3iIiIiIiIiIUo6RYRERERERGxECXdIiIiIiIiIhaiJcNEREREiho7O+jd+999ERGxGP0tKyIiIlLUODrC3LnWjkJEpEhQ93IRERERERERC1FLt4iIiEhRYzRCfHzavosLGAzWjUdE5AGmlm4RERGRoiY+Htzc0rb05FtERCxCSbeIiIiIiIiIhSjpFhEREREREbEQJd0iIiIiIiIiFqKkW0RERERERMRClHSLiIiIiIiIWIiSbhERERERERELKRRJ90cffURwcDBOTk7Ur1+f7du3Z1n2s88+o3Hjxnh7e+Pt7U2rVq3uWl5ERERE7mBrC08+mbbZ2lo7GhGRB5rVk+6FCxcydOhQxowZw+7du6lRowZhYWFER0dnWn7jxo10796dDRs2sG3bNkqWLMn//d//ce7cuQKOXEREROQ+5eQEixalbU5O1o5GROSBZjAajUZrBlC/fn3q1q3LzJkzAUhNTaVkyZIMGjSIkSNH3vP6lJQUvL29mTlzJr169bpn+ZiYGDw9Pbl+/ToeHh55jl9ERERERESKnuzmllZt6U5KSmLXrl20atXKdMzGxoZWrVqxbdu2bN0jPj6e5ORkfHx8LBWmiIiIiIiISK7YWbPyS5cukZKSQkBAgNnxgIAAjh49mq17jBgxguLFi5sl7rdLTEwkMTHR9DomJib3AYuIiIg8COLiwM0tbT82FlxdrRuPiMgDzOpjuvPinXfeYcGCBSxZsgSnLMYjTZo0CU9PT9NWsmTJAo5SREREREREiiqrJt3FihXD1taWqKgos+NRUVEEBgbe9dopU6bwzjvvsGbNGqpXr55luVGjRnH9+nXTdvbs2XyJXURERERERORerJp0Ozg4ULt2bdavX286lpqayvr162nQoEGW17377ru89dZb/Pzzz9SpU+eudTg6OuLh4WG2iYiIiIiIiBQEq47pBhg6dCi9e/emTp061KtXj2nTphEXF0efPn0A6NWrFyVKlGDSpEkATJ48mdGjRzN//nyCg4O5cOECAG5ubrilj00SERERERERKQSsnnR369aNixcvMnr0aC5cuEDNmjX5+eefTZOrnTlzBhubfxvkP/74Y5KSknjyySfN7jNmzBjGjh1bkKGLiIiIiIiI3JXV1+kuaFqnW0RERIo8zV4uIpJn2c0trd7SLSIiIiIFzNYW2rX7d19ERCxGSbeIiIhIUePkBCtWWDsKEZEi4b5ep1tERERERESkMFNLt4iIiIiI5FpKSgrJycnWDkMk39nb22ObD0NwlHSLiIiIFDVxceDvn7YfHa2J1CRXjEYjFy5c4Nq1a9YORcRivLy8CAwMxGAw5PoeSrpFREREiqL4eGtHIPe59ITb398fFxeXPCUlIoWN0WgkPj6e6OhoAIKCgnJ9LyXdIiIiIiKSIykpKaaE29fX19rhiFiEs7MzANHR0fj7++e6q7kmUhMRERERkRxJH8Pt4uJi5UhELCv9Gc/LvAVKukVEREREJFfUpVwedPnxjCvpFhEREREREbEQJd0iIiIiIiJ5EBwczLRp07JdfuPGjRgMBs38XkQo6RYREREpamxsoGnTtM1GXwel6DAYDHfdxo4dm6v77tixg+effz7b5Rs2bEhkZCSenp65qi83KlWqhKOjIxcuXCiwOiWNZi8XERERKWqcnWHjRmtHIVLgIiMjTfsLFy5k9OjRHDt2zHTMzc3NtG80GklJScHO7t4pk5+fX47icHBwIDAwMEfX5MWWLVu4efMmTz75JPPmzWPEiBEFVndmkpOTsbe3t2oMBUk/bYqIiIiISJEQGBho2jw9PTEYDKbXR48exd3dnVWrVlG7dm0cHR3ZsmULJ0+epGPHjgQEBODm5kbdunVZt26d2X3v7F5uMBj4/PPP6dy5My4uLoSEhLBs2TLT+Tu7l8+dOxcvLy9Wr15N5cqVcXNzo02bNmY/Ety6dYvBgwfj5eWFr68vI0aMoHfv3nTq1Ome73v27Nk888wzPPvss3zxxRcZzv/99990794dHx8fXF1dqVOnDn/88Yfp/PLly6lbty5OTk4UK1aMzp07m73XpUuXmt3Py8uLuXPnAnDq1CkMBgMLFy6kadOmODk58c0333D58mW6d+9OiRIlcHFxITQ0lG+//dbsPqmpqbz77ruUL18eR0dHSpUqxcSJEwFo0aIFAwcONCt/8eJFHBwcWL9+/T0/k4KkpFtERERERPLMaDQSn3TLKpvRaMy39zFy5Ejeeecdjhw5QvXq1YmNjaVdu3asX7+ePXv20KZNGzp06MCZM2fuep9x48bRtWtX9u/fT7t27ejRowdXrlzJsnx8fDxTpkzhq6++4tdff+XMmTMMHz7cdH7y5Ml88803zJkzh61btxITE5Mh2c3MjRs3WLRoET179qR169Zcv36dzZs3m87HxsbStGlTzp07x7Jly9i3bx+vvfYaqampAKxYsYLOnTvTrl079uzZw/r166lXr949673TyJEjeeWVVzhy5AhhYWEkJCRQu3ZtVqxYwcGDB3n++ed59tln2b59u+maUaNG8c477/Dmm29y+PBh5s+fT0BAAAD9+/dn/vz5JCYmmsp//fXXlChRghYtWuQ4PktS93IRERGRoiYuDoKD0/ZPnQJXV2tGIw+Im8kpVBm92ip1Hx4fhotD/qQ248ePp3Xr1qbXPj4+1KhRw/T6rbfeYsmSJSxbtixDS+vtwsPD6d69OwBvv/0206dPZ/v27bRp0ybT8snJycyaNYty5coBMHDgQMaPH286P2PGDEaNGmVqZZ45cyYrV6685/tZsGABISEhVK1aFYCnn36a2bNn07hxYwDmz5/PxYsX2bFjBz4+PgCUL1/edP3EiRN5+umnGTdunOnY7Z9Hdg0ZMoQnnnjC7NjtPyoMGjSI1atX891331GvXj1u3LjBhx9+yMyZM+nduzcA5cqV49FHHwXgiSeeYODAgfz444907doVSOsxEB4eXuiWslNLt4iIiEhRdOlS2iYiZurUqWP2OjY2luHDh1O5cmW8vLxwc3PjyJEj92zprl69umnf1dUVDw8PoqOjsyzv4uJiSrgBgoKCTOWvX79OVFSUWQuzra0ttWvXvuf7+eKLL+jZs6fpdc+ePVm0aBE3btwAYO/evTz88MOmhPtOe/fupWXLlves517u/FxTUlJ46623CA0NxcfHBzc3N1avXm36XI8cOUJiYmKWdTs5OZl1l9+9ezcHDx4kPDw8z7HmN7V0i4iIiIhInjnb23J4fJjV6s4vrnf0/Bg+fDhr165lypQplC9fHmdnZ5588kmSkpLuep87JwozGAymLtvZLZ/XbvOHDx/m999/Z/v27WaTp6WkpLBgwQKee+45nJ2d73qPe53PLM7k5OQM5e78XN977z0+/PBDpk2bRmhoKK6urgwZMsT0ud6rXkjrYl6zZk3+/vtv5syZQ4sWLShduvQ9rytoaukWEREREZE8MxgMuDjYWWWzZHfirVu3Eh4eTufOnQkNDSUwMJBTp05ZrL7MeHp6EhAQwI4dO0zHUlJS2L17912vmz17Nk2aNGHfvn3s3bvXtA0dOpTZs2cDaS3ye/fuzXK8efXq1e86MZmfn5/ZhG/Hjx8nPj7+nu9p69atdOzYkZ49e1KjRg3Kli3Ln3/+aTofEhKCs7PzXesODQ2lTp06fPbZZ8yfP5++ffves15rUNItIiIiIiKShZCQEBYvXszevXvZt28fzzzzzF1brC1l0KBBTJo0iR9//JFjx47xyiuvcPXq1Sx/cEhOTuarr76ie/fuVKtWzWzr378/f/zxB4cOHaJ79+4EBgbSqVMntm7dyl9//cUPP/zAtm3bABgzZgzffvstY8aM4ciRIxw4cIDJkyeb6mnRogUzZ85kz5497Ny5kxdffDFby4GFhISwdu1afvvtN44cOcILL7xAVFSU6byTkxMjRozgtdde48svv+TkyZP8/vvvph8L0vXv35933nkHo9FoNqt6YaKkW0REREREJAvvv/8+3t7eNGzYkA4dOhAWFkatWrUKPI4RI0bQvXt3evXqRYMGDXBzcyMsLAwnJ6dMyy9btozLly9nmohWrlyZypUrM3v2bBwcHFizZg3+/v60a9eO0NBQ3nnnHWxt07rsN2vWjEWLFrFs2TJq1qxJixYtzGYYnzp1KiVLlqRx48Y888wzDB8+HBcXl3u+nzfeeINatWoRFhZGs2bNTIn/7d58802GDRvG6NGjqVy5Mt26dcswLr579+7Y2dnRvXv3LD8LazMY83N+/ftATEwMnp6eXL9+HQ8PD2uHIyIiIlLw4uLAzS1tPzZWs5dLjiUkJBAREUGZMmUKbaLzoEtNTaVy5cp07dqVt956y9rhWM2pU6coV64cO3bssMiPIXd71rObW2oiNREREZGixsYG0mcStlHHR5H7wenTp1mzZg1NmzYlMTGRmTNnEhERwTPPPGPt0KwiOTmZy5cv88Ybb/DII49YpfdBdinpFhERESlqnJ3htgmZRKTws7GxYe7cuQwfPhyj0Ui1atVYt24dlStXtnZoVrF161aaN29OhQoV+P77760dzl0p6RYRERERESnkSpYsydatW60dRqHRrFmzPC+pVlDUn0hERERERETEQpR0i4iIiBQ18fEQHJy2ZWM9XRERyT11LxcREREpaoxGOH36330REbEYtXSLiIiIiIiIWIiSbhERERERERELUdItIiIiIiIiYiFKukVERERERHKgWbNmDBkyxPQ6ODiYadOm3fUag8HA0qVL81x3ft1HCo6SbhERERERKRI6dOhAmzZtMj23efNmDAYD+/fvz/F9d+zYwfPPP5/X8MyMHTuWmjVrZjgeGRlJ27Zt87WurNy8eRMfHx+KFStGYmJigdT5IFLSLSIiIlLUGAxQpUraZjBYOxqRAtOvXz/Wrl3L33//neHcnDlzqFOnDtWrV8/xff38/HBxccmPEO8pMDAQR0fHAqnrhx9+oGrVqlSqVMnqretGo5Fbt25ZNYbcUtItIiIiUtS4uMChQ2lbASUKIoXBY489hp+fH3PnzjU7Hhsby6JFi+jXrx+XL1+me/fulChRAhcXF0JDQ/n222/vet87u5cfP36cJk2a4OTkRJUqVVi7dm2Ga0aMGEGFChVwcXGhbNmyvPnmmyQnJwMwd+5cxo0bx759+zAYDBgMBlPMd3YvP3DgAC1atMDZ2RlfX1+ef/55YmNjTefDw8Pp1KkTU6ZMISgoCF9fXwYMGGCq625mz55Nz5496dmzJ7Nnz85w/tChQzz22GN4eHjg7u5O48aNOXnypOn8F198QdWqVXF0dCQoKIiBAwcCcOrUKQwGA3v37jWVvXbtGgaDgY0bNwKwceNGDAYDq1atonbt2jg6OrJlyxZOnjxJx44dCQgIwM3Njbp167Ju3TqzuBITExkxYgQlS5bE0dGR8uXLM3v2bIxGI+XLl2fKlClm5ffu3YvBYODEiRP3/ExyQ+t0i4iIiIhI3hmNkBxvnbrtXbLVa8POzo5evXoxd+5cXn/9dQz/XLNo0SJSUlLo3r07sbGx1K5dmxEjRuDh4cGKFSt49tlnKVeuHPXq1btnHampqTzxxBMEBATwxx9/cP36dbPx3+nc3d2ZO3cuxYsX58CBAzz33HO4u7vz2muv0a1bNw4ePMjPP/9sSig9PT0z3CMuLo6wsDAaNGjAjh07iI6Opn///gwcONDsh4UNGzYQFBTEhg0bOHHiBN26daNmzZo899xzWb6PkydPsm3bNhYvXozRaOTVV1/l9OnTlC5dGoBz587RpEkTmjVrxi+//IKHhwdbt241tUZ//PHHDB06lHfeeYe2bdty/fp1tm7des/P704jR45kypQplC1bFm9vb86ePUu7du2YOHEijo6OfPnll3To0IFjx45RqlQpAHr16sW2bduYPn06NWrUICIigkuXLmEwGOjbty9z5sxh+PDhpjrmzJlDkyZNKF++fI7jyw4l3SIiIiIiknfJ8fB2cevU/d/z4OCaraJ9+/blvffeY9OmTTRr1gxIS7q6dOmCp6cnnp6eZgnZoEGDWL16Nd999122ku5169Zx9OhRVq9eTfHiaZ/H22+/nWEc9htvvGHaDw4OZvjw4SxYsIDXXnsNZ2dn3NzcsLOzIzAwMMu65s+fT0JCAl9++SWurmnvf+bMmXTo0IHJkycTEBAAgLe3NzNnzsTW1pZKlSrRvn171q9ff9ek+4svvqBt27Z4e3sDEBYWxpw5cxg7diwAH330EZ6enixYsAB7e3sAKlSoYLp+woQJDBs2jFdeecV0rG7duvf8/O40fvx4WrdubXrt4+NDjRo1TK/feustlixZwrJlyxg4cCB//vkn3333HWvXrqVVq1YAlC1b1lQ+PDyc0aNHs337durVq0dycjLz58/P0Pqdn9S9XERERKSoiY+HqlXTtngrtUyKWEmlSpVo2LAhX3zxBQAnTpxg8+bN9OvXD4CUlBTeeustQkND8fHxwc3NjdWrV3PmzJls3f/IkSOULFnSlHADNGjQIEO5hQsX0qhRIwIDA3Fzc+ONN97Idh2311WjRg1Twg3QqFEjUlNTOXbsmOlY1apVsbW1Nb0OCgoiOjo6y/umpKQwb948evbsaTrWs2dP5s6dS2pqKpDWJbtx48amhPt20dHRnD9/npYtW+bo/WSmTp06Zq9jY2MZPnw4lStXxsvLCzc3N44cOWL67Pbu3YutrS1NmzbN9H7Fixenffv2pj//5cuXk5iYyFNPPZXnWLOilm4RERGRosZohMOH/90XyQ/2LmktztaqOwf69evHoEGD+Oijj5gzZw7lypUzJWnvvfceH374IdOmTSM0NBRXV1eGDBlCUlJSvoW7bds2evTowbhx4wgLCzO1GE+dOjXf6rjdnYmxwWAwJc+ZWb16NefOnaNbt25mx1NSUli/fj2tW7fG2dk5y+vvdg7Axiat7dd4298/WY0xv/0HBYDhw4ezdu1apkyZQvny5XF2dubJJ580/fncq26A/v378+yzz/LBBx8wZ84cunXrZtGJ8NTSLSIiIiIieWcwpHXxtsaWw1n4u3btio2NDfPnz+fLL7+kb9++pvHdW7dupWPHjvTs2ZMaNWpQtmxZ/vzzz2zfu3Llypw9e5bIyEjTsd9//92szG+//Ubp0qV5/fXXqVOnDiEhIZw+fdqsjIODAykpKfesa9++fcTFxZmObd26FRsbGypWrJjtmO80e/Zsnn76afbu3Wu2Pf3006YJ1apXr87mzZszTZbd3d0JDg5m/fr1md7fz88PwOwzun1StbvZunUr4eHhdO7cmdDQUAIDAzl16pTpfGhoKKmpqWzatCnLe7Rr1w5XV1c+/vhjfv75Z/r27ZutunNLSbeIiIiIiBQpbm5udOvWjVGjRhEZGUl4eLjpXEhICGvXruW3337jyJEjvPDCC0RFRWX73q1ataJChQr07t2bffv2sXnzZl5//XWzMiEhIZw5c4YFCxZw8uRJpk+fzpIlS8zKBAcHExERwd69e7l06VKm62T36NEDJycnevfuzcGDB9mwYQODBg3i2WefNY3nzqmLFy+yfPlyevfuTbVq1cy2Xr16sXTpUq5cucLAgQOJiYnh6aefZufOnRw/fpyvvvrK1K197NixTJ06lenTp3P8+HF2797NjBkzgLTW6EceeYR33nmHI0eOsGnTJrMx7ncTEhLC4sWL2bt3L/v27eOZZ54xa7UPDg6md+/e9O3bl6VLlxIREcHGjRv57rvvTGVsbW0JDw9n1KhRhISEZNr9Pz8p6RYRERERkSKnX79+XL16lbCwMLPx12+88Qa1atUiLCyMZs2aERgYSKdOnbJ9XxsbG5YsWcLNmzepV68e/fv3Z+LEiWZlHn/8cV599VUGDhxIzZo1+e2333jzzTfNynTp0oU2bdrQvHlz/Pz8Ml22zMXFhdWrV3PlyhXq1q3Lk08+ScuWLZk5c2bOPozbpE/Kltl47JYtW+Ls7MzXX3+Nr68vv/zyC7GxsTRt2pTatWvz2Wefmbqy9+7dm2nTpvG///2PqlWr8thjj3H8+HHTvb744gtu3bpF7dq1GTJkCBMmTMhWfO+//z7e3t40bNiQDh06EBYWRq1atczKfPzxxzz55JO8/PLLVKpUieeee86sNwCk/fknJSXRp0+fnH5EOWYwGovWQJ6YmBg8PT25fv06Hh4e1g5HREREpODFxYGbW9p+bCzcMWZS5F4SEhKIiIigTJkyODk5WTsckRzbvHkzLVu25OzZs3ftFXC3Zz27uaUmUhMREREREZEiITExkYsXLzJ27FieeuqpXHfDzwl1LxcREREpagwGKF06bcvhBFQiIvezb7/9ltKlS3Pt2jXefffdAqlTLd0iIiIiRY2LC9w226+ISFERHh5uNnFeQVBLt4iIiIiIiIiFKOkWERERERERsRAl3SIiIiJFzc2bULdu2nbzprWjERF5oGlMt4iIiEhRk5oKO3f+uy8iIhajlm4RERERERERC1HSLSIiIiIiImIhSrpFRERERESAZs2aMWTIEGuHkWunTp3CYDCwd+9ea4cit1HSLSIiIiIiRUZ4eDgGgyHDduLECRYvXsxbb71lkXo3btyYab23bxs3bsxTHSVLliQyMpJq1arlT9B3sWTJEh555BE8PT1xd3enatWqZj9YjB07lpo1a+ZbfeHh4XTq1Cnf7leQNJGaiIiIiIgUKW3atGHOnDlmx/z8/LC1tbVYnQ0bNiQyMtL0+pVXXiEmJsYsDh8fnzzVYWtrS2BgYJ7ukR3r16+nW7duTJw4kccffxyDwcDhw4dZu3ZtvteVkpKCwWDI9/sWJLV0i4iIiBRFxYqlbSJFkKOjI4GBgWabra1thu7lwcHBvP322/Tt2xd3d3dKlSrFp59+anavs2fP0rVrV7y8vPDx8aFjx46cOnUqQ50ODg5m9Tk7O5vF8fTTT/Paa6+ZXdOpUyfCw8OzHc+d3cvTW9fXr19PnTp1cHFxoWHDhhw7dsysngkTJuDv74+7uzv9+/dn5MiRd22lXr58OY0aNeI///kPFStWpEKFCnTq1ImPPvoIgLlz5zJu3Dj27dtnasWfO3cuAO+//z6hoaG4urpSsmRJXn75ZWJjY033njt3Ll5eXixbtowqVarg6OhI3759mTdvHj/++GO+9QooSEq6RURERIoaV1e4eDFtc3W1djTyoImLy3pLSMh+2TvXkM+qnIVNnTqVOnXqsGfPHl5++WVeeuklU9KanJxMWFgY7u7ubN68ma1bt+Lm5kabNm1ISkoq8Hiy8vrrrzN16lR27tyJnZ0dffv2NZ375ptvmDhxIpMnT2bXrl2UKlWKjz/++K73CwwM5NChQxw8eDDT8926dWPYsGFUrVqVyMhIIiMj6datGwA2NjZMnz6dQ4cOMW/ePH755ZcMPzbEx8czefJkPv/8cw4dOsT06dPp2rUrbdq0Md2vYcOG2fm4CgUl3SIiIiIikn/c3LLeunQxL+vvn3XZtm3NywYHZ14uF3766Sfc3NxM21NPPZVl2Xbt2vHyyy9Tvnx5RowYQbFixdiwYQMACxcuJDU1lc8//5zQ0FAqV67MnDlzOHPmjMVaYu8WT1YmTpxI06ZNqVKlCiNHjuS3334j4Z8fQGbMmEG/fv3o06cPFSpUYPTo0YSGht71foMGDaJu3bqEhoYSHBzM008/zRdffEFiYiIAzs7OuLm5YWdnZ9ayDzBkyBCaN29OcHAwLVq0YMKECXz33Xdm909OTuZ///sfDRs2pGLFinh4eGToGeDg4JDbj7DAKekWEREREZEipXnz5uzdu9e0TZ8+Pcuy1atXN+0bDAYCAwOJjo4GYN++fZw4cQJ3d3dTAu/j40NCQgInT55k8+bNZsn9N998k+fY7xZPdq4JCgoCMF1z7Ngx6tWrZ1b+ztd3cnV1ZcWKFZw4cYI33ngDNzc3hg0bRr169YiPj7/rtevWraNly5aUKFECd3d3nn32WS5fvmx2nYODg1nM9ztNpCYiIiJS1Ny8+W8r4qpV8E8LlEi+uG18bgZ3TlR2t2TR5o72wUzGSeeWq6sr5cuXz1ZZe3t7s9cGg4HU1FQAYmNjqV27dqbJtJ+fHw4ODmbLdwUEBGRZj42NDUaj0exYcnJyjuLJzntIn5TsXtdkR7ly5ShXrhz9+/fn9ddfp0KFCixcuJA+ffpkWv7UqVM89thjvPTSS0ycOBEfHx+2bNlCv379SEpKwsXFBUhrKb/fJ0+7nZJuERERkaImNRU2bfp3XyQ/5WSeAEuVLSC1atVi4cKF+Pv74+HhkWmZ7Cb3fn5+ZrObp6SkcPDgQZo3b54vsWalYsWK7Nixg169epmO7dixI8f3CQ4OxsXFhbh/xtk7ODiQkpJiVmbXrl2kpqYydepUbP75UeXOruVZyex+9wt1LxcREREREcmFHj16UKxYMTp27MjmzZuJiIhg48aNDB48mL///jtH92rRogUrVqxgxYoVHD16lJdeeolr165ZJvDbDBo0iNmzZzNv3jyOHz/OhAkT2L9//11bmseOHctrr73Gxo0biYiIYM+ePfTt25fk5GRat24NpCXhERER7N27l0uXLpGYmEj58uVJTk5mxowZ/PXXX3z11VfMmjUrW3EGBwezf/9+jh07xqVLlzLtBVBYKekWERERERHJBRcXF3799VdKlSrFE088QeXKlenXrx8JCQlZtnxnpW/fvvTu3ZtevXrRtGlTypYta/FWbkj74WDUqFEMHz6cWrVqERERQXh4OE5OTlle07RpU/766y969epFpUqVaNu2LRcuXGDNmjVUrFgRgC5dutCmTRuaN2+On58f3377LTVq1OD9999n8uTJVKtWjW+++YZJkyZlK87nnnuOihUrUqdOHfz8/Ni6dWu+vP+CYDDeOXDgARcTE4OnpyfXr1/P8f8IIiIiIg+EuLh/Z32OjS2U3XalcEtISCAiIoIyZcrcNTmT+1Pr1q0JDAzkq6++snYoVne3Zz27uaXGdIuIiIiIiBRR8fHxzJo1i7CwMGxtbfn2229Zt24da9eutXZoDwwl3SIiIiIiIkWUwWBg5cqVTJw4kYSEBCpWrMgPP/xAq1atrB3aA0NJt4iIiEhR9M/SPCJStDk7O7Nu3Tprh/FAU9ItIiIiUtS4uqaN6xYREYvT7OUiIiIiIpIrRWxOZimC8uMZV9ItIiIiIiI5Ym9vD6RNwiXyIEt/xtOf+dxQ93IRERGRoiYhAbp0Sdv/4QfQkk+SQ7a2tnh5eREdHQ2krVdtMBisHJVI/jEajcTHxxMdHY2Xlxe2tra5vpeSbhEREZGiJiUFVq78d18kFwIDAwFMibfIg8jLy8v0rOeWkm4REREREckxg8FAUFAQ/v7+JCcnWzsckXxnb2+fpxbudEq6RUREREQk12xtbfMlMRF5UBWKidQ++ugjgoODcXJyon79+mzfvv2u5RctWkSlSpVwcnIiNDSUlendo0REREREREQKEasn3QsXLmTo0KGMGTOG3bt3U6NGDcLCwrIcG/Lbb7/RvXt3+vXrx549e+jUqROdOnXi4MGDBRy5iIiIiIiIyN0ZjFZeXK9+/frUrVuXmTNnApCamkrJkiUZNGgQI0eOzFC+W7duxMXF8dNPP5mOPfLII9SsWZNZs2bds76YmBg8PT25fv06Hh4e+fdGRERERO4XcXHg5pa2HxsLrq7WjUdE5D6U3dzSqmO6k5KS2LVrF6NGjTIds7GxoVWrVmzbti3Ta7Zt28bQoUPNjoWFhbF06dJMyycmJpKYmGh6ff36dSDtAxIREREpkuLi/t2PidEM5iIiuZCeU96rHduqSfelS5dISUkhICDA7HhAQABHjx7N9JoLFy5kWv7ChQuZlp80aRLjxo3LcLxkyZK5jFpERETkAVK8uLUjEBG5r924cQNPT88szz/ws5ePGjXKrGU8NTWVK1eu4Ovri8FgsGJkdxcTE0PJkiU5e/asusGLGT0bkhk9F5IVPRuSFT0bkhU9G5IZPRcZGY1Gbty4QfF7/Hhp1aS7WLFi2NraEhUVZXY8KioqywXIAwMDc1Te0dERR0dHs2NeXl65D7qAeXh46KGWTOnZkMzouZCs6NmQrOjZkKzo2ZDM6Lkwd7cW7nRWnb3cwcGB2rVrs379etOx1NRU1q9fT4MGDTK9pkGDBmblAdauXZtleRERERERERFrsXr38qFDh9K7d2/q1KlDvXr1mDZtGnFxcfTp0weAXr16UaJECSZNmgTAK6+8QtOmTZk6dSrt27dnwYIF7Ny5k08//dSab0NEREREREQkA6sn3d26dePixYuMHj2aCxcuULNmTX7++WfTZGlnzpzBxubfBvmGDRsyf/583njjDf773/8SEhLC0qVLqVatmrXegkU4OjoyZsyYDF3jRfRsSGb0XEhW9GxIVvRsSFb0bEhm9FzkntXX6RYRERERERF5UFl1TLeIiIiIiIjIg0xJt4iIiIiIiIiFKOkWERERERERsRAl3SIiIiIiIiIWoqS7kProo48IDg7GycmJ+vXrs337dmuHJAXo119/pUOHDhQvXhyDwcDSpUvNzhuNRkaPHk1QUBDOzs60atWK48ePWydYKVCTJk2ibt26uLu74+/vT6dOnTh27JhZmYSEBAYMGICvry9ubm506dKFqKgoK0UsBeHjjz+mevXqeHh44OHhQYMGDVi1apXpvJ4JSffOO+9gMBgYMmSI6Ziej6Jp7NixGAwGs61SpUqm83ouiq5z587Rs2dPfH19cXZ2JjQ0lJ07d5rO63tozinpLoQWLlzI0KFDGTNmDLt376ZGjRqEhYURHR1t7dCkgMTFxVGjRg0++uijTM+/++67TJ8+nVmzZvHHH3/g6upKWFgYCQkJBRypFLRNmzYxYMAAfv/9d9auXUtycjL/93//R1xcnKnMq6++yvLly1m0aBGbNm3i/PnzPPHEE1aMWiztoYce4p133mHXrl3s3LmTFi1a0LFjRw4dOgTomZA0O3bs4JNPPqF69epmx/V8FF1Vq1YlMjLStG3ZssV0Ts9F0XT16lUaNWqEvb09q1at4vDhw0ydOhVvb29TGX0PzQWjFDr16tUzDhgwwPQ6JSXFWLx4ceOkSZOsGJVYC2BcsmSJ6XVqaqoxMDDQ+N5775mOXbt2zejo6Gj89ttvrRChWFN0dLQRMG7atMloNKY9C/b29sZFixaZyhw5csQIGLdt22atMMUKvL29jZ9//rmeCTEajUbjjRs3jCEhIca1a9camzZtanzllVeMRqP+zijKxowZY6xRo0am5/RcFF0jRowwPvroo1me1/fQ3FFLdyGTlJTErl27aNWqlemYjY0NrVq1Ytu2bVaMTAqLiIgILly4YPaMeHp6Ur9+fT0jRdD169cB8PHxAWDXrl0kJyebPR+VKlWiVKlSej6KiJSUFBYsWEBcXBwNGjTQMyEADBgwgPbt25s9B6C/M4q648ePU7x4ccqWLUuPHj04c+YMoOeiKFu2bBl16tThqaeewt/fn4cffpjPPvvMdF7fQ3NHSXchc+nSJVJSUggICDA7HhAQwIULF6wUlRQm6c+BnhFJTU1lyJAhNGrUiGrVqgFpz4eDgwNeXl5mZfV8PPgOHDiAm5sbjo6OvPjiiyxZsoQqVaromRAWLFjA7t27mTRpUoZzej6Krvr16zN37lx+/vlnPv74YyIiImjcuDE3btzQc1GE/fXXX3z88ceEhISwevVqXnrpJQYPHsy8efMAfQ/NLTtrByAiIrkzYMAADh48aDYGT4quihUrsnfvXq5fv873339P79692bRpk7XDEis7e/Ysr7zyCmvXrsXJycna4Ugh0rZtW9N+9erVqV+/PqVLl+a7777D2dnZipGJNaWmplKnTh3efvttAB5++GEOHjzIrFmz6N27t5Wju3+ppbuQKVasGLa2thlmh4yKiiIwMNBKUUlhkv4c6Bkp2gYOHMhPP/3Ehg0beOihh0zHAwMDSUpK4tq1a2bl9Xw8+BwcHChfvjy1a9dm0qRJ1KhRgw8//FDPRBG3a9cuoqOjqVWrFnZ2dtjZ2bFp0yamT5+OnZ0dAQEBej4EAC8vLypUqMCJEyf090YRFhQURJUqVcyOVa5c2TT0QN9Dc0dJdyHj4OBA7dq1Wb9+velYamoq69evp0GDBlaMTAqLMmXKEBgYaPaMxMTE8Mcff+gZKQKMRiMDBw5kyZIl/PLLL5QpU8bsfO3atbG3tzd7Po4dO8aZM2f0fBQxqampJCYm6pko4lq2bMmBAwfYu3evaatTpw49evQw7ev5EIDY2FhOnjxJUFCQ/t4owho1apRhKdI///yT0qVLA/oemlvqXl4IDR06lN69e1OnTh3q1avHtGnTiIuLo0+fPtYOTQpIbGwsJ06cML2OiIhg7969+Pj4UKpUKYYMGcKECRMICQmhTJkyvPnmmxQvXpxOnTpZL2gpEAMGDGD+/Pn8+OOPuLu7m8ZPeXp64uzsjKenJ/369WPo0KH4+Pjg4eHBoEGDaNCgAY888oiVoxdLGTVqFG3btqVUqVLcuHGD+fPns3HjRlavXq1noohzd3c3zfmQztXVFV9fX9NxPR9F0/Dhw+nQoQOlS5fm/PnzjBkzBltbW7p3766/N4qwV199lYYNG/L222/TtWtXtm/fzqeffsqnn34KgMFg0PfQ3LD29OmSuRkzZhhLlSpldHBwMNarV8/4+++/WzskKUAbNmwwAhm23r17G43GtOUa3nzzTWNAQIDR0dHR2LJlS+OxY8esG7QUiMyeC8A4Z84cU5mbN28aX375ZaO3t7fRxcXF2LlzZ2NkZKT1ghaL69u3r7F06dJGBwcHo5+fn7Fly5bGNWvWmM7rmZDb3b5kmNGo56Oo6tatmzEoKMjo4OBgLFGihLFbt27GEydOmM7ruSi6li9fbqxWrZrR0dHRWKlSJeOnn35qdl7fQ3POYDQajVbK90VEREREREQeaBrTLSIiIiIiImIhSrpFRERERERELERJt4iIiIiIiIiFKOkWERERERERsRAl3SIiIiIiIiIWoqRbRERERERExEKUdIuIiIiIiIhYiJJuEREREREREQtR0i0iIiIiIiJiIUq6RURERERERCxESbeIiIiIiIiIhSjpFhEREREREbEQJd0iIiIiIiIiFqKkW0RERERERMRClHSLiIiIiIiIWIiSbhERERERERELUdItIiIiIiIiYiFKukVE5L4THh5OcHBwrq4dO3YsBoMhfwMqZE6dOoXBYGDu3LkFXrfBYGDs2LGm13PnzsVgMHDq1Kl7XhscHEx4eHi+xpOXZ0VERCQ/KOkWEZF8YzAYsrVt3LjR2qEWeYMHD8ZgMHDixIksy7z++usYDAb2799fgJHl3Pnz5xk7dix79+61digm6T98TJkyxdqhiIiIldlZOwAREXlwfPXVV2avv/zyS9auXZvheOXKlfNUz2effUZqamqurn3jjTcYOXJknup/EPTo0YMZM2Ywf/58Ro8enWmZb7/9ltDQUKpXr57rep599lmefvppHB0dc32Pezl//jzjxo0jODiYmjVrmp3Ly7MiIiKSH5R0i4hIvunZs6fZ699//521a9dmOH6n+Ph4XFxcsl2Pvb19ruIDsLOzw85O//zVr1+f8uXL8+2332aadG/bto2IiAjeeeedPNVja2uLra1tnu6RF3l5VkRERPKDupeLiEiBatasGdWqVWPXrl00adIEFxcX/vvf/wLw448/0r59e4oXL46joyPlypXjrbfeIiUlxewed47Tvb0r76effkq5cuVwdHSkbt267Nixw+zazMZ0GwwGBg4cyNKlS6lWrRqOjo5UrVqVn3/+OUP8GzdupE6dOjg5OVGuXDk++eSTbI8T37x5M0899RSlSpXC0dGRkiVL8uqrr3Lz5s0M78/NzY1z587RqVMn3Nzc8PPzY/jw4Rk+i2vXrhEeHo6npydeXl707t2ba9eu3TMWSGvtPnr0KLt3785wbv78+RgMBrp3705SUhKjR4+mdu3aeHp64urqSuPGjdmwYcM968hsTLfRaGTChAk89NBDuLi40Lx5cw4dOpTh2itXrjB8+HBCQ0Nxc3PDw8ODtm3bsm/fPlOZjRs3UrduXQD69OljGsKQPp49szHdcXFxDBs2jJIlS+Lo6EjFihWZMmUKRqPRrFxOnovcio6Opl+/fgQEBODk5ESNGjWYN29ehnILFiygdu3auLu74+HhQWhoKB9++KHpfHJyMuPGjSMkJAQnJyd8fX159NFHWbt2bb7FKiIiuaOf+kVEpMBdvnyZtm3b8vTTT9OzZ08CAgKAtATNzc2NoUOH4ubmxi+//MLo0aOJiYnhvffeu+d958+fz40bN3jhhRcwGAy8++67PPHEE/z111/3bPHcsmULixcv5uWXX8bd3Z3p06fTpUsXzpw5g6+vLwB79uyhTZs2BAUFMW7cOFJSUhg/fjx+fn7Zet+LFi0iPj6el156CV9fX7Zv386MGTP4+++/WbRokVnZlJQUwsLCqF+/PlOmTGHdunVMnTqVcuXK8dJLLwFpyWvHjh3ZsmULL774IpUrV2bJkiX07t07W/H06NGDcePGMX/+fGrVqmVW93fffUfjxo0pVaoUly5d4vPPP6d79+4899xz3Lhxg9mzZxMWFsb27dszdOm+l9GjRzNhwgTatWtHu3bt2L17N//3f/9HUlKSWbm//vqLpUuX8tRTT1GmTBmioqL45JNPaNq0KYcPH6Z48eJUrlyZ8ePHM3r0aJ5//nkaN24MQMOGDTOt22g08vjjj7Nhwwb69etHzZo1Wb16Nf/5z384d+4cH3zwgVn57DwXuXXz5k2aNWvGiRMnGDhwIGXKlGHRokWEh4dz7do1XnnlFQDWrl1L9+7dadmyJZMnTwbgyJEjbN261VRm7NixTJo0if79+1OvXj1iYmLYuXMnu3fvpnXr1nmKU0RE8sgoIiJiIQMGDDDe+U9N06ZNjYBx1qxZGcrHx8dnOPbCCy8YXVxcjAkJCaZjvXv3NpYuXdr0OiIiwggYfX19jVeuXDEd//HHH42Acfny5aZjY8aMyRATYHRwcDCeOHHCdGzfvn1GwDhjxgzTsQ4dOhhdXFyM586dMx07fvy40c7OLsM9M5PZ+5s0aZLRYDAYT58+bfb+AOP48ePNyj788MPG2rVrm14vXbrUCBjfffdd07Fbt24ZGzdubASMc+bMuWdMdevWNT700EPGlJQU07Gff/7ZCBg/+eQT0z0TExPNrrt69aoxICDA2LdvX7PjgHHMmDGm13PmzDECxoiICKPRaDRGR0cbHRwcjO3btzempqaayv33v/81AsbevXubjiUkJJjFZTSm/Vk7OjqafTY7duzI8v3e+aykf2YTJkwwK/fkk08aDQaD2TOQ3eciM+nP5HvvvZdlmWnTphkB49dff206lpSUZGzQoIHRzc3NGBMTYzQajcZXXnnF6OHhYbx161aW96pRo4axffv2d41JRESsQ93LRUSkwDk6OtKnT58Mx52dnU37N27c4NKlSzRu3Jj4+HiOHj16z/t269YNb29v0+v0Vs+//vrrnte2atWKcuXKmV5Xr14dDw8P07UpKSmsW7eOTp06Ubx4cVO58uXL07Zt23veH8zfX1xcHJcuXaJhw4YYjUb27NmTofyLL75o9rpx48Zm72XlypXY2dmZWr4hbQz1oEGDshUPpI3D//vvv/n1119Nx+bPn4+DgwNPPfWU6Z4ODg4ApKamcuXKFW7dukWdOnUy7Zp+N+vWrSMpKYlBgwaZdckfMmRIhrKOjo7Y2KR9VUlJSeHy5cu4ublRsWLFHNebbuXKldja2jJ48GCz48OGDcNoNLJq1Sqz4/d6LvJi5cqVBAYG0r17d9Mxe3t7Bg8eTGxsLJs2bQLAy8uLuLi4u3YV9/Ly4tChQxw/fjzPcYmISP5S0i0iIgWuRIkSpiTudocOHaJz5854enri4eGBn5+faRK269ev3/O+pUqVMnudnoBfvXo1x9emX59+bXR0NDdv3qR8+fIZymV2LDNnzpwhPDwcHx8f0zjtpk2bAhnfn5OTU4Zu67fHA3D69GmCgoJwc3MzK1exYsVsxQPw9NNPY2try/z58wFISEhgyZIltG3b1uwHjHnz5lG9enXTeGE/Pz9WrFiRrT+X250+fRqAkJAQs+N+fn5m9UFagv/BBx8QEhKCo6MjxYoVw8/Pj/379+e43tvrL168OO7u7mbH02fUT48v3b2ei7w4ffo0ISEhph8Wsorl5ZdfpkKFCrRt25aHHnqIvn37ZhhXPn78eK5du0aFChUIDQ3lP//5T6Ff6k1EpKhQ0i0iIgXu9hbfdNeuXaNp06bs27eP8ePHs3z5ctauXWsaw5qdZZ+ymiXbeMcEWfl9bXakpKTQunVrVqxYwYgRI1i6dClr1641Tfh15/srqBm//f39ad26NT/88APJycksX76cGzdu0KNHD1OZr7/+mvDwcMqVK8fs2bP5+eefWbt2LS1atLDoclxvv/02Q4cOpUmTJnz99desXr2atWvXUrVq1QJbBszSz0V2+Pv7s3fvXpYtW2Yaj962bVuzsftNmjTh5MmTfPHFF1SrVo3PP/+cWrVq8fnnnxdYnCIikjlNpCYiIoXCxo0buXz5MosXL6ZJkyam4xEREVaM6l/+/v44OTlx4sSJDOcyO3anAwcO8OeffzJv3jx69eplOp6X2aVLly7N+vXriY2NNWvtPnbsWI7u06NHD37++WdWrVrF/Pnz8fDwoEOHDqbz33//PWXLlmXx4sVmXcLHjBmTq5gBjh8/TtmyZU3HL168mKH1+Pvvv6d58+bMnj3b7Pi1a9coVqyY6XV2Zo6/vf5169Zx48YNs9bu9OEL6fEVhNKlS7N//35SU1PNWrszi8XBwYEOHTrQoUMHUlNTefnll/nkk0948803TT0tfHx86NOnD3369CE2NpYmTZowduxY+vfvX2DvSUREMlJLt4iIFArpLYq3tyAmJSXxv//9z1ohmbG1taVVq1YsXbqU8+fPm46fOHEiwzjgrK4H8/dnNBrNln3KqXbt2nHr1i0+/vhj07GUlBRmzJiRo/t06tQJFxcX/ve//7Fq1SqeeOIJnJyc7hr7H3/8wbZt23Icc6tWrbC3t2fGjBlm95s2bVqGsra2thlalBctWsS5c+fMjrm6ugJka6m0du3akZKSwsyZM82Of/DBBxgMhmyPz88P7dq148KFCyxcuNB07NatW8yYMQM3NzfT0IPLly+bXWdjY0P16tUBSExMzLSMm5sb5cuXN50XERHrUUu3iIgUCg0bNsTb25vevXszePBgDAYDX331VYF2472XsWPHsmbNGho1asRLL71kSt6qVavG3r1773ptpUqVKFeuHMOHD+fcuXN4eHjwww8/5GlscIcOHWjUqBEjR47k1KlTVKlShcWLF+d4vLObmxudOnUyjeu+vWs5wGOPPcbixYvp3Lkz7du3JyIiglmzZlGlShViY2NzVFf6euOTJk3iscceo127duzZs4dVq1aZtV6n1zt+/Hj69OlDw4YNOXDgAN98841ZCzlAuXLl8PLyYtasWbi7u+Pq6kr9+vUpU6ZMhvo7dOhA8+bNef311zl16hQ1atRgzZo1/PjjjwwZMsRs0rT8sH79ehISEjIc79SpE88//zyffPIJ4eHh7Nq1i+DgYL7//nu2bt3KtGnTTC3x/fv358qVK7Ro0YKHHnqI06dPM2PGDGrWrGka/12lShWaNWtG7dq18fHxYefOnXz//fcMHDgwX9+PiIjknJJuEREpFHx9ffnpp58YNmwYb7zxBt7e3vTs2ZOWLVsSFhZm7fAAqF27NqtWrWL48OG8+eablCxZkvHjx3PkyJF7zq5ub2/P8uXLGTx4MJMmTcLJyYnOnTszcOBAatSokat4bGxsWLZsGUOGDOHrr7/GYDDw+OOPM3XqVB5++OEc3atHjx7Mnz+foKAgWrRoYXYuPDycCxcu8Mknn7B69WqqVKnC119/zaJFi9i4cWOO454wYQJOTk7MmjWLDRs2UL9+fdasWUP79u3Nyv33v/8lLi6O+fPns3DhQmrVqsWKFSsYOXKkWTl7e3vmzZvHqFGjePHFF7l16xZz5szJNOlO/8xGjx7NwoULmTNnDsHBwbz33nsMGzYsx+/lXn7++ecMk54BBAcHU61aNTZu3MjIkSOZN28eMTExVKxYkTlz5hAeHm4q27NnTz799FP+97//ce3aNQIDA+nWrRtjx441dUsfPHgwy5YtY82aNSQmJlK6dGkmTJjAf/7zn3x/TyIikjMGY2FqQhAREbkPderUScs1iYiISKY0pltERCQHbt68afb6+PHjrFy5kmbNmlknIBERESnU1NItIiKSA0FBQYSHh1O2bFlOnz7Nxx9/TGJiInv27Mmw9rSIiIiIxnSLiIjkQJs2bfj222+5cOECjo6ONGjQgLffflsJt4iIiGRKLd0iIiIiIiIiFqIx3SIiIiIiIiIWoqRbRERERERExEKK3Jju1NRUzp8/j7u7OwaDwdrhiIiIiIiIyH3IaDRy48YNihcvjo1N1u3ZRS7pPn/+PCVLlrR2GCIiIiIiIvIAOHv2LA899FCW54tc0u3u7g6kfTAeHh5WjiZ/pKYa6T9vJ9tPXQHAYIB1rzYlwNPJypGJiIhIoRQXB8WLp+2fPw+urtaNR0TkPhQTE0PJkiVNOWZWilzSnd6l3MPD44FJuudsjWBnZAKubu4EeTnx18U4tpyJo08jf2uHJiIiIoWRszPMnJm2X6wY2NtbNx4RkfvYvYYtayK1+9zJi7G8s+ooAP9tV4me9UsDsGJ/pDXDEhERkcLM3h4GDEjblHCLiFiUku772K2UVIZ+t4/EW6k0DilGz0dK0y40CICdp68Sef2mlSMUEREREREp2pR038dmbTrJvrPXcHey490nq2MwGAj0dKJusDcAKw9csHKEIiIiUiilpMDGjWlbSoq1oxEReaAVuTHdD4pD56/z4frjAIx7vCpBns6mc+1Dg9hx6ior9p+n36NlrBWiiIiIFFYJCdC8edp+bKwmUpNCJyUlheTkZGuHIUWcvb09tra2eb6Pku77UOKtFIYu3EdyipGwqgF0friE2fm2oUGM++kwu89c49y1m5Twcs7iTiIiIiIihYfRaOTChQtcu3bN2qGIAODl5UVgYOA9J0u7GyXd96H31/7JsagbFHNz4O3OoRkegAAPJ+oG+7A94gqrDkTSv3FZK0UqIiIiIpJ96Qm3v78/Li4ueUp0RPLCaDQSHx9PdHQ0AEFBQbm+l5Lu+8zOU1f49Ne/AHi7cyi+bo6ZlnusehDbI66wfL+SbhEREREp/FJSUkwJt6+vr7XDEcHZOa3HcHR0NP7+/rnuaq6J1O4jcYm3GLZoH0YjdKn1EP9XNTDLsm2qBWJjgH1nr3H2SnwBRikiIiIiknPpY7hdXFysHInIv9Kfx7zMMaCk+z4yadURTl+Op7inE2Mer3LXsv7uTtQvk/YL4coDWrNbRERERO4P6lIuhUl+PI9Kuu8Tv/55ka9/PwPAe0/VwMPJ/p7XtK+eNu5ghZJuERERERERq1DSfR+4Hp/Ma9/vB6B3g9I0Kl8sW9eldzHf//d1zlxWF3MRERFJE52QwuQWffmgdX+OX0mwdjgikong4GCmTZuW7fIbN27EYDBo5vdCSEn3fWDs8kNciEmgTDFXRratnO3rirk50qBcWhdztXaLiIhIupPXkvm47hN8WKsTz361l7+v6sd5kdwyGAx33caOHZur++7YsYPnn38+2+UbNmxIZGQknp6euaovu5Tc55yS7kJu1YFIluw5h40BpnatgbNDzmbMax9aHIAVB85bIjwRERG5D0Xf+Ld1+0JMAs/O3s6l2EQrRiRy/4qMjDRt06ZNw8PDw+zY8OHDTWWNRiO3bt3K1n39/PxyNKmcg4NDnteTFstQ0l2IXbyRyH+XHADgpWblqFXKO8f3CKsagK2NgYPnYjh1KS6/QxQREZH7UPTVOKpH/kkPmyhKejgQcSmO3l9s50ZC7mfnFSmqAgMDTZunpycGg8H0+ujRo7i7u7Nq1Spq166No6MjW7Zs4eTJk3Ts2JGAgADc3NyoW7cu69atM7vvnd3LDQYDn3/+OZ07d8bFxYWQkBCWLVtmOn9nC/TcuXPx8vJi9erVVK5cGTc3N9q0aUNk5L89YG/dusXgwYPx8vLC19eXESNG0Lt3bzp16pTrz+Pq1av06tULb29vXFxcaNu2LcePHzedP336NB06dMDb2xtXV1eqVq3KypUrTdf26NEDPz8/nJ2dCQkJYc6cObmOpbBQ0l1IGY1GRi0+wNX4ZCoHefBKywq5uo+vmyMN1cVcREREbnP5cgzLvhzKxEn9+PKZ6vi6OnDofAz95+0kITnF2uGJmBiNRuKTblllMxqN+fY+Ro4cyTvvvMORI0eoXr06sbGxtGvXjvXr17Nnzx7atGlDhw4dOHPmzF3vM27cOLp27cr+/ftp164dPXr04MqVK1mWj4+PZ8qUKXz11Vf8+uuvnDlzxqzlffLkyXzzzTfMmTOHrVu3EhMTw9KlS/P0XsPDw9m5cyfLli1j27ZtGI1G2rVrZ1pya8CAASQmJvLrr79y4MABJk+ejJubGwBvvvkmhw8fZtWqVRw5coSPP/6YYsWyN59VYWZn7QAkc9/v+pt1R6KwtzXwftcaONjl/veR9qFBbD5+iRX7IxnQvHw+RikiIiL3o+iYf7uSl/FzY17fejz96e/8EXGFgfP3MKtnLexs1TYj1nczOYUqo1dbpe7D48NwccifdGn8+PG0bt3a9NrHx4caNWqYXr/11lssWbKEZcuWMXDgwCzvEx4eTvfu3QF4++23mT59Otu3b6dNmzaZlk9OTmbWrFmUK1cOgIEDBzJ+/HjT+RkzZjBq1Cg6d+4MwMyZM02tzrlx/Phxli1bxtatW2nYsCEA33zzDSVLlmTp0qU89dRTnDlzhi5duhAaGgpA2bJlTdefOXOGhx9+mDp16gBprf0PAv1tWgidu3aT8csPA/Bq6wpUDvLI0/3CqgZiZ2PgcGQMf12MzY8QRURE5D528Yb5+O1qJTz5vHcdHOxsWHckihE/HCA1Nf9a+USKuvQkMl1sbCzDhw+ncuXKeHl54ebmxpEjR+7Z0l29enXTvqurKx4eHkRHR2dZ3sXFxZRwAwQFBZnKX79+naioKOrVq2c6b2trS+3atXP03m535MgR7OzsqF+/vumYr68vFStW5MiRIwAMHjyYCRMm0KhRI8aMGcP+/ftNZV966SUWLFhAzZo1ee211/jtt99yHUthopbuQsjNwY4Wlf05eyWeF5qUu/cF9+Dt6kCj8sXY9OdFVuyPZFDLkHyIMueuxSex5nAUZYu5UifYxyoxiIiICETdyLhM2CNlffnomVq8+PUuftj9N14u9rzRvrImZRKrcra35fD4MKvVnV9cXV3NXg8fPpy1a9cyZcoUypcvj7OzM08++SRJSUl3vY+9vb3Za4PBQGpqao7K52e3+dzo378/YWFhrFixgjVr1jBp0iSmTp3KoEGDaNu2LadPn2blypWsXbuWli1bMmDAAKZMmWLVmPNKLd2FkKeLPR8+/TBf96+PrU3+/EPXvnoQUPDjum+lpLLhaDQDvtlNvYnree37/fSc/YdmSBUREbESo9Fo1r38dq2rBPBul7SWtNlbIvjfxpMFGZpIBgaDARcHO6tslvzBaevWrYSHh9O5c2dCQ0MJDAzk1KlTFqsvM56engQEBLBjxw7TsZSUFHbv3p3re1auXJlbt27xxx9/mI5dvnyZY8eOUaVKFdOxkiVL8uKLL7J48WKGDRvGZ599Zjrn5+dH7969+frrr5k2bRqffvppruMpLNTSXYjl1xgSgLAqgbxue4CjF25wIvoG5f3d8+3emTkedYPvd/3N4j3nzLqwOdjZkJCcype/nWLo/1W0aAwiIiKSUczNWyTeyrplrEvth7gan8SEFUd4b/UxvFzs6VG/dAFGKPLgCwkJYfHixXTo0AGDwcCbb7551xZrSxk0aBCTJk2ifPnyVKpUiRkzZnD16tVs/eBw4MAB3N3/zSkMBgM1atSgY8eOPPfcc3zyySe4u7szcuRISpQoQceOHQEYMmQIbdu2pUKFCly9epUNGzZQuXJlAEaPHk3t2rWpWrUqiYmJ/PTTT6Zz9zMl3UWEp4s9j5YvxoZjF1mx/wKvtMr/pPt6fDLL9p/n+11/s+/sNdNxH1cHOtUsQZfaJTh9OZ6Xv9nNl7+f5sVm5fL1hwURERG5t8y6lt+pf+OyXItPZuaGE7yx9CCezvY8Vr14AUQnUjS8//779O3bl4YNG1KsWDFGjBhBTExMgccxYsQILly4QK9evbC1teX5558nLCwMW9t7d61v0qSJ2WtbW1tu3brFnDlzeOWVV3jsscdISkqiSZMmrFy50tTVPSUlhQEDBvD333/j4eFBmzZt+OCDD4C0tcZHjRrFqVOncHZ2pnHjxixYsCD/33gBMxit3am/gMXExODp6cn169fx8MjbBGX3m+93/c3wRfuoEODGmleb5ss9b6WksvnEJb7f9TdrD0WRlJL2C52djYHmlfx5svZDNK/ob5p9PSXVSIupGzl9OZ6xHaoQ3qhMvsQhIiIi2bP5+EX6frqV0fuX8myDYPjvf8HBIUM5o9HIG0sP8s0fZ7C3NTC7d12aVPAr+IClyEhISCAiIoIyZcrg5ORk7XCKpNTUVCpXrkzXrl156623rB1OoXC35zK7uaWaGYuQ1lUCsLc18GdULH9G3aBCQO5bu6/GJfHJr3+xZM/fRN02LqxSoDtP1SlJx5rFKebmmOE6WxsD/RuX5c2lB/l8SwQ9HymtJUlEREQKUFRMIsm29qzp+hLP9qufZTmDwcD4jtW4fjOZn/ZH8sJXu/jmufrUKuVdgNGKiCWdPn2aNWvW0LRpUxITE5k5cyYRERE888wz1g7tgaJspwjxdLanSUjaL9Qr9ud+QrWLNxLp+sk2Zm06SVRMIt4u9oQ3DGbF4Ef5eUgT+j1aJtOEO91TtR/C19WBv6/eZOXBC7mOQ0RERHIuKiate7m/+71bEm1tDLzftSaNQ4pxMzmFPnN28GfUDUuHKCIFxMbGhrlz51K3bl0aNWrEgQMHWLdu3QMxjrowUdJdxDxW499ZzHMzsuDijUSe+ex3jkfHEuTpxKyetfjjv60Y+3hVqhb3zNY9nOxt6dUgGIBPNp20+rIFIiIiRUl0TAIGYypVr56BQ4fgHpM3OdjZ8MmztXm4lBfXbybz7Ow/iLx+s4CiFRFLKlmyJFu3buX69evExMTw22+/ZRirLXmnpLuIaVU5AAc7G05Ex/JnVGyOrr0Ua55wf/vcI7SpFmQar50TvRqUxtnelkPnY/jt5OUcXy8iIiK5ExWTiFNyEn1ffByqVYOb906gXRzsmBNelwoBbkTFJDJu2eECiFRE5MGgpLuIcXeyp+k/k6D8tP98tq+7FJtI90/TEu5Aj7SEO7iYa67j8HZ1oFvdkgDM2qQ1QEVERApKdmYvz4yXiwMzutfC1sbAz4cusOnPi/kcmYjIg0lJdxH0WPV/upjvz14X89tbuAM9nFjwfN4S7nT9Hi2DjQE2H7/E4fMFv0SCiIhIURR92wSoOVUx0J3whsEAjF12iMRbKfkUlYjIg0tJdxHU8p8u5n9diuNI5N0nQ0lPuP+M+qeFO58SboCSPi60/2fNz09/VWu3iIiIpaWmGonOZUt3uiGtQvBzdyTiUhyfb47Ip8hERB5cSrqLIDdHO5pX/GcW8wNZdzG/PeEO8HDk2+cfoUw+JdzpXmhSFoDl+yP5+2p8vt5bREREzF2NTyI5JW8TmLo72fN6u7SZjWf8cpxz1zSpmojI3SjpLqLSW5iz6mJ+KTaRHp/9YUq4FzzfIN8TboBqJTxpVN6XlFQjX2w5le/3FxERkX9F/dO13NfNPk/36VizOPXK+JCQnMpbyzWpmojI3SjpLqJaVvLHyd6GU5fjOXTHeOrL/yTcx6JuWDThTvdCk3IALNhxhuvxyRarR0REpKhLn0TNz+3ea3TfjcFg4K2O1TSpmkg+atasGUOGDDG9Dg4OZtq0aXe9xmAwsHTp0jzXnV/3kcwp6S6iXB3taFHJH0hbszvd5dhEnvkn4fZ3d+Tb5/K/S/mdGocUo3KQB/FJKXz9x2mL1iUiIlKURcekJd2+3q4wfHjaZp+7Vm9NqiaSpkOHDrRp0ybTc5s3b8ZgMLB///4c33fHjh08//zzeQ3PzNixY6lZs2aG45GRkbRt2zZf67rT3Llz8fLysmgdhZWS7iKsfah5F/M7E+4Fzz9CWT83i8dhMBhMY7vnbI0gIVn/aIuIiFhCevfyYj7u8N57aZuDQ67vp0nVRKBfv36sXbuWv//+O8O5OXPmUKdOHapXr57j+/r5+eHi4pIfId5TYGAgjo6OBVJXUaSkuwhrXskPZ3tbzlyJZ9OfF+nxecEn3OnaVw+iuKcTl2KTWLz7XIHVKyIiUpRE/dPS7e+Rt+7l6TSpmgg89thj+Pn5MXfuXLPjsbGxLFq0iH79+nH58mW6d+9OiRIlcHFxITQ0lG+//fau972ze/nx48dp0qQJTk5OVKlShbVr12a4ZsSIEVSoUAEXFxfKli3Lm2++SXJy2vDNuXPnMm7cOPbt24fBYMBgMJhivrN7+YEDB2jRogXOzs74+vry/PPPExsbazofHh5Op06dmDJlCkFBQfj6+jJgwABTXblx5swZOnbsiJubGx4eHnTt2pWoqCjT+X379tG8eXPc3d3x8PCgdu3a7Ny5E4DTp0/ToUMHvL29cXV1pWrVqqxcuTLXseQ3Jd1FmIuDHS0qp3Ux7z9vJ0cv/NOlvIATbgB7Wxv6NU5r7f5881+kpOZtZlURERHJKL2lO8DNHk6dSttSU/N0T02qJhZlNEJSnHW2TCYbzoydnR29evVi7ty5ZhMUL1q0iJSUFLp3705CQgK1a9dmxYoVHDx4kOeff55nn32W7du3Z6uO1NRUnnjiCRwcHPjjjz+YNWsWI0aMyFDO3d2duXPncvjwYT788EM+++wzPvjgAwC6devGsGHDqFq1KpGRkURGRtKtW7cM94iLiyMsLAxvb2927NjBokWLWLduHQMHDjQrt2HDBk6ePMmGDRuYN28ec+fOzfDDQ3alpqbSsWNHrly5wqZNm1i7di1//fWXWXw9evTgoYceYseOHezatYuRI0di/8/wmAEDBpCYmMivv/7KgQMHmDx5Mm5uBZvP3I2dtQMQ63osNIgV+yO5lWo0JdzlCjjhTvd03ZJMX3+cvy7FsfZwFG2qBVolDhERkQdV+hrdQfZGKJP2YzexseCa+/lbDAYD4ztWpf30LaZJ1ZpW8MuPcEUgOR7eLm6duv97Hhyy9/9G3759ee+999i0aRPNmjUD0rqWd+nSBU9PTzw9PRk+fLip/KBBg1i9ejXfffcd9erVu+f9161bx9GjR1m9ejXFi6d9Hm+//XaGcdhvvPGGaT84OJjhw4ezYMECXnvtNZydnXFzc8POzo7AwKy/Z8+fP5+EhAS+/PJLXP/5u2HmzJl06NCByZMnExAQAIC3tzczZ87E1taWSpUq0b59e9avX89zzz2Xrc/sduvXr+fAgQNERERQsmRJAL788kuqVq3Kjh07qFu3LmfOnOE///kPlSpVAiAkJMR0/ZkzZ+jSpQuhoaEAlC1bNscxWJJauou4ZhX9KeHlTJCnk1UTbkib3K3nI6UA+OTXk5kuZSYiIiK5l9/dy9NVCvSgd4NgQJOqSdFUqVIlGjZsyBdffAHAiRMn2Lx5M/369QMgJSWFt956i9DQUHx8fHBzc2P16tWcOXMmW/c/cuQIJUuWNCXcAA0aNMhQbuHChTRq1IjAwEDc3Nx44403sl3H7XXVqFHDlHADNGrUiNTUVI4dO2Y6VrVqVWxtbU2vg4KCiI6OzlFdt9dZsmRJU8INUKVKFby8vDhy5AgAQ4cOpX///rRq1Yp33nmHkydPmsoOHjyYCRMm0KhRI8aMGZOriessSS3dRZyzgy3rhzUFwMne9h6lLa93w2A+2xzBnjPX2Hn6KnWDfawdkoiIyAMhJdXIxRtp3cv93fN/wqQhrUNYvv+8aVK1Ac3L53sdUgTZu6S1OFur7hzo168fgwYN4qOPPmLOnDmUK1eOpk3Tvme/9957fPjhh0ybNo3Q0FBcXV0ZMmQISUlJ+Rbutm3b6NGjB+PGjSMsLAxPT08WLFjA1KlT862O29nfsfKBwWAgNY/DVe5m7NixPPPMM6xYsYJVq1YxZswYFixYQOfOnenfvz9hYWGsWLGCNWvWMGnSJKZOncqgQYMsFk9OqKVbcLK3LRQJN4C/uxNdapUA4JNNf1k5GhERkQfH5dhEUo1gYwBft/xPuj2c7Plvu7Run5pUTfKNwZDWxdsam8GQo1C7du2KjY0N8+fP58svv6Rv374Y/rnH1q1b6dixIz179qRGjRqULVuWP//8M9v3rly5MmfPniUy8t+lfn///XezMr/99hulS5fm9ddfp06dOoSEhHD6tPlyvA4ODqSk3L0nSuXKldm3bx9xcXGmY1u3bsXGxoaKFStmO+acSH9/Z8+eNR07fPgw165do0qVKqZjFSpU4NVXX2XNmjU88cQTzJkzx3SuZMmSvPjiiyxevJhhw4bx2WefWSTW3FDSLYVO/8ZlMRhg3ZEoTkTfsHY4IiIiD4T0SdT83B2xtclZMpFdnWqWoF5w2qRqE37SpGpStLi5udGtWzdGjRpFZGQk4eHhpnMhISGsXbuW3377jSNHjvDCCy+Yzcx9L61ataJChQr07t2bffv2sXnzZl5//XWzMiEhIZw5c4YFCxZw8uRJpk+fzpIlS8zKBAcHExERwd69e7l06RKJiYkZ6urRowdOTk707t2bgwcPsmHDBgYNGsSzzz5rGs+dWykpKezdu9dsO3LkCK1atSI0NJQePXqwe/dutm/fTq9evWjatCl16tTh5s2bDBw4kI0bN3L69Gm2bt3Kjh07qFw5bfWEIUOGsHr1aiIiIti9ezcbNmwwnSsMlHRLoVPOz43/q5L2P/Snv6q1W0REJD+kj+cOyOfx3LczGAyM71QVWxsDqw5e4Nc/L1qsLpHCqF+/fly9epWwsDCz8ddvvPEGtWrVIiwsjGbNmhEYGEinTp2yfV8bGxuWLFnCzZs3qVevHv3792fixIlmZR5//HFeffVVBg4cSM2aNfntt9948803zcp06dKFNm3a0Lx5c/z8/DJdtszFxYXVq1dz5coV6taty5NPPknLli2ZOXNmzj6MTMTGxvLwww+bbR06dMBgMPDjjz/i7e1NkyZNaNWqFWXLlmXhwoUA2NracvnyZXr16kWFChXo2rUrbdu2Zdy4cUBaMj9gwAAqV65MmzZtqFChAv/73//yHG9+MRiL2GxVMTExeHp6cv36dTw8PKwdjmRh1+mrdPn4Nxxsbdg8orlFvyCIiIgUBd/8cZrXlxykVeUAPn+yMqQvp5PH2cszM375Yb7YGkHZYq6sGtIYR7vCMYxNCreEhAQiIiIoU6YMTk767ieFw92ey+zmlmrplkKpdmlv6gZ7k5SSypytp6wdjoiIyH0v6np6S7cj2NnByy+nbXb5P6/ukNYhFHNz5K9/JlUTESnKCkXS/dFHHxEcHIyTkxP169e/6yLxzZo1w2AwZNjat29fgBFLQXi+STkg7Zf5GwnJVo5GRETk/pY+pjvAwwkcHeGjj9I2R8tMqvZ6+7RJ1Wb+ckKTqolIkWb1pHvhwoUMHTqUMWPGsHv3bmrUqEFYWFiWa7wtXryYyMhI03bw4EFsbW156qmnCjhysbSWlfwp5+fKjYRbLNh+9t4XiIiISJaibtzW0l0A0idVu5mcoknVRKRIs3rS/f777/Pcc8/Rp08fqlSpwqxZs3BxcTEtLH8nHx8fAgMDTdvatWtxcXFR0v0AsrEx8MI/rd2zt0SQdMty6/6JiIg86NJbuv09nMBohIsX0zYLTe9jMBgY11GTqomIWDXpTkpKYteuXbRq1cp0zMbGhlatWrFt27Zs3WP27Nk8/fTTuGYxAUhiYiIxMTFmm9w/Oj5cHH93Ry7EJFB7wlp6f7Gdmb8cZ9vJy9xMuvsagyIiIvKv6PTZy92dID4e/P3Ttvh4i9VZOciDXg1KA/D60gPEaLiYiBRB+T9zRg5cunSJlJSUDOu9BQQEcPTo0Xtev337dg4ePMjs2bOzLDNp0iTTVPL3lV/fAwc3qP8iGCyzlub9wNHOlvEdq/GfRfu4kXCLTX9eZNM/v5Tb2RioWsKTuqW9qRPsTe3SPvi5F0yXORERkftJ0q1ULsclARDo6QQUXPL7ausKrDkUxdkrNxm1+AAzuz+MoQh/txGRoseqSXdezZ49m9DQUOrVq5dlmVGjRjF06FDT65iYGEqWLFkQ4eXehQPwy0TACBG/QsePwMXH2lFZTZtqgbSq7M/RCzfYdfoqO05dYeepq1yISWDf2WvsO3uNz7ekzYwa7OtCnWAf6vyTiJfzc7P4P+yJt1KYuOIItUp50+nhEhatS0REJDcuxqZ1Lbe3NeDtYg/xBZd0ezjZM+OZh+k6axsr9kfSoKwvPR8pXWD1i4hYm1WT7mLFimFra0tUVJTZ8aioKAIDA+96bVxcHAsWLGD8+PF3Lefo6IijBWbltKiAatD2XVjzOhxbCbMehS6zoXQDa0dmNXa2NlQr4Um1Ep70bhiM0Wjk3LWbZkn4sagbnLocz6nL8Xy/628AWlX25/PedS0a28oDkXy57TQLd5ylSQU/fFwdLFqfiIhITkX907Xc393JKq3MtUp581qbiry98ijjfzpMrVLeVCme9Zq2IiIPEquO6XZwcKB27dqsX7/edCw1NZX169fToMHdE8xFixaRmJhIz549LR1mwTMYoP7z0H8d+JSDmHMwt31al/NUjWOGtMlZHvJ2oWPNEkzoFMrPQ5qwd/T/MadPXQY2L0/9Mj4YDLDuSDRnLlturBrAygMXAEi8lcrXv5+2aF0iIiK5YRrPXUAzl2em/6NlaVHJn6RbqQycv5vYxFtWi0WkIDVr1owhQ4ZYO4xcO3XqFAaDgb1791o7lPuW1WcvHzp0KJ999hnz5s3jyJEjvPTSS8TFxdGnTx8AevXqxahRozJcN3v2bDp16oSvr29Bh1xwgmrAC5sgtCsYU+CXCfD1E3Aj6t7XFkGezvY0r+jP8LCKLHyhAQ3Kpj0bKw9GWqzO2MRbpjHmAF9uO0VCsn4YERGRwsVsjW4rsbExMOWpGgR6OPHXpTjeWHIAo4VmThcpaOHh4RgMhgzbiRMnWLx4MW+99ZZF6t24cWOm9d6+bdy4MU91lCxZksjISKpVq5Y/Qd/FkiVLeOSRR/D09MTd3Z2qVaua/WAxduxYatasmW/1hYeH06lTp3y7X1asnnR369aNKVOmMHr0aGrWrMnevXv5+eefTZOrnTlzhshI86Tp2LFjbNmyhX79+lkj5ILl6A5PfJo2rtveBf7aCLMawclfrB1Zode+ehAAK/ZbLun+5Wg0SbdSKe3rQnFPJy7FJvHj3nMWq09ERCQ3okwt3dZLugF8XB2Y8czD2NoYWLr3PIv+GQ4m8iBo06YNkZGRZluZMmXw8fHB3d3dInU2bNjQrL6uXbtmiKNhw4Z5qsPW1pbAwEDs7Cw7Mnn9+vV069aNLl26sH37dnbt2sXEiRNJTs7/OShSUlJITS245YitnnQDDBw4kNOnT5OYmMgff/xB/fr1Tec2btzI3LlzzcpXrFgRo9FI69atCzhSKzEY4OGe8PxG8K8KcRfhqydg3ThI0dIbWQmrGoiNAQ6cu26xLuarDqQl9O1DgwhvFAzA55sj9Mu9iIgUKv+u0f1P93I7O+jdO22z8BfpO9UN9mFo6woAjP7xIH9G3SjQ+kUsxdHRkcDAQLPN1tY2Q/fy4OBg3n77bfr27Yu7uzulSpXi008/NbvX2bNn6dq1K15eXvj4+NCxY0dOnTqVoU4HBwez+pydnc3iePrpp3nttdfMrunUqRPh4eHZjufO7uXprevr16+nTp06uLi40LBhQ44dO2ZWz4QJE/D398fd3Z3+/fszcuTIu7ZSL1++nEaNGvGf//yHihUrUqFCBTp16sRHH30EwNy5cxk3bhz79u0zteKn54nvv/8+oaGhuLq6UrJkSV5++WViY2NN9547dy5eXl4sW7aMKlWq4OjoSN++fZk3bx4//vhjvvUKyEqhSLolm/wqwnProU5fwAhb3k8b633trLUjK5SKuTnSoFxaF/MVB/K/tTs+6RYbjkUD0C40iKfrlcLN0Y7j0bFsvK3LuYiIiLVF37htjW4AR0eYOzdts8KEsy81LUfjkGIkJKcy4Jvd3EzS0CwpWqZOnUqdOnXYs2cPL7/8Mi+99JIpaU1OTiYsLAx3d3c2b97M1q1bcXNzo02bNiQlJRV4PFl5/fXXmTp1Kjt37sTOzo6+ffuazn3zzTdMnDiRyZMns2vXLkqVKsXHH3981/sFBgZy6NAhDh48mOn5bt26MWzYMKpWrWpqxe/WrRsANjY2TJ8+nUOHDjFv3jx++eWXDD82xMfHM3nyZD7//HMOHTrE9OnTM/QMyGuvgKwo6b7f2DvDYx/AU3PB0QPO/pE2u/mRn6wdWaHULjSti/lKCyTdG49dJCE5lVI+LlQt7oGHkz3d6qYtR/f55r/yvT4REZHcKizdy9PZ2Bj4oFtN/NwdOR4dy5hlmX/JFjGJi8t6S0jIftmbN7NXNhd++ukn3NzcTNtTTz2VZdl27drx8ssvU758eUaMGEGxYsXYsGEDAAsXLiQ1NZXPP/+c0NBQKleuzJw5czhz5ozFWmLvFk9WJk6cSNOmTalSpQojR47kt99+I+GfP4sZM2bQr18/+vTpQ4UKFRg9ejShoaF3vd+gQYOoW7cuoaGhBAcH8/TTT/PFF1+QmJjWU8fZ2Rk3Nzfs7OzMWvYBhgwZQvPmzQkODqZFixZMmDCB7777zuz+ycnJ/O9//6Nhw4ZUrFgRDw+PDD0DHBwsswqRku77VdXO8MKvULwWJFyDhT1g5WtwK9HakRUqbW7rYn76cu7+As1KeiLfNjTQtPxKn0bB2NoY2HriMofOX8/X+kRERHLr34nU/mnVNhr/TS6sNCSqmJsjHz5dExsDfLfzb5bs0fhuuQs3t6y3Ll3My/r7Z122bVvzssHBmZfLhebNm7N3717TNn369CzLVq9e3bRvMBgIDAwkOjqtB+W+ffs4ceIE7u7upgTex8eHhIQETp48yebNm82S+2+++SZX8WY3nuxcExSU1tCVfs2xY8eoV6+eWfk7X9/J1dWVFStWcOLECd544w3c3NwYNmwY9erVIz7+7kNF161bR8uWLSlRogTu7u48++yzXL582ew6BwcHs5gLklXX6ZY88ikDfVfD+nGwbSZs/wTO/AYV2oCTFzh73fZfz3/3HdzSxokXAb5ujjQsV4wtJy6x4kAkLzcrny/3TUhO4Zej/3QtrxZkOv6QtwttqwXy0/5IZm+O4P1uNfOlvtulphoxGLDKOqsiInL/SUhO4frNtDlg/NNbuuPj/00sYmPB1dUqsTUsV4zBLUOYtu44ry85SPWHvCjnl7uER8TaXF1dKV8+e9817e3tzV4bDAbTxF6xsbHUrl0702Taz88PBwcHs+W70iegzoyNjU2GuYYym5jsbvFk5z2kfy/Nj8nJypUrR7ly5ejfvz+vv/46FSpUYOHChabVre506tQpHnvsMV566SUmTpyIj4+PadLtpKQkXFxcgLSWcmt9f1bSfb+zc4CwiVCmCSx5ES4cSNvuxsbunyT8tkQ85P+g/osPZDLeLjSILScusTIfk+5Nf14kPimFEl7OVH/I0+zcc43L8tP+SJbtO89rbSoR6Jl/XfkOn4/hmc9/Jz4xBS8Xe3xcHfB2ccDH1eGer10cbJWoi4gUQdH/tHI72dvg4VT4vvoNahHCH39dYdtflxnwzW6WDmiEk72ttcOSwua2SbEysL3jeblbC63NHR19M5mczNpq1arFwoUL8ff3x8PDI9My2U3u/fz8zFaCSklJ4eDBgzRv3jxfYs1KxYoV2bFjB7169TId27FjR47vExwcjIuLC3H/dPl3cHAgJcV8Dohdu3aRmprK1KlTsfnnz/fOruVZyex+llD4/uaV3KkQBi9thT1fQ2wUJFyHm9fSup7fvJb2OuEapCRB6i2Iv5y2pTv5S1oyXu8568RvQWFVA3jzx4McPBfD6ctxlPbN+6/56bOWt60WmCGRrVHSi3rBPmw/dYW5v51iZNtKea4PIDkllWGL9nEtPu3XyegbiUTfyP5wgiBPJ5a83ChffwQQEZHCL+rGv+O5C+OPr7Y2Bj58uiZtP9zM0Qs3eOunw0zsfPexn1IE5aQ3hqXKFpAePXrw3nvv0bFjR8aPH89DDz3E6dOnWbx4Ma+99hoPPfRQtu/VokULhg4dyooVKyhXrhzvv/8+165ds1zw/xg0aBDPPfccderUoWHDhixcuJD9+/dTtmzZLK8ZO3Ys8fHxtGvXjtKlS3Pt2jWmT59OcnKyadWq4OBgIiIi2Lt3Lw899BDu7u6UL1+e5ORkZsyYQYcOHdi6dSuzZs3KVpzBwcGsXr2aY8eO4evri6enZ4ZW//ygpPtB4lEcmr6W9XmjEZJvpiXftyflp7akdU//eSQEVodS9bO+x33I182RBmV9862LeeKtFNYdSfsFtW1oUKZl+jcuw/ZTV5j/x2kGtSiPq2Pe/1f7aMMJjkTG4O1iz7fPP8KtFCNX45O4Gp/M1bgkrsQlZfr6SlwSibdSibyewHc7zzK4ZUieYxERkfuHaRI198L7o6u/hxMfdKtJ7znb+eaPMzQo58tj1YtbOywRq3BxceHXX39lxIgRPPHEE9y4cYMSJUrQsmXLLFu+s9K3b1/27dtHr169sLOz49VXX7V4Kzek/XDw119/MXz4cBISEujatSvh4eFs3749y2uaNm3KRx99RK9evYiKisLb25uHH36YNWvWULFiRQC6dOnC4sWLad68OdeuXWPOnDmEh4fz/vvvM3nyZEaNGkWTJk2YNGmSWSt7Vp577jk2btxInTp1iI2NZcOGDTRr1iy/PgYTg7GILSgcExODp6cn169fz/FD+8AyGuH7PnBoCbgFpk3Q5p712JD70bfbzzBq8QGqFvdgxeDGebrX+iNR9Ju3k0APJ34b2QIbm4ytBqmpRlq+v4mIS3GM6VCFPo3K5KnOw+djeHzmFm6lGpne/WEer5GzLyKLdp7lP9/vp0wxV34Z1rRQtnSIiIhlzN4SwVs/Heax6kHMfKZW2sG4uEIxpvtO760+ykcbTuLmaMeKwY/mS+80uX8kJCQQERFBmTJlcHIqvD8SSe60bt2awMBAvvrqK2uHkiN3ey6zm1tq9nJJG8f9+EzwqwSxF2BROKRknGDhfhZWNRBbGwOHzsdw6lLeZjFfeeACAG2qBWaacEPaUih9H01LtL/YGkFKau5/20pOSWX4on3cSjUSVjWADtUzb12/m3ahQTjb2xJxKY69Z6/lOhYREbn/RBey5cLu5tVW+pR64wAAjhdJREFUFagb7E1s4i0Gzt9D4i2t3y1yP4qPj+f999/n0KFDHD16lDFjxrBu3Tp69+5t7dCsQkm3pHF0g25fg4N72gzoa8dYO6J85ePqQMNyvgCsyMOa3Um3Ull7OC3pbpdF1/J0T9Z6CG8Xe85eucnqQxdyXefHG09yODIGLxd73upULVet1K6OdoRVTeu9sGTPuVzHIiIi959/1+h2tHIk92Zna8P07g/j7WLPgXPXmbTyqLVDEpFcMBgMrFy5kiZNmlC7dm2WL1/ODz/8QKtWrawdmlUo6ZZ/FQuBzh+n7f/+ERz43rrx5LP0JHllHpLu305eIibhFn7ujtQu7X3Xss4OtvR8pDQAn23+K1f1HYmMYcYvxwEY93hV/PMwHq9zrbRJN5bvO0/Srbwv5yAiIveHf9fovu3fEFtbePLJtO3OmZ+tLMjTmaldawAw97dTrDscZeWIRCSnnJ2dWbduHZcvXyYuLo7du3fzxBNPWDssq1HSLeYqd4BHX03bXzYIog5bN558lB9dzFeldy3/51730qtBMA62Nuw5c41dp6/kqK7klFT+8/0+klOM/F+VgByP475To3K++Lk7cjU+mU1/XszTvURE5P6RPnu52Q+3Tk6waFHaVgjHzraoFED/f4ZpjVy8n8ux2V+tQ0SksFHSLRm1eBPKNoPkeFjYM22m8wdAXruYJ6eksvqfruVtQwOzdY2fuyOdHy4BwGe/RuSovk82neTguRg8ne2Z0Dl33cpvZ2drQ8d/Evcle/7O071EROT+EW1q6S783ctvNzysIhUD3LkUm8SoxQcoYnP/isgDREm3ZGRjC12+AM+ScOUkLHkJUh+M7sjt/+livmJ/zpPuP/66wrX4ZHxdHagX7JPt6/o3TvulfvXhC5y+nL0W9qMXYvhwff50K79d51ppPwCsOxLN9ZsP1mR5IiKSUWziLWITbwFpy3LdT5zsbfmgW03sbQ2sORzF97v0g3FRoR9YpDDJj+dRSbdkztUXun4Jtg5wbAVsed/aEeWL//unW/jhyBgictjFfOXBSNM97Gyz/79OSIA7zSr6YTTCF1vu3dqdPlt5coqRVpUD6Fgz/9YprRLkQcUAd5JupeZpbLuIiNwf0idRc3O0w83R7t8TcXFpq5cYDGn7hVSV4h682roCAOOWH+bslXgrRySWZG9vD6TNfC1SWKQ/j+nPZ27Y3buIFFklakG7KbB8MPwyAYo/DOVbWjuqPEnvYr75+CVWHohkQPPy2bouJdXI6oPps5Znr2v57Z5rXJaNxy7y3c6/ebV1BbxcHLIs++mvf3HwXAweTna8nQ/dym9nMBjoXKsE76w6ypLd5+her1S+3TsvomISmLTyCF3rlKRh+WLWDkdE5IGRnnT732ddy2/3QpNy/HIkmp2nrzJs0T6+fe6RbM2rkl23UlIZufgA205eZkLnajSv6J9v95acsbW1xcvLi+joaABcXFzy9XuQSE4YjUbi4+OJjo7Gy8sL2zxMOqmkW+6udm84txN2fwk/9IPnN4F3aWtHlSftQ4PYfPwSK/ZnP+neHnGFy3FJeLnY80hZ3xzX2bCcL5WDPDgSGcM3f5zJst5jF24wbd2fAIx9vKpFugJ2rFmcyT8fZfupK5y9Ek9JH5d8ryOnxi47xKqDF1h7OIofBz5KeX83a4ckIvJASB/PHXifdS2/na2Ngalda9D2w81sj7jC7C1/8XyTcvly79RUI6/9sJ/Fu9OW0+w3dwcj2lTi+SZllexZSWBgWuNGeuItYm1eXl6m5zK3lHTLvbV9Dy4cgPN74Ltnoe8asL9///EOqxrI60sPmrqYlynmes9r0rtih1UJxD4HXcvTGQwGnmtchqHf7WPeb6d4rnFZHOzM73PrttnKW1X2N03Alt+CPJ1pWM6XrScus3TPOQa1DLFIPdm1PeIKq/7pRRCXlMILX+3kx4GPmneDFBGRXPl3je77999tgNK+rox+rAojFx9gyuo/aVLBj0qBHnm6p9FoZNzyQyzefQ5bGwNNQoqx4dhFJq06ypHIGN7pUh0n+8K1nFpRYDAYCAoKwt/fn+RkzT8j1mVvb5+nFu50+lYr92bvlDa++5OmELkPVg6Dx2emjQO7D3nnsIt5SqqRnw/lbNbyzDxWPa2FOSomkWX7zvNk7YfMzn+6+S/2/30dDyc7JnYOtegv7J1qlmDricss2XOOgS3KW+3X/NRUIxNWpC1L1z40iF2nr3LyYhzDv9vHxz1rqZVBRCSP0tfovp+7l6frVrck645Ese5INK8u3MfSAQ1xtMv9l+Gpa/5k3rbTAEx5qjqdapbgq99PM275YZbuPc/Ji3F82qs2QZ7O+fUWJAdsbW3zJdkRKQw0kZpkj1cpePILMNjAnq9h11xrR5Qnj1VPm8X8p2zMYr7r9FUu3kjEw8mOhuVyP97Ywc6G8IZpM5l/vvkvs5kQj0fdYNratNnKx3SoavEWibahQTjZ2/DXpTj2/W29JeGW7j3H/r+v4+Zox9jHq/Jxz1o42Nrw/+zdd3gU5drH8e+mN9IISSihBgi9BRApiiAoiA0RKxysKCiKleMR1OMrVkQURcXuUUCxKygiIEgPRXrvkEZI77vz/jEhIZJAym42JL/Pdc21s7OzM3c8e0LufZ7nvhdui2XWsv1Oi0tEpKY43aM7zE5dMJzJYrEw9fqOBPt6sONEKtN/31Pha81ato+3luwF4L/XtOO6Lo2wWCyM6tWUz+7sQZCPO1uOpTDszb+IOZRkrx9BRGopJd1Sdi36mz28ARY8DkdjnBtPJQxqa1Yx33Eilf0J6ec89/TU8svbhp81Jby8bunRGB8PV3bGprFibyJgTit/9KvN5FptXBYVyvVdHTOt/Ex+nm4MamuO2n+7wTktWLJyrby8cBcA9/dvQb06nnRpHMQzV7cD4JVfd7JiT6JTYhMRqSnia8j08tPq1fHkhes6APDusn2sP1j+hPjz1Yd4ccFOAB6/ojW392pa7PWLW4Tww/g+RIXXITE9h5veW83cdYcrHbuI1F5KuqV8+jwMUVeBNddc35163NkRVUiQrwe9C6pkn6t1ls1msLASVcv/KcDHnRujIwB4f/mBwsfNR1Oo4+XGCw6eVn6m0z27f/z7BHnWqu/D/v7y/cSmZtMw0Js7ejcrPH5zjwhujG6EzYAHvtzA0VNqGyIiUlGnp5eH/XN6uasrDBlibhfYFN4r2oczvKv578TEeZsL+5CXxfebjvH091sBuP/SFtx/aclLzCKCfZh/38Vc2T6cPKvBE/O38MwP25zy76WIXPiUdEv5WCxw7TtQNxJSj8E7F8PW+c6OqkKu6mBOMf95S2yp52w8kkxsajZ+nm70aWmfVlZ39mmGiwX+3J3Az3+f4PVFZrXyyVe1JTyg6kYi+kaGEOLnSVJGLst2JVTZfcEs7PPO0n0APHFlVLFCNRaLheeuaU/HRgGcysxj7OcxZOdZqzQ+EZGawDCM0gupeXnBzz+bm9eFNwo+5eq2NAz05nBSJs//tL1M71m0PY6J8zZjGDCqVxMeG9z6nOf7erox85auTCzoE/7xyoOM+mAtpzJyKx2/iNQuSrql/Lz84ZZ5EN4Rsk7B13fAV/+CjJPOjqxI8hH4343wwwOQXnLLiUHtwnA7zxTzBQWj4APbhFaqWMuZIoJ9uKK9OWo+/ssN5Fpt9G9d76zCao7m5urC1Z0aAPDtxmNVeu9Xf91FVp6VLo0DGVawvv5MXu6uvHNbN4J9Pdh6LJWnv9tabA28iIicX2pWPjn55shsvToXfiG1M/l7ufPajZ2wWGDOuiP8vj3unOf/tTeRcV9swGozuL5LQ54Z1q5MM8tcXCw8OKAl797eDV8PV1btP8nVM1ewMzbVXj+KiNQCSrqlYuq2gLv/gEueBIsrbPsW3u4JO392dmTmWvP3L4M9v5r9xd+MhjXvga34aGmgz7mnmBuGUdjK6soOZyeGlXFX3+YF94A6Xm5Mvb6jUyp1n14/vmhHHClZVdOWY+uxFL4uWEf+9FVtS/25GwZ68+bNXXCxwFcxR/lirdbTiYiUx+kiaoE+7jWy9dVFzetyVx9zedKT3/zNyfScEs+LOXSKuz9dT26+jcHtwnj5ho64uJTv39zB7cL55v7eNA724UhSFte/vZKFW89fjFVEBJR0S2W4ukP/SXD3YqjXBjISYM4t8O1YyEp2Tkxbv4GPh0BGPIS2gwZdICcFFjwG710KR9YVO31oh9KrmP99NIVjyVn4eLhySat6dg2za+MgLmoeDFT9tPIztWvgT8tQP3LzbYWj+o5kGAb/9/MODAOGdWpA18ZB5zy/d2QIj18RBcAzP2xjw+FTDo9RRKSmKJxaXlLl8owM8PU1t4yMKo7Mfh4Z1JrWYXVITM/l399uOWtW1PbjqYz5aC2ZuVb6tgxhxs1dcHOt2J+/rcPr8P243vSOrEtmrpWxn2/g9UW7sdk0E0tEzk1Jt1Regy5wz1LoPcFsKbb5S3i7F+z9vepiMAxY9jJ8PQbys6HlYLjzV7hrMQx9DbwCIPZv+GAg/PAgZJrVTk9PMd8Zm8a+f0wx/6XgG+zLokIdMkLw7u3R/Di+DyMKCqs5g8ViKSyo9k0VTDFftD2OVftP4uHmwhNXnHst3Wn39mteWMjmvs9jSEgreSRDRESKO2+P7sxMc7uAebm7Mm1kJ9xdLfy6LY75G4r+LdufkM6oD9eQmp1PtyZBvHt7t0ovFQvy9eCTMT0KC4C+sXgP//25bGvKRaT2UtIt9uHuBZc/B3f8CsEtIO04fD4cfpwAOWmOvXdeNnxzNyz5P/N5r/Fw85fgWQdcXKH7XTA+Bjrfar6+4RN4sxvEfEKgl1vRFPMzRrsNw2DBltNVy+07tfy0AG93OjQKcMi1y+Pazg2xWGDtgSSOJDnuj6/cfBtTC1q03NWnGY2CfMr0PovFwisjOhEZ6kdcag7jvtig6rEiImVQahG1GqZdgwAeGmgWO3vmh20cScrkWHIWt81eQ2J6Lm3r+/Phv7rj4+Fml/u5uboweVhbXhputi77dNUhDiReuLMFRMTxlHSLfUX0gLEroOdY83nMx2aF8wPLHXO/9AT4ZBhs+Qpc3OCq6TD4/8xk+0x+9eDat2HMQnPaeVYS/PggfDiIW5skA/DzGdOrtx1P5XBSJl7uLlza2r5Ty6ubBoHeXNSsLmC2UnGUz1ebf5SE+Hlw36UtyvVeP083Zt3WDT9PN9YeSCrsryoiIqUr6tFds4qolWTsJS3o1iSI9Jx8Hp67idtmr+F4SjbN6/ny6Z09CPB2t/s9R3ZvTP/W9bDaDN74fbfdry8iNYeSbrE/Dx+48iUY/SMENIbkw/DJVbDgCci140hq3HazYNrRteb08dvmQ/SYc7+nSS+4908Y/AJ4+MHRdVy+YiTPun/Csdg49sabU8wXFEwt79861G7fjFdnZ04xd0SV8OTMXN5YvAcw19/V8Sr/Hz+RoX68OqITAB+sOODQLwhERGqCoh7dNXukG8DVxcK0Gzvh4+HK+kOnOJCYQcNAb/53V09C/Bz3pcPEy82lUt9vPs6eOAfP7BORC5aSbnGcZv3g/pXQdbT5fM0smNUHdv8G+ZXscblnEXwwCFIOQ3Bzc+1280vL9l5XN+g1Dsavh/bDsRg2Rrv+yh+ej7Bv8QcYNhu/bHFM1fLq6sr24Xi6ubA/IYO/j6bY/fpvLN5DSlYeUeF1uLESa9ivaB/OuP7mKPmT87eoZYuIyDmcrl4eWlIhtRqoSV1fJl/VFjBbpP3vrp7UD/B26D07NApgUNswDAOm/77HofcSkQuXkm5xLM86cPUMuHU+1GkASfvgixHwcjOYcyvEfAKpx8t+PcOA1bPgixshNw2a9DET7pCW5Y/Nvz7c8CGM+p5U32bUs6QweNdkst6/kvTEY3i4uXBZVGj5r3sBquPlzqB2Zu9we/fs3p+QzmerDgHwn6FtcS1nm5Z/mnh5a/q2DCErz8q9n8VUWaszEZELTXzhSHfNn15+2k09GjP/vl4snNCXpiG+VXLPhy8315P/vOUE24/ry2AROZuSbqkaLQeao9497gHfUMhNh50/meuqp7WBd/rA78/CoVVgzS/5GtY8+PkRWPgEGDbochvc/i34BFcutuaXYty7gletI8kyPPA5sZpPPV7kihbe+HnW/Knlp13fxZxi/uPm43YtVDZ1wU7ybQaXRYXSp2VIpa/n6mJhxk1daBjozaGTmTw8d5PatYiI/IPNZhCfdo5Cai4ucMkl5uZSs/4c7NYkmLoOnFL+T23q+3NVR3Nm3Ota2y0iJahZv2WlevMOgiGvwCO74J5l0P8/0Kg7YIG4LbBiGnx0BbzSHL4aA5u+NAulgdn3+38jYP0H5vmX/xeufgvcPOwSWoC/H1ub38WQ3KnEG4G0cTnMlLRn7LsGvZrr2zKEED8PTmbk8ufuBLtcc+W+RBZtj8PVxcK/h0TZ5ZpgtmwxW7+48MfOeD7864Ddri0iUhOcyswlz2p+IVmvTgkJqLc3LF1qbt6OnYJdGzw0sBUuFrM15uYjyc4OR0SqGSXdUvVcXKBBZ7jkMbjrd3hsH1z/PnQYYSbm2Smw7Rv4biy82hLe6w+zB8D+JeDuAzf9D3o/CJbKTVP+p6Ed6nPAqM+o3CdJMXypm7QRvhptjrBXF/uXmuvi/3jenGpvR26uLgzr1ACwT89uq83g+Z92AHBbz8ZEhtap9DXP1L5hAJOHmWv3Xlq4k63H7L8W/TSbzeD/ft7OvZ+t58u1hwsrAouIVFeni6iF+Hng7qo/9xwtMtSPazubM8amLdJot4gUp9/C4ny+daHjjTB8tpmA37kI+j4K4R0BA45vgJN7wb8h3LEQooY6JIxBbcNxd7Ww02jM2/X/D9y8Yc9v8N19YHNyX2ibFZZMhU+vhdgt8OcrsGqm3W9zfZdGgPlNfWp25b5smL/hKNtPpFLHy40JBf1T7e2WHo0Z3C6MPKvBg19uJDO3lKUJlfTWkr28v/wAv26LY9I3W+jxwmKueWsFMxbvYfvxVIdUfBcRqYzaVkStOnhwQEtcXSws251AzKEkZ4cjItWIkm6pXlxczV7fA56Gscth4k5zGnnvCXD3H1C/k8NuHeDjzoCoMADa9xoMIz8ze39v+QoWPG73keUyS4uDz66FZS8CBkT0NI//9h/Y8ZNdb9W+oT+RoX7k5ttYWFDBvSIycvJ59dddADx4WUuCfe2zDOCfLBYLL17fkXB/L/YnZvDcj9vtfo/FO+IK1+jdGN2IzhGBWCyw+WgK0xbtZsiM5fR5aQmTv9/Kst0J5ORb7R6DiEh5nbdHd0YG1KtnbhkZVRhZzdU0xJcbuppfXr/2m0a7RaSIkm6p3vzrQ9fb4fLnoE64w2/30g0dmXPPRWZBlJaXw3XvAhZY9z4sfdHh9z/LgT/h3b7mo7uPGc8dv0L0nYAB8++CYxvsdjuLxcJ1XU737D5a4eu8++d+4tNyaFLXh1EXN7FXeCUK8vVg2shOWCwwZ90Rftlywm7X3p+QzkNzNmEYcPtFTXj5hk58N643a/49gJeGd2BgmzC83F04lpzFp6sOMfrDtXR9bhH3fR7D/JijJGVUsjWeiEgFlalHd2KiuYndPDAgEndXCyv3nWTlPv23FRGTkm6RMwR4u3NR87pYTq8X73CDWfwNzJHm1bOqJhCbFZa+BJ9eA+lxUK8N3LMUOt1krmW/8mWIHAj5WfDlTZB8xG63vrYg6V69P4ljyVnlfv+JlCze+3MfAJOujMLTzdVusZXm4hYh3HfJ6f7df1co7n9Kz8nnns9iSMvJp3vTIJ4u6P0K5nTNkd0bM3t0NJsmD+KD0dHc3KMxoXU8yci1smBrLI98tZno5xdx46xVrNl/stLxiIiUR1zBSHfouZJusbtGQT7c1L0xANN+263lRyICKOkWOb8ed0P/p8z9hU/A5rmOvV96Anx+PSx9wWyN1vk2c2p9vdZF57i6wQ0fQWg7Myn/YiRk26c3aMNAby5qbrZh+66MBdVSsvL4c3cCb/y+hzs/Xk92no0ezYIZ3K6MsxOyTsHa9yH5cEXD5uHLW9EpIpDU7HwenrMJayXaiNlsBo/M28Te+HTC/D2ZeWtXPNxK/nXp5e7KgDZhTL2+A6snDeCH8b158LJI2tT3x2bA2oNJ3Pz+amYs3lOpmEREyiOuFvbori7G9Y/Ew82F9YdO8ecejXaLiJJukbLp9xj0vM/c/+4+2LXQMfc5uMKsTr5/qTmd/Np34NqZ4OFz9rle/nDLXPALg/ht8PWY0nucl9Ppgmrfbjx21rf0+VYb24+n8r81h3j0q80MeG0pnZ79jVEfruX133ez/UQqHm4uPD20bdGMgXM5uMLs0/7Lo/DR0KI2ceXk7urCjJs64+vhytqDScxcsrdC1wF4e+left0Wh4erC7Nu61bmQkQuLhY6Ngpk4qDWLJjQl7+evIwbujXCZpjVbG//YI0qn4tIlTg90h2uke4qFx7gxW09zaVV037bpdFuEcFi1LLfBKmpqQQEBJCSkoK/v7+zw5ELic1mJtx/zwE3L7j9W2hysf2uveI1WFIwul0vCkZ8AqFl6G19bAN8NMScah59BwydVul2amnZeUQ//zs5+TY+GtOd3HwbGw8ns/HwKbYcSyEz9+xiYU3q+tAlIpDOEYFc0jqUZiG+576JNQ+WToXl04Azfg01vhhGfV/hHuzfbDjKxHmbcXWxMO/ei+jWJLhc71+yM547PlmHYcBLwzswsmCaYGV8s+Eo//luK5m5VkL8PHh9ZGf6tqxX6euKiJSmx//9TnxaDj890If2DQPOPiEjA/z8zP30dPA9z+9sKZeEtBz6vbyErDwrs0dFM7BtmLNDEhEHKGtu6fSR7pkzZ9K0aVO8vLzo2bMna9euPef5ycnJjBs3jvr16+Pp6UmrVq345ZdfqihaqdVcXOCat6DVlZCfbU7pPvF35a+bkQj/G17Qe9sGnW42p5OXJeEGaNjVbLeGBdZ/aJdWYnW83Lm84A+EMR+t497PYpi1bB9rDiSRmWuljqcbfSJDeOCySD78VzQx/xnIssf6M/2mLvyrd7PzJ9wn98EHg2D5a4ABXW6Du5eApz8cXmmOelfw+8DrujTkms4NsNoMJszZVK7WZwcSM3hwzkYMA27t2dguCTfA9V0b8cP4PkSF1yExPZdRH67llV93km91cis6EamR8q02EtPN6eWhml7uFPXqeDL64qaAOdPJpuVFIrWaU5PuuXPnMnHiRKZMmcKGDRvo1KkTgwcPJj4+vsTzc3Nzufzyyzl48CBff/01u3bt4v3336dhw4ZVHLnUWq7uMOIjaNIbclLNtdcn91X8eodWmtPJ9/1h9gW/5m24bhZ4lHPEoc1VMOh5c99OrcRuv6gJFgu4WCAqvA4392jMy8M7sujhfmyeMojP7+rJI4Nac1lUGHX9yvhHnWHAxs9hVl+z/7pXAIz4GK6ZWfDlwQeABTZ8Yq7xrgCLxcJ/r21PRLA3R09l8Z9vt5Zpal96Tj73fLqetOx8ujUJYsqwdhW6f2kiQ/34blxvbu3ZGMOAmUv2cdN7qzluh6JvIiJnOpmRi80AVxcLdX1L+f3s4gLR0ebm4vQxmBrp3n7N8fN0Y/uJVBZuq3gbThG58Dl1ennPnj3p3r07b731FgA2m42IiAgeeOABnnzyybPOnzVrFq+88go7d+7E3d29QvfU9HKxi+wU+PgqiP0bAhrDnb+Cf4OSzzUMyEyC5ENmobDC7RDsXQyGFUJamdPJw9qWfI2yMAz4eaI52u3uA//62UxkKyE+NRtfTzd8Pd0qdR3ALJb240Ow/TvzeZM+cP27ENCo+Hl/zYBFT4PFFW7/BppfWqHbxRw6xY3vrsJqM3htRCeGd2tU6rmGYXD//zawYGssoXU8+emBPg6t+PvT38eZNH8LaTn5BPq48+oNnTT1UETs5u+jyVz91l+E+3ux+t8DnB1OrTbtt13M+GMvLUP9WPhQP1xdKrf8S0Sql7Lmlk5LunNzc/Hx8eHrr7/m2muvLTw+evRokpOT+f777896z5AhQwgODsbHx4fvv/+eevXqccstt/DEE0/g6lpyW6KcnBxycnIKn6emphIREaGkWyovPQE+HAxJ+8w12FdNh/TYfyTWR8zHvIzSr9NxpLkO29Ov8jFZ8+HLkbD3d7PA2l2LITCi8tetrIMr4Jt7IPUYuLhB/39D74fApYT/3xoGfDvWXDvvFWhOta/bokK3fXPxHl5btBtfD1d+frAvTUuZ9j5zyV5e+XUX7q4W5tzTi25Ngip0v/I4dDKD8V9sZMuxFADu7NOMJ66IKrVKuohIWS3aHsfdn66nU6MAvh/fx9nh1GopWXn0fekPUrPzeeOmzlzTWbMzRWqSar+mOzExEavVSlhY8dGdsLAwYmNLnoKzf/9+vv76a6xWK7/88gtPP/00r732Gs8//3yp95k6dSoBAQGFW0RENUhApGbwqwejvoM6DSBhJ3x0BXz1L1g0GdbNhj2/QcKOooS7Tn2I6AkdRkDfR2DYG3DnIrjuXfsk3ODQVmIVYs2D3581ZwWkHoPg5nDnb+bPX1LCDWYRuGFvQMNoyE6GL282ZxZUwP39I+nRLJiMXCsT5mwkr4Q11Et3xfPqb7sAePbq9lWScAM0qevL1/f14o7ezQD4YMUBRsxayeGTmVVyfxGpudSju/oI8Hbn7r7NAZj++x7V8hCppS6oIRWbzUZoaCjvvfce3bp1Y+TIkTz11FPMmjWr1PdMmjSJlJSUwu3IkSNVGLHUeIGNzSrmQc3M5PufSfXt38IDG+CpOHhkp5lwDp8NAyZDt39BRI9KVxo/iwNbiZXL6WJpKwqqk3e5De5dDg27nf+97l5w0//M/6aJu2D+3WA7u2L6+bi6WJg+sjP+Xm5sPprCtEW7i71+MDGDB780C6fd3KMxt/S0T+G0svJ0c2XysLa8PyqaAG93Nh9NYeiM5fyy5USVxiEiNcvp1oTn7NGdmQlNm5pbpr7sc6QxfZoR5OPOgcQMvt14zNnhiIgTOC3pDgkJwdXVlbi4uGLH4+LiCA8PL/E99evXp1WrVsWmkrdp04bY2Fhyc3NLfI+npyf+/v7FNhG7Co2CCZvgkR1nJ9UtLjOnRrtX8WhDYATcPMcszrb3d1jweIWrgZebYcCGz0oullaeEf064Wbi7eYFe36Fxc9WKJwGgd68OLwjALOW7WPl3kQAMnLyufezGFKz8+naOJBnrq7EevpKurxtGL9M6Eu3JkGk5eRz//82MPn7rSWOzIuInE9cqrmsLqzOOf7tMQw4dMjcalf32Crn5+nG2EvMZVIz/thDbr5+t4vUNk5Luj08POjWrRuLFy8uPGaz2Vi8eDG9evUq8T29e/dm79692GxFv6x2795N/fr18fCoWE9fkRqrWCuxD+zSSuyc8nNh+/fw6TXww3hzWn2TPnDfSmh3XcWu2bCrmawD/PUGbJ5bocsM6VCfm7pHYBjw8LxNJGXk8vjXf7MrLo16dTx557ZueLqVMt29ijQM9GbOPRdx36XmH2afrjrEnZ+sJz3HCbMUROSCFpd2eqRb08uri1G9mhLi58mRpCy+itGsS5HaxqnTyydOnMj777/PJ598wo4dO7jvvvvIyMhgzJgxAIwaNYpJkyYVnn/fffeRlJTEhAkT2L17Nz///DMvvPAC48aNc9aPIFK9FWsl9hTMvAiWvQyJe+13j4TdZpuyaW1g3ig4sMwsljZgMoz+4ezq5OXV4QboM9Hc/+EBOLq+QpeZPKwtzev5Epeaw7A3V/DzlhO4u1p459aujvvD1GY1/1uXcRTJ3dWFJ66I4r3bu+Hl7sKfuxMYMWsVJ1LUVkxEyu70SLd6dFcf3h6u3F/wpepbf+wlO6/8S6ZE5MLl1KR75MiRvPrqq0yePJnOnTuzadMmFi5cWFhc7fDhw5w4UbS2MSIigl9//ZV169bRsWNHHnzwQSZMmFBiezERKdBrnJm0uribhd2W/B+81c3sD758Gpw6WP5r5mbCpi/hwythZndY+SZkJprryPtMhPHrz10srbwuexpaXQnWHJhzK6QeL/clfDzcmHFTF9xdLRwr6I09ZVg7opsG2yfGM6XFwrJX4I1O5n/reaMgL7vMbx/ULpy59/QixM+THSdSuW7mSnaccGJBvAvMyfQcrnv7L15csNPZoYg4RdGabo10Vye39GxMuL8XJ1KymbP2sLPDEZEq5NQ+3c6gPt1Sa2Wdgp0/w9ZvYP9Ssz/4aQ26QvvrzWng5xqZPr4JNnwKW76CnIIk0OICLQdD11HQcpBZQd0RctJg9uXmFwcNusCYBeDuXe7LfLrqIM/+uJ3bejbmmavbYbFXITubDQ4sNfuk71oAtn9MC2/WD276AjzrlPmSR5IyGfPxOvbGp+Pn6cbbt3alX6t69om3Bpu6YAfvLtuPxQKLHr6EyFA7dQcQuQDk5tto9Z8FAGx4+nKCfUtZfpeRAX4F/99ITwffklsqin19vvoQ//luK3V9PRjXP5I+LUNoGepnv3+LnCQzN59ft8Xi6ebKkA71nR2OSJWp9n26nUVJtwiQcRJ2/ADbvjF7aBtnFHWJuMhMwNteYxYzy04xk+wNn8KJzUXnBTaBrrdD51vBv0HVxJ10AN7vb36B0GEEXP9+haq/p2bn4e/lbp+YMhJh4+cQ8zGcOlB0PKInRN8B3sFmBfncdPPLglu/Bt+QMl8+JTOPez9fz+r9Sbi6WHjhuvaM7F61VdYvJKcycunz0h9k5JpfKt0Y3YiXb+jk5KhEqs6x5Cx6v/gH7q4Wdj9/ZenJnJJup8jNtzF4+p8cSMwoPBZax5M+kSH0LtjCAy6MGQqGYbD5aApz1x3hx83HC2uQ/Pfa9tx+URMnRydSNZR0l0JJt8g/pMebBdC2fgOHVwGnfyVYzEJmcdshv2BNsasHRF0F3UZD037g4oQVKgf+hM+uM0eSBz4DfR6u+hgMAw79ZY5qb/8BbHnmcU9/6DgSosdAWLui849tgP/dAJknoW5Ls5VcYESZb5eTb+XJ+VsKW82M7x/JI4NaXfAjI44wbdFuZizeQ2gdT+LTcnB3tbD88csumD9iRSprw+FTXP/2ShoGevPXk5eVfmJmJnTvbu6vWwc+PlUToJCYnsP8mKOs2JvI2gNJ5PyjmnlkqB99IkPoExlCz+bB1LHXl8R2ciojl283HmPe+iPsjE0rPB7i50lieg4uFvhgdHf6R4U6MUqRqqGkuxRKukXOIfU4bPvOHAE/uq7oeL0o6DraTCh96zotvELrZsPPjwAWuPlLaH1l1dw3Mwk2z4GYjyDxjJ7fDbqaiXb74eBRymhRwm7zy4LUo2b/8du/NdvNlZFhGExbtJs3/zCL4F3TuQEv39DR6VXXq5O07Dx6v/gHqdn5vH1rVz5eeZC1B5K4u28znhrqvJZwIlVp4dYTjP18A10bB/LN/b2dHY6cR3aelQ2HTrFibyJ/7U3k72MpxWpvurpY6BwRSO+CJLxbkyBcXar+C1ebzWDlvpPMWXeY37bFkVvQ0tLTzYUhHepzY3QEPZsF8/j8v/k65ii+Hq7MG9uLdg0CqjxWkaqkpLsUSrpFyij5MOxfBvVaQ6PuFZrG7VA/PWyONLu4mWvKO99sPrrZuX1gfi7s+wO2fg07foT8goJo7r7QcQR0GwMNOpftWilH4bPrIXEXeAeZU80bRZcrnHnrjvDvb7eQbzPo0SyY927vRqCPWiYCvL10Ly8v3EVkqB+/PdSPZbsTGPPxOnw9XFn55AACfKrXaJGII3yy8iBTftjGle3Deee2bs4OR8opOTOX1ftPFiThJ4tNQwdoW9+f/17bjm5NHFAEtATHk7P4OuYo89Yf4eipok4a7Rr4c1P3CK7u3JAA76Lfrbn5Nv710VpW7jtJmL8n343rTf2A8tdfEblQKOkuhZJukRrCmgfzRsOun4uOeQebLcY63WSOPlf0iwJrPhz8E7bONxPt7JSi18I6mKPaHUaAVwV+h2QmmVPNj8WYifvIzyByQLkusXxPAvd9voH0nHxa1PPl4zE9iAiu3VNDM3Pz6fPSEpIycpl2Yyeu79oIwzC48o3l7IxN49FBrRh/WUtnh1llMnPzOZ6czfHkLI4nZxHo484V7VXcqDZ4eeFO3l66j39d3JRnrm53/jdItXb0VCYr955k+d5Elu6MJ61g3fSIbo144sooQvzs3xYu32rj9x1xzFl3hD93J2AryBTqeLlxbeeGjOweQfuGpY9gp2TlccM7K9kTn06b+v58NbYXfp4OKrIq4mRKukuhpFukhonbDpu/hL/nQXps0fGQ1mby3XEkBDQ8/3VsNnNN+9b55hr3zMSi1/zCzcruHUaY69wrO+qfkw5zb4P9S8xWbte/ZxavK4edsamM+WgdJ1KyCfHzYPbo7nSOCDzv+2w2g6TMXGJTsolNySY+LYe2DfzL9N7q7IMVB/jvT9uJCPZmySOX4uZq1hv4ftMxJszZRF1fD1Y8cRneHhf+dHyrzSA+7XRCXZRYHzu9n5JFcmbeWe+bPSqagW3DnBCxVKVH5m1m/oajPH5Fa+6/NLL0E7Wm+4JzMj2HlxfuYu76IwD4e7nx2BVR3NKjsV2mnGflWpm3/gjvL99fbFT7oubBjOwewZXt6+PlXrbfoUeSMrnu7ZUkpudwaet6zB4VXfh7WaQmUdJdCiXdIjWUNd9s2bXpS9j5U9E0cCzQ/FLodDO0uar4mmvDMEect86Hbd9C2omi13zqmhXc210PTS62X8/x0/Jz4Nt7zftigaGvQve7ynWJuNRsxny0ju0nUvFyd2H6yM50aBRIbEoWsSk5nEjJIi41mxMp2YWP8ak5hWvxzjS+fyQPDWx5Qf5RlJNvpd/LS4hLzWHq9R24uUdRdfd8q41LX13K0VNZPHdNO0b1auq8QMvBMAxiU7PZn5DB/oR09iVksC8hnQOJGcSmZJNvO/8/3XU83WgQaE7r3BWXRpv6/vz8QB9cnLAeVKrO7R+sYfmeRF4b0Ynh3c7RAlLVyy9YMYdOMfn7rWw7brbubN/Qn/9e054ujYMqdL2kjFw+XXWQT1Ye5FTBF3bBvh7c1D2CG6MjaBpSsc/G5iPJjHxvFdl5Nm67qDH/vaa9CoBKjaOkuxRKukVqgewUc7R605dweGXRcQ8/M5FuPcQsFLftG3Pt+mmeAdBmGLS/DppdAq4OXgNss8Ivj8H6D8zn/Z+Cfo+VayQ9PSef8V9sYOmuhHLdOsTPk/AAT3w83Fh7IAkwRzNm3NSFUP8Lq9L3/9Yc4qlvt1I/wIulj116VnG5T1cdZPL322gU5M3SRy+tVl8sZObmm4l1YlFyvb8guc4saHtWElcXC+H+XjQM9KZBoBcNAr1pEOhd8Nyb+oFehW3xTmXk0u/lJaTl5PPWLV24qmMVtfgTpxj0+jJ2x6Xz+Z096dPyHO0JlXRf0Kw2g/+tOcQrv+4iLduccn5T9wgevyKq9N7s/3AkKZPZy/czd/0RsvPML2MbB/twd7/m3NC1kV1mBv26LZaxn8dgGPDUkDbc3a95pa8pUp0o6S6Fkm6RWibpAPw915yCfurg2a+7+0LUELPyeIvLwM3+6+POyTBg6VRY9pL5vMe9cMWL5WrHlm+18eyP2/nfmkO4ulgIreNF/QAvwgK8qO/vRXhAwVawH1rHCw+3ouv/sPk4k+b/TUaulRA/T2bc3JmLW5S9l7gz5Vlt9C8YyZ4yrC1jejc765ysXCt9XvqDkxm5vHFTZ67pXIblBg724YoDzF6+n+Mp2aWe4+pioXGwD81DfGkR6kfzEF+a1/MjItib0Dpe5ZpOOv333Uz/fQ/N6/ny20P9qtUXD2JfnZ79jZSsPBY93I+WYXVKP1FJd42QmJ7Diwt28nXMUQACvN15/IrW3NS99Cnn246n8O6y/fy85QTWglkz7Rv6M/aSFlzRLtzuvx9mL9/P8z/vwGKBt2/pypUdVF9Cag4l3aVQ0i1SSxkGHF4Nm78we32HdzQT7ZaDwKMarGVc8y4seNzc7zACrn2n3CPtWblWPN1cyjZ92GaFk3shdgsENWOfZ2vu/3wDu+LScLHAxMtbcf+lkdV+KvLXMUd59KvNhPh5sPzx0tdsv7l4D68t2k1UeB0WTOjr1CmOsSnZ9Ht5SeE0/yAfd5rXK0qqW9QzHxsH+xT7cqQy0rLz6PvyEpIz83h1RCduONe0Y7lgZedZiXp6IQCbpwwqVlX6LEq6a5T1B5P4z3dbC/tmd2wUwH+vaU+ngnodhmG2/Jq1bB/L9xTVLOnbMoSxl7Tg4hZ1HfZ70TAMJn+/jc9WH8LTzYU591xU4anwItWNku5SKOkWkWrr73nw3X1gy4fQtmbRtrqRULclhLSEoGYVa4lmzYOEnXBic9EWuwXyMovOaTOM7Euf5ek/0/mqYMTkklb1eH1k5zJPVaxqVpvB5dOWsT8xgyevjGLsJS1KPTclM4+LX1xMRq6Vj8Z0p3/r0CqMtLhnftjGxysPEt0kiPdHRRNURf99Zy3bx4sLdhIR7M3iiZfaLaGX6uPwyUz6vbIEb3dXtj83+NxJlJLuGiffauOz1YeY9ttu0nLysVjg5h6N6dksmNnLD7DlmNmJw8UCV3VswD39mp+zCrm9Y7v70/Us2ZVAiJ8H397fu9Z33ZCaQUl3KZR0i0i1tmcRzL0d8rPOfs3iCkFNipLwui2K9v3CzLXgedkQv614gh23Day5Z1/P3QdCWkHs32DYwNUDLrqfb/xu4t+/HCQ7z0b9AC/euqVLlfWELY8fNx/ngS83EuDtzl9PXnbeljTP/7Sd2SsO0KNZMPPu7VVFURYXn5ZN35eWkJNv47M7e9C3Zb0qu3dWrpW+Ly8hMT2H569tz20XNamye0vVWHcwiRGzVtG0rg9LH+t/7pOVdNdY8WnZvPjLTr7ZeKzYcS93F0ZGR3BX3+ZOSXgzcvIZMWsV20+kEhnqx/yxFxPg4+DaKSIOpqS7FEq6RaTaSz0Oh1aa078T95iPJ/dCbnrp7/H0B79Qcw27UUIBLs8AqN8R6ncq2upGmlXZ47bDr/82W5gB+IZyIvoxbl/fgr0ns3FzsfDklVHc2adZtak8a7MZDJlh9uB+eGArJgw8fw/uEylZ9Ht5CXlWg/n3XUy3JlU/vfGFX3bw3p/76RwRyLf3X1zl/z0//usAz/y4nTB/T5Y91r/M7X/kwvDT38cZ/8XGsn2xlJkJbdua+9u3q2VYDbRm/0me+XE7canZ3H5RE0Zf3NTpM5diU7K5duZfxKZm06t5XT65o4dm3cgFTUl3KZR0i8gFyTAgLRZO7imeiCfugeRD5kj1aT51oX7n4gl2UNNzV0U3DNi9EH59CpL2AWAN68gM9zt4Y685FXtQ2zBeGdHp3OtEq8ii7XHc/el6/Dzd+OuJy8o8WvL415uZt/4ol7cN4/1R0Q6OsrikjFz6vPQHmblWPvxXNJdFVX3P7Jx8K/1fWcrxlGz+M7QNd/VVJeGa5HTBqmGdGvDmzV2cHY5UA4ZhYBhUq/oc24+nMmLWSjJyrQzv2ohXR3SsNl/oipRXWXPLc8/FExGR6sFiAf/65tasX/HX8nPMEe60E+Z0cf8G5Wo7Vnj91ldCiwGw9j1Y9jKucX/zMA9xfZPLGXN0GL9thx1vLuftW7rRodG51wEahkFKVh4JaTkkpOeQkJZDUkYu0U2Cz/ve8zEMg7f+2APA7b2alGt64j39WvBVzFEWbY9jb3wakaHnqO5sZx+s2E9mrpX2Df2dtqbc082VBwe05MlvtvDO0n3c3KMxvueZli8mwzCqfWIQn5YDQFidKu7CINWWxWIp9z8Hjta2gT8zb+3KnZ+sZ/6GozSp68ODA84/W0nkQqZ/aUVELnRunhAaZW6VvpYHXDweOt0ES/4PYj6mSdwifvf6k88tV/FS0hCGv7OSx69oTcNA78KE+vSWePp5eg551rMnUrm6WHhmWFtu79W0wiEu35PI5qMpeLm7cGefs1uEnUtkqB+D2obx67Y4Zi3bz6sjOlU4jvJIyczjk5WHAHjgspZOTd6Gd2vErGX7OHgyk49XHmRc/0inxXIhiDmUxBPzt+Dt7srnd/as1mtQ41LNFnRh/l5OjkTk3C5tHcpz17TjqW+3Mm3RblqF+XFFe7USk5pLiyhERORsviFw1eswdgU0uwQXaw6j8ufzl+9jXMMf/N/P27jvfxuY/P023vxjL3PWHWHxzng2H03heEp2YcId4O1Oi3q+XNQ8mB5Ng7HaDJ7+fhvP/LCNfKvtPEGU7K0/9gJwS48mhPiVf0TvdJXz7zYe43hyCQXrHOCjlQdIz8knKrwOl7ep+mnlZ3J3deGhga0AeHfZPlKy8pwaT3WVb7Xx+qLdjJi1ir3x6Ww5lsKEuRsL+xpXR6eT7lD/Mvz/IisLunc3t6yq+f+ByJlu7dmEuwq+OH3ux+1k55VQj0SkhtBIt4iIlC6sHYz6HnYtgN+eIjBpP6+4v8dYr99Z53UxCf7tSQ/phG9gPerV8aSenychdTypV8eTED8PPN2KCnUZhsHbS/fxyq+7+HjlQQ6ezODNm7tQx6vsI4dr9p9k7cEkPFxduKdfxdYjd2kcxEXNg1m9P4kPVhzg6avaVug6ZZWWnceHKw4AMP6y6tH7fFinBry9dC+749KZvXw/jwxq7eyQqpXDJzN5aO5GNhxOBmBwuzCW7kpg6a4EXl+0m0cHV8//XvGpBdPLyzLSbbPB+vVF+yJO8Ojg1vyy5QTHU7L56K+D3Hdp6a0fRS5kGukWEZFzs1ggagjcvxoGPQ+e/rSw7uemjM954MSTTNpyJQ9uu5Gbj/yXgWnf0dmyl4Z+LsUSbvMyFsb1j+TtW7vi5e7C0l0J3PDOKo6eyizlxmd7a4k5yn1DdCPCAyo+hfa+S80p1V+uPUxyZgnt1Ozo01WHSM3Op0U9X66sJtMnXV0sTLzcHO3+cMUBTqbnODmi6sEwDL7ZcJQhM5az4XAydTzdeOOmzrx7ezQvDu8AmJ/BhVtPODnSkml6uVxovNxdC7/EenvJXpIyHPv7WMRZNNItIiJl4+YJFz8AHW+Cbd/A0fVwLMasdp6039y2zDPPdXGH8A7QKBoadoOG0RDcHFxcGNKhPg0Dvbnrk3UcikvkX2/9wvTrW9G+njvkZpqt0fIyITfDfLTlg09d9mT4cGTvIQJcArmvgqPcp/VrGULb+v5sP5HKp6sOOayIT0ZOPrOX7wfMUW7XajDKfdrgduF0aBjAlmMpzFq2j6eGOnbEv7pLycrjP99t5cfNxwHo3jSIaTd2LuxnfF2XRmw5msqHfx3gkXmbaVHPj5ZhVVeI73zSc/LJyDWn54aqkJpcQK7t3JAPVhxg2/FUZizewzNXt3N2SCJ2p5ZhIiJSOZlJcHwDHI2BYwWJeObJs8/zCgTvQDOxzsvEyM3AQgX/CXLzAt9Q8KtX/NG3XtF+YAT4NwLXkr9f/mHzcR78ciNBPu789eRl+HjY/3vo9/7cxwu/7KRJXR8WT7wEN9eCCWYZiZCwE6y5YM03H215/9g/vZ3xmmGDloMgortd4lu6K55/fbQOTzcX/ny8f60dIV2z/yQT523mWHIWri4WHh7YkvsuPftLknyrjds+WMPq/Uk0C/Hl+/G98S/H8ghH2peQzoDXllHH040tzw4+/xsyMsDPz9xPTwdfX8cGKHIOf+1N5NbZa3BzsfD7xEtoGqLPo1wY1DJMRESqhk8wRA40NzB7fp86aCbfp7cTmyE72dwKnJnOZBvuZOCFu5cfdfwDsLj7gIevuVlcyUyOI/7EEUIsKfhZsiE/G1IOm9u5uLhBYBMIbmaOtAcVPAY3Z0hUBK8G+3A4KZN5647wr97lq4R+Ptl5Vt7701zLPe6S5rjFboQ9i2DPb3BsA1T0C4c/X4YOI2DgsxDQsFIxXtKqHtFNglh/6BRv/bGX/17bvlLXu9DkWW1M/303by/dh2FAk7o+TB/ZmS6Ng0o8383VhZm3dGXYmys4kJjBw3M28f6o6GqxTr9cRdREqpnekSFc2roeS3cl8PKvO3n71m7ODknErpR0i4iIfVksBUluM+hwg3nMmgfx2yEvGzx8wN0HPPzAwwerqzevLtzN7BUHIAeuadaAl4Z3xMu9aE34419s4KdDJxjasT4zb4iCjHhITyh4jIeMhILHM44nHwFrTsH0931nhemGhV+8wvnbPYiEPxpitV6Ma0gLqBtpJubu3pX6zzD/ry30ylzCEJ+tXLF0K2QmFj8hqCm4+4Kre8HmYX5J4OphPj9z39XdnLKfeRK2fw9bvoKdP0Ofh80p/xWM1WKx8Ojg1tz03mrmrDvMPf2aF06nrukOJGbw0JyNbD6aAsCIbo2YcnU7/M7Tt7yunyfv3h7NDbNWsnhnPNMX7ylcH+9M5SqiJlINTbqyDX/uTuCXLbHEHDpFtyYlf/klciHS9HIREakWvlhzmMnfbyXfZtC1cSDvjYomxM+TfQnpDJy2DMOABRP60qZ+GX9322yQdrxgvfkB8/FUwWPSQchNO/f7/RtB3YIkvPAxEgIbm0nwPxkGxP4Ne37Dtvs3jKPrceWMqtAedaBFf3N6eORA8K9gUbXjm2Dhk3B4lfk8oDEMeg7aXmt+4VEBt81ew4q9iYzo1ohXKtq73GYzY8pOhmb9wLP6rHc+k2EYfLX+KM/8uI3MXCv+Xm5Mvb4jQzuW73+PbzYcZeK8zQC8d3s3BrULd0S4Zfbusn1MXbCT67o05PWRnc//howMaNrU3D94UNPLpVp44uu/mbv+CN2aBPH12F5YKvg7TaSqlDW3VNItIiLVxl97E7nv8xhSs/NpFOTNh//qzrvL9jN/w1EGtglj9uho+9zIMMx11acOsOivVWzfuon23klcFpqG5eReyE4p/b2np6yfmYTHboG9iyA9rtipey2NaXrRtbi1HgwRPUtO1isa/7Zv4LfJkHrUPNakD1wxFep3LPflNh4+xXVvr8TFAosmXkKLen5lf3PSftg8BzZ9WTTd39XT/IIh6ipoPQR865Y7JkdIycrjyfl/s2BrLAAXNQ9m2o2daRBYsZkCz/ywjY9XHsTP043vxvUmMrQc/93s7Lkft/PhXwe495LmTLqyjdPiEKmMuNRsLn1lKVl5Vmbd1pUr7NzxIc9qw91VzZvEfpR0l0JJt4hI9bY3Pp07P1nHoZOZ1PF0IzPPitVm8N243nSOCLT7/VKy8uj94h+k5+Tz4b+iuax1qFkc7uRec1r6yb0F237zMT+r9Iu5+2Jrdgmv7G/Cd+ltuXdYX7uvFS8mNxNWzoAV0824LC7QdRRc9jT4hpTrUnd9so7fd8QzrFMD3ry5y7lPzkkzp7lv+gIO/VV03NMffOqaMwpOs7hAk97QZhhEDYWARuWKy14S03O4/YO17DiRipuLhUcGteaefs0rVVE+z2rj1tlrWHsgieb1fPluXCUKq9lsELcVDq4wC+cV1iBoZtY2OI9xX2zg579PMPmqttzRx4GfOREHm/bbLmb8sZdmIb789nA/uyXJry/azaxl+3hwQEvG9Y+0yzVFlHSXQkm3iEj1l5SRy9jPYlh7MAmAvi1D+OzOng6739RfdvDun/vp3jSIr8ZeXPqJNhuknTgjId9nFo0LbAKtBkHjXszbGM/j8/8mxM+TFU/0L7Y23WGSj8DvU2DrfPO5ZwBc+gR0vxvcPMp0ie3HUxkyYzlQyjR+mw0OrTAT7e3fm+3cALCYo9qdbzWTajcvszL7jh/NLfbv4tdp0NVMwNsMgxDHtGr7p+PJWdw2ew37EzMI8fPkg9HRdLLTFziJ6TkMe3MFJ1KyGdgmjPdu71a2wmqGYc4S2L8UDvwJB5eXXPUfwC/sjCKAzYrveweBxcKIWStZd/AUM2/pWu6p8iLVSXpOPpe+soTE9Fyevbodoy9uWulrvv/nfv7vlx2Fzx8b3FqJt9iFku5SKOkWEbkw5ORbefbH7SzblcC7t3ejfcMAh90rLjWbvi8tIddqY1z/Fjw4oCWebuVPlvOtNgZMW8ahk5k8NaQNd1eyn3i5HVoJC54oSnTrtoQrXoSWA8v09tOjpZe3DeP9UQVT+ZMOwOYvi08fB3NqfedbzL7t56qifuog7PgJdv4Eh1dTrGp7vShzCnrU0IIR3TqltnirqIOJGdw6ew3HkrNoGOjN53f1pJmd2xFtPpLMiHdXkZtv4+GBrZgwsJQvE1JPmAn2gWWwf1nR0oDTPPygycXmjIFTB8z/9llJ5765VwAENePX+ABmZA7i2XtvIbpp8PmDzsqCK6809xcsAO/KFQ4UsafPVx/iP99tJdjXg6WPXVqp1nxfxxzl0a/M+gt9IkNYsdcsavnEFVHcd2kLu8QrtZeS7lIo6RYRkZK89tsu3vxjLwAtQ/14+YaOpbaOKs23G4/y8NzNBPt6sOKJ/g7p/X1eNits/Bz++K9Z1R2gYTezh7mrB7h5mmuu3Qq2wmMeJGZbeHPZYbJx54F+ETQ6/ps5un2apz+0v94c1W7UvfyF29LiYNfPZhJ+YBnY8s8+x93XLMLm5W/er3C/jjmCf+Zz/4bmz+YdWOLtdsWmcdsHa0hIy6FZiC+f39WThhVcv30+X60/wmNfm192fDA6mgFtwiDrlDldfP8y8+dN3F38Ta4e0KgHNL/ELD7XsNvZ6/6zks8oAFiQiJ9+nnai2Kk2w0Jm+1vwG/Lc+ZcXqE+3VGP5VhuDp//JvoQM7r+0BY9fEVWh6/y+PY57P4/BajO4u28z/j2kDTOX7OXV38z/L/57SBT39FPiLRWnpLsUSrpFRKQ0C7ac4Onvt5KYnouLBe7q25yJl7cq0xRxq81g0OvL2JeQUT2mLmanwJ+vwOpZ5hrhCvvH9PFKtlIrlJUMu3+FnT/CvqXnryZ/rvjqtYaIHmYCG9ED6rZk87FURn+0luTMPKLC6/DZnT2pV8dBPawzTkLibr7/fQkJB/4myvUEPf1P4p52lOL92C3QoDM0K0iyG/cyW+hVVG4mnDpIRuweFn09i2tdV5rHPQPg0iehx92lF+9T0i3V3KLtcdz96Xo83VxY8uil5S54uGb/SUZ9uJacfBvDuzbi1REdC6uhz1i8h2mLzMT7P0PbcFffKp6VJDWGku5SKOkWEZFzOZWRy3M/befbjccAaBbiy0vDO9Kj2bmn7P7093HGf7GRAG93VjzRnzqVmA5pV6cOwpG1kJ8N+TlgzTUf83PMPub5uQWP5paZlcmq3cdxMawERPUjoOftNGoaWaHp9uWSnwM56ZCTYhZqy041H3MKHrNT/vE81Rw5PrNo2+lLefizKqc56/IjSQ7pwiP/uoWAoDJMuT4Xm82cDp6wGxJ3QcIuSNxj7pe2FhsgpHXRSHbTPuYabDvbHZfGoNf/5FLvfXwc/jWc2Fx07ytfhBaXnf0mJd1SzRmGwcj3VrP2QBLDuzbitRvL3s5w2/EUbnp3NWk5+QxsE8as27ri9o+CbK8v2s0bi/cA8PRVbblTBQilApR0l0JJt4iIlMXiHXH8+9stxKXmADC6VxMevyIKX8+zp4zbbAZDZixnZ2waDw1syUMDW1V1uHb1n++28PnqovXbLhaICPahRT0/mof40iLUjxb1/GhRz5dgXw/n9tJNT4Cj6+DIGji6DuvRGFyt2f84yQKhbSGiu1nIzcUV8rLMYnAlPeZmnnGs4HjaiTOKx5UgoDHUa0VmQAve2GRhQ2YoEa068+roy8pWWK0Slu9J4PYP1tI6rA6/TugNGz+Dxc8VfRnQeigMft4svnaakm65AGw+ksw1M//CYoGfH+hL2wbn/9v9YGIGN8xaRWJ6Dj2aBfPpHT1KnK1kGAbTFu0uXFb0zLC2ju02ITWSku5SKOkWEZGySsnKY+ovO5iz7ggAjYK8efH6jvRpWXy97MKtsYz9PAY/Tzf+euIyAnyqySh3BSVn5vLSwp3sOJHGvoR00rJLWHtdIMDbnRb1fM0kPNSPpnV9CPP3IjzAi3p+nmeNLjnSz3+f4JE564g0DnFz/Vhuqn8C12PrIPnw+d9cFi7uZgG5kJbmlPaQ1lCvlVmw7oxp4hsPn2Lku6vJtdqqpFjT6UJRxar8ZyXDspdgzbtgWM31473GQ99HwNNPSbdcMB74ciM/bj5epi4W8anZDJ+1kiNJWbSp78/cey86ZxE2wzB49bddzFyyD4DnrmnHqF5N7Rm+1HBKukuhpFtERMpr+Z4Enpy/hWPJZo/um7pH8O+hbfD3cscwDK56cwXbjqcyrn8LHhtcsYI/1ZVhGCSk57AvPoP9iensi89gX0I6+xLSOZacxbn+inCxQL06noT7exUm4mH+XoT7e1E/wIuwAHO/pNkD5TVv3RGe/OZvbAYM69SAaTd2KurvmxYHR9ea0+zjtoKLm7k23d3nH4/eZiG3s475mIXogpqWubr6l2sPM+mbLbi5WPhqbK9yF+Urj5lL9vLKr7u4oVsjXh3xjym48Tth4ZOwf4n5vE59uPw5aD4E6tQxjynplmrsSFImA15bRq7Vxid39OCSVvVKPC8lM4+R761iZ2waTer68PXYi8tUx8EwDF5auItZy8zE+/lr23PbRU3s+jNIzaWkuxRKukVEpCIycvJ5eeFOPll1CIBwfy9euL49AHd8vB4fD1dWPHEZwb5l64tdE2TnWTmQWJCEFyTjR05lEpeSTXxaDvm2sv2JUcfLjQ4NA+jeNJgezYLp0jiwXJXfP1xxgOd+2g6YX4j833UdcHXwlO7zMQyDB77cyE9/n6BRkDe/TOhbqbZH5zLpm7/5cu0RxveP5NHBrUsKBnb9Ar/+21zjDxAaDY+uBIsLxMcr6ZZq7fmftjN7xQGiwuvw84N9z/r/d1aulds/WMP6Q6eoV8eT+WMvpnHdshcpNAyDFxfs5N0/9wPwwnUduKVnY7v+DFIzOSzpzsrKwjAMfHzMD/KhQ4f49ttvadu2LYMGDapc1FVASbeIiFTGmv0neWL+3xw8aa7v9fdyIzU7n3v7NWfSkDZOjq76sNoMTqbnEJuaTWxKNnGp2QX7OYX7cSnZpOWcPXXdzcVCu4YB9GgaRHTTYLo3DS7xywzDMHjrj728VlCF+K4+zXhqaBvnrjE/Q2p2HkNnLOdIUhZXdazPmzd3sXtsK/clMuqDteTbDN6+tStDOtQv/eS8bFj1Fix/rWB9ugUiB0JET2jY1dwcUOhNpLKSM3Pp9/ISUrPzefmGjtwYHVH4Wp7Vxj2frmfJrgT8vdyYe28v2tQv/9/4hmHwfz/vYPYKszjjS8M7MLK7Em85N4cl3YMGDeL6669n7NixJCcnExUVhbu7O4mJiUybNo377ruv0sE7kpJuERGprKxcK9MW7eKDFQewGeDl7sLyxy9zXEuqGiw9J58jSZnEHDrFuoNJrDuQxPGUfxZCg8hQv4KR8CCimwTTKMibqQt28l7ByNTDA1vx4IDIapNwn7bx8ClGzFpFvs3g5eEdubF7xPnfVEYHEzO4ZuZfpGTlcU3nBkwf2blsP3/qcVg0BbbMO/u1upFmv/DTW3gHs4+7iJO9/+d+/u+XHYT5e7L00f54e7hisxlMnLeJ7zYdx8vdhc/v7El004p3KjAMg+d+2s5Hfx3EYoGXhhdP8EX+yWFJd0hICMuWLaNdu3bMnj2bN998k40bNzJ//nwmT57Mjh07Kh28IynpFhERe9lw+BRvL9nLoHbh+sPMjo6eyjQT8IOnWHcgiT3x6WedE+TjzqlMs/94de+z+/bSvby8cBfe7q78+EBvIkPrVPqaKVl5XP/2X+xLyKBTRCBz77moTP3ki4ndCgeXw9H1cCymxPZruLibiffpJLxRNAS3AJeqK5AnApCTb2XAa8s4eiqLRwe1Ylz/SJ79cTsfrzyIm4uF90dF0z8qtNL3MQyj8LoWC7xyQydu6NbIDj+B1EQOS7p9fHzYuXMnjRs35sYbb6Rdu3ZMmTKFI0eO0Lp1azIzz9FOoxpQ0i0iInJhScrIZf3BJNYdTGLtwVNsPZaC1WZgscDU6zpwU4/qPQXUZjMY9eFaVuxNpE19f769/+LyJ8hnyLfauOOT9fy5O4Fwfy9+GN+bUH+v8l0kOxuGDzf3588HLy/ITIJjG+BYQRJ+LKbkHuSeAeZU9EbdzSS8YTT41q3wzyNSVt9vOsaEOZvw9XDllp6NeX+5+UXR9JGdubZLQ7vdxzAMpvywjU9XHcJigUlXRjGkQ30aBZV9nbjUDg5Lujt27Mhdd93FddddR/v27Vm4cCG9evUiJiaGoUOHEhsbW+ngHUlJt4iIyIUtMzefTYeT8fNyo2OjQGeHUybxqdlc+cZyTmbk8q+Lm/LM1e0qfK3nftzOh38dwMvdha/HXkz7hgHlv0hZWoYZhll47VhMQTIeAyc2Qf7Z0/8JalaUhDeKhrAO4FZ7igpK1bDZDK59+y/+PppSeGzyVW25o4/9+2sbhsF/vtvK/9YUtRxsFOTNRc3r0rNZMBc1r0tEsJLw2s5hSffXX3/NLbfcgtVqZcCAAfz2228ATJ06lT///JMFCxZULnIHU9ItIiIizrBkVzxjPloHwPujorm8bVi5rzFn7WGe/GYLwPkLp51LRft0W/Mgbps5Gn40Bo6ug5N7zj7P1RPqdypKwhtGQ2BjqGZr7uXCs3r/SW56bzUAD1wWySODSqjYbyc2m8GHfx3g5y0n+PuoOcPmTA0DvenZ3EzAezWvS6Mg72pXV0Icy6Etw2JjYzlx4gSdOnXCpWBNz9q1a/H39ycqqnr3J1XSLSIiIs5yuvVRoI87Cyf0Izyg7NPCV+8/yW2z15BvM3h4YCsmDGxZ8UAqmnSXJOuUOQp+Ogk/tt489k+e/hDczFwTXrcFBDcv2vepq4Rcyuyz1YfIy7cxpnfTKktyM3LyWX/oFGv2n2T1/pP8fTTlrLaIDQK8zJHwgkS8cbCPkvAarsr6dKempvLHH3/QunVr2rSpWKuUmTNn8sorrxAbG0unTp1488036dGjR4nnfvzxx4wZM6bYMU9PT7KzS5jqVEq8SrpFRETEGXLzbQx/ZyVbjqXQs1kwX9x9UZl6ih8+mck1M1dwKjPPPu3H7Jl0/5NhQNL+ggJt681EPHYL2M5uD1fIM8BMyP+ZjAc3V0Iu1VJmbj4xh06xev9J1uxPYvPRZPKsxdOq+gVJ+EVKwmsshyXdN954I/369WP8+PFkZWXRqVMnDh48iGEYzJkzh+Gni3KU0dy5cxk1ahSzZs2iZ8+eTJ8+na+++opdu3YRGnp2BcKPP/6YCRMmsGvXrqIfwmIhLKxsU7SUdIuIiIgzHUjM4KoZy8nItTLx8lY8OODcI9Zp2Xlc//ZK9sSn07FRAPPu7VWpQmyAY5PukuTnQNIBMxlP2gcn9xXs74eUo8A5/hz1DIC6zUsZIa94eygRe8rMzWfDoWTWHDBHwjcdURJeGzgs6Q4PD+fXX3+lU6dOfPHFF0yZMoXNmzfzySef8N5777Fx48ZyBdqzZ0+6d+/OW2+9BYDNZiMiIoIHHniAJ5988qzzP/74Yx566CGSk5PLdZ/TlHSLiIiIs32z4SgT523GxQLz7u1Vam9hq83grk/WsWRXAqF1PPlhfJ9yTUkvVVUn3eeSl222K0vaX5CMFyTkJ/dD6tFzv9cr0EzC67YonpQHNTMTciU04iRZuVY2HDZHwktLwhsUJuF1CwqzaU34haasuaVbeS+ckpJCcLD5D8PChQsZPnw4Pj4+DB06lMcee6xc18rNzSUmJoZJkyYVHnNxcWHgwIGsWrWq1Pelp6fTpEkTbDYbXbt25YUXXqBdu5KrgObk5JCTk1P4PDU1tVwxioiIiNjb9V0bsWJPIt9sNFsg/fJgXwJ83M8678UFO1iyKwFPNxfeHxVtn4S7unH3gtA25vZPeVkFI+T7zkjKCx7TjkN2MhzfYG7/5OFnFm8LbGI+BjUpvu9VgarvImXk7eFK78gQekeGACUn4cdTsvlm4zG+2XgMMJPwG6IjePCySNxcXZwZvthZuZPuiIgIVq1aRXBwMAsXLmTOnDkAnDp1Ci+v8v1DkJiYiNVqPWtqeFhYGDt37izxPa1bt+bDDz+kY8eOpKSk8Oqrr3LxxRezbds2GjU6u3H91KlTefbZZ8sVl4iIiIijPXdtezYcPsXBk5k8Mf9v3rmta7FRrnnrjxT2IX51RCc6RQTa7+a+vuba6+rO3RvC2prbP+VmmiPkp0fHz0zI02MhNx3it5tbSbwCiyfjQU0Lpq43N4+7VHIKv8gZypqEz1i8h42HT/HWzV1L/CJOLkzlnl7+9ttvM2HCBPz8/GjSpAkbNmzAxcWFN998k2+++YYlS5aU+VrHjx+nYcOGrFy5kl69ehUef/zxx1m2bBlr1qw57zXy8vJo06YNN998M//973/Per2kke6IiAhNLxcRERGn23I0hevf+Ys8q8H/XdeeW3s2AWDtgSRunb2aPKvBgwNaMvHyVk6O9AKTl2WuFT91CJIPQvLhgv1D5n7myXO/38W9KAkvXEdesB8QoYRc7C4zN58FW2L5z3dbycqz0izEl/dHRRMZ6ufs0OQcHDa9/P7776dHjx4cOXKEyy+/vLBlWPPmzXn++efLda2QkBBcXV2Ji4srdjwuLo7w8PAyXcPd3Z0uXbqwd+/eEl/39PTE09OzXHGJiIiIVIUOjQJ44ooonv95B8/9uJ3oJsH4eLgy9vMY8qwGQzqE89B5Cq1JCdy9IaSluZUkJw2Sj5hJ+KmCRPz0uvKkA2DNMfuPn9wD/2xDfjohP72OvF5rCGsH9aLAUwmSVIyPhxvDuzUiqn4d7vk0hgOJGVw38y9m3NyF/lFnF5eWC0ulWoadfmtlFvz37NmTHj168OabbwJmIbXGjRszfvz4Egup/ZPVaqVdu3YMGTKEadOmnfd8FVITERGR6sRmMxjz8TqW7U6gVZgfFizsikujXQN/vhrbCx+Pco+RnF92Ntx+u7n/2WdQziWCNZrNCqnHiq8hP71/6gBYc0t/b1AzMwEPLZgSH9beHCHXyLiUQ2J6Dvd/voG1B5OwWODJK6K4p19zFVmrhhzap/vTTz/llVdeYc8e86u/Vq1a8dhjj3H76V/e5TB37lxGjx7Nu+++S48ePZg+fTrz5s1j586dhIWFMWrUKBo2bMjUqVMBeO6557jooouIjIwkOTmZV155he+++46YmBjati1hvc8/KOkWERGR6iYxPYcrpi8nMd1cElevjic/jO9N/QBvx9ywOlUvv5CcTsjPXEcevwPitkFGfMnvcfMyR8ND2xUk4gWj4n7h4KJiWVKy3HwbU37YxpdrDwNwXZeGTL2+Q+XbBYpdOWx6+bRp03j66acZP348vXv3BmDFihWMHTuWxMREHn744XJdb+TIkSQkJDB58mRiY2Pp3LkzCxcuLCyudvjw4cIp7GAWbLv77ruJjY0lKCiIbt26sXLlyjIl3CIiIiLVUYifJ6+P7MSoD9fi7urCe7d3c1zCLRXn4lpQEb0xtOhf/LWMRDP5jt9e9Bi/A/Iy4cRmczuTqwcENDLXiBdWWS/YD4gA/wYaIa/FPNxceOG69rStX4dnftzOtxuPsT8hnXdvr6FdDGq4co90N2vWjGeffZZRo0YVO/7JJ5/wzDPPcODAAbsGaG8a6RYREZHqauuxFHw8XGlez8FrgzXSXTVsNnNKevx2iNsO8dvMx6T9YFjP/V4XNzPxDmxSlJj7NwD/huBfH+rUB+8g9SKvBVbuS+T+/20gOTOP0DqevHt7N7o0DnJ2WIIDp5d7eXmxdetWIiMjix3fs2cPHTp0IDs7u2IRVxEl3SIiIlLrKel2Lmu+2Wc8+YhZxC3lSFFl9eQjZuV1W975r+PmXZCANyhIyOubSXmd+gXPG4BfmEbMa4DDJzO5+9P17IpLw8PNhanXdWB4t7PbJUvVctj08sjISObNm8e///3vYsfnzp1Ly5aqrikiIiIick6ubkXT1Ol99us2K6THFSThZ2xpJyD1uLllJUF+VlGht9K4uENwM7PSet0WUDeyaKsTrpHyC0Tjuj7Mv/9iJs7dxG/b43jkq83sjE3lySvb4OpSNf8bZubmczw5i8jQOlVyv5qk3CPd8+fPZ+TIkQwcOLBwTfdff/3F4sWLmTdvHtddd51DArUXjXSLiIhIraeR7gtfXlZBEl6QiKcdL9g/VnQ87cS5p7G7+0Ld5kVJePDppLyFpq5XUzabwfTfdzPjD7Nd8iWt6jHj5i4EeLs79L5/H03mvs83cCw5izdu6sw1nRs69H4XCodWL4+JieH1119nx44dALRp04ZHHnmELl26VDziKqKkW0RERGo9Jd21g81qJuQn9xZsp6uu7zX7k58rIbe4gnegmXx7FTx6B537mE9d8A5WVfYq8PPfJ3jkq01k59loHuLLjJu70L5hgN3vYxgGc9YdYcr328i12gCo6+vB4kcuIdDHw+73u9A4NOkuSXx8PLNnzz5r2nl1o6RbREREaj3DgMxMc9/HRyOatVF+rrmO/HQyfmZinna84te1uIJvCPiFgm+o+VjavhL0Stl6LIV7Pl3P8ZRsXF0s3H9pC8ZfFomnm33W8GfnWXn6u618FXMUgMvbhnEwMYM98enc0rMxL1zXwS73uZBVedK9efNmunbtitV6nkqMTqakW0RERETkHPKyIOsUZCWbj9nJxZ+XeiwFKEdqYXE1k+/TVdkDGpmbf0OzYntAQzNBV2JeqpPpOTz9/VZ+2RILQKswP165oROdIgIrdd3DJzMZ+3kM20+k4mKBRwe3Zmy/Fqw7mMTI91YDMP++i+nWpHZXUVfSXQol3SIiIiIiDmDNM/uVZ8RDeoJZDC4jHtJPb3GQkWDuZyWV7Zou7mZSXiwhb2g++oWZxeB8Q83idLXYL1tO8PR3WzmZkYuLBe7p14KHBrbEy738o96Ld8Tx8NxNpGbnU9fXgxk3d6F3ZEjh649+tZmvY44SFV6Hnx7og5trJb4UseaZX9hkJpmficyT5n7mSfN59J1mIcBqymHVy0VERETkApeTA/fea+6/+y54ejo3HqkZXN0L2pbVP/+5+bmQmQhpsea685SjkHoUUo4V7BcUhLPlFbRTO3SOi1kKprSHFSXiJT36hYG7d41cTjGkQ30ual6XZ37Yxg+bjzNr2T4WbY/llRGd6FrGnt7WgiJtbxYUaevSOJC3b+1K/QDvYudNujKK33fEsTM2lc+W72RM91DISYPcdMhJL3gseJ6bYR7LOlWUSBcm1kmQk3LuoJpdWq2T7rLSSLeIiIhIbaNCanIhsOYXVGIvSMRPJ+MpR83jaXHm6Pm5CsL9k8UVPHyLNncf8PAreH7mvq9Z3d3D1+xzbrOCLd+8ly0fbLaCx9PHrMXPMQzwrANe/uAZAF4BBfv+xfc9/Ss/fd4wwJpbsOWxdPtRXlu4lbSMTDwtVkZ0DuX2Hg3wtFghP8ccXbbmQn62uZQgP5vMjDQWbDxAfNIpvMilY5gHncM9cbUWnUNeprmfk05uZgoueRm4WWyVi/00r0CzEJ9PcFFBPp9g6HIbhLaxzz0cwO4j3RMnTjzn6wkJCWWPTkRERERE5Fxc3SAwwtxKY7OZI6fpsQVJeKw5ep4ed/ZjfraZEOekmlu1YClIzgMKEvCSEnxrUYJf7PkZ553h0oKN0xNYthds5+ADDIei7PBkwVYKj4LQC53+8sLTr+CxTvHn3oHFk+nC/brmay72Kf5WXZU56d64ceN5z+nXr1+lghERERERESkzFxfwq2du4eeopm0YBVOeM8wR29NTn8/a0gtezyg6x2YFFzczMTz9aHEtfsziUvDcrSiBzEkzi8tlp5hJfnbqGfsp5mgzhgO+BLCAmye4epCLK8k5FrJtruThhp+PDyGBfri6eWC4eXE8w8LfcTlkGh64e/rQp20EwQEB5jR8N2/z8fR2+rmnH3jUYW+KwQ0fbiHV5sn7I3swoE2YHX+GmqXMSfeSJUscGYeIiIiIiIhjWCzmlG6varS8NC+7KAHPTjXXN9tsxZP7Yo9nbMWSfDdzPX1Bon3mqLEH4JmVx6s/b2fe+qOQC41dfHjumnb8uPkE83ea7cAGtwvjlRGd8PdyL3P4kfVgZB8b7/65n8nfb+PiFiF4e9TsEeuKstua7guF1nSLiIhIrac13SK1zrLdCUya/zfHU7ILj7lY4PErori3X3MsFSgwl5mbz+XT/uRYchb3XdqCJ66IsmfI1V5Zc0s1vRMREREREanhLmlVj18f7sctPRsDEOLnwed39WTsJS0qlHAD+Hi48czV7QB4/8/97I5Ls1u8NYlGukVERERqG410i9Rq+xPSqevnSYB32aeTn8vdn65n0fY4ejQNZu69F1U4ib/QaKRbRERERErm4wPx8ebm4+PsaESkijWv52e3hBvgmavb4e3uytqDSXwdc9Ru160plHSLiIiI1DYWC9SrZ261ZERKRBynYaA3Dw1sCcALv+zgVEaukyOqXsqddDdt2pTnnnuOw4cPOyIeERERERERucDc0acZrcPqcCozjxcX7HR2ONVKuZPuhx56iG+++YbmzZtz+eWXM2fOHHJychwRm4iIiIg4Qk4OjBtnbvo7TkTswN3Vhf+7rj0Ac9cfYf3BJCdHVH1UKOnetGkTa9eupU2bNjzwwAPUr1+f8ePHs2HDBkfEKCIiIiL2lJ8Pb79tbvn5zo5GRGqI6KbB3NQ9AoCnvt1KntXm5Iiqhwqv6e7atSszZszg+PHjTJkyhdmzZ9O9e3c6d+7Mhx9+SC0rii4iIiIiIlLrPXFFFMG+HuyKS+PDFQecHU61UOGkOy8vj3nz5nH11VfzyCOPEB0dzezZsxk+fDj//ve/ufXWW+0Zp4iIiIiIiFRzQb4eTLoyCoDpv+/h6KlMJ0fkfG7lfcOGDRv46KOP+PLLL3FxcWHUqFG8/vrrREVFFZ5z3XXX0b17d7sGKiIiIiIiItXfDd0a8VXMUdYeSOKZH7Yze3S0s0NyqnKPdHfv3p09e/bwzjvvcOzYMV599dViCTdAs2bNuOmmm+wWpIiIiIiIiFwYLBYL/3dte9xcLPy+I45ft8U6OySnshjlXHx96NAhmjRp4qh4HC41NZWAgABSUlLw9/d3djgiIiIiVS8jA/z8zP30dPD1dW48IlIjvbxwJ28v3Ye3uyuvj+zMFe3DnR2SXZU1tyz39PLTCff69evZsWMHAG3atCE6unZPGRAREREREZEiDw5oyZZjKSzfk8jYz2N45PJWjL8sEovF4uzQqlS5R7qPHj3KzTffzF9//UVgYCAAycnJXHzxxcyZM4dGjRo5Ik670Ui3iIiI1Ho2Gxw+bO43bgwuFa6tKyJyTvlWG8//vIOPVx4EYFinBrxyQ0e83F2dG5gdlDW3LPdv2Lvuuou8vDx27NhBUlISSUlJ7NixA5vNxl133VWpoEVERESkCri4QNOm5qaEW0QcyM3VhWeubscL13XAzcXCj5uPc+O7q4hNyXZ2aFWm3CPd3t7erFy5ki5duhQ7HhMTQ9++fcnMrN4l4TXSLSIiIiIiUvVW7TvJ/f+L4VRmHqF1PHl/VDSdIgKdHVaFOWykOyIigry8vLOOW61WGjRoUN7LiYiIiEhVy82Fxx4zt9xcZ0cjIrVErxZ1+X5cH1qF+RGflsON767i+03HnB2Ww5U76X7llVd44IEHWL9+feGx9evXM2HCBF599VW7BiciIiIiDpCXB6++am4lDKaIiDhK47o+zL/vYgZEhZKTb2PCnE28+usubLZyTcC+oJR7enlQUBCZmZnk5+fj5mYWPz+97/uPdhNJSUn2i9RONL1cREREaj21DBMRJ7PaDF7+dSfvLtsPwKC2Ybw+sjO+nuVusOU0DmsZNn369MrEJSIiIiIiIrWcq4uFSVe2oXVYHZ6cv4Xftscx/J2VzB4dTaMgH2eHZ1flHum+0GmkW0RERGo9jXSLSDUSc+gU934WQ2J6DnV9PZh1eze6Nw12dljnVdbcskJJt9Vq5bvvvmPHjh0AtGvXjquvvhpX1+rfa01Jt4iIiNR6SrpFpJo5npzF3Z+uZ9vxVNxdLfzfdR24MTrC2WGdk8OS7r179zJkyBCOHTtG69atAdi1axcRERH8/PPPtGjRonKRO5iSbhEREan1lHSLSDWUmZvPI/M2s2BrLADPXdOOUb2aOjeoc3BYy7AHH3yQFi1acOTIETZs2MCGDRs4fPgwzZo148EHH6xU0CIiIiIiIlI7+Xi4MfOWrkwY0JIGAV5c0T7c2SHZRblHun19fVm9ejUdOnQodnzz5s307t2b9PR0uwZobxrpFhERkVrPZoOCZYK0aQMu5R6HERFxqLTsPOp4uTs7jHNyWPVyT09P0tLSzjqenp6Oh4dHeS8nIiIiIlXNxQXatXN2FCIiparuCXd5lPtrzauuuop77rmHNWvWYBgGhmGwevVqxo4dy9VXX+2IGEVEREREREQuSOVOumfMmEGLFi3o1asXXl5eeHl50bt3byIjI3njjTccEaOIiIiI2FNuLjzzjLnl5jo7GhGRGq1ca7oNw+DIkSPUq1ePY8eOFbYMa9OmDZGRkQ4L0p60pltERERqPVUvFxGpNIdULzcMg8jISI4ePUpkZCTDhg1j2LBhlU64Z86cSdOmTfHy8qJnz56sXbu2TO+bM2cOFouFa6+9tlL3FxEREREREXGEciXdLi4utGzZkpMnT9otgLlz5zJx4kSmTJnChg0b6NSpE4MHDyY+Pv6c7zt48CCPPvooffv2tVssIiIiIiIiIvZU7jXdL774Io899hhbt261SwDTpk3j7rvvZsyYMbRt25ZZs2bh4+PDhx9+WOp7rFYrt956K88++yzNmze3SxwiIiIiIiIi9lbulmGjRo0iMzOTTp064eHhgbe3d7HXk5KSynyt3NxcYmJimDRpUuExFxcXBg4cyKpVq0p933PPPUdoaCh33nkny5cvP+c9cnJyyMnJKXyemppa5vhEREREREREKqPcSffrr7+OxWKxy80TExOxWq2EhYUVOx4WFsbOnTtLfM+KFSv44IMP2LRpU5nuMXXqVJ599tnKhioiIiIiIiJSbuVOuv/1r385IIyySUtL4/bbb+f9998nJCSkTO+ZNGkSEydOLHyemppKRESEo0IUERERERERKVTupNvV1ZUTJ04QGhpa7PjJkycJDQ3FarWW+VohISG4uroSFxdX7HhcXBzh4eFnnb9v3z4OHjzIsGHDCo/ZbDYA3Nzc2LVrFy1atCj2Hk9PTzw9Pcsck4iIiEiN5+UFp7vFeHk5NxYRkRqu3IXUSmvrnZOTg4eHR7mu5eHhQbdu3Vi8eHHhMZvNxuLFi+nVq9dZ50dFRbFlyxY2bdpUuF199dX079+fTZs2aQRbREREpCxcXaF7d3NzdXV2NCIiNVqZR7pnzJgBgMViYfbs2fj5+RW+ZrVa+fPPP4mKiip3ABMnTmT06NFER0fTo0cPpk+fTkZGBmPGjAHMwm0NGzZk6tSpeHl50b59+2LvDwwMBDjruIiIiIiIiIizlTnpfv311wFzpHvWrFm4nvGtqIeHB02bNmXWrFnlDmDkyJEkJCQwefJkYmNj6dy5MwsXLiwsrnb48GFcXMo9IC8iIiIipcnNhTfeMPcnTIByzlYUEZGysxilzRcvRf/+/fnmm28ICgpyVEwOlZqaSkBAACkpKfj7+zs7HBEREZGql5EBp2ctpqeDr69z4xERuQCVNbcsdyG1JUuWVCowERERERERkdqi3Em31Wrl448/ZvHixcTHxxdWDz/tjz/+sFtwIiIiIiIiIheycifdEyZM4OOPP2bo0KG0b98ei8XiiLhERERERERELnjlTrrnzJnDvHnzGDJkiCPiEREREREREakxyl0W3MPDg8jISEfEIiIiIiIiIlKjlDvpfuSRR3jjjTcoZ9FzERERERERkVqn3NPLV6xYwZIlS1iwYAHt2rXD3d292OvffPON3YITEREREQfw8oLTHWm8vJwbi4hIDVfupDswMJDrrrvOEbGIiIiISFVwdYVLL3V2FCIitUK5k+6PPvrIEXGIiIiIiIiI1DhlXtMdHx9/ztfz8/NZu3ZtpQMSEREREQfLy4OZM80tL8/Z0YiI1GhlTrrr169fLPHu0KEDR44cKXx+8uRJevXqZd/oRERERMT+cnNh/Hhzy811djQiIjVamZPuf1YrP3jwIHn/+GZUFc1FREREREREipS7Zdi5WCwWe15ORERERERE5IJm16RbRERERERERIqUuXq5xWIhLS0NLy8vDMPAYrGQnp5OamoqQOGjiIiIiIiIiJjKnHQbhkGrVq2KPe/SpUux55peLiIiIiIiIlKkzEn3kiVLHBmHiIiIiIiISI1T5qT7kksucWQcIiIiIlJVPD3hp5+K9kVExGHKnHSLiIiISA3h5gZDhzo7ChGRWkHVy0VEREREREQcRCPdIiIiIrVNXh7873/m/q23gru7c+MREanBlHSLiIiI1Da5uTBmjLk/YoSSbhERB6r09PLU1FS+++47duzYYY94RERERERERGqMcifdN954I2+99RYAWVlZREdHc+ONN9KxY0fmz59v9wBFRERERERELlTlTrr//PNP+vbtC8C3336LYRgkJyczY8YMnn/+ebsHKCIiIiIiInKhKnfSnZKSQnBwMAALFy5k+PDh+Pj4MHToUPbs2WP3AEVEREREREQuVOVOuiMiIli1ahUZGRksXLiQQYMGAXDq1Cm8vLzsHqCIiIiIiIjIharc1csfeughbr31Vvz8/GjSpAmXXnopYE4779Chg73jExEREREREblglTvpvv/+++nRowdHjhzh8ssvx8XFHCxv3ry51nSLiIiIXAg8PWHevKJ9ERFxGIthGEZlLmC1WtmyZQtNmjQhKCjIXnE5TGpqKgEBAaSkpODv7+/scEREREREROQCVNbcstxruh966CE++OADwEy4L7nkErp27UpERARLly6tcMAiIiIiIiIiNU25k+6vv/6aTp06AfDjjz9y4MABdu7cycMPP8xTTz1l9wBFRERExM7y8+Grr8wtP9/Z0YiI1GjlTroTExMJDw8H4JdffmHEiBG0atWKO+64gy1bttg9QBERERGxs5wcuPFGc8vJcXY0IiI1WrmT7rCwMLZv347VamXhwoVcfvnlAGRmZuLq6mr3AEVEREREREQuVOWuXj5mzBhuvPFG6tevj8ViYeDAgQCsWbOGqKgouwcoIiIiIiIicqEqd9L9zDPP0L59e44cOcKIESPwLGgz4erqypNPPmn3AEVEREREREQuVJVuGXahUcswERERqfUyMsDPz9xPTwdfX+fGIyJyAXJYyzCAZcuWMWzYMCIjI4mMjOTqq69m+fLlFQ5WREREREREpCYqd9L9+eefM3DgQHx8fHjwwQd58MEH8fb2ZsCAAXzxxReOiFFERERERETkglTu6eVt2rThnnvu4eGHHy52fNq0abz//vvs2LHDrgHam6aXi4iISK2Xlwf/+5+5f+ut4O7u3HhERC5AZc0ty510e3p6sm3bNiIjI4sd37t3L+3btyc7O7tiEVcRJd0iIiIiIiJSWQ5b0x0REcHixYvPOv77778TERFR3suJiIiIiIiI1FjlTrofeeQRHnzwQe677z4+++wzPvvsM8aOHctDDz3Eo48+WqEgZs6cSdOmTfHy8qJnz56sXbu21HO/+eYboqOjCQwMxNfXl86dO/PZZ59V6L4iIiIitVJ+Pvz8s7nl5zs7GhGRGq3cfbrvu+8+wsPDee2115g3bx5grvOeO3cu11xzTbkDmDt3LhMnTmTWrFn07NmT6dOnM3jwYHbt2kVoaOhZ5wcHB/PUU08RFRWFh4cHP/30E2PGjCE0NJTBgweX+/4iIiIitU5ODlx1lbmfng5u5f6TUEREyqhca7rz8/N54YUXuOOOO2jUqJFdAujZsyfdu3fnrbfeAsBmsxEREcEDDzzAk08+WaZrdO3alaFDh/Lf//73vOdqTbeIiIjUeurTLSJSaQ5Z0+3m5sbLL79Mvp2mIeXm5hITE8PAgQOLAnJxYeDAgaxateq87zcMg8WLF7Nr1y769etX4jk5OTmkpqYW20RERERERESqQrnXdA8YMIBly5bZ5eaJiYlYrVbCwsKKHQ8LCyM2NrbU96WkpODn54eHhwdDhw7lzTff5PLLLy/x3KlTpxIQEFC4qdibiIiIiIiIVJVyL+C58sorefLJJ9myZQvdunXD9x/Tka6++mq7BVeaOnXqsGnTJtLT01m8eDETJ06kefPmXHrppWedO2nSJCZOnFj4PDU1VYm3iIiIiIiIVIlyJ933338/ANOmTTvrNYvFgtVqLfO1QkJCcHV1JS4urtjxuLg4wsPDS32fi4tLYZ/wzp07s2PHDqZOnVpi0u3p6Ymnp2eZYxIRERERERGxl3JPL7fZbKVu5Um4ATw8POjWrVuxvt82m43FixfTq1evcsWUk5NTrnuLiIiIiIiIOJrT+0NMnDiR0aNHEx0dTY8ePZg+fToZGRmMGTMGgFGjRtGwYUOmTp0KmGu0o6OjadGiBTk5Ofzyyy989tlnvPPOO878MUREREQuHB4eUNA5Bg8P58YiIlLDlTnp/uOPPxg/fjyrV68+qxx6SkoKF198Me+8806pVcRLM3LkSBISEpg8eTKxsbF07tyZhQsXFhZXO3z4MC4uRQPyGRkZ3H///Rw9ehRvb2+ioqL4/PPPGTlyZLnuKyIiIlJrubvDuHHOjkJEpFYoc5/uq6++mv79+/Pwww+X+PqMGTNYsmQJ3377rV0DtDf16RYREREREZHKsnuf7s2bN3PFFVeU+vqgQYOIiYkpX5QiIiIiUvWsVli61NzKWZNHRETKp8zTy+Pi4nB3dy/9Qm5uJCQk2CUoEREREXGg7Gzo39/cT0+Hf7SAFRER+ynzSHfDhg3ZunVrqa///fff1K9f3y5BiYiIiIiIiNQEZU66hwwZwtNPP012dvZZr2VlZTFlyhSuuuoquwYnIiIiIiIiciErcyG1uLg4unbtiqurK+PHj6d169YA7Ny5k5kzZ2K1WtmwYUNh1fHqSoXUREREpNbLyAA/P3Nf08tFRCqkrLllmdd0h4WFsXLlSu677z4mTZrE6VzdYrEwePBgZs6cWe0TbhEREREREZGqVOakG6BJkyb88ssvnDp1ir1792IYBi1btiQoKMhR8YmIiIiIiIhcsMqVdJ8WFBRE9+7d7R2LiIiIiIiISI1SoaRbRERERC5g7u7w8stF+yIi4jBKukVERERqGw8PeOwxZ0chIlIrlLllmIiIiIiIiIiUj0a6RURERGobqxU2bDD3u3YFV1fnxiMiUoMp6RYRERGpbbKzoUcPc199ukVEHErTy0VEREREREQcREm3iIiIiIiIiIMo6RYRERERERFxECXdIiIiIiIiIg6ipFtERERERETEQZR0i4iIiIiIiDiIWoaJiIiI1Dbu7jBlStG+iIg4jJJuERERkdrGwwOeecbZUYiI1AqaXi4iIiIiIiLiIBrpFhEREaltbDbYscPcb9MGXDQOIyLiKEq6RURERGqbrCxo397cT08HX1/nxiMiUoPpa00RERERERERB1HSLSIiIiIiIuIgSrpFREREREREHERJt4iIiIiIiIiDKOkWERERERERcRAl3SIiIiIiIiIOopZhIiIiIrWNuzs8+mjRvoiIOIySbhEREZHaxsMDXnnF2VGIiNQKml4uIiIiIiIi4iAa6RYRERGpbWw2OHzY3G/cGFw0DiMi4ihKukVERERqm6wsaNbM3E9PB19f58YjIlKD6WtNEREREREREQdR0i0iIiIiIiLiIEq6RURERERERBxESbeIiIiIiIiIgyjpFhEREREREXEQJd0iIiIiIiIiDlItku6ZM2fStGlTvLy86NmzJ2vXri313Pfff5++ffsSFBREUFAQAwcOPOf5IiIiIvIPbm5w//3m5qYOsiIijuT0pHvu3LlMnDiRKVOmsGHDBjp16sTgwYOJj48v8fylS5dy8803s2TJElatWkVERASDBg3i2LFjVRy5iIiIyAXK0xNmzjQ3T09nRyMiUqNZDMMwnBlAz5496d69O2+99RYANpuNiIgIHnjgAZ588snzvt9qtRIUFMRbb73FqFGjznt+amoqAQEBpKSk4O/vX+n4RUREREREpPYpa27p1JHu3NxcYmJiGDhwYOExFxcXBg4cyKpVq8p0jczMTPLy8ggODnZUmCIiIiI1i2FAQoK5OXf8RUSkxnPqIp7ExESsVithYWHFjoeFhbFz584yXeOJJ56gQYMGxRL3M+Xk5JCTk1P4PDU1teIBi4iIiNQEmZkQGmrup6eDr69z4xERqcGcvqa7Ml588UXmzJnDt99+i5eXV4nnTJ06lYCAgMItIiKiiqMUERERERGR2sqpSXdISAiurq7ExcUVOx4XF0d4ePg53/vqq6/y4osv8ttvv9GxY8dSz5s0aRIpKSmF25EjR+wSu4iIiIiIiMj5ODXp9vDwoFu3bixevLjwmM1mY/HixfTq1avU97388sv897//ZeHChURHR5/zHp6envj7+xfbRERERERERKqC0xszTpw4kdGjRxMdHU2PHj2YPn06GRkZjBkzBoBRo0bRsGFDpk6dCsBLL73E5MmT+eKLL2jatCmxsbEA+Pn54efn57SfQ0REREREROSfnJ50jxw5koSEBCZPnkxsbCydO3dm4cKFhcXVDh8+jItL0YD8O++8Q25uLjfccEOx60yZMoVnnnmmKkMXEREREREROSen9+muaurTLSIiIrVeRgacniGo6uUiIhVS1tzS6SPdIiIiIlLF3Nxg9OiifRERcRj9lhURERGpbTw94eOPnR2FiEitcEH36RYRERERERGpzjTSLSIiIlLbGAZkZpr7Pj5gsTg3HhGRGkwj3SIiIiK1TWamWUjNz68o+RYREYdQ0i0iIiIiIiLiIEq6RURERERERBxESbeIiIiIiIiIgyjpFhEREREREXEQJd0iIiIiIiIiDqKkW0RERERERMRB1KdbREREpLZxdYUbbijaFxERh1HSLSIiIlLbeHnBV185OwoRkVpB08tFREREREREHERJt4iIiIiIiIiDKOkWERERqW0yMsBiMbeMDGdHIyJSoynpFhEREREREXEQJd0iIiIiIiIiDqKkW0RERERERMRBlHSLiIiIiIiIOIiSbhEREREREREHUdItIiIiIiIi4iBuzg5ARERERKqYqysMGVK0LyIiDqOkW0RERKS28fKCn392dhQiIrWCppeLiIiIiIiIOIiSbhEREREREREHUdItIiIiUttkZICvr7llZDg7GhGRGk1rukVERERqo8xMZ0cgIlIraKRbRERERERExEGUdIuIiIiIiIg4iJJuEREREREREQdR0i0iIiIiIiLiIEq6RURERERERBxE1ctFREREahsXF7jkkqJ9ERFxGCXdIiIiIrWNtzcsXersKEREagV9tSkiIiIiIiLiIEq6RURERERERBxESbeIiIhIbZORAfXqmVtGhrOjERGp0bSmW0RERKQ2Skx0dgQiIrWCRrpFREREREREHERJt4iIiIiIiIiDKOkWERERERERcRCnJ90zZ86kadOmeHl50bNnT9auXVvqudu2bWP48OE0bdoUi8XC9OnTqy5QERERERERkXJyatI9d+5cJk6cyJQpU9iwYQOdOnVi8ODBxMfHl3h+ZmYmzZs358UXXyQ8PLyKoxUREREREREpH6cm3dOmTePuu+9mzJgxtG3bllmzZuHj48OHH35Y4vndu3fnlVde4aabbsLT07OKoxURERGpIVxcIDra3FycPvFRRKRGc9pv2dzcXGJiYhg4cGBRMC4uDBw4kFWrVjkrLBEREZGaz9sb1q0zN29vZ0cjIlKjOa1Pd2JiIlarlbCwsGLHw8LC2Llzp93uk5OTQ05OTuHz1NRUu11bRERERERE5Fxq/HyiqVOnEhAQULhFREQ4OyQRERERERGpJZyWdIeEhODq6kpcXFyx43FxcXYtkjZp0iRSUlIKtyNHjtjt2iIiIiIXpMxMaNrU3DIznR2NiEiN5rSk28PDg27durF48eLCYzabjcWLF9OrVy+73cfT0xN/f/9im4iIiEitZhhw6JC5GYazoxERqdGctqYbYOLEiYwePZro6Gh69OjB9OnTycjIYMyYMQCMGjWKhg0bMnXqVMAsvrZ9+/bC/WPHjrFp0yb8/PyIjIx02s8hIiIiIiIiUhKnJt0jR44kISGByZMnExsbS+fOnVm4cGFhcbXDhw/jckYbi+PHj9OlS5fC56+++iqvvvoql1xyCUuXLq3q8EVERERERETOyWIYtWtOUWpqKgEBAaSkpGiquYiIiNROGRng52fup6eDr69z4xERuQCVNbes8dXLRURERERERJxFSbeIiIiIiIiIgzh1TbeIiIiIOIHFAm3bFu2LiIjDKOkWERERqW18fGDbNmdHISJSK2h6uYiIiIiIiIiDKOkWERERERERcRAl3SIiIiK1TWYmtGtnbpmZzo5GRKRG05puERERkdrGMGD79qJ9ERFxGI10i4iIiIiIiDiIkm4RERERERERB1HSLSIiIiIiIuIgSrpFREREREREHERJt4iIiIiIiIiDqHq5iIiISG1jsUCTJkX7IiLiMEq6RURERGobHx84eNDZUYiI1AqaXi4iIiIiIiLiIEq6RURERERERBxESbeIiIhIbZOVBd27m1tWlrOjERGp0bSmW0RERKS2sdlg/fqifRERcRiNdIuIiIiIiIg4iJJuEREREREREQdR0i0iIiIiIiLiIEq6RURERERERBxESbeIiIiIiIiIg6h6uYiIiEhtFBLi7AhERGoFJd0iIiIitY2vLyQkODsKEZFaQdPLRURERERERBxESbeIiIiIiIiIgyjpFhEREaltsrLg0kvNLSvL2dGIiNRoWtMtIiIiUtvYbLBsWdG+iIg4jEa6RURERERERBxESbeIiIiIiIiIgyjpFhEREREREXEQJd0iIiIiIiIiDqKkW0RERERERMRBVL1cREREpDby8XF2BCIitYKSbhEREZHaxtcXMjKcHYWISK2g6eUiIiIiIiIiDqKkW0RERERERMRBlHSLiIiI1DbZ2TB0qLllZzs7GhGRGk1rukVERERqG6sVfvmlaF9ERBxGI90iIiIiIiIiDlItku6ZM2fStGlTvLy86NmzJ2vXrj3n+V999RVRUVF4eXnRoUMHfjn9Ta2IiIiIiIhINeL0pHvu3LlMnDiRKVOmsGHDBjp16sTgwYOJj48v8fyVK1dy8803c+edd7Jx40auvfZarr32WrZu3VrFkYuIiIiIiIicm8UwDMOZAfTs2ZPu3bvz1ltvAWCz2YiIiOCBBx7gySefPOv8kSNHkpGRwU8//VR47KKLLqJz587MmjXrvPdLTU0lICCAlJQU/P397feDiIiIiFwoMjLAz8/cT083+3aLiEi5lDW3dOpId25uLjExMQwcOLDwmIuLCwMHDmTVqlUlvmfVqlXFzgcYPHhwqeeLiIiIiIiIOItTq5cnJiZitVoJCwsrdjwsLIydO3eW+J7Y2NgSz4+NjS3x/JycHHJycgqfp6SkAOa3EiIiIiK1UkZG0X5qqiqYi4hUwOmc8nyTx2t8y7CpU6fy7LPPnnU8IiLCCdGIiIiIVDMNGjg7AhGRC1paWhoBAQGlvu7UpDskJARXV1fi4uKKHY+LiyM8PLzE94SHh5fr/EmTJjFx4sTC5zabjaSkJOrWrYvFYqnkT+A4qampREREcOTIEa09l2L02ZCS6HMhpdFnQ0qjz4aURp8NKYk+F2czDIO0tDQanOfLS6cm3R4eHnTr1o3Fixdz7bXXAmZSvHjxYsaPH1/ie3r16sXixYt56KGHCo8tWrSIXr16lXi+p6cnnp6exY4FBgbaI/wq4e/vrw+1lEifDSmJPhdSGn02pDT6bEhp9NmQkuhzUdy5RrhPc/r08okTJzJ69Giio6Pp0aMH06dPJyMjgzFjxgAwatQoGjZsyNSpUwGYMGECl1xyCa+99hpDhw5lzpw5rF+/nvfee8+ZP4aIiIiIiIjIWZyedI8cOZKEhAQmT55MbGwsnTt3ZuHChYXF0g4fPoyLS1GR9YsvvpgvvviC//znP/z73/+mZcuWfPfdd7Rv395ZP4KIiIiIiIhIiZyedAOMHz++1OnkS5cuPevYiBEjGDFihIOjci5PT0+mTJly1tR4EX02pCT6XEhp9NmQ0uizIaXRZ0NKos9FxVmM89U3FxEREREREZEKcTn/KSIiIiIiIiJSEUq6RURERERERBxESbeIiIiIiIiIgyjprqZmzpxJ06ZN8fLyomfPnqxdu9bZIUkV+vPPPxk2bBgNGjTAYrHw3XffFXvdMAwmT55M/fr18fb2ZuDAgezZs8c5wUqVmjp1Kt27d6dOnTqEhoZy7bXXsmvXrmLnZGdnM27cOOrWrYufnx/Dhw8nLi7OSRFLVXjnnXfo2LFjYe/UXr16sWDBgsLX9ZmQ01588UUsFgsPPfRQ4TF9PmqnZ555BovFUmyLiooqfF2fi9rr2LFj3HbbbdStWxdvb286dOjA+vXrC1/X36Hlp6S7Gpo7dy4TJ05kypQpbNiwgU6dOjF48GDi4+OdHZpUkYyMDDp16sTMmTNLfP3ll19mxowZzJo1izVr1uDr68vgwYPJzs6u4kilqi1btoxx48axevVqFi1aRF5eHoMGDSIjI6PwnIcffpgff/yRr776imXLlnH8+HGuv/56J0YtjtaoUSNefPFFYmJiWL9+PZdddhnXXHMN27ZtA/SZENO6det499136dixY7Hj+nzUXu3atePEiROF24oVKwpf0+eidjp16hS9e/fG3d2dBQsWsH37dl577TWCgoIKz9HfoRVgSLXTo0cPY9y4cYXPrVar0aBBA2Pq1KlOjEqcBTC+/fbbwuc2m80IDw83XnnllcJjycnJhqenp/Hll186IUJxpvj4eAMwli1bZhiG+Vlwd3c3vvrqq8JzduzYYQDGqlWrnBWmOEFQUJAxe/ZsfSbEMAzDSEtLM1q2bGksWrTIuOSSS4wJEyYYhqHfGbXZlClTjE6dOpX4mj4XtdcTTzxh9OnTp9TX9XdoxWiku5rJzc0lJiaGgQMHFh5zcXFh4MCBrFq1yomRSXVx4MABYmNji31GAgIC6Nmzpz4jtVBKSgoAwcHBAMTExJCXl1fs8xEVFUXjxo31+aglrFYrc+bMISMjg169eukzIQCMGzeOoUOHFvscgH5n1HZ79uyhQYMGNG/enFtvvZXDhw8D+lzUZj/88APR0dGMGDGC0NBQunTpwvvvv1/4uv4OrRgl3dVMYmIiVquVsLCwYsfDwsKIjY11UlRSnZz+HOgzIjabjYceeojevXvTvn17wPx8eHh4EBgYWOxcfT5qvi1btuDn54enpydjx47l22+/pW3btvpMCHPmzGHDhg1MnTr1rNf0+ai9evbsyccff8zChQt55513OHDgAH379iUtLU2fi1ps//79vPPOO7Rs2ZJff/2V++67jwcffJBPPvkE0N+hFeXm7ABERKRixo0bx9atW4utwZPaq3Xr1mzatImUlBS+/vprRo8ezbJly5wdljjZkSNHmDBhAosWLcLLy8vZ4Ug1cuWVVxbud+zYkZ49e9KkSRPmzZuHt7e3EyMTZ7LZbERHR/PCCy8A0KVLF7Zu3cqsWbMYPXq0k6O7cGmku5oJCQnB1dX1rOqQcXFxhIeHOykqqU5Ofw70Gandxo8fz08//cSSJUto1KhR4fHw8HByc3NJTk4udr4+HzWfh4cHkZGRdOvWjalTp9KpUyfeeOMNfSZquZiYGOLj4+natStubm64ubmxbNkyZsyYgZubG2FhYfp8CACBgYG0atWKvXv36vdGLVa/fn3atm1b7FibNm0Klx7o79CKUdJdzXh4eNCtWzcWL15ceMxms7F48WJ69erlxMikumjWrBnh4eHFPiOpqamsWbNGn5FawDAMxo8fz7fffssff/xBs2bNir3erVs33N3di30+du3axeHDh/X5qGVsNhs5OTn6TNRyAwYMYMuWLWzatKlwi46O5tZbby3c1+dDANLT09m3bx/169fX741arHfv3me1It29ezdNmjQB9HdoRWl6eTU0ceJERo8eTXR0ND169GD69OlkZGQwZswYZ4cmVSQ9PZ29e/cWPj9w4ACbNm0iODiYxo0b89BDD/H888/TsmVLmjVrxtNPP02DBg249tprnRe0VIlx48bxxRdf8P3331OnTp3C9VMBAQF4e3sTEBDAnXfeycSJEwkODsbf358HHniAXr16cdFFFzk5enGUSZMmceWVV9K4cWPS0tL44osvWLp0Kb/++qs+E7VcnTp1Cms+nObr60vdunULj+vzUTs9+uijDBs2jCZNmnD8+HGmTJmCq6srN998s35v1GIPP/wwF198MS+88AI33ngja9eu5b333uO9994DwGKx6O/QinB2+XQp2Ztvvmk0btzY8PDwMHr06GGsXr3a2SFJFVqyZIkBnLWNHj3aMAyzXcPTTz9thIWFGZ6ensaAAQOMXbt2OTdoqRIlfS4A46OPPio8Jysry7j//vuNoKAgw8fHx7juuuuMEydOOC9ocbg77rjDaNKkieHh4WHUq1fPGDBggPHbb78Vvq7PhJzpzJZhhqHPR201cuRIo379+oaHh4fRsGFDY+TIkcbevXsLX9fnovb68ccfjfbt2xuenp5GVFSU8d577xV7XX+Hlp/FMAzDSfm+iIiIiIiISI2mNd0iIvL/7dxNaBNbHIbxZ0SNSVSoptbgRsRSakHBD7B+LLSgiaBUIiIESd2Uai1uBLH4UdGlqCsDinVTsVBBKdIq6rIgCmItGN0pQhEVXWjBbtq78BLI7eXiVefW9D4/GJg5ZzLzn9m9OXOOJEmSQmLoliRJkiQpJIZuSZIkSZJCYuiWJEmSJCkkhm5JkiRJkkJi6JYkSZIkKSSGbkmSJEmSQmLoliRJkiQpJIZuSZL0w4Ig4NatW5NdhiRJvy1DtyRJZaqpqYkgCCZsqVRqskuTJEl/mj7ZBUiSpB+XSqW4evVqSVskEpmkaiRJ0l850i1JUhmLRCIsXLiwZKuoqAC+ffqdz+dJp9NEo1GWLFnCjRs3Sn4/NDTE5s2biUajzJ8/n+bmZr58+VJyTmdnJ3V1dUQiEZLJJAcPHizp//DhAzt37iQWi1FdXU1vb2+x79OnT2SzWSorK4lGo1RXV0/4k0CSpKnM0C1J0hR2/PhxMpkMg4ODZLNZ9uzZQ6FQAGBkZIStW7dSUVHB48eP6enp4f79+yWhOp/P09raSnNzM0NDQ/T29rJ06dKSe5w6dYrdu3fz7Nkztm3bRjab5ePHj8X7P3/+nP7+fgqFAvl8nkQi8d+9AEmSJlkwPj4+PtlFSJKkf6+pqYmuri5mzZpV0t7e3k57eztBENDS0kI+ny/2rV27lpUrV3Lx4kUuX77MkSNHePPmDfF4HIC+vj62b9/O8PAwVVVVLFq0iH379nHmzJm/rSEIAo4dO8bp06eBb0F+9uzZ9Pf3k0ql2LFjB4lEgs7OzpDegiRJvzfndEuSVMY2bdpUEqoB5s2bV9yvr68v6auvr+fp06cAFAoFVqxYUQzcAOvXr2dsbIyXL18SBAHDw8M0NDT8Yw3Lly8v7sfjcebOncu7d+8A2L9/P5lMhidPnrBlyxYaGxtZt27dDz2rJEnlyNAtSVIZi8fjEz73/lWi0eh3nTdjxoyS4yAIGBsbAyCdTvP69Wv6+vq4d+8eDQ0NtLa2cvbs2V9eryRJvyPndEuSNIU9fPhwwnFtbS0AtbW1DA4OMjIyUuwfGBhg2rRp1NTUMGfOHBYvXsyDBw9+qobKykpyuRxdXV1cuHCBS5cu/dT1JEkqJ450S5JUxkZHR3n79m1J2/Tp04uLlfX09LB69Wo2bNjAtWvXePToEVeuXAEgm81y8uRJcrkcHR0dvH//nra2Nvbu3UtVVRUAHR0dtLS0sGDBAtLpNJ8/f2ZgYIC2trbvqu/EiROsWrWKuro6RkdHuX37djH0S5L0f2DoliSpjN25c4dkMlnSVlNTw4sXL4BvK4t3d3dz4MABkskk169fZ9myZQDEYjHu3r3LoUOHWLNmDbFYjEwmw7lz54rXyuVyfP36lfPnz3P48GESiQS7du367vpmzpzJ0aNHefXqFdFolI0bN9Ld3f0LnlySpPLg6uWSJE1RQRBw8+ZNGhsbJ7sUSZL+t5zTLUmSJElSSAzdkiRJkiSFxDndkiRNUc4gkyRp8jnSLUmSJElSSAzdkiRJkiSFxNAtSZIkSVJIDN2SJEmSJIXE0C1JkiRJUkgM3ZIkSZIkhcTQLUmSJElSSAzdkiRJkiSFxNAtSZIkSVJI/gCNZ35yVHi+6QAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "2ADy7JKjbXQr"
+ },
+ "source": [
+ "## 5. Evaluating Performance\n",
+ "\n",
+ "In this section we will investigate how it works on different parts."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "1t7bz29ms4aB"
+ },
+ "source": [
+ "def predict_image(filename):\n",
+ " image = Image.open(filename).resize((IMAGE_HEIGHT, IMAGE_WIDTH))\n",
+ " image_np = load_image_into_numpy_array(image)\n",
+ " expanded = np.expand_dims(image_np, axis=0)\n",
+ " return model.predict(expanded)[0][0]\n",
+ "\n",
+ "def show_df_row(row):\n",
+ " image_path = row[\"filepath\"]\n",
+ " image = Image.open(image_path).resize((IMAGE_WIDTH, IMAGE_HEIGHT))\n",
+ " img = load_image_into_numpy_array(image)\n",
+ " expanded = np.expand_dims(img, axis=0)\n",
+ " pred = model.predict(expanded)[0][0]\n",
+ " guess = \"neg\"\n",
+ " if pred > 0.5:\n",
+ " guess = \"pos\"\n",
+ " title = \"Image: \"+row[\"filename\"]+\" Label: \"+row[\"label\"]+\" Guess: \"+guess+\" Score: \"+str(pred)\n",
+ " plt.title(title)\n",
+ " plt.imshow(img)\n",
+ " plt.show()\n",
+ " return"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "results = []\n",
+ "for image in os.listdir(test_neg_dir):\n",
+ " filename = test_neg_dir+\"/\"+image\n",
+ " confidence = predict_image(filename)\n",
+ " guess = 'pos' if confidence > 0.5 else 'neg'\n",
+ " results.append([filename, image, \"neg\", guess, confidence])\n",
+ "\n",
+ "for image in os.listdir(test_pos_dir):\n",
+ " filename = test_pos_dir+\"/\"+image\n",
+ " confidence = predict_image(filename)\n",
+ " guess = 'pos' if confidence > 0.5 else 'neg'\n",
+ " results.append([filename, image, \"pos\", guess, confidence])\n",
+ "\n",
+ "sorted_results = sorted(results, key=lambda x: x[4], reverse=True)\n",
+ "df = pd.DataFrame(data=sorted_results, columns=[\"filepath\",\"filename\",\"label\",\"guess\",\"confidence\"])\n",
+ "\n",
+ "print(\"Done inference!\")"
+ ],
+ "metadata": {
+ "id": "OWRIlAWS-xyc",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "01dadfb1-9298-493d-ffdc-7f85cecb912d"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 4s/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 31ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 31ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 31ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 32ms/step\n",
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
+ "Done inference!\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df.head()"
+ ],
+ "metadata": {
+ "id": "ExyF1K3jMxzH",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
+ },
+ "outputId": "1b1560c1-a12c-45c1-be1c-7c6b63187efc"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " filepath filename label \\\n",
+ "0 /content/medical-ai/images/Cardiomegaly/test/p... 00013615_052.jpg pos \n",
+ "1 /content/medical-ai/images/Cardiomegaly/test/p... 00030206_013.jpg pos \n",
+ "2 /content/medical-ai/images/Cardiomegaly/test/p... 00004342_002.jpg pos \n",
+ "3 /content/medical-ai/images/Cardiomegaly/test/p... 00004893_085.jpg pos \n",
+ "4 /content/medical-ai/images/Cardiomegaly/test/p... 00011557_003.jpg pos \n",
+ "\n",
+ " guess confidence \n",
+ "0 pos 0.984043 \n",
+ "1 pos 0.962622 \n",
+ "2 pos 0.947140 \n",
+ "3 pos 0.940779 \n",
+ "4 pos 0.933133 "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " filepath \n",
+ " filename \n",
+ " label \n",
+ " guess \n",
+ " confidence \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " /content/medical-ai/images/Cardiomegaly/test/p... \n",
+ " 00013615_052.jpg \n",
+ " pos \n",
+ " pos \n",
+ " 0.984043 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " /content/medical-ai/images/Cardiomegaly/test/p... \n",
+ " 00030206_013.jpg \n",
+ " pos \n",
+ " pos \n",
+ " 0.962622 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " /content/medical-ai/images/Cardiomegaly/test/p... \n",
+ " 00004342_002.jpg \n",
+ " pos \n",
+ " pos \n",
+ " 0.947140 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " /content/medical-ai/images/Cardiomegaly/test/p... \n",
+ " 00004893_085.jpg \n",
+ " pos \n",
+ " pos \n",
+ " 0.940779 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " /content/medical-ai/images/Cardiomegaly/test/p... \n",
+ " 00011557_003.jpg \n",
+ " pos \n",
+ " pos \n",
+ " 0.933133 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 60,\n \"fields\": [\n {\n \"column\": \"filepath\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 60,\n \"samples\": [\n \"/content/medical-ai/images/Cardiomegaly/test/positive/00013615_052.jpg\",\n \"/content/medical-ai/images/Cardiomegaly/test/positive/00019187_000.jpg\",\n \"/content/medical-ai/images/Cardiomegaly/test/negative/00000090_006.jpg\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"filename\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 60,\n \"samples\": [\n \"00013615_052.jpg\",\n \"00019187_000.jpg\",\n \"00000090_006.jpg\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"label\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"neg\",\n \"pos\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"guess\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"neg\",\n \"pos\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"confidence\",\n \"properties\": {\n \"dtype\": \"float32\",\n \"num_unique_values\": 60,\n \"samples\": [\n 0.9840425848960876,\n 0.921424388885498\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 23
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "###5.1 Example image"
+ ],
+ "metadata": {
+ "id": "LYyOjzluqD5P"
+ }
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "YGd5ltLx2_cM",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 470
+ },
+ "outputId": "a91ff9c7-c34a-4b2e-950d-556ac7953cf8"
+ },
+ "source": [
+ "import random\n",
+ "n = random.randint(0, len(df)-1)\n",
+ "show_df_row(df.iloc[n])"
+ ],
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAGzCAYAAAAotsMiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZycRbU+frp7pvdZEjIhCUtABGRRAogsIgHksoqiCIh8lU3wyiJuIKhsKiKL1yiIggsq4lVR8bqiiFxRZFGWi8giKqCASSDJLN093TPTXb8/8ntqnvfpensmgDKj7/l8+jPTb9dby6mqc54651RVyjnnLKGEEkoooYQSSujfjNIvdAUSSiihhBJKKKGEXghKQFBCCSWUUEIJJfRvSQkISiihhBJKKKGE/i0pAUEJJZRQQgkllNC/JSUgKKGEEkoooYQS+rekBAQllFBCCSWUUEL/lpSAoIQSSiihhBJK6N+SEhCUUEIJJZRQQgn9W1ICghJKKKGEEkoooX9LSkBQQgmtA6VSKTvvvPNe6Go8Z9pkk03sNa95zfOa578KbxJKKKF/H1onEPTlL3/ZUqmU/e53v/tH1WdGU6PRsPe///22aNEiKxQKtvPOO9uNN94YTPub3/zGdt99dysWi7ZgwQJ75zvfaZVK5Vnn+bOf/cyOP/5423bbbS2Tydgmm2wSW88//elP9sY3vtHmzJljxWLRdt99d7v55pvb0t1555120kkn2Y477mjd3d2WSqVi8xwaGrIzzjjDNt98cysUCrZ48WI7/vjj7a9//Wsk3SabbGKpVCr42XzzzWPzj6MHH3zQ9t9/fyuXyzZ37lx7y1veYk8//XRbularZRdffLFtuummls/n7WUve5n993//93PKcybRY489ZqlUyi699NIXuir/NvSDH/zADj74YFt//fUtm83a3LlzbY899rBPfOITNjw8/EJX71+aKpWKnXvuubbttttaqVSy9dZbz5YsWWKnnXaaPfXUUy909Z43GhwctBNPPNEGBgasVCrZXnvtZXffffe037/88sttq622slwuZxtssIG95z3vsWq1Gknz0EMP2RlnnGFLliyxnp4eW7hwoR100EFBPf7www/bu9/9btttt90sn89bKpWyxx57bMp6/PnPf/bpNd+bbrrJjjvuONtiiy2sWCzai170Invb295mf//73zvmOTg4aPPnz7dUKmXf/va3O6a94IILLJVK2bbbbjtlXdvIrQNdffXVzszcb3/723V57V+G3vSmN7muri73vve9z1155ZVu1113dV1dXe5Xv/pVJN0999zj8vm823777d1nP/tZ98EPftDlcjm3//77P+s8jz76aJfP591uu+3mNtxwQ7d48eJgHf/617+6efPmufXXX99dcMEFbtmyZW677bZzXV1d7pe//GUk7bnnnuu6u7vdjjvu6LbYYgsXNxyazabbaaedXKlUcqeffrr7/Oc/797//ve7np4et8EGG7jh4WGf9vrrr3fXXHNN5PPRj37UmZk76aSTpsNmT3/729/cvHnz3GabbeY+9alPuQsuuMDNmTPHbbfddq7RaETSnnnmmc7M3AknnOCuuuoqd9BBBzkzc//93//9rPMM0ejoqBsfH1+ndjwf9Oijjzozc5dccsnzkt/ixYvdQQcd9LzkBTIzd+655z6veb4Q1Gw23THHHOPMzL30pS915513nvviF7/oli1b5o444giXz+fd3nvv/UJX81+WxsbG3Pbbb+8KhYL7z//8T/e5z33OXXrppe7YY4918+bNczfffPMLXcXnhZrNptttt91cqVRy5513nrv88svd1ltv7Xp6etwf//jHKd8/44wznJm5N77xje6zn/2sO/XUU11XV5fbd999I+ne+973uv7+fnf88ce7K6+80l188cVus802c5lMxt14442RtFdffbVLp9Nu2223dUuWLHFm5h599NEp63LwwQe7UqkUxAc77rij23TTTd0ZZ5zhPv/5z7uzzjrL9fT0uPXXX9/9/e9/j83z1FNP9Xled911sen+9re/uWKx6Eqlkttmm22mrKtSAoKmSXfccUebEhodHXWbbbaZ23XXXSNpDzjgALdw4UI3NDTkn33+8593ZuZ++tOfPqs8n3zySTc2Nuacc+6ggw6KBUEnnXSS6+rqcg899JB/Vq1W3UYbbeR22GGHSNrly5e7Wq3mnHPu5JNPjgVBt956qzMzd/nll0eef+lLX3Jm5r773e8G3wN95CMfcWbmbr311o7plN7xjne4QqHgHn/8cf/sxhtvdGbmrrzySv/siSeecN3d3e7kk0/2z1qtlnvVq17lNtxwQzcxMbHOec40SkDQP48uvPBCZ2bu3e9+t2u1Wm2/P/XUU+7jH//4C1Czfw/61re+5czMXXvttW2/jY6ORuTqP5oqlco/LO9vfvObbQp+5cqVrr+/3x155JEd333qqadcV1eXe8tb3hJ5ftlllzkzc9///vf9s9/97nduZGQkku6ZZ55xAwMD7pWvfGXk+apVq/yi9pJLLpkWCLrhhhtcNpt1H/rQh4L44Je//KVrNpttz8zMffCDHwzm+fvf/951dXW5D3/4w1OCoCOOOMLtvffebunSpS8MCDr66KNdqVRyjz/+uDvooINcqVRyixYt8grzvvvuc3vttZcrFotu4403bhvYq1atcu9973vdtttu60qlkuvp6XH777+/u/fee9vKf+yxx9zBBx/sisWiGxgYcO9617vcDTfc4MysbXVw++23u/3228/19va6QqHg9thjD/frX/+6Lc8HH3wwohDj6PTTT3eZTKZtAn7sYx9zZub++te/OuecGxoacl1dXe7000+PpGs0Gq5cLrvjjz9+nfNU6gSCXvrSl7qddtqp7TlATtwKoxMI+slPfhIciHj+k5/8JPgeaKuttnKbbrppxzQhmj9/vjvssMPanm+xxRbu1a9+tf/+mc98xpmZ+8Mf/hBJ9/Wvf92ZWcSqNt0840gV/bnnnuvMzD344IPusMMOcz09PW7u3Lnune98pxsdHY28W6vV3KmnnurWW289Vy6X3cEHH+yeeOKJaYGH6YKgL33pS26vvfZyAwMDLpvNuq222spdccUVbekAgn7605+67bbbzuVyObfVVlu573znO21p16xZ40477TS34YYbumw26zbbbDP38Y9/vE2whdox3fm1LnwcHx93H/7wh92LXvQil81m3eLFi91ZZ53l6vV6JN1vf/tbt++++7r11lvP5fN5t8kmm7hjjz22Yz2q1arr7+9322yzTQQ8dyL0zdVXX932W4gnTzzxhDv22GPd/PnzXTabdVtvvbX74he/2Pbupz/9abf11lu7QqHg+vv73Y477hiRn8PDw+60005zixcvdtls1g0MDLh99tnH3XXXXZH2PPjgg+7pp5+esh1QIr/73e/crrvu6nn22c9+ti3tihUr3HHHHefmz5/vcrmce9nLXua+/OUvt6X77//+b7fDDju4crnsenp63LbbbuuWLVvWsR4AoY899tiUdXbO+TEzb948l8/n3RZbbOE+8IEPRNLcfffdbv/993c9PT2uVCq5vffe2912222RNNBv//u//+ve8Y53uIGBAdff3+9///GPf+x23313VywWXblcdgceeKC7//77I3mMjY25Bx980D311FNT1vuwww5z66+/fts8OvHEE12xWGwbz0zf+c53nJm5H/3oR5HnTz/9tDMz9+Y3v3nK8t/whje4uXPnxv4+HRA0NjbmttxyS3f66aevs5Fk7ty57g1veEPwt7333tsddthh7uabb+4Ign75y1+6TCbj7rvvvmcNgp6XwOhms2kHHHCAbbTRRnbxxRfbJptsYqeccop9+ctftv33399e/vKX20UXXWQ9PT321re+1R599FH/7l/+8hf73ve+Z695zWvsv/7rv+z000+33//+97Z06dKI77dardree+9tP//5z+2d73ynffCDH7Tf/OY39v73v7+tPr/4xS9sjz32sOHhYTv33HPtYx/7mA0ODtree+9td955ZyTtVlttZW9961unbOM999xjW2yxhfX29kaev+IVrzAzs3vvvdfMzH7/+9/bxMSEvfzlL4+ky2aztmTJErvnnnvWOc91oUajYYVCoe15sVg0M7O77rprnfN8+ctfbqVSyc4++2z7xS9+YU8++aT98pe/tDPOOMN22mkn22effWLfveeee+zBBx+0N7/5zetU5pNPPmkrV65s46PZWv4oH0ulkm211VZt6fD7uua5rnT44YdbvV63Cy+80A488ED79Kc/bSeeeGIkzTHHHGOXXXaZHXjggXbRRRdZoVCwgw466FmXGaLPfvaztnjxYvvABz5gn/jEJ2yjjTayk046yT7zmc+0pX3kkUfsiCOOsAMOOMAuvPBC6+rqssMOOywSk1ar1Wzp0qX2ta99zd761rfapz/9aXvlK19pZ511lr3nPe+Zsj7TnV+g6fDxbW97m51zzjm2ww472Cc/+UlbunSpXXjhhfamN73Jp1m5cqXtu+++9thjj9mZZ55pl112mR111FF2++23dyz/17/+tQ0ODtqRRx5pmUxm2vWeLq1YscJ22WUX+/nPf26nnHKKfepTn7IXv/jFdvzxx9uyZct8us9//vP2zne+07beemtbtmyZnX/++bZkyRK74447fJr//M//tM9+9rN26KGH2hVXXGHve9/7rFAo2IMPPujT3HnnnbbVVlvZ5ZdfPq36rVmzxg488EDbcccd7eKLL7YNN9zQ3vGOd9iXvvQln2Z0dNT23HNPu+aaa+yoo46ySy65xPr6+uyYY46xT33qUz7djTfeaEceeaTNmTPHLrroIvv4xz9ue+65p916660d67B48WIzM/vqV79qzrmOae+77z7beeed7Re/+IWdcMIJ9qlPfcoOOeQQ+8EPfuDT/OEPf7BXvepV9n//9392xhln2Nlnn22PPvqo7bnnnhF+gk466SR74IEH7JxzzrEzzzzTzMyuueYaO+igg6xcLttFF11kZ599tj3wwAO2++67R2JmnnzySdtqq63srLPO6lhvs7VyaYcddrB0OqqGX/GKV1itVrM//vGPse82Gg0zszZZvy5yfvny5TZv3rwp03WiZcuW2Zo1a+xDH/rQOr1XqVSsUqkEy7/uuuvsN7/5jV188cUd82g2m3bqqafa2972NnvpS1+6TuVHaF0QU5wlyMzcxz72Mf9szZo1rlAouFQq5b7xjW/45w899FDbyqher7ch4UcffdTlcjn34Q9/2D/7xCc+4czMfe973/PPRkdH3Ute8pKIJajVarnNN9/c7bfffhFTdq1Wc5tuuqn7j//4j0hZZuaWLl06Zdu32WabYBzAH/7wB2dm7nOf+5xzzrnrrrvOmZm75ZZb2tIedthhbsGCBeucp1InS9DBBx/s+vv7I3E6zjm36667OjNzl156afC9TpYg55z74Q9/6BYuXOjMzH/222+/NjOr0nvf+15nZu6BBx7omE7pt7/9rTMz99WvfrXtt9NPP92ZmV8pHXTQQe5FL3pRW7pqterMzJ155pnrnGcc6fiFBeO1r31tJN1JJ53kzMz93//9n3POubvuusuZmXvXu94VSYfYk+fLEgT3JtN+++3Xxp/Fixc7M4tYfoaGhtzChQvd9ttv75995CMfcaVSqc2CeOaZZ7pMJhOxVobaMd35NV0+3nvvvc7M3Nve9rZIuve9733OzNwvfvEL59za2DSVVdOhT33qU21yxjnnJiYm3NNPPx35QL6siyXo+OOPdwsXLnTPPPNMJN2b3vQm19fX5/vvda973ZSr2r6+vogLOERYSU/HTbl06VJnZu4Tn/iEf9ZoNNySJUvc/PnzvTt+2bJlzszc1772NZ9ubGzM7brrrq5cLnvZc9ppp7ne3t5pW9RAtVrNbbnlls7M3OLFi90xxxzjvvjFL7oVK1a0pd1jjz1cT09Pm7WRZf8hhxzistms+/Of/+yfPfXUU66np8ftscce/hn02+677x6p88jIiOvv73cnnHBCpIzly5e7vr6+yHOMhaOPPnrKdpZKJXfccce1Pf/Rj37kzMzdcMMNse9CnnzkIx+JPIdnpFwudyz7lltucalUyp199tmxaaayBP397393PT09PoxgXSxBCJG46aabIs9rtZrbeOON3VlnneWccx0tQZdffrnr6+tzK1eudM65F9YSZLZ2dQbq7++3Lbfc0kqlkh1++OH++ZZbbmn9/f32l7/8xT/L5XIeCTebTVu1apWVy2XbcsstI1HyN9xwg22wwQb22te+1j/L5/N2wgknROpx77332iOPPGJvfvObbdWqVfbMM8/YM888Y9Vq1V796lfbLbfcYq1Wy6d3ztn//u//Ttm+0dFRy+Vybc/z+bz/nf/GpcXv65LnutA73vEOGxwctCOOOMLuuece++Mf/2jvete7fMT+s8nTzGxgYMC23357u+CCC+x73/uenXfeefarX/3Kjj322Nh3Wq2WfeMb37Dtt9++zUozFU3FR07zfPUNp1lXOvnkkyPfTz31VDMz+/GPf2xma8ev2dpVZijd80W8MhwaGrJnnnnGli5dan/5y19saGgoknbRokX2+te/3n/v7e21t771rXbPPffY8uXLzWztquxVr3qVzZkzx8+lZ555xvbZZx9rNpt2yy23dKzPdOcXaCo+4q9aod773veamdmPfvQjM1srg8zMfvjDH9r4+Pi0y8eur3K5HHn++9//3gYGBiKfVatWTTtfs7W8+M53vmMHH3ywOeci/Nxvv/1saGjIy7z+/n574okn7Le//W1sfv39/XbHHXd03C215557mnNu2kcXdHV12dvf/nb/PZvN2tvf/nZbuXKlty78+Mc/tgULFtiRRx7p03V3d/sdsL/85S99/arVauwO2jgqFAp2xx132Omnn25ma3clH3/88bZw4UI79dRTvRXk6aeftltuucWOO+4423jjjSN5YKdrs9m0n/3sZ3bIIYfYi170Iv/7woUL7c1vfrP9+te/btvpd8IJJ0SsgDfeeKO3DnKfZTIZ23nnnSM7bzfZZBNzztmXv/zlKdv5XOT/DjvsYDvvvLNddNFFdvXVV9tjjz1mP/nJT+ztb3+7dXd3d3x35cqV9uY3v9k23XRTO+OMM6asZxy9//3v9zu91oVuueUWO//88+3www+3vffeO/Lbxz/+cRsfH7cPfOADHfNYtWqVnXPOOXb22WfbwMDAOted6XkBQfl8vq0ifX19tuGGG7Ztu+7r67M1a9b4761Wyz75yU/a5ptvbrlczubNm2cDAwN23333RYT2448/bptttllbfi9+8Ysj3x955BEzMzv66KPbhNYXvvAFazQabcpgOlQoFPzkY6rX6/53/huXlpXUdPNcFzrggAPssssus1tuucV22GEH23LLLe1HP/qRXXDBBWbWLtynQ3/5y19sr732suOOO84+8IEP2Ote9zo799xz7YorrrBvf/vb9pOf/CT43i9/+Ut78skn7aijjlrnMqfiI6d5vvqG06wr6fb/zTbbzNLptDeVP/7445ZOp23TTTeNpNPx+1zp1ltvtX322cdKpZL19/fbwMCAFyg67l/84he3zactttjCzMzX+5FHHrEbbrihbS7BBbpy5crntf7T5aPybcGCBdbf32+PP/64mZktXbrUDj30UDv//PNt3rx59rrXvc6uvvrqYN8z9fT0mJm1HWfx4he/2G688Ua78cYb7S1vecuzatvTTz9tg4ODdtVVV7XxE4sJ8PP973+/lctle8UrXmGbb765nXzyyW1upIsvvtjuv/9+22ijjewVr3iFnXfeeZEF5rOhRYsWWalUijzTMfH444/b5ptv3ubGwUIHfXDSSSfZFltsYQcccIBtuOGGdtxxx/nFwFTU19dnF198sT322GP22GOP2Re/+EXbcsst7fLLL7ePfOQjZma+rZ22RT/99NNWq9Vsyy23bPttq622slarZX/7298iz3WOQqfsvffebf32s5/97FnPgecq/7/zne/YdtttZ8cdd5xtuummdvDBB9vhhx9u22+/faycr1ar9prXvMZGRkbsf/7nf56VPjAzu/322+2aa66xT37yk23joBM99NBD9vrXv9623XZb+8IXvhD57bHHHrNLLrnELrjgginr9aEPfcjmzp37vCwiu55zDmaxvvO45478vB/72Mfs7LPPtuOOO84+8pGP2Ny5cy2dTtu73vWuiMVmuoR3LrnkEluyZEkwzbPp+IULF9qTTz7Z9hxnHSxatMin4+eaFunWJc91pVNOOcWOPfZYu++++3ws0he/+EUzmxRo60Jf/vKXrV6vtx2uB6vcrbfeagcccEDbe9dee62l0+nIinG6NBUf586d61dRCxcutJtvvtmccxGlvq59w3k+V+p05tI/iv785z/bq1/9anvJS15i//Vf/2UbbbSRZbNZ+/GPf2yf/OQnn/V8+o//+I/YFeOzGU/rQnF8nIq/OFvk9ttvtx/84Af205/+1I477jj7xCc+YbfffnusDHjJS15iZmb333+/ve51r/PPy+WyB36//vWvp1WXZrMZ+Q7+/7//9//s6KOPDr7zspe9zMzWKuiHH37YfvjDH9oNN9xg3/nOd+yKK66wc845x84//3wzWxs/9apXvcquv/56+9nPfmaXXHKJXXTRRfbd7343OB//2TR//ny799577ac//an95Cc/sZ/85Cd29dVX21vf+lb7yle+Mu18Fi9ebMcdd5y9/vWvtxe96EV27bXX2kc/+tF/WL0VfKDfrrnmGluwYEFb+q6uZ6dGFy5cGCuLzKaW/xtssIH9+te/tkceecSWL19um2++uS1YsMAWLVoUnJdjY2P2hje8we677z776U9/+uzO1Pn/6YwzzrBXvepVtummm3pw/Mwzz/j6//Wvf22zzv3tb3+zfffd1/r6+uzHP/6xX3CAzjnnHNtggw1szz339HnCIv3000/bY489ZhtvvLH9+c9/tquuusqWLVsWsYLW63UbHx+3xx57zHp7e23u3LnTasvzAoKeC33729+2vfbayytp0ODgYCRoavHixfbAAw+0Kbo//elPkfc222wzM1tr2u8UsLuutGTJErv55ptteHg4EsiMwDoArm233da6urrsd7/7XcQVODY2Zvfee2/k2XTzfDZUKpVs11139d9//vOfW6FQsFe+8pXrnNeKFSvMOdcm1OFmmJiYaHun0WjYd77zHdtzzz2fFZjbYIMNbGBgIHig15133hnhzZIlS+wLX/iCPfjgg7b11lv758rHdclzXemRRx6JrCD/9Kc/WavV8odaLl682Fqtlj366KMRa4eO3+dCP/jBD6zRaNj3v//9iAAKHZSJsnU+IRgT9d5ss82sUqk8r3OpE02Xj4888kjExbpixQobHBz0QbWgXXbZxXbZZRe74IIL7Otf/7odddRR9o1vfCPWhP+qV73K+vr67Bvf+IadddZZ01rlzpkzx8zWyiwmWERAAwMD1tPTY81mc1r8LJVKdsQRR9gRRxzhFdgFF1xgZ511lneZLFy40E466SQ76aSTbOXKlbbDDjvYBRdc8KxB0FNPPWXVajViDdIxsXjxYrvvvvus1WpF+PPQQw/530HZbNYOPvhgO/jgg63VatlJJ51kV155pZ199tnrbAWdM2eObbbZZnb//febmXn3Fr6HaGBgwIrFoj388MNtvz300EOWTqdto4026lgudMr8+fOfd53yq1/9qo2Pd9xxhxWLxWkvMDbffHMvUx544AH7+9//bsccc0wkTavVsre+9a1200032be+9S1bunTpc6r7X//6V3v88cfbrGZmaxfHfX19kfmwatUq23fffa3RaNhNN93kF6Sa55/+9KeI2xKEMII1a9bYk08+aa1Wy975znfaO9/5zra0m266qZ122mmRjQad6AW/NiOTybTtALjuuuvaLCT77befPfnkk/b973/fP6vX6/b5z38+km7HHXe0zTbbzC699NLgCc16MvBDDz3UdupxiN74xjdas9m0q666yj9rNBp29dVX28477+wnUl9fn+2zzz72ta99zUZGRnzaa665xiqVih122GHrnOdzpd/85jf23e9+144//njr6+tb5/e32GILc87Zt771rchznMi8/fbbt73z4x//2AYHB5+VKwx06KGH2g9/+MOIufqmm26yP/7xjxE+vu51r7Pu7m674oor/DPnnH3uc5+zDTbYwHbbbbd1znN8fNweeuihKU81Benuq8suu8zMzCuj/fbbz8wsUkdO93wQLK88n4aGhuzqq68Opn/qqafs+uuv99+Hh4ftq1/9qi1ZssSveA8//HC77bbb7Kc//Wnb+4ODg0EAzDTd+QWaio8HHnigmVmbgPuv//ovMzO/227NmjVtcgUgt5NLrFgs2hlnnGH333+/nXnmmcHdSfqst7fX5s2b1xYfpX2dyWTs0EMPte985ztBxc2ySeONstmsbb311uacs/HxcWs2m23uzfnz59uiRYsi7avVavbQQw/5VfpUNDExYVdeeaX/PjY2ZldeeaUNDAzYjjvuaGZr+2D58uX2zW9+M/LeZZddZuVy2StYbUM6nfaWrk598H//93/B+j7++OP2wAMPeNfWwMCA7bHHHvalL32pbYyhjzKZjO277772P//zP5FdXCtWrLCvf/3rtvvuu7ftzlXab7/9rLe31z72sY8F48u439ZFbrzxjW+0FStW2He/+13/7JlnnrHrrrvODj744IhV+s9//rP9+c9/7phfq9WyM844w4rFov3nf/5n5LdTTz3VvvnNb9oVV1xhb3jDG6as21R01VVX2fXXXx/5wDV16aWX2rXXXuvTVqtVO/DAA+3JJ5+0H//4x7E3B3z0ox9tyxOuzzPOOMOuv/56K5VKtu2227alu/76622bbbaxjTfe2K6//no7/vjjp92WF9wS9JrXvMY+/OEP27HHHmu77bab/f73v7drr722DQ2+/e1vt8svv9yOPPJIO+2002zhwoV27bXX+hURVrPpdNq+8IUv2AEHHGDbbLONHXvssbbBBhvYk08+aTfffLP19vZGtk9utdVWtnTp0imDN3feeWc77LDD7KyzzrKVK1fai1/8YvvKV77i/dVMF1xwge222262dOlSO/HEE+2JJ56wT3ziE7bvvvva/vvv/6zyvO+++zwA/NOf/mRDQ0PeJLzddtvZwQcfbGZrBcXhhx9ur33ta23BggX2hz/8wT73uc/Zy172MvvYxz4WyfPxxx+3a665xszMW0eQ5+LFi33swzHHHGOXXnqpvf3tb7d77rnHttlmG7v77rvtC1/4gm2zzTaR4FrQtddea7lczg499NCOfO1EH/jAB+y6666zvfbay0477TSrVCp2ySWX2Etf+tJIQPaGG25o73rXu+ySSy6x8fFx22mnnex73/ue/epXv7Jrr7024padbp7Y6nr00UdPK8jx0Ucftde+9rW2//7722233WZf+9rX7M1vfrNtt912ZrYWnB966KG2bNkyW7Vqle2yyy72y1/+0q+yp+s+u+mmm3zMANMhhxxi++67r195v/3tb7dKpWKf//znbf78+UGhvMUWW9jxxx9vv/3tb2399de3L33pS7ZixYoIaDr99NPt+9//vr3mNa+xY445xnbccUerVqv2+9//3r797W/bY4891nGb7XTnF2gqPm633XZ29NFH21VXXWWDg4O2dOlSu/POO+0rX/mKHXLIIbbXXnuZmdlXvvIVu+KKK+z1r3+9bbbZZjYyMmKf//znrbe31wOpODrzzDPtwQcftEsuucR+9rOf2aGHHmobbrihrVmzxu6++2677rrrbP78+V72mK3dGPLxj3/c3va2t9nLX/5yu+WWW4JbnD/+8Y/bzTffbDvvvLOdcMIJtvXWW9vq1avt7rvvtp///Oe2evVqMzPbd999bcGCBfbKV77S1l9/fXvwwQft8ssvt4MOOsh6enpscHDQNtxwQ3vjG99o2223nZXLZfv5z39uv/3tb+0Tn/iEL+/OO++0vfbay84999xpBUcvWrTILrroInvsscdsiy22sG9+85t277332lVXXWXd3d1mZnbiiSfalVdeacccc4zdddddtskmm9i3v/1tu/XWW23ZsmXezfG2t73NVq9ebXvvvbdtuOGG9vjjj9tll11mS5Ys6bhR4sYbb7Rzzz3XXvva19ouu+xi5XLZ/vKXv9iXvvQlazQakXZ8+tOftt1339122GEHO/HEE7175kc/+pE/YuSjH/2o3Xjjjbb77rvbSSedZF1dXXbllVdao9GYchu22VqQ+9nPftbe8pa32A477GBvetObbGBgwP7617/aj370I3vlK1/pjyBYF7nxxje+0XbZZRc79thj7YEHHrB58+bZFVdcYc1m07s8Qa9+9avNzCJA7rTTTrN6vW5Lliyx8fFx+/rXv+7nAluCly1bZldccYXtuuuuViwW7Wtf+1ok79e//vXe8jc0NOQXHohBu/zyy62/v9/6+/vtlFNOMbO141MJlp+lS5dGjiE56qij7M4777TjjjvOHnzwwcgRDuVy2Q455BAzM9t9993b8sQGh5122smnmzdvnv+fCQuj0G8daV22knU6LFEpbruanlRbr9fde9/7Xrdw4UJXKBTcK1/5Snfbbbe5pUuXtm2t/ctf/uIOOuggVygU3MDAgHvve9/rD426/fbbI2nvuece94Y3vMGtt956LpfLucWLF7vDDz+8bUueTXMLr3Nrt+S/733vcwsWLHC5XM7ttNNOsdsYf/WrX7nddtvN5fN5NzAw4E4++eS2bevrkid4H/rwdszVq1e7173udW7BggUum826TTfd1L3//e8Plo3th6GP8uSJJ55wxx13nNt0001dNpt1CxcudCeccELwELahoSGXz+djD8JaF7r//vvdvvvu64rFouvv73dHHXWUW758eVu6ZrPpPvaxj/mD47bZZpvIFt51zTNuq6vFbJF/4IEH3Bvf+EbX09Pj5syZ40455ZS2Q/6q1ao7+eST3dy5c125XHaHHHKIe/jhh52ZTXkCMeoT97nmmmucc859//vfdy972cv8QXcXXXSRP9mbt7ryYYkve9nLXC6Xcy95yUuCW1FHRkbcWWed5V784he7bDbr5s2b53bbbTd36aWX+m3TId7g2bpskZ8OH8fHx93555/vNt10U9fd3e022mijtsMS7777bnfkkUe6jTfe2OVyOTd//nz3mte8xv3ud7+bsi6g66+/3h144IFuYGDAdXV1uf7+frf77ru7Sy65xA0ODkbS1mo1d/zxx7u+vj7X09PjDj/8cLdy5cogT1asWOFOPvlkt9FGG7nu7m63YMEC9+pXv9pdddVVPs2VV17p9thjDy+/NttsM3f66af7g1UbjYY7/fTT3XbbbecPANxuu+3aDsZc1y3yelji4sWL206KRxtwjUU2m3UvfelL244I+Pa3v+323Xdffyjkxhtv7N7+9rd3vCrBubVy/pxzznG77LKLmz9/vuvq6nIDAwPuoIMO8kcgMN1///3u9a9/vevv73f5fN5tueWWbVu/7777brfffvu5crnsisWi22uvvdxvfvObSJqptnjffPPNbr/99nN9fX0un8+7zTbbzB1zzDGRMbUuW+SdWyuvjz/+eLfeeuu5YrHoli5dGix/8eLFbceiXH311W677bbzhwy/+tWvDvIHx9jEfVgudJIzcceycH1C/MNxHM8mz6kOS2R6tlvkU85NcRrVDKdly5bZu9/9bnviiSdsgw02eKGrk9C/MDWbTevq6rKPfOQj/nCw8847z84//3x7+umnn9XBY/fee69tv/329rWvfe05uQ5nOz1XPib03GnPPfe0Z555pmOMTUIJ/avRCx4TtC6kZx/U63W78sorbfPNN08AUEL/cIJL6dkq6dDZHcuWLbN0Om177LHHc6pbQgkllFBC604veEzQutAb3vAG23jjjW3JkiU2NDRkX/va1+yhhx6KBGElNPPp6aefbttpxpTNZqe9vfGfRd/+9rftq1/9qqVSKR93sq508cUX21133WV77bWXdXV1+W3DJ5544vMWBJ9QQgkllND0aVaBoP3228++8IUv2LXXXmvNZtO23npr+8Y3vmFHHHHEC121hNaBdtppp7btw0zrEkj7z6IzzjjDUqmUP7Tt2dBuu+1mN954o33kIx+xSqViG2+8sZ133nn2wQ9+8HmubUIJJZRQQtOhWR8TNNPpM5/5jF1yySW2fPly22677eyyyy7zF3v+u9Ktt97a8Vj3OXPm+O24CSWUUEIJJfSPogQE/QPpm9/8pr31rW+1z33uc7bzzjvbsmXL7LrrrrOHH37Y5s+f/0JXL6GEEkoooYT+rSkBQf9A2nnnnW2nnXbyZ0i0Wi3baKON7NRTT7UzzzzzBa5dQgkllFBCCf1706yKCZpNNDY2ZnfddZedddZZ/lk6nbZ99tnHbrvttuA7jUYjcpJqq9Wy1atX23rrrfeC3EWVUEIJJZTQcyPnnI2MjNiiRYvW6bLRhP45lICgfxA988wz1mw2bf311488X3/99f0dO0oXXnhh20mhCSWUUEIJzX7629/+ZhtuuOELXY2EhBIQNIPorLPOsve85z3++9DQUNtNvAklNBXl83nr6uqy7u5u6+7utmw2a9ls1jKZjP+k02n/SaVSlkql/PdMJmOpVMrn0dXVZV1dXZZOp62rq8uy2aw/Rr9cLkfSpFKpSBmZTMa6u7ut1WpZq9Uy55z/22w2/eWR6XTaX+Y6MTFhzWbTnHN+5dxqtXw9QcgfacbGxiL1T6VS1mq1bGJiwj/ntjnnbGJiwhqNhlUqFRsaGrKxsTH/GR8ft5GRERsfH7eJiQmfl3POtwN1w/+oH0cZ4H+8x+8jz2azac1m0yYmJmx8fNzGxsas0WhYq9WysbExX777/+8OQ57ot+kQ+Buqm/7P9f1Hklq4+fojtI37HTwDL0L1S6fTVigUrLu725xzNjo62nZXGXjGPHk+29rV1WXFYtHK5bL19PTYww8/3HZrekIzgxIQ9A+iefPmWSaTsRUrVkSer1ixwl9OqZTL5SKX5iWU0LMhVR4MAABm+DdOo+/yb2ZrldD4+LhVKhXr6uryIAT/A3ChHHzGx8fbQBCUD+oGoJNOpz0IwncGEtxG1BlKjMtF+nw+79tktlYBoh3j4+M2Ojpq1WrVRkdHfT0BlDKZjAdRZpMXPiON1lGBGurAwAdtgDLn9Eij/YFPs9mMlIV2MV/iaCrw0wkEPV8ggceVfjgN2o7vzEN+Jw4EdXV1WS6X8yATIIj7lXmmoBZ/OX/tp06ExUKhULBCodD2fkIzhxIQ9A+ibDZrO+64o910003+QrdWq2U33XSTv4QuoYT+EcTCXS0nqnhgbeG0rPh45Y08YJ1YtWqVVatVK5VKVi6Xrbe31/r7+yMKDPkAcECxAFRx2VD+qLsqvlar5a1H4+Pj3srEwAfWHeTd1dXlLzqFlaXValm9XrdKpWK1Ws1bCmCJYeWHPNn6wO1ScBACQZxeAYsCMyYGhgy4mG8M7rgOOg5CAIfbwM+0riGA1cmCFEepVMqy2WykziHQze1U8IjfGMRoW9nil06nrbu72/MXQL2rq8uazWZkrDI45bHAoBR1gEUwRLCgZrPZZGE7CygBQf9Aes973mNHH320vfzlL7dXvOIVtmzZMqtWq5HbyhNK6B9BbEEIKeaplI9ZVEE2m82IUgQ4qNVqVq/XbWhoyAYHB218fNx6enosm816RYDbx+ECg1KDi44VOrvC1CLArq9MJhNxIaFNbCECCIKLDW6v0dFRGx4e9sAHSo/bC6AV4gWXxTxTq4YqSU6vQEgBDStcdnmx+zBkSYmzXISAWQjEcfsViHKakPUpBArQh7DMcLtAAMSchwIf7ncQfld3IPiTy+Xa+iafz/t6wKrGlknuAwZDKBvjEQsBjBOAonQ67cFPoVCwYrHoLUEJzUxKQNA/kI444gh7+umn7ZxzzrHly5fbkiVL7IYbbmgLlk4ooeebOrkdVDGYWZtC43xCShCgiF1cZmvdvSMjI1YsFv2nXC5bNpv15Y2NjQWVO/9FOZy3Wk70PSg1KK6xsTGr1WrWbDa9JYotUqw80T64vzTeJ+QOQv3VpcV8ZMCobjAQW4GYLxq3xQAo5LIMuQyZQr9P5RbT/g8B5VAZAKCIS2MAq0AnDmyhfLV+aT1ClkcAbIwLAKBCoeB/w4XIeCcOADJIYtCO3wGCMLa6u7u9BQju4YRmLiUg6B9Mp5xySuL+SuifRiHAwy4ms6gC6eS+4RWxWTSYlONZ2CqC2Itms+mDi51z1tPTE4lNYgsTK5uJiYnIijxkXQi5pRiooOx6vW61Ws3Gx8e9QtJYE+YNtwlKnK1BKEt5FHJlhcAm583gjnnN8UxQ3uAXLFoc+K3lhP4qxVl/+LkCxFAa7h9+L51ORywuOm5CVjCtnwI7jAdYghg0qQUnlUr5YHyMwUwmY4VCwXK5nHV3d1sqlYpYKdXty8S/8eYB1KO7u9sDb/QZ3LQAgQnNXEpAUEIJ/QuRKni1GEz1ntmk9YJJFSErBSgiVhYMZgB8YA3i90P/s9sILi/nXCSwO6TEzdYCBwQ6Dw8PW7VatfHxcevr67Oenh4rFAoR0MU71fAJBSwznxQEMAjkOilA1P4JgRUoerWA8PtxsV2hvozrX07PlrYQOAtZSfR37uvu7m4rFou+v7V/QzxSAshgIM/tRl4AHfwB8MIuv2azad3d3RFghrGEXYI8zkLzBdZE5T9bDNFvyJ93TSY0cynpnYQS+hciVa7qPmHLhypkFfydLAlm7QqRlSlWwWZm9Xo94qLgfKCAWPlgRQ0wVavVbGJiwrLZrJXLZSuXy21WLpTfaDRsZGTEBgcHbWRkxNdpYmLCf6AY4RZDXAdiPJh3zIeQZQrP1OWlPFR+dwIVrOgZZJpFLTRTgVsFPlp23LNO3+OscwhA5ngY9CVb6UJgTfvRbDL+hj8AHZwXx5ihrl1dXRH3lJl5AMRxamzF48Dn0BESvMOMeQcQhnp0dXVZqVSyVCrlj6rgMZ/QzKMEBCWU0L8Y6XZwBkDqSlHS90K7j0DsjuCVMUAFXAXOrd1Nw5fmYpcQysxkMn5Lc7VatUaj4RUPgk7Hx8ctnU5bb2+vlUqlSD2azabV63UbGRnxVijemgyFpJYNbjO7OMwmXXW8PX0qa5q6izg94lBC4AbpNbaHXUn4HgJN2i9xz7m9CobYQqZt4r9aDqwsfDyCmfnzjWBl0TrwWASPeWcV0gOwAsSq1c7MIu/DGogxCIAGl1ipVLJsNutBDe8k0zHSbDZ9AD3AEIAd2sSuOgaCiEFKLEEzm5LeSSihfzHiuAW1ZvD/ISsFv99J4YNUkZqZt+CYWXAV7Jyzer0esSrwgYp8WCHcDNjtA+sSVvxYydfrdQ+Yuru7rVwuR+IzCoWC333G7yKWg+Nu2NXC/FEgoKCC+Rv3GwMhzYeDvfEM/GPwFOoXjeGJ61uNeQnF+4SsRRqDA9CQzWa96wsWGzOz0dHRIP/4XWxdh2sKQMU554Pa0acMPJg/+MuurUajETmOAWXm83nr7++3QqHgQbeZebcdgHS9Xo+MQVgOuR+0DzQQPJvNWj6ft1KplFiCZjglICihhP6FKLR7SGNMzMKuFFZQ+ntI8YZcP+rWQDpV0mNjY/5/gBzeqs710bwrlYo1Go1IsDOAV6juUFCsKGGdgsLH/7objHmiVpIQKQCKAyyaNz/TIGAOQOf2cR9o3FAI6Go/4P3QDq1OwAggEhYggArUlYPd8S7vqoLFBKAHwIdBCIAMx2gxj/V/vI90bKVhS5WeLYVxAzcpABAsTxwrxPxgIAR3GvOdT1tPQNDMpgQEJZTQDKBOLqd1zUcFsq7C9Vncu1MBp6ncMqi/WlIYdISCTEP84Per1aqlUinvcmAgpO4/jfGAZQiASbedMyBQvmib1PUV11+htoRAT8gip1Yd3ZmkPA6VrUCI24Fy4ojbibxw5g8+sM5xfI62m4OFNWAY1j9cIA3rjwI/5kkIpPF3pIUVEKeGY+cgB8TzVSlw4fH1KNwfzA+2sqI9PNY4nimhmUsJCEoooReIWLGHVvdM0wFD6m5g5ReKBQpZWtSSFHKthOJZuJ58Bk/IhcPWAVYcGt8Rag8UJhTYxMSE5fN5KxaLkbgQ/A7Qo8qcd7IBKIHHsGaEru7QnWmhvgxZjBTcMK+0L5hvIQACwKcuoRCPtW48xtiSwX9DYIndlsVi0VvhEPOF+BsFhgzcAEjgBoPrqlarWbVa9QAEdUN8jvKVy+DzlUB4hticUqnk3aGwMGGcIJieD+nUfmaXm455jBsAQ5wRxGMxoZlNSQ8llNA/geJW6WYWWVHyX7VG6Mo0lJ/ubGEwEQIXrHzZXcGKsJM1SJ+zstJrCZAOygk7d1R5oy56Tg8r1FarFVl9Q2nyyb1cfwZHeo8ZrA5QaOATXHYaW6J9gvryTi/lX+g76sWHPDIwQjuRrwYShywV4GGn8ab/K2m+KD+bzVpvb6/lcjnvTjJbu/uPASX6AuXANYTTk7Hjb2RkxIaHhz2o5TbgfwXQCoK0L8A7XGBaLBb9tSmcByxA6t5CnJOZefcaQLT2HYNGtvbgOAgEYXeytCX0wlMCghJK6B9EnZSOAp6499WCYRbvclGwo9Ygfp+BVwgkheqv5eM7x3WoK4RX85x3q9XyYAgKhIOh8S7AAX53znn3C9cXAdQoG++q281srTUDebFria8GMVt7ofHo6GibRYYDfpUf/D9bKUL840BodQXy9RIh8MR8RH34ff5fwbTWXYPC9QMQ09PT492P7EpiqxTAJnjOQcJdXV1WqVT88QW8WzAElvm6FQYpIAVD4Fs2m7W+vj7L5/Ntrij0C8cPMW91brEbTy1QvPtM3V9w+yHuKaGZSwkISiih54Gezco7zqISAjyqYFlpqdsBQhnEZn0uUwGQWfRCU10lc36aR1zALe9qAjHIgZLgQ++4zniPL06FVcLM/K6hsbGxCPDQesJCBCXFcUNIy2CCQWHoMEFVvmqJUOCC/7WfmedqtQOv9FnIqtTpgEcuM+5ZaJyZmd9FhdvQ+YTluMMFMQ7hHgLAGR4etmeeecaf4o20au3h56ibgjSuK7uwcrmc9fX1+XOKOD8Q1xlWuFC74a7NZrNtl+tqHzAQAhhTC29CM5MSEJRQQs+RQmAGz6f63slCFHJrqPDlfOLcXWbxMUUKhOLaosqnU7v0Pd49o+4b/K6H4KlFBQqIrU8MPEIWLFZY7FKCcmNww7+raycEOkJt57SdxkQnMKrALAQwWfnj96lcpXE0FWhiAMRbyZU/PH5gDeKA9Xq9bmvWrLFqteqPT2DgEKq7BiKjn9RVh7TZbNbH/7B1K5QP2se85TnE951xuQDLDDp5jjFIjpsvCc0sSkBQQjOOVPE8G+H+fNNUCk3TTAVuzNpP/51ueZofK6FQAHRIiepffhfEK+w4Qa7tCrl+2N2jIE23VHO5ZpOuIj79l+urVi+1Huiq3cwiyi2kxFGujjtWqqEdUMqTuCBqjh/SvuB3mGdaFoM/ThsCzvyOtqXTcxwuiDu3cBAhAyAGPuArX0mBwOOhoSEbGhqKbF1X0M51YUDCfciAj+uNGJyenh4f+8UgCzxSPgGkoU5wo7LFq9FoROLDEDQ/MTERCXwGQOSDHDv1R0IzgxIQlNALTnEgIs6SEVr1/rOAUqiOcd9D7/HKnd/p5D5RMBgCTLwCV4CkaVUBKSDQshRoxNUxxAu+c4kVPSsns8lzXeAaQ55q8YBVqFar+fYi9kLbwy45fhdXKuAQPC6Hz4ZhQMSgJ8QLlMU8QJmd+lb5zmXEBd5yuk5n/HDeOn+Yv5on/pbLZb8TjHfccTr0gcZ+IYYGp3gPDw97YKJjoJMVSIE5+oMtLrhOBTFAOs7irHhm0dOiEcvDY0PjtZSPehK2xjE9WwtdQv88SkBQQi8oxSlq/I0L1A0JmDjLEQTmc6mjlh9SXKH3QmnilOF06qHtjluJx7nFzKIxEaw04oAM1495y2lhlWA3QSimA0oz7g4xLlcVCZ/iizZCaeE7FDLqApDD95axRQnAhy1WbIlBvVFnjvVA3dVVwh+2ZGhfdor70SsZQgBHjxaAm4l5yH3I/A3NFTxPpVLeqgIAlEqlInzj+oK3CphrtZpVKhXvAtP32MLF48s5F9n5x/VUS1U2m7Wenp7I6dPMx9DY1rrjzCg+nZt5j7Kcaz8KYGxsrC2Av1QqRcB5Ehg9sykBQQn9U4hXt6zAIbR0h0vIVM67kNR90ok4Ha/8dZWHesb9z0qCf1chHgdw4gBRqDwV+gwklKcMgkIASPNnV4oCzbh2h/5nQIB+1TgfuAv01GrdDs4ggi02iAXCIXo44wXlaDAzB6/CZQHeoEzegcb8CAEM1F+tcNxGjGukR/1xcWwny6WWCYoDkhoAHQIQPGZ0XHaaK/gtk8lYqVTygc1Q8MxrttTwEQWob71et0qlYqOjo74PGAiHFj8KyHQc8u/gNS4rBf9DcgPvY2yhrvl83u8qxHs41oH5z/ODLT+8M4/HGCyN+C05K2hmU9I7CT3vBIGhVhyc+8LbllU5qhuGf1PzNijOOhEiNaWzybuTa2AqQNPpecgKECpD04QUFltxzKKxFaoAeMUbAmmhemqdpwOOOgEE/uiVGAo8zCzirgKgMYvGx7A1CR++kFUBMteL68A8RR3YgsDt0PfUKsN8geUELpUQuNX/4/ivVqe4vnDOBRcI/F4IjOk4w64uPgtIrV0gnr8MiHGBKUCr8ldBN+rGdVGXo9YRhxMycIwbu8pLteaxDEJ+/Ay7D80mY4L0rCmuI1yqIZmS0MyjBAQl9JwopBhDFgaYntkKoa4LFuAKgOIsG7ri7VRPDapEXfhyRrZOxJXFv3UCOZ3SxKWLE5oQxqE2TQWAQkpH66XvcTvjgF0cz3mVjBU4b1HnwFOkB0HB8EoaygmuBZwvhDGEoNhUatIShH7lNBhnsNagfgysFTwgH90O3glMMMAPnSmk77IliftYecyB0CEQxGNaywqNq1D/dXV1+Z1gbKWNO4uILZBI22g0Ire4c1tC5wExv1H/UCwQ+Mo3tYMvbAHl8kLjmcGy2eQltagfuxXBS4AgjAW2OGpbQguAhGYuJSAooXUmBTsqREK+/lQq5YMl8Rx+c151szk/ToiF6hEn8FWRhEzlvNqHJSIk9ONAUOivvjddEAQKrTD5ugQFiqFVcCfgE1LmnYAk8xpKD7zT92FxQXrwlmMk0P+6m4Zvkweh3RgrnEcul7NyuWx9fX2WTqdtdHTUlwf+wXIAIDkxMWGNRiPSlwBden0CA2PlFStT5jfSdnV1eeUZAuvMH/xlHoLUlaTBvp2AM9cv5BJDns1m0wOgcrnsrSwMKkNWIA6KxuGJtVrN6vV6W4wXxwHhOe8iA7/hkuJ4KOSBG+v1Sg12BcMixgsA5M0xRpyOxzb6Te8y477VBRUTt5NdZgnNTEpAUEIdiS02evuymshZCJlZRMDgO289xaqOBQorBpAKYVXWIUGEdJ2ABv7nHVXOuUg8iq6COR8W6KF6aR3inmndVMHFgUCuh7omFKjyp5MbUuuID5RiKD9Oz1YBTsvWoVar5YOZ9T1YbWANYpeD9gcr30qlYr29vdbb2xu5CBNjB7FEqVTKgyC4a/jTyXLCz9ltExqPHC/UCaQwf7SPOrlS2A0EBR03D/CblsXU1dVlPT091tPT4y1BZuZ5gj7CnOYdeagr+Do6OhoBGdpWgB+43bgd6LNCoRCZ9+l02teLQYsCGLb2aXxaPp+3sbGxNt5h3GEM4i6zer3uwTG3A+OW45C4X0LHVCQ0cykBQQkFCWeEYNWt5mZdBakyxHcWMM6tvTARK08IFL6bx8wiQpUVSSguIWTJYPDVydIRWpVDQLPSRXwKAzV+LyTs1DoQB4a03kpxQlStMqwEWBAjbUgwh4AK/vLzfD4fcV/F1RnvqrUPigI85WesxPA7gxgGoAyA0Cazta4K3F/V39/v64T8zKK3j4+Pj0dW+HxpZxyQYJct2s1xStzv2j/8m+7g0v7kjwIuuNdY8aKvdHECfvE85bGrf/P5vPX29npLSzqdjpzqzHOJb4IHIW4GFqA41xRijnD5qlprMOdLpVKbhZDvI1MQxP3EGyggP3K5nAfMXOd8Pu/jn8zMRkdHrVarRSyZSKv8Qxnadwr4EiA0sykBQQlFCAIVgioupoQVJ97j5wwo2IrU3d1tlUrFKx4zi8QGmVnEYgBiAaQxOwrGdNUbV2fkpSZ6FqRwE7B1KA74cR4qMPV3/svtC63SNQ0DTLYCMSBSocxt09Ur58+mfuaFAgR23TAvVXGzFYj/dnd3t12VwYfx8Q4bLpMBAVwcUJyjo6P+wkoeg1wnHldaf7VAhvpzXaw27Cbm/mNAzWWHQBH3i+YLnvDcY7AHN6IG8Grb0um0lcvlSCwQx8hxe2EFghUOv8N9FNpGj/ZhYcVB15ARqVQq4vIsFottbQ8BEeRRKpWsu7vbz1GkB6+wFV7HG9rMII7HB/jJYyPUbwx++HkCgmY+JSAoITOLBp92d3d794cqXhbMeA/CVVdoUMp8iSLu4Wk0GpF7pQCQzMy7QTj2hFfeamLn30AhaxEEk7rWdCXP9ecgWtxPxfEmXA+8HxJ+IeATqqumD7WX683gJ85dpZ84YKvlMd86WeCYb50Uhca+hIAiA2GNz0E6jt/i8nDIHYKmeXzwB+UzIGTFp4BPea9jR3+LWxhwexkIqTUhBK50ccE8D/UftxV/Q32TSq219PGhiOB/KA4IVl2uQ7PZtHq97nfDcZ8zn/L5vJVKpcj7mPfMN4ATdlNDZrAlDXzr7u62xYsX25w5c6xSqdijjz7q5yrPYxzaibrxrsLx8XHfBtRfx02Id6GFhQKjhGY2JSAoITObdH9x0CELC1UYurpkdwyEA+cDQVQul80552+RViAEZQG3SUi5sGLgbcG8LTWktCF8WXmGwArapWfFQAFAGKvVRsFPHBBiUjDBlos4oIDv2i8hwMPlqsBW4MH81f+1LboqVyuSWh4YLHPAsip8duVxP+pOLsT4cPwRgCoHTnN/Ih8dc2aTBygy6Oa2g9S6pLxmwMF5hPqId8Bx/2jQOQP80CIkDghhDHfaqZTJZCJWILNobI62kS04AKP1ej3iBmM+8XsIuFarlp7FhN1+vEPNOefjdHhnlnPOisWivfzlL7dtt93WRkZG7Atf+IIHPGxlRl9y/Fk6nfbB3Aiq1zHJ9WWeYNGGtJAPIateQjOXEhD0b06YzDAns4CAW4xXf6FrBnj1pCsiDRTs7u62gYEBy+VyNjg4aMPDw5EAQwipUqlkZtHtplAmIctGSAnFnQGkijrOPaJgC1atXC5njUbDm85DIEEVp+ap6XSFyXny/wpepmMJ4ny5f1SBhsBSCNChPiELFn5noMH8R574na0AGncFYMOAWoEdK/Xx8XEbHR2N3PzN4wB1gPLiccvAQy0A7H5ifsYBEQRiNxqNoAJEXAwUcOhONM6f+0v5jDS8GAAxsOR+YIBULBb9ydBm1gYSOa9sNusvUQVfEQjNIFXHKiw7+Xze1xvP2f2GcuCK59gxyKRisRhxTU9MTNgGG2xgAwMDViqVrFqt+nYBlHFANwAXeIN5jD4AnzWGDjvLeGzyeEE9EevEC5QEBM1sSkDQvzFBKBSLxcgKjz+YzGZrhQNWchzDA6HI1iGzMIhIpdaa33l7fK1W8+6PVqtl1WrVzCziMkM+qpgZAPAOD8QtqFtAFTcrSrVsgNhyAQGH+kOAhiwGSnGggcFO6H1ewYYAIAtczo+FdUggh4Qz+jUuEJ4pBKC4vuCvWvTQF4i5gvsTbgkERbM1goGruroYKI+OjkZuOx8bG2vre97WjS35sO7p6p/L4efsqmKwFOrjkKWNed3d3W21Ws2njbNCoC4K6pn/DJq1TAaOACA9PT1WLBYtk8n4DQAKaCAn8vm85yvcR7VaLRgHxO/xuU7s5gYgAcDAnEJaliWcnsF/Op22efPm+UVTtVq1XC5n+Xw+4rZGnfnEZ94RqOA6ZHFDPVSusbWL64ZxlpwYPbMp6Z1/I9KJDktPSHlCmPIJzzzReYXJKzpVmrxSRewBFDKv+gGCYFniW8NBrOhRXyguBm0sUHkVqQoEYC5kNQq5yxiMqHsjLmB6Ov3Beasy035RoBrqu5DyjHOZaX04TkLLRD3RnyHXl4IUvKPgNeSWA4jh7esKgpS/2jcYP6z4mCdIo9cfIL8QwOA+YtDF7Qi9o33E76oizeVyEcAGHodcYVwX5KmgjMcQtx19kcvlrFAoWLFY9AHFocBjzHlYZgBSsYuKAZCON44xZGsa9z3kCFuh1SWpiws9kbm/v9+DnpGREb8NHu3MZDKRQHvIGlgCwWf8VSCpz3Reol6hTQkqsxKaeZSAoH8TUgWLVTD741mI8uqZJzoLC40BMJtUjqqM2RQNqwviBNikDiE1NjbWJgBD1ghWYiCUBQHMW3p5VcYKgg/tYwUZBxZYuLFy7aRA+f1Q/4T+hspUEDSVyV2BTxwIAt/Yysfvc724P9X6FwI8vFOKXRw8VnDODINgVejMT4xh7gc+oBD9qkpId5xxMK/2H1b+ak1i4MHgk9vIvML/eio5CG5BtcRwW1FeCHwyj/S7frq7u61YLPpgaLRH3cIok+cNLEAIIub2h0AuW2jjrJJ8/lio3chTFyngZW9vr+VyOZuYmLCRkRH/HGAe8gpjhXd5YuGG/lRZB5CqiyfUSUGQAvzEHTbzKQFB/8IUAj74DsEGlwQUhtmkUgut1NW8zkqCV36qqJ2bvAUceUMwFgoFM7OIbz6keEPCVkESW3WwIsRKlk+b1dU5+ADLUmgrtQIIuDI4TQgIsaJSYpCoypSVd8hyEgJEyqOQ24QVDefPB+Bxm+IsUhqnE7KehYAAAyOMDd79wwdVhiwzIaXOgCCVSnk3XKjtZtHTt6Fcdds3xjdbJDnQWK2dyB9zAu5Ydt0AlKnVJ5VKRXYqYewyyEC/cL1ZSeuYQr5qDSqVSv6CVK4L+glpdUwAAFUqFQ+AdBzpWORxGwrkD7muuY85X7NJ9zX3Y09Pj2WzWavVajYyMhLhAeKzwHfIB1gZ+XwltmTzvFC+Mq/wN/QJLTQSmnmUgKB/UZpq5c8ClVfpDIBCJ/PiwxYDCBo2F3NQIgQP8gMQAQjDnWIQHLiBG3XC3zizcqhdIMR71Ot1q1arXgHwAYAcOIn3eQs2H9BnFgWAKth5m23IchVSGqE+w/t4RwOfOb0Co05lhAjKDgfK6YoXebBwZ3cQiFf9+h5bP9AejBO2xjE45XfUcoJ66iWllUrFK8pCoeBX/txPSI8+xzkxZpM3fjOo1b7TevFYACGImNusYwuuZgBnVsrpdNoajUYbEEJeDPh43vGChZ+hTRwIzWCf6wa+YI7AQlWr1WxoaChyAGWn8Qu+8JhgAMznh/G4Q0A5x/NgxxgAGwfW9/f3WyaTsXq9bsPDw211gTuM3WCNRiNSR4w/9BmPER4PIWDDcyM09hMgNLMpAUH/QhQHdkITUVexPImhMKAYQ5YTfCYmJiJbawGq1ITPwhiBr2xCBtDo7u62np4eM1sb5BhnycD/TKr8dVWZSqVsdHTUxsbG/Jkl5XI5AvLQhmw267fjmk0Gk3J+HGDKPFY3Tlz/hFxnag1CuzT4WftWQUpoJap9DmtFyC3K77E7RIPIOegZYFhdG7Aa8bhgyyOTxswwrxkssTsKv+E8Kk6LcYy6huYC15H575yL3DHGfcQWQFb2nDfqwTuumFeoE+/sQntgfcEVFDpmplKwAC74H3FHc+bM8ZsbMH85P/4fAAgWoJGRkYilky1Bobro2Ed/cZyQWrfAL8xH1KOvr8/2228/H/czNDRkQ0ND1mw2bc6cOZZKrd1gARCkdeDFFVuxUA/MBYBPjfnSIzFCY1f7JU5OJTSzKAFB/yKkQlEFmgoks2hcBawzut1aQRDcRhCgGrzMlqROwcUgCDyOScAW11Qq5c8fUdN7SMjEKX191mw2I2cU9fb2RuKGIPD4nCO2RCjIZB4DQCE4V98J1VtX69pGBRRcNvdzaCXOApnLA4DjoFV166h5X4EJzuoJWd9QPx0TqA+DFIwDtfZwf7FVLqSAQuOSwRuXq3ME9VAgyLFCymftV55jDGbUbRZyjSJPVrw8B/kyUu5X/s5lMEBlZQ8LKPqI3Y08ZuCiMjMPHKrVauQyWK2/tiVEqVQqslMsLi14AfCWz+ctn8/bvHnz/KnivJOtXC77OV2r1dr6AX2JYwsU+OkYx2YJHac6rjkOjq1wmidbhxKaeZSAoH8BUgUYp/w0LZQgBBNAAAf48dUZZpMBnGaTK389/RblaJl4R5+F6g/rUiqV8oJLwQfnr3nyb7qSxgeHpGFnG7ZWY+UHCwK7DUBqTWElq4e5hZRmp/91tc+fEN84rY6BOEugWTSInX9nBazmfeTLfa1tUIVsFu13BY54rvE/UNQMgBQo8ZEIGK88fjsF5mo7+DsDljgApHVlYgsVvxsX46TABvXBe6q8lUIAEnMcp7XjKAzEyHCAONcBQIgvmsVxFXHl89gI8QB1gZzRPJRfZmtlDU6ZHx8ft+XLl/sDF7u7u/3dhl1dXVapVLyVJ7To4VgzDYIOjUUGyAyCQm3k9sfJ4YRmLiUgaJZTSKmoi4QJv0E44sPn3+hJz/ouFA6UPszlurJkZYP3zSwiTFjwMMGigvf1Th98QqCL66u8YiELIFSpVHy7oUTZ8oH6AoixwOZYEgYVsEbEBUVzPeKEqq4mVRmz8u4EiEJAB0BTnwEMclvUSgfe6F1MCvoUDHHsScg1pZYT3i2IMat8051/HGfGF3VywDfaAR4y4GFXbwisKLDrBP7jFKQGz3M/Mi9SqZS3mqTTaX+WUEjJa1noh1wuZ8Vi0Z/AHHeAKPMUfMZdWrphQevA72rdOL6G7yPUccNjDP2DAxYzmYwNDQ3ZnXfeaf39/dbb22vlctlKpZL19fVZsVi0SqXi7yRUqyVbBxUscmwVvwe5FwJ+mCcYL6FFSqfFR0IzixIQNItJ3SSdVtn4C+WHA9IwkcfGxiKHfZlNWnp0gvPqCEoHW5P1MDL1+2vsBAtC3UGDeCOs9AGEWKGAFOBwe5E/iAWk2dpAzMHBQWs2m9bX12eFQsHzhs8rYgDE70MQov4w2Y+MjETuK2KlyW0P1ZldIhpszGm1bxQIhX6Hu1HHj8YHKe84b6zqFfCESJUdjyH+HUH0qAuUpqYDH9XCg63fAD24f0qthnpUAw5VxFyA5QCxI3FtU0uK/s+uZe1TthYqb/Ad9clk1p6gXigUfIAyl20WBtKIeYNLG2AAYwC8xF8O7m40Glar1axarUZuk+d+CPUx01TWFAVceJ7NZq2vr8/S6bU70qrVqjUaDVu1apXnKyzYxWLR+vv7raury7vCVLZgc4Qe6QEgD3kEHkHmoe5sgdNFCv7Hd44r6zR3E5o5lICgWUih1QYmXQgE8XsQHCFrCgcIs4+by0LQJlbWLJQKhYK3CkFJsTVEt6BCKbBlhS0JOM3XOWf5fN7K5bLVarXIjh1V1FzvENhQIIJ3xsfHbWhoyBqNhj+Bli0lGmzLW6w5PyiS3t5eS6UmA7FDK19ur4IUtgDprrC49zqtPBkAw53AQpstdmolCJXF9eT+5HdQLoNFthTymGArpHPOu0IQ6xFyBXGANGJY0Ads+eF3Md7UxQZrRQicMLHlKDSO2FrJ5aAvORCXeaN/dfyC1xhLOG4CoIb7Lp1eG8vX19fn+QKgx3MH9WHQAMCAs7vUkhk3vtSahfkPSxzO8CmVShEggrqXy2U/JnDmD1/KinLBR/TV8PCwDQ8Pty0C4E5H3/L1JKgfjw+ec7xdn/ubgWMo7k0XhnG8SmhmUQKCZiHFWYD0u1n7KgUWIBArID14joU60sJFgcBTxBugXl1dXV55QZnBF8/CNqTAVRFo4CEEPAdLM8VZIlAm6shKDITvjUbDVq9e7VekcK2YWST+yWwyGJfriLZgBw5bPbh9bBmCwGQgw5YDBovKv7i2hgBLLpfz1pXQ+2qF4GeaVsEM/66uO7VymJlflTN/2CUFHnV3d/vtzCGrDF+1oAqdzw/iuqAf49xZbLHAOwq2uT4YV2i78ozbieMlAPChXFGfuEBlBZuw7uBMIbQRCxTe3q7xP9xOXsjwGHbOeZ6GAKGChJDVUV3LfJp3KjVpkVPQyW5Q1Cefz9vcuXOtXq9HLjDWecdzBvkgLeqh7ynYZIDDCx4el8xDXhjpopFlcUIzkxIQNIsoZJlRZaluK0xs3u7OeanwCgkIFhJ66BhAAI6nN2s/cA31UwsTWx+0neoaYKVkZpEj8FVBhcAQv4v8dJcRnuNAuHK57FfufNEnKxQFbyEghDy1jroiDgHDuD5l4arAIASmAFahmDQ9AxS1KMUBOW4r0mhbkDbUPvASafjMICgd3bbOBPCOnY1s5Qi5XPE/x8Xwc+1P5i+3QwOelbQ/1GrELkfkwQo0FPyNOQflDhABfuNwRcxztoSw8ta+4L7mAGLwkNsdGgs8DnjM6hZ4AC22WPGuT+YPjphAvqVSyTbbbDPr7+8355ytWrXKVq1aZdVq1dZbbz3vzofVCG4ttvKhP5m33C6O7eE+0DELYvCD7wqOOsm4hGYOJSBolpAKLo4z4NWiKhmsiLHNFEKRFSxP0pBbSokVFSsu3m6NOkBRQVCFVm4qSPl9VbzMA6zoQ3VTYMS8CgEnVm7OORsZGfE85jvIOCCaBTjy0lUkK/uQ9YrbivdCICakwNiVGMqPXTAIMlWFo2NAFSPSqdUE5bJyVv4zUOM2AqCwgmKlxfzSd7mv1L00Ojrq84KlJY53IaWmYygOZDKAYj7pvGBLBt5pNicvC+VAbvAE7k8Fy6psMYb5cEU+6iKVSgXvXtOzjPAu5hIOEuQ5wmOQLUbML04HwK3p+IBVs0k3pZ4wj7xQ397eXnvJS17izwRauXKlFQoFW716tb34xS+2ZrNp1WrVhoaGbPXq1ZbJZCLXrgA06tjn+rPlGkCTx54uHLjdulDhuZyAoJlPCQiaBaQKkQUfCyhVYPjOJyTztRVmkwKdTb4hAQjSlb9zk6fJ5vP5yLlCWP2xQubgTM1bD5RD21FuyLrEvn5VlHhHV3VsNWMlzEBoYmLCRkdHI7zn1XvoegwI04mJCR80jPcRExESlnjXLOpOCQEibgc/C4EPBBf39vZaoVCIWAWQD5cHZQwly+kZ+KFuGkCtlhXtD+5HdnXieVdXl1fA4GOIR6E5wPEeDEJgjWPeMAjj8c510/pz/yoQ5vYBvPGHLVtol5lFdmXCcog5xFZE5iHGPfc5DhNkYIkyGLjjOwMB8A4xQLCoKM9DskfHJ0AYbyzQ/mNwB95gAwW75c3MH1ORTqftiSeesAcffNC23357W2+99WyLLbbwJ0un02nbZJNNbM2aNXb33XdHADrKUWCDcRRaZHHcGMsb5AVSgK9yKyTjEpp5lICgWUChmBG15KhCw99CoWA9PT0Rd0FIcbKiw2+qjPEuhKFzzlt3zMwrMNxQrYKw1Wr53T6heAwVNGxlYSXFwkp320BJKH/wHtxoEG7IU/+ibRBgvHpHXTTQEoT8uR59fX3eGsYgVAFlJ6DTyYrB5SP+p1Ao+LNUQjEh/GHlysobzxm4dhLsDCq0jdyHXHfOE/EezBcltU4hH3XH6pEGzB8Gw8x7dpWxO4UP51NwpHOu1Zq8Rgb1ZXCCMYDdj9g2jsUE4uqweOHdbGgf34COfsaYxEnnzD+0kWOxzCYPQ6xUKm1X3zC/mSfan7D88IYJ5q/OLYwvBhHMSz4DqFgsWm9vrxWLRVuwYIHf1Ygdc7/5zW9swYIFNn/+fKvX65ZKpTwvwGfsfEWdGPxyfCTmPPpDwbJe74E2QAYxoMX7cD8nNHMpAUGzgFRRhJS8Bk8iLQ5IMwtf5MnvqmtJyzZrP2AP1xRAuHBcAYQCCw4WfCyIGBCxQlIhzu/BXI5Vnq5aWUChvqgfb31XqwR/xxZ33LaNtoOncduH4fYAz/L5vPX29votx/g9bqXM/cht0r7hd/EMF8VCmKtLgMEJ9z/ittjKpdYOzgN9wfVhq1scwGMAyu2E8sfuQvyulgkeB3ytCbvnOF5MLR88zvEbQK4GTGNnEe9EY37rAgLjioEcL1BQb4wBBH0j5iydTvvfxsfH/SGHsLDCmsuuWg4AT6fTfqNCaAMBAwEAMj6RWuVDaGxyfrwDzMwi1hMeK7rzVK2RaAfipcCbcrlsc+fOtfXXX99WrlzpF1HYmFGtVq1YLFqr1fJXjEAu6GILbnkQg3WWPeCjjlcN5O4kh/F/skV+5lMCgmYBxSmukEXIbFJZIUgSIEGDAkPEgIeVnVqikFYDraEUsGpmIMTAAAoGq08IIgZqarpn4cSrSzVXY4XG9ec6KjiCkg0JRShB3nHCgl2tDKzoNIC1UCiYmXm3g/IbfFHQodYg/GWFjO98QCDaF6of6sUxGrhoNuTq0zGh24AVHHayGIGvrByw0ka+HBsUsiKB7wrYmCfqklLQxYpPd/mpO1D7SvPH7xj3DMA6WT1Rb+Yx8gYYxHccfFgqldoWDBx/hHHAdUP+bO0LXSOh44TnpLrJOQgbfOdYObNJCypbkuLmIaw2WHjoDtNMZu35Vrwjrl6v+/OTAILYxc2yhd3ZPGZDYwu/83cGcDqewBN2F3KsV0IzlxIQNAtIAQ4rd/0fabC1G7tEWJCD1MqC3/XD+av1QgEa8tCtqaxwGbCYmT+cjOvASgR11LqgnRA2AF9qnTGbvKPMzCLvmFnEooCy2BrEQEhXf8g7BCo5gBaKifnKsUwqKNFeBnvMcwZrDHoR/KwrWQ5YD9Ufh9LVarWI0tYyeeWOIFzOi90h2i61mnC+oTEIHuIZE4NttE9BPsYCu5FCeTHoUYsA8xdp46w+cBtiPLBrjceC8ld3KfL4AVhGWnZ9cftUgcP6CODBih3vNRoN784OjTWML1jXQgAIJzorP9ndhbZqjI0uGEKLHcQoVatVK5VK/lm9XrdyuewtZatWrfInarMbU+sfssroIiPkOmV5oECI5wnkAx88GrKwJzRzKAFBs4B0xc2rJxUovFKHCV1XeirsdIWG5xoEibJBLABCFgsAIVgluN5sDcCuHiZVSGwVgNJjVwA+MJezWyMOUGFXCq/wuB1sBRgfH/euP/QD+A3hzulRDgAGzlxhPoyMjARjLNitxHmFgCmDEj4wUJUa0rF5HgocF0/ytQNaFufJ4wtjjOOyOG6KgTOPFbjeeHwzgGDQoICMxzJbODHeUBcoerbysHVRlT0AgcYasXJmdyqfkM7tZ+CM/LieIauQXtmCMcBgisEiW/DYDcjADaCb796Dm2l0dLRtsaB14rHHllq+kiRk6dPxamYRoMh9B8sPymAXciaTsTVr1tiTTz5pG2+8sW288cb297//3YaGhiybzdqiRYtsyZIl1tfXZ0899ZRVKpUI7yH3MJ45BkgXhbxAQjvZ5ajzNDQm8b4eRxJKl9DMoQQEzQLSVbwCnhBQgRWIBX7ocDLkGyozVAZIn6m1Cnk2Gg2vnFUZol09PT1tecDcratmLk+BCtc9nU57AQu3gJ4/gk+hUPB5QJGFeALFgdU4lAwUOpQdu8zAb1i7YBGDxQSCm+ujYJJBmY4DBM4yLziAE/WD1abZXHsCM9qCVXWj0WizTCnIZgDHMSDshmo2m1YoFCL9o6CC3QRxFh7+DqDJxG4wHpeNRsPnjdg0tWiF3E94zmOELZYMaAHWuGzuew6A5ncZzDCfMbagePkDaws+mUzGb2NnMApXkPIRd4bhFGicwox50klBc9+gD3XTg1rf0L+6uw38BSjlXXYgDVJOp9O2atUqW7NmjT388MNWKpU84O7u7rY1a9bYeuutZ3/4wx9s5cqV3lrLdxli3CpAhIstNP5gVda5iDriO4NIzGnwKHQeV0IzkxIQNAtIlZK6ZTDRebUPywCELt7FaphXM+yS4JU/FJ1am1AndbuElKfZ5IovnZ48RA3peZXFgIeVuq6c8Rv+4gRkbk86nY4cotdoNCIWJS4HPGPBzJYCs0mXCa/uUQYrfBWazE+2GmBbcyaTib0LSkGo8gLbqbm+4DHqgmBjM7NqterjkaAUcEEmnjH/ONie+5aVOlb4AHeIZQkFhcISoW5SlMdXQKgCZquNgmN8R1kAJGypwbuoBytotVowMYgB4GN+sHUxBJRU4bNlkvnCd2cBRHBsFyxVZuZPfQeoSKVS/nJUdv+BFxgTtVrNRkdH/ZhXCxDzQS0duG4HYwnv8VjlvnPOBS9V1hgl5iXX18z8vV78nUExDk1kYOuc825K7ivwa2xsLLKLTecdFhFcT5aRqCM+ocUJB6qj7IRmLiUgaBYQCxcFJCFrDSsgXrGyYGOzL5va46xNuiqCENX0/B6faAtLCMeMqLVEXREhQl2RB58rwm0xMx+QyQpH44/MogfS8eqf28vKDsIUyp6tZkgTAoYsGNl9lU6nIyt0tnYhf+TF+fMFpvg9FJhpZj7eh2NIsGLWO6WYL7za5XGllh2tB7ed2wQ+ADyhn0LvMFDhOqFeavngunEgLoA/LD3an9z/UIBQ3gxmQlZEBusMejgP3REVAkHYLq+LHPCKXWrpdDoSi8OxL3ynn1qx0L7Q4oL5wX3B8V/YIcmuSgYYAIpmFjkKgBcvoTGixLKA57SeCI5yML54jnGZAEm8EGRrbciNzeOVx6+2X+dBPp+PgGOWCwnNTEpA0CwgBiIKeEK/sbsBk15dADrJ8b+CHwY7Wh/OgxU38tDgY16dKYjiu4BUYIWAEecPIczvcB10pckr3ZBSU+DCfGJF1mg0vBWK26PvMO9U2UBo4l297FNBqPY770zid3ilj3NgWCnxilldWqpA2arUbDYj7gIGaAyioVw0KBfE1gEd61x3BcfsdlJXTKvV8nFeWABgpxHqxfzSecHxIrzLS12yTHgO11soGFrBXAgUoN0IpkVd+GwitEnHBtIwgApZpACedBwomER9OLiXT6EOBWJr29XdBX7zWFYe6LhIpSbPbcI85rL5YE+tj4IQBja6yNE5q5YfHtN4V89uCsXlhdqX0MyjBATNAgoBHVWIGsODScqgIKR4eNWooEaVsNlkcKkGGGo9zaxNmSGgFIIiBMjYVQdww0IR6dntFxLk2kYWhhwnpAIZQlWtRVxfEFw/ahGDi0/fZeCI3xFjgbbAXaXKgmNEwHu4Qph3rEjHx8d9wDMOsmTFF3IF8CqXn/Pv+KsWKh6LbO3AmS46dtnK4Zzz9cZzKHPwSsEP1yeVSkUu1kQ9MN4YJHKb2Y2M/zE+GJBy34cAGUAAwJDyMM46gPECVxMfbcA7t1A/dgmZmR87HJSO9+Hq5LvAcEyDxkrpAgjWHwAPdjFp25CfAj1dfOiYYp7wONM5z5Y/yLFmsxmZC7wI4vz5NwZSWJTpZcI875kfeJ9dxhir6XTabxJQXiYgaOZTAoJmAbE1g10IIUuQKlsWJCEzLoMftmaw0AAxOApN8jgrEH5DDArH0cRZmaAEkQ9f7Ih0AA6tVisSGApBqau5VCpl5XLZBwQjTggKnS0VDA5VWTBvoRzigr7ZOsIuDo7JgQAFIKrVah604L1sNmvlcjlyUjcrdaRBkHe1WvVKcHR0tA2UoW5whbHiUWXNAJotHxyLBQUcCjY1m9wdxGONxxHzGEqLlTB2EqId+Xw+Aohg5eHDE6GccPowytFdO2x1UAshg1ZtPywtKJOtJCELIvMY4xdjGIG0zDu2wvH7iOtB/nwqMQNbvmSY21QqlXwwPI93liXOrY3pYaDHY4KtZUrcpzp/2A0VxyMFNNjRhnnKCyq4BVGeWkZ1kYNymEcq6xiAqVzlNJgD6Eceu7z4Y7mS0MyjBATNAlJ3iAZGs1BhAQulAQCC32AB4dWZKiUFUXECgQWeWqZY6aEsuJH4Xb7WAR+96kFBBStOXv2F6gzCO9iuns1mvaUE5bJ7hAUe94U+g+WGFZla5tgVA/4gH3wymbWHweFUYICTTCbjd6MhHonBBixEAAaVSsXH+gAsaawLlCkUXZw1TYEb2oD84oAyniENKwIoEHYpYEyGdo2Btwhwh+LCGVjcT7wpIJ/P+4tjeQzCQqQLAvCV440wb9iqAHeSWoCYv/hghyIDOz1JHeXxWVQYH2qN5Xzxfk9Pj18MsHsT/GFXFfqDwTT3S8jFyHNbXZw8D3X88F/mvwLu6YAEHqM8RxuNhrduof1aB7iveP4xsMdflVlKeA/znC9wVlmkIC6hmUsJRH2WdN5557Up25e85CX+93q9bieffLKtt956Vi6X7dBDD7UVK1Y8q7JUmSoo0mcKhELghPNVC5BZ9HqCuDI6ATN9j8uA8GBByso0BMC4DFYg7ALgemv9Ifi5PrjziMuOW0Eq8NM80RaAK74CQMFlHF9Q/1wuZ+Vy2fr6+qyvr88fCgdrBW/j5/Og4J5joMMAmVf1fMs2iIGQWmbiFJwCBI5DCQEEKFBeuXMQMg7wA3jgreZmUTCsbimMHR6LakVBvTl2BfVgAKFlKF9QX3aBYQs6jiDgs3jQT9jRx4sDvM/XuWBLO/Ks1+ttwA1lw4XK78BygoBmjEUz81ZWPGegwtYY9BPPOR4DoYWG/q7PeJxxW+KsraH0urjSxZLWE2OG+4/bxaAzBPJUPmHe4WJizHVYhVRuJTSzKbEEPQfaZptt7Oc//7n/zu6fd7/73fajH/3IrrvuOuvr67NTTjnF3vCGN9itt966zuWEgEXIGqPfOV6GJ2NIwavg0N/iyoj7DfXmlSJ+Y+XHAdy86maLCws//GXBiNUZLAxMas0AqXWHQQ0UKpQA8gnxMOTSUaDG9Qjxm0GQvs9p+YwVpOMt1HoujgIUtgYoGEH7uM3MA3VtKP/xPhRzSDHiPVZi6ioBCOC73ZCngkWuq9aTxw7XnZWngh11Haly1nZzfQGCNGAbIJhj2DKZjLcmab6om/IfAFgtFs1mM3LkAYO9iYkJHzeTSkXPTQIv+IgFBXo8Brle6sri//lv6BlbRToB61AatgDx+OGxEFq4YH6EZJHyX/MDAYyjT83MA0yWXXFzN6GZSwkIeg7U1dVlCxYsaHs+NDRkX/ziF+3rX/+67b333mZmdvXVV9tWW21lt99+u+2yyy7rVA4rjTiLEAsGfMcJx7y1FsLULH4rN0jdGAzC9J1QXbg8DpTlVSwHJnK+KiAh4BnQsOsBQYncLs6XD0djEIZYIg5y5G3UIYXAH7VAIT5IlXyoz1TQMmDDahMrTFhHkI7dPuBlaPs/WyzUHcZ9yhSKa9HAVgh+9AlbxeDaYkJatVCy0mFFznFA2hc8PlQB4xnnw2MVddH3QxYxHUf8OwCFWq0whsAPWAW5zgpY1HLF/cF8ZusMt8m5tTFgZhY5iBMuM73dnS2JuGOMrYI8ttkFxnOY66d9w58QqA71I35jGQEKgSLuGwY4GLssLxlAqruby+P4KybnnI2MjHg3Pp+9hbO+eBeb3heWAKGZTQkIeg70yCOP2KJFiyyfz9uuu+5qF154oW288cZ211132fj4uO2zzz4+7Ute8hLbeOON7bbbbosFQTBjg4aHh82sPRiXBZT6sFnxI2CPg/MAjjQGxyzeIsHf9RJCTqfgQOvMAkzdD1o2FKAqSNST/46NjVmhULBisWiFQiFyVQK7R7DqxTURg4ODnt+oL5+yrfzptLpj1wxO89WVNPcR8zYEqswmFRr6jC/DBR/56o1sNhvhqe5cUuXP4FX7JeQqQ/3gWsEYY6XP1inUH/VmEMhjkq1XuqLnscEKDwGyeCcOTKnCZaDKljG27iA9E/+Ou6ywGw2gj68Q4bnCQKbTeAqBZwUDyKter/t73jKZjD85HHFAGOsckJ5OT26RZ9daqVSyarXaJgcY/HRyEaoFOA7AoI2cV2gudbLWoE4q+0JgWGUZxpKOMXWhIT/kPTo6apVKJQIEccI3XNcAl7Buc+yXLiASmlmUgKBnSTvvvLN9+ctfti233NL+/ve/2/nnn2+vetWr7P7777fly5dbNpu1/v7+yDvrr7++LV++PDbPCy+80M4///y25xqLEnJJ8cSGAMaHBRav5lhxx7m5sFJVaxSvRiH0WbGiDqFtxlw+CwhuG76rVUP99fiOrdDYbqxWCoCLkZERvzMGwEHBCKwnZtFt2SFli/TML8RpACxg9ci85/5UvkBZ8fUXCN7GBakAQLqVmYN7+a/2AfqU3TlsMeI6cR3RB3pRamg8ASTxLh5eJfNdWeyew3tsDeIgX3Y/hFb9PA/0PjX0XSi2CPUAcORniM3hhYr2L48BHtchABpauOA3JvCEwSbqAzdYd3e3v54GcW5m5i9QhQUUdQTfUS9cscMLBx3zoboxTdfagXoo35nUWsPEiyNOjzHHoAPjhGWjyhTkifHKFsBWa20A+sjISBtwmpiYsGeeecZarZYtWrTI+vv7rVwue15rfGRCM5cSEPQs6YADDvD/v+xlL7Odd97ZFi9ebN/61rf8boV1pbPOOsve8573+O/Dw8O20UYbRRQRTywFR2qKx+8sNFgRmLW7jpAG+aj7TQV5nJuIBTbKC7m79ABFdpWgHLwDwcQfVoDMF73OYmxszCqVSmQFh/qpMufVLxQilJ/yTgU4iK01EPqh9jGAAnGgN1t0oMRarVYE9IGPcO2p6wv8QTmw9mArPhQ+r7J1Ba59z1YAtUYiDVtOnIvu+HNurQtHQSjXlw8+ZIWmbg3+y8rVbBKogJfMH84Hz/WU40wm4wOcGSTk8/m2eoTAglqjND0vIjg99wFfHcFHHjBoVPcc8kBcIMAD+pcPGW02m95CFDoheypi8BeyyMRRSB7gO9rP+ek408Ud56nxQ8x7lkcMVnns8GIoNP7x+/DwsOfxeuut5zcwsLU0TkYkNDMoAUHPE/X399sWW2xhf/rTn+w//uM/bGxszAYHByPWoBUrVgRjiEB84BZTHMgIWRJ4Ja3gBml4UqqplvNQIMRWD86LLRgMgEKCkAU38oOAxnscQ8FCiVd67Pbgd9UVAcWG3Tp8cBysDarwU6noEf0oA/UNmfu1rVw/Xs0zXzQftJF37ECBMagEMONjENj6AdDFfYS6wDoESwJAKK+A4xSYPp+OotPxxUoLPEI7YC1TnqjLajr1UosQt4/HFYNdtn6wEuYYGvQj2qDKP679Ogd53HAQfWhMmE2OY1ikeI4yfzhwPp1OW6lU8v+D/2gfPph/bH2bCvzEjXutN8rk39APnfKJG4ehuYPv3Ef6LsumOKCmz0PuUe27iYkJq1Qq3gLHu8U4ziuhmUsJCHqeqFKp2J///Gd7y1veYjvuuKN1d3fbTTfdZIceeqiZmT388MP217/+1Xbdddd1zlutHPzRic2xGHHCgONOQgKPlSlPZBZe6h7jZ1yGWnJUCKdSKX+iMLvxYLFAHdXqw8IQwId3SsFawluMeUXHQIwVI0iBAfNUgVmckOd6apA50uIvA0C+lgLt5+3NMLlDCPOhdYhpUsDErhy+K0yVSqg9IZDN7zGflHj1zGANPAYI4gstOW8GKDz2QqCN64cxgR1SbCGA5YSBDz48x1KplN9qrguDOHDH/RkKEMf4QDt4waBuIMwhHO7JW+7ZesYB5NwWBns850HcFu6bqWJYlN8hCxC3U9OHgK7Wi999NuBc4wl5bMQRyyYGlLyQ4LGJ/oPLLJfLWW9vrxWLxbbjSRKauZSAoGdJ73vf++zggw+2xYsX21NPPWXnnnuuZTIZO/LII62vr8+OP/54e8973mNz58613t5eO/XUU23XXXdd551hZu2Ag1c7bFKGsoaPH89VqHAcBpSBWg7YuhICCZxGV7m8QlXQZRZVuJlMxgc2MwBiRQkhqIANAhWgAIfN4TcGTxzwzK4DxLegLAg6DihHPfGMFahZdNsvp+fDE1Gu7hwxswiIY1cqK3q4ZczMgySAGg58NjO/EgUQrNVqnicKNjQuC+k6ARvuG1YOIaGP5wCo/IGbEu+jTuAzlD8UDruFOAYNvEIanH/jnPMHK/J7ofvZ1DWGdwGeQQww2JqJPPAXfcIXmqoblxcxqA++o49rtZo/I4itEgwuMQa1HbB8Ypzn83k/D5APxgLzr7u724OtkLWE56cCnU5WHv2r40TBb2jcabnoE/5N5R3LIia2IjNgSqfTkcuGVdaGwF2j0bA1a9ZYb2+v9fT0RBY0emxHQjOLEhD0LOmJJ56wI4880latWmUDAwO2++672+23324DAwNmZvbJT37S0um0HXroodZoNGy//fazK6644lmVxcBHQRCvxqDkcrmc3ymkAlitEypYGASx2d8sKrxYiIfyMotamdgSEFKGbFHgs0x0lcmuHY0LgmsHO5s0hgTt0/d5Bw1AFJQoSK+WQHq+KoH7A21mVwUCkNniBSGMoFbOH+8BKKLt7M7iuoFHrVbLW8CgAFOplB8XqBdOUw65xtjtFwKDUO4Q9HpeEY9HviuOP7zTkNvH4x5WG7XUgOLAGls3cBQD8oPbJ2RNYgsAg0suX0Ezj1HUmy/W5ROiEY/F/MAc5aD3er1uw8PDbXFoTDy31DXH1sJKpeIB5eLFiyMWTb2fjOcSE/NXLXHcD0oKdHSesGUW+aAumq/OKwafyI/jx7QeLGvMJmUWy0gsLnDoKNcpNM500ff0009bX1+fFQqFtjGe0MykpIeeJX3jG9/o+Hs+n7fPfOYz9pnPfOY5lxUCHAyGzCYFKvzSmUwmEjsA0iDpUDxCCFzhOfJQNxkrSQgEtpZovmoxYIViZpGTh7VeKnChuDjmBUCI4zzi6sIKgwEex+9wuzgtAmTRBt5ZxMpT68r8511GKIvN8LxTDdYf3XHEFggoPVbiIb5BWaNMPc8GbVJLDLtKGcwhT1ihAOCw84jroOOK2wn+q9IBH9myGDcWGDAzSFBC3Rmkat+xcuVgf7XkqEWC64S6q+IGfwBKEPsDgMtgXMEptz1kPWEQDpfN008/beuvv37b4aI813O5XGQXXJzlR8EXW2C4DsoTtnypdYUBFtKESEETl8dl6HhTmanlm1kEGOp80PJZNgNADQ8PW29vr5VKpQigS2hmUgKCZgHxZFXQw88ymYxf7Zu17/xiVxELkZDw4smvQgzKjwUngBGesZLWOocEm1pN+H98GDQxCAToAejiG69DICi0EuXnGgyO8pSnHPPBSiFkTVGesrJmsBUSusgTgbFs+eE0fDFsaFs2f7hOKJ/7MARYFCAC8DCf9BoRAK3pBNzy2AmNO1a6akFUXoXcH1yGtkfjPbgs7bcQf5xzbdvk1X2lyp0BMPcfu77UIhKqf6hfUQaPtfHxcatWq/5MIA6sRzq8VygU2iyMIV6C51yvuD7mPFB/lWHTJfSPtl9BmrYrNN9Dc4RdaMp7rYd+r1arPn5LQVpCM48SEDQLSAFP6GNm/tJIdj+AFECYRScwr2ZYCaj7zSy6hRsCQ2NfdFeFlhMCYRDUnVaCofpw3AOUCf5nMKCCjIFKHLhBmfoxm4wFYj6FFLO2QQEl1wXlqxuz2Vx7L1jI9QW+wf0V56aJI3aDKPhjIR4CvBrjxG5OVvSoI7vKFGgzAFMlqX3E1iYQj1sGYZwP+IUy8Zz7kvmG2JzQcQMMdpWPDMI4LZfL8wiBzxqIjfQ8H/EsNGd1fDH/AKSHh4dtYmLCisWiFYvFNjeRmflDR/Uk6ZCbCe3lMrWtqC+P3bhFEfM0Tg5wf2tf6u9x4DBUZmhsMA85PfOe8240Gj6WK4kHmvmUgKBZQGqRCJmTzda64HDIHuJcVPFDQZlFDytkIRWKcWGhy5YLuEnMordVoyxdPWke2NmC/1lwAczx6ozLhnsIoIetQWx1UGXEeXK9kEYDnVEWFJceP6AuJ5CuPJlSqZQPYOfgXedcW/xIq9XyK0vuL+ecBz4I9mYlHrfiRftDBBcq1xNKkusIXjA44THVarXazkrB+2ohwXME9eMdjlnhbd88VhSAMQhiFx6DbLiaeB6w9QXlwE2FOmAcKI8xRtSipxYx5inGEAA8gpjVaqHggknbzwsE3dmE9BMTEzY8PBzZMdnb2xt03ZbLZR8gzGUoYGIgFJpzTAq2tW0KeuIAC/+vFso44jmhC0H8pi5zrY8CtBDgMzOr1WpWrVatXC7H1iehmUEJCJoFpEDErP3UZjPzAXkIpDVrD2pWRcZCht1XDHK4bLjcWHmpAlbwpEqVlSfyhIDW1a9Zu1+/1Vob+IvbsxGHoxdEcrtDSjzEH12xQzAykODYFcR0sBWC+4zrD4Jy5pOttS7VatW79fgAPFCz2fRXN+BddcOhvWy54PaFFLoqdm4vr3x1Fcz84bgzPtEafQNFxWASVhTs7uKdeM65YD+zxVMPB0VecOugHzm+yrlJlxBce6gzym42m5bL5SJjS61F4C2PC/Q9nyDMJyWHjirgRYOCFwb+PJdAyJfbzmMLix+epzw2+/r6ImU453y8WzodvU9P43bQ5k5Wl9DfEMDRdum4C+XF/Aq9yyA+Dvzr2Gb5x3wPvc9jAt9xtUqlUvEneCc0MykBQbOE4oAJKJ/PW7lc9sIvbrLrTigI8JAA4xgiVvgs8Nj1Fbfy5Tqr+ZwFPa/gWShxns1m0590zPdkqQtILTKdBK6mVQXB9dSzbiBk2a2lZ/CoEOft87o9OZPJeIAH9wjfoM5XYbDlAAQhzn2HeitgURAEK6COLyhXXgFr3ApbVRjoADTjlGN2HcLagrR8bo9Z9O40ABMGG7BAcv3ZEgAXIk7XBvGuIA7uxlUqHFyP9OoG0nJZeTLgVnANyw/3Heqg2/m5/7hvFXCwdY35y+dNMYAHGMpkMjY+Pm4jIyOWSqWsVCpFLFQM3FKplK+fWiPBAwbbOv75b0h+qaVFf2MgyPOTF2gh61Oc+w5zBOB4Oi5kBoDaFnUpY35hTCU0cykBQbOEdAWl34vFoj+yXV1cnUy8DDjUPWYWvYCUYz3M2kECC4dQ3ZFXnLsN9eSga/2wElEFzsIRpJaLuLqFnoXyYVKBDV5iR0/oHVgcOKaFXUYAGABC9XrdlwG3DQNIjbPg/lSKA4YhsKmWHc0jBHa5L9HXOHOG+4vBCrcBbeRdhRpvA0UEsBYavxhLuO4EmwVYOXEb2UqggDrEVx5TXEcF9FCOvOUeMVs8HjCvGAAqcOb0zK+4dCAGfKgr+AhACatFOp3253WhH9iSAsDAIEwtKKg7+MDziwFI3MKE66rjVfPUPLi/mCcKmjg/PA+VpXmGyuWxwWCIASGs8gnNTEpA0Cyg0IqJKZ1OW09Pj2Wz2TZzNwtKfA/9htUfC7QQAAoJ3JBA0zLUshB6V1f0Wg62+oZ2PoVWcXH1DPFiXUlXwfif3XsKLgCQcG4Mu4fYJQjlzTuFGPwhHyh2bivXSVfB2l7tM+5zzlfL4DETUgiwamHnGAd0M5/iQKa6CKG4+R09cwrP1HUJ/sLKpndBcTAsW6Lixi/zl9uNchSQ4zd2azKPWWEqL/kv81tj7dgSpeONy1JXLUAQ9xn3Hf8G8I72heYDjwsdL/o35LoK5akAS9tm1m515nRI2ym2St9RecvAXsGnAiO1BqHvE5q5lICgWUAKMngCwqXQ29vrJ3tI+ZlZZFXPK3lWdJyez4JhpWEWXWGq+VqFAwtStkohLRS7tk3rCTdFCLhAmcWBGuYht1VXq/qc81MBaGYRqxaUNcdmcBvMzMdssaWA+63VavmgVSjs8fFxq1Qq/gA3KKRCoeBPR0b/6DlFcWCFAULoOb6rJYF/gzuK84b1B7sU+cwb5i3zEnlwXgyGQ+4RrQvHZnH9CoWClUqlyCGRPBZ1R2Jo3HF9QkCawRlbMTnomQ/VZMuaziH+Td1eXCdYjvSASx2zDLLYDc4AECeZNxoNDyp7enoiIJ6taJgLnYjHTqdPiNj1PB0KgUmuR2g882+dXGEqx/g5W791/PL/z3ahldA/hxIQNAuIV006wbLZrM2dO9fK5XJbcDKn53wgDFiwYdXHVolUKhW5zFOFhz4LKX3dzYV68LsQwizMzNqDlnm3Cyt5jQVS4dpJ4IbS6hZ5FWLadgVKnBeDHGxHhvLlXVBoR6PRsJGREb/ri28N57gSlAPFhQscEd/CcUMMXJWy2WzEcsH1Vx7zB/3BwckYP3xMA59qDWIlx64p5in6jK2CeAZeIE8GB7CO8SnWIXeeWmvAJ14kcP9yIDUAA8ewAfyhfmNjYzY0NBSJ62LrFuafusgYdKnLEHVRKxrGGQMbBlzcDrZUcJ58zAKoWCz6BUo6vTY4Op/P+zTMS57TISARstbw76G51AlAMKCNy0/BoFr3mJccr8Zjg+vB/FKghTGAsli+JiBoZlMCgmYJhZR4JpOxQqFg/f39XqDyNnOQgg5MUigZpGcXAwS6Kk4oH1gftAwuF6viOOuUtkljjjRfts5wjELIjM3feeUZt9JT4KaxGfh/OmZ85qfZ2t1GCDqFaZx3TOGdiYkJvyVZ74yCGxA8URcQFFg6nfYxMNhuzrEmTKy0AYRHR0cjMSBqDWCeYxciAAeUu15OGnIboM0cxwNeKyDC2Nb+0vgdPsYAYAB85nGIuqsy47mDd3DcBFts0um1J4VzYHir1bKhoaGIGxOWO1hrkJ9a6RCgjLx4XKD9KF9P9Wae6TxHmzmdggEoawX++A2B67zDjseNlqcgM2QZUeCibUC9ecHDYxD9H5qP3E+cr85hvId5xelCCy0FUFxepwWWAtaEZh4lIGiWEU/UQqFg5XLZCoVCEGggvQoddtWYtfvZAYI6BShDIOETcr2odUZBSAi8aH15BwdIA1dV2CIf/W4WPh9E+RWqU4ivnYQf8saHV4n4i/4CAEIwdLVajQAgFtJxIAx5gD/j4+MeVEJ5ap2goHnbOcqKG09oH+ej/QHFwucn8ZUbqAeACoNydtlwvcEztpKoYgq5fXiM4j0ODlYlrUH7DNIAKM0sAh5gvatWqxGlymAQ78DFzPMkxFNuGyt0HreomwaJs0UXaUFs7UD+zH/nnB87ANV8jABAEFyhobOIuN7cP9pmnS8K5DidWmZ4PnO+3K/qTuSxgHJCMYbTXSyF2sbzk2VfQjOXEhA0S0gnEs6ZKZfLPoiRJx0EQMiUroGSIAhOmPxxHhArO1bonD8H/0Eg8OqdlQoIAoUVILczJFBCiiLEozhhq5YlBWIMMuP6IU6YxxGvwvmMJF41MwjCEQAMLuIAkCoKgBsoRg5QVuCLcvWeNraIoN6qsLVsJt1ijn7ngHHkxwpcg/AzmUxkDKK8VqvlLU8KeFgZKdjAMz5IlN83s0j80lQLAACGSqViQ0NDkUs3+V2UzQBIXYC6SFDe8hwE39hVib5lsMkWzVA+ZpO3z3P/AkTDyof8urq6ggdNqsxBOTpOQ2NIf1MAwmBH3ePMR52Pmj40VkK79bTv9Xto/oVAUFx7Epp5lICgWUI6AdkK5JwLTuaQwOUVnyokKEzsPOJ4IAhGEFagHDjN5aubw2zSL6/CjFfseBfPOS8FPlz3OLO5Clv8ZeEUsk7p9ziApUJRAScrXoAR8BJ1YABUqVR8DAm3V92X2iauF/MC4GZ8fLztigt+B5+Q4uS0ceZ9ttYBhKn1DoqH3Z4ci4axxwcf5nK5iHuOd4Cxe1AVOerEQAFpMa7RXrSN3YKahwK7bDZrY2NjVqlUbHBwMHJsg/YFyuF2KbjHOwx0MFa47sxP3jmYSk3uGIQLS6/P0ZgXzB+OCURfIH+cc5PP5/0dcK1Wy5/urf2s4ypkDQp953qircqXkOWPrV/KV84P/czWUZzSrWXr+Fa5xOm1n/Es5NpPaGZSAoJmAenE7urqsrlz51pvb6+3AoXuqIkTFGYW2VUCoYBYEghTBPEixgEKlVe8tVrNcrmcB2NsemalC4XM7WFBqK43CFBdSalQRf2nsg4xYOLf1mWlFqdsOX9NH3J/oC+gQAB+AICgrEKKksvjPub2QOBDcTcajYjFABYWgA7kB37jL5ej4yjEY7NJcBwCUgyUnHPesgCQwcDZbNJKwQBQ3VEcbMzjh8ED/8bPoPw53oUtLHgGZcl5VioVf2I5+BmKx0Ndwes4ZctAT3nJ30Mxeuh37MRDrFapVPK7EdlNxMAQgJIP5ARgY7CeSk2eRcZjtFAoWKVSiYw/HTc8TnSOg3RM6e+8sGFSt6cuFFAexi279UZHRyN5MXALLX4UmMUBIXXDxi0qEpoZlICgWUAqPObMmWO9vb1+22/ICqSuAf6uCgfKGpYgKEgAoFqtFjm4TwEFVse5XC4idMyiJxVrm7AqZ+GGukI4s3JiXrAy5vx51aYCLLQq49V2XD25vfpB+Zo38x28ZYUGpVer1WxkZCTi/kql1u76A//ijgUIlWVmkes2eGs2C2VYptBnbB3hwGJVwqGVL9dBXSMKMrF7DHXVYGR2F+L30Jb/kAsG9eD/Q8qKQQ4DMI4PwQexWSgvk8n4CzI5Zkvvf0MdMcY5robHGsYHA0e1ULLiVcDI45z7xjnnt+bz3C4Wiz4fHt/gNY8BnksAV2gL6sv33+k44f7gckJzR+cQtyMESDCWQFPND36n1Vq7C5NlTAjshNrAeU5VJgOvhGYuJSBoFhAriXw+b/39/ZbL5cws6pM3C1tZOF6CV7NYYWMXCKxAcFtUKhWvoNXUr8RnjDDpak4tF1pXtCnkOuM0cWXgO9rLiqST8FX+hczvU5XLxHEU6qpDuQiCZlcK+gJ8QB3iTPFsQeMgZ4AHHR9sEcJqWIEdX0eh13OgDXExNxxrw/xBmVDGHDTNvAkFZocCfOP6IwT6eRHB9eF+YusIPgzAGDQBXOq1LQxsUD+NVUL9uD/xXeeK9jtb6hS0a/8gLcd5AagBFLFrnF1lIVAHqxC7eZA2n89H6sTAVOdQnIWF0/Cc534KzWV9N25Ocls6xQKFgI2CIs5Tyw6NtYRmNiUgaJYQhFdPT4+VSqXgrimdiGbtB4mxoAIA0t1gExMTVq/X/TknvGMmBHIgbHkrsQKMToJLTeZstldihYT0IV7x36kEGAvukKk+rpw4y5GZRXhqZpFVJxQKtsGzlYutNarsuN9C6didEwKPIRDA6RgUQ0nif7VGsWsB9eF4ntCuNj56Ic5FoFYajHEGS8pv7kP+ME/1Hc4LMVvcP+zW4/rAvQigqWCEy9W4EAaQzANuK9dL/4I4Pb4r4NSFBAMhHWs89mFpYpDLoK3ZbEaAPaxBuB5FrVk6B0MuJZ2vnIbLDvU/58P8Ub4xwGJgr2NhOvmHfg9ZmrU/E5qZlICgWULwv/f39/vbnVnpmbVbOyCIVdAhP16Z83kgo6OjNjQ0ZNVq1eej4IWfg3SrLgvA0HssaLnuLAzZBaOKM6QQQ/UK/c91Yrcar6LjLA/6f8hipHFVUH5QRLVazarVagQAcbBwqH9VyUMps5VOx4G6YFTg8wfuIJz4DOtgLpdrO09FYzEAcHK5nLeWMIDhXWoKBlgRxX24vnEWBeaRjgVVRuAzjwEG7woqAfLhHmMliv5mixmDQua9lsf9rONPrUNKoTZxHgBCPJ9SqVQkoLpQKERO2mZwrPzBYoeBL9LjSg3mC/cT80rnONc/1MZQPirndF6r5RTvcRwYp48DoCGAFQJXOoa0PgnNXEpA0CyhUqlkc+fOtf7+fh/4yPE2IWWAVbzZZFAqJj+v8qGs6/W6jYyMWKVSsbGxsTbwo+Vo2VhN8w4MjYFAehUUcW40XUVz2SxYdYUZqm8o/7gyVWiHAFHIwgAhiNgLBkCpVMrq9bqPscLuOgAlDdJlKw/6CoHM9XrdKpVKpI9QL7busMLCb8jfbPJAS47RQdAvAt77+/utt7c3osyxRR154HRmM/Njh62MOMmZLQ1qjYBSZgCnfQtSt5sqMQaA2n/qYgLYYOsGgsoBWvljZm0B5blczgegY3GBeCsFsTymAGQBynS+xVkDuR1q8VHQgGd6pQesWqVSyXp6etrGMwAPQNrY2JgVi0WfH0B7s9n0LlyMLXZhxi1WuC+VdNEz1dyOAzO6wNK5pe9oOSwHtCyuR2hhx/IvoZlLCQiaBVQsFq2/v9/mzJnjV+V6LpCuivijAAhKC7EB6XTaqtWqDQ4O+oBBXdEg7zjCbygHAa5QhCxkVAnhd1biKkR5dRvnClA+gDqtxvS36Vh/9LtaHgqFQgT8QWFUKhWrVquex2r5ibN0AAABRDUaDa9wWRmj/cxfPsyOFTwDTwjuTCZj5XLZu+gwbmq1WiRwmi0YUIIoF1YTs0mgXSqVIuWrlQBWE3bxqkUn1Ec6/lOpyW3ifA2LWmC6u7utXq9HgIgCLw54xofrxQqTXZ9qUWL3E/McljIeSzw3UB8OQla+xZ3IHgIE+OgONufWxqa1Wi0rFAqRrfDoV64jwJ32DcZiKpWyWq0WAR86tjtRnAVFwYxapbm9+J8XK+BTyHKqfNW8tB5xwIYXHcn2+NlDCQiaBdTX12d9fX0+ADFkAeIJz4JY4xvYBYaJOjY25gOg2T0DCgGA0MoU37EjBa4RVhwAOCrsGMCo5YnT6gqP03QCKiHhGgd4VFjH/c+CmJUW38eFtsNywwGZysdQPAW7MHirOys1FuJaV1ZCam2D8obFBEHZzjm/ExBthGJjwMTWI3a9oE4aKM9tZHDMlhPeSs5uydBqXMcF3G087rETTeOu9AwqDoLWscR11pvUAarAN3Zt6fk5/J5aCDOZjI+74nbzAgFjCQAK73H8j84j1IEtZwxuUC+ANYwtbPln/qTTaWs0GpHFUzqd9rFA6FNd1OjiJwQO4p4pOOHn+p0XfJofWyG1Hp0WSaFxx/zUdPosJJcSmlmUgKBZQD09Pd66wDt+zMICgVdpbEFhqwIH7I6Ojnr3DBPnETeZ44AGnwfD9VShNl0hwenUIqHCZjplhAADAxKtc6d64AMQASXM4K9Wq0VW/yC1bgFYMGhsNpv+TiquK7txuF1cV86PP1CwbPHDh4NcefXMAAKKX5WpAkOtGz4MRMA7jqNJpVJt1k7NhwFeqL90nnA+XD/0Vyj+CjE9qBNbihg4QvEDTMSdiaUWhlC8F4MGHuNoO8cK8fhXK5LyRC0yylOOk0HbeazBMgZLr14AjHZg/ITmoVIcyA2BH/6N+07HWVx6nWtcRhzw7VR/5vFUdUxo5lICgmYBlctlb13Qk4TN2gUtJh+v4tgqgRXz+Pi4jY6O2sjIiI/jQD4sJDoBiDjBoOcDsSBWUzTnq4KPhSvaxO1TBY60aq6Oaxs/47Z1Wn2yYIPwZXCpq3TcBK/WOw66ZRCkvMJ5L8oTVWqh/mHQwmCYrTysdKHccXEolB6DKbho0EYGpOCFHssQ1794l/Pn+8L0jChtv/aPLgAQ6M3vh+qiIIiPN4CVR9Nrn2sAtFo/uF4Yo5gn4BkHJmuZDFTUEhEqw8wiYAV9we+pWwm73lKplPX29kbGCE77Hh8f9+NJA6LBL3aRhvqO+yAEUDWN8hHt4RicUL48D9gV2Mn6w/l0qrsCfv5fZXFCM5cSEDQLCG4wuKtCq1+z8E3unJZXd9ihVKlUvKsD+SkQUGEA0snPz7EqVkVrFj1MjRU/3lUFwMIkDpyp4IFCYUCh9YsDD5x/aDUXWoniegcIf94lNTw8HIl9AhgByOCVaTq99uTuWq3m7xDjuoKfITCDdoOgIFRYq1uMrQtjY2MRCwfHhqgywNlQcF9xvAjzDOfL6BgA4OL2qHUKZwpxXdV1xX2n7Q+5YJCHboFnMIb07JpDPRgooO7chxqAzOUqQEZdYCUEYGHQy++jf7QvGJAiT4AVACGuL95RSx3er9Vq5pzzh7Ki3QBBzH8FiSiP57lZ9FTsEAgJzUedpzq2lA8hK7mC4pCVR8FhKO8QqSxB3aYDshKaGZSAoFlAcEWwdYUDXlnZa0wElCSf/QILEAAQx3MoKbjAsxBxOiiAULAoFCK/owJQYxfQNo5tCFl7VOjyb2rtYcWsCgJ1iMub/4fih6LM5/NmZjY8PGzVatX3H/KHgmJXCPiSTqdtcHDQhoeHIycVo95sKQDFAYCQqwt5sCVBBTh+6+rqskKh4BU04nVQTygU3lqvwboAw6oQ0YcKcJi3eB8WB25PvV6PvKfBriifxw6eZTJrr7ng3Xh63xa3i3kfOjtIz9FCHQEEePzh5GUGQmxFwbhF/er1egQMIA27rhiw61xSUGlmHliib/gyWh7fAPCFQsFfv4GDBnFKNF+zw0cE8IKAgYLOnziwwONH0yho5RgqHWeh8aR5aVoGgzwmQwtPfk+fTdfilNALSwkImgXEK+bQpIKQ09UeK1mAIMQAjYyM+ODXkIJn0MGkK29OH1p5TVcIqHUo9B4UhwZ7cr34eUhQqZULChvvcduYD8ob/I+dSLAswNqGgyahXFR5mllbsO7ExITfPRaqP/OGLSds7YlbOUOB8U4jM4sobV6pM4DO5/NeeSPwG21idxgrPnZjKehCvVRh6f1cWLnjL95TwGZmkaMg2ALGRxBwO9ndBx7BwsTjQYE2+o37gbf8d7pEFf0CIMaWQYwbbYOZRXY0dRrzasXimC0F91wW81uBBQDs2NiY9fb2eoCPHXPsnmZ3HkARj3nu/ziriz5TYBc3L5UnCrjNJi14DP5DliNdeDCPVMaBn5w2bpGY0MykBATNAlKAAGKgoiZypIPAg8AdGxuzarXadlIxU5zVQwULCyZ9j1dSXJ+4lZiuROOEiSomFY7ahpDC6LT6YwtUKE+uI+JXGJTgUlAATOYVm+O5f8zM3ySPO8SUlJ8MbqYSugoE+DnHy7ASY4LCxIqfY3bU0se8R9u5H/A794OOj9BKvJPVD3XXuQDrGpOCJxDK4tOx2fIScuviO7vCFEQpoGEXKOrBfRBS8nifgYe2ifnPFiWMOQZIPGfwHsAB5420AKY4KoGDwNndp64gtD9uITQd4II68mIttNjSOaDPtG1chpLOeZVdcQu0uHwTa9DMpgQEzQLi1QgLXP5wPAALHt4JBvM6B9pqvEinD9dHv6u1BMR15t9VkegqKiQgdWWI+oeEqNYlVH/ml+bZiSdoL7sX8V4mk7GRkZGIcmDXJPMDSgIxIfV6PbKrKAR8uRx2K+pqVpUpgyak1y3srHi1rXwODt7nQ/HQztCqOhSbE1JcOs6QJ9cZQC40PqCguU7qeuVy0Iep1GTMD9LzwZ9cNrvHeE6iX/g7wAfaCgsUzvnSMdVsTl5Jwb9h/sLqFOKZgnMGJArKGFBwndgKqPxybm2cUD6fjwB/doExYMH4CrmnpgIFIcCsLj0FKqF3VaaEQNC6yBHNOy5NAnpmFyUgaBYQ36Kt8T+q3EBIg6BFjgPCVmsWLKHVZBwIms5kZ8ED5QJhrgpeQRRTSCCGvofqGfdOSMiF3tHVMgjKs1Ao+JU/lBeuHUmlJl1CvAtMQUKj0fCWOe5nrS8L8xAo5fQs/NlVhv9RF74sl5UBW+VarckTjQHWUCZ+47ukODgaSlKD1PEbx6swMIUS1Z1QcZYj7iMet7wACFlyOC2uomFwq/OD64dLVDkeiMFtKpXysVQcU4W2souLd9rB0pbJrL2tHmMJ/Ahd9cHBvjw+mT86V/Aug1m2HKFezCfnnFUqlcgVKABPXAbcw3zQI49NnWshQKxp4gAQE/etzg+df9MhBT0KKnWRoosofi+hmUsJCJoFxKbqkFAOAQgWcgBAULYhK0EIUHQiFQD8TOuO/Di4Fe+y9YCV93QER0jgheoYeq7KUAWexlcgndnkidtmkztmIPArlYpvt97AruWPjo5avV73lgGO1wE4gYLK5XI+XxXC+B/vYRXOQAb1RrvZjQaAw3dKmVkEuKpFgRUz8xBtwXu8m4mBBawJrKB4LKMeAAUMNhgU8eKA44A0RiUEHHn88VZ3WIdSqZR3jaE9HEOlpyqDDwCHfC4U7lVDbBY+aCdik/guL1zUylYX7h++949BGEA5K2CeV2o1Zp6gDQA4OocAhMBTnAmEK0L4OY9Xdr0rGIpbqExHBinICM21VGrSTRmyVIbe18Bs/iA9jwXOkw/MTADQzKcEBM0CYhO8Wn94IkLg83O4wHDdglnYxcTfO7mDUI8QxU36kMsg7n2Uy0JbBVeoDAUEmidbAjhd3OpUeQIKucEQBIp4HsRuKABioAAAxC4yBjh6EJ1aU2Ct0ViJXC7XZunQNrOAZ7DGCp13E7ILli0HymPuXwQLp9Npby1i65SZebDEp5eXSiW/NZ+DsVFHtFcVEv4ymAqBHnzYKhkaN+wCRKA6SEHZ6OioBzwhYMdKOJVKeaCIfgZAwncoUs2L55HZpJUV1hiMCdQPiw6kBS91TqnLCu3iWCWtCyxUOAqCCSAMbcPvLAO4T+IoVCdeMKG9XD/ISM0XY5LbqnIkzl2mlh61BqEeulDgfBKauZSAoFlGLOChZJj0kLrx8XEPgng7MueneYbAEKc3a7fCqBVHn6vrBL/piixkDcJftlqF4kw4T64j/x+3+lWgFeKTmUWCzJ2bdHGoogoBILhRAEg5PX905xBv1Vb+Khhh1xyPAwY/HFuiQl7HFb+D76gL80H7kl23/D+PVwb3Zmbz5s3z1zXwOTRQpgzY4pSZlg0ApQqN+xX1QhkMPNFm5jkDPHzAU50rDCDZyoUAZyxm2ILAYBNjR+sMIAegwlYnWOhQ/7iFjPaXjn2uswI7gP5KpWKlUslffMv9gAUD75xk8BJnpYvr104UaiPziq06TLo4CgGf0Hs8zjSdysaEZjYlIGgWEU9ydWPxKpuFDeIKYNbXvPC/5h/6nd+NAxshYmUOlwBI4z24Ldo2fYdXfNMRPJ0sWHGkAhWgB8oAJ3lDQeiKnYElW+X4kMSQmR7v8JZz3o6uvEA7OLiWQZB+VJGDn1y21o0tRxhrnUAQ5xkCyGYW4RmsBwjeR9txPhEU/sjISIRXbCEAT7DzDf2jbisFJgBMILYy8OWx3A4oeViM2DqEsphfKAv3wCE93ud4n5ArD/xmAIxydbxyH/O7ceM7pORVBjCoA5CrVqtWq9Uit9AzGEcd9V40LjsEgOLqhv9DIQD6XGWI5qHECzZO1yk9A/3E4jM7KQFBs4BY8EHA8y4STF49Hn9sbMwHQrNCMot3hbHAZYIQZ4WndQutmriOsEqVSqW290MCRM3doRUe8sAzzvO5rsSUN6yswG8obQ6C5hU9QCnOAEIANFtU2BXFihjvd3d3+9gaBRtcP7NJKwP3t1op2B3Glj/eCcXKit1X+G1iYiIS6AsLlipLvM+8YL6yBW14eNgGBgb8WMFVI81m03K5nPX19fnDGxGszfMCSjeXy1mxWLRisWitVityZQmPLQ6A5rHLLjfmi7YJ7UfZlUolYuHDwYI6/3AUAh/U2N3d7UELX8OhYJr7G+CYzzpiHuNASVi58JfnDdqqu+DYaoX2cnwYL2yGhoasr6/P85OtliiPLw4GL0OAJzTX9bm+Fyc/WFbxXNF+Dr3H74fmGY97fA9Z7p4POZTQP5YSEDRLCEKOV1dqRWFlVa/XbXBw0F+JoRNRY4s0hoIpBJimMh/HCZd6ve5jINQkHrJUaZl8HL+uJDuVHSco9f0Qn1AWri+BQuOdd1DMvIMHyr/RaNjQ0JD/XQ9O1JU6KyTnXFt/M4hBHZGewRWDN1Z26XQ6AsBQB6RTgIHDEVmJ8Wqf+RenuBVUm1nEcmJmtmLFCisUCtbf3+8P5isWi7beeuv5E5RrtZo1m02bN2+eBwsAnblczkqlkufl4OBg2/k3GqsRZ0HUNiEfbQ/aCMsN0gIA1et1X2cGBdz/bMlRSwTizhSQsnsR442Dk/Een+mD+uXz+YhbGnzhMcXjhXkDaxzqnUqlbGRkxAYHB627u9vK5XIkD8isXC7n44hCLlElBtI6bxl4ohz+LQ74KCFvrY+OY+QRN0b4ufZtQjOfEhA0C4jBDz68KmSB0Gw2rV6vW6VSseHhYf++CjwFGbrKBIXACP6yEo8DUKpkWq2WX6HyoXsqtELxSLoi47gVNXfrClEBlj7T1VvISpLJZPwWcbbw4IZ3BESbrb3vjfuCg1cZSMFVwCtlXqEy0GEBq+3gOBptM7vROBCZAZDGRnCfMhDDTiZYpnjHHyt1HTOszPmMHC4LgHFsbMxKpZL19vZaoVCwWq1mQ0NDESsb4sv4biz0D19DoQHlzDd2XaKODC5CMSupVMoHwrPLUc/dGh8ft6GhIb8ZAXlpnI5aE0BsjdJxoHEoqVQqCAh0bDvn/HiFe5WvCQltIWdAg3cwjrjPcdddNpu1XC4X4SV4xgeB8nxTcK0AQkGMglf+DcALv6msYysQv6OWQJ6n4K/KIp03mo+Wk9DMpAQEzQKKAz/8O1b3Y2Nj/mJU7BBRZQMKAZzQ72ZhK8lUK60QgFE3ka40kZZ97Vw/tViFBFwI+ITqF1L8eK4ACbEl+I56w93B577AQlGr1fzOIRWqCuKYj+wGjAOfqDevXGGFAiBAGlh2GHgBvDA/WQkyTwAW8C7v1uK4k5ByhpWCFSLHHjEVCgUbGBiwYrFozq3dis3uXG4zducBDCE2hstQV5eOSQXKTBijXG88Y/DOfYd68FwE70G4q0vLClkZdOzrWMf/vKWf62nWblVksAPgzKAmlD+PB3aP8fyB+zKfz/st+zyW2a0bAtpMIZATWriEZFKcjFJSwKnApdNRFCG5p+BnOnVIaGZQAoJmAXGgayiuh1effPu4CsZOH6ZOwgm/42/I9NxJiEL4QsjoeTVIo6bqUJ3jyuB2hASWlhdqO+cPi0comFgBkNlakAQAhNWvuonwCVl2Qv+rwkZ+HHCqZXA6s0kACpccb01n4MljCnXktrFrTnc0qWLQ9qFeHOSL37PZrL+bCodIhra88+paD5jkxUKIb6w4dZwr+NWxid/VwsS/a9kMCNEHag3SMcltVWuklskHYHJ+3H9qKWGLI6x8mIt8vIaOP7yDMcFpER/EViYGxalUys+hOEtPJ8CiY4jnfNz8D1FcmpAFJ+SqD81V5VHoe0IzlxIQNAuIz/dg1xavdBF/UK1W/cWdvLpjYRpyfU21omJiwaOWKQUy/A5+x0or7rwZjduIEzAKxkDq2tK6ax7q++e/HI/D31OplOc5nwkEl8zIyEgEAHGcELuPNL6H+4d5yAoa+fGKlQEbW5hCJnrkMz4+HtmKj4BYrOY5EJbBCC5R5fxU4YfaxUBC+w1/h4eHI1vh9Sws8JDrwoo4buehKl0FSAy41WLHvEQZ6rLkMmD1yOVy/ngD5Qufm4SyAWoUgDOww+IG5XD/KUjmvNiSowHOcC9mMhnvzkLsHY9Jbi/aAXekWfT+u97e3jbLIp87xfnoWA+R8qTTQoafh/pIZZGCdjxj16i+N5VMSmj2UAKCZgGxSRuTjM+rQSA0YhBCfvFOIIgVR9xE1gmPv51Mv6GYCn6PrQidLCIhYMUKLK6ezC9No3wICWDwBgqB3R0AIjhlmfti9erVXvlxQK0qXRWcUFyhWCc+FA8AAXEorGw0EJbLVqWGPmDXViq1Nr4lm836XUsI5oXiNjMrlUq+DblczgeNo96wNnG/sTJXJQ9XSbVa9UHzzAd1g8YpTVXWIStDJ0XF4wL5oe7IQ+/9YkALi0ehULBCoRC5FBf8wW4uvNtsNq3RaHj+MlAEyEC/8I4yPl+IY8aYR7qgiAPWqdSkhXBsbMzy+bwVCgX/HssUzgegCm53XBtTLpcj8xo8wllMHLwfZ2Xh35TfnfovtPDhOcLjwyzqDsNvsLCGgCaXZRa1PvLzhGYHJSBoFlBoNc3KbnR01EZGRvxWYAY3fDJuyELCCiqOQhN/qnrqcxXIoXdZKKlFZCoKgbGQQOwkqDi98hCrXtQP2/0Rg+Pc2msOYMlQF1II6MUBE718lW8eZxeGHhqIejE/2boAhQo3GM4sgvJjawWfBcR/u7q6vMtqbGzMWzw4JgdXs3DcFwNxjDV2LXK8Efcnxg2sFKh7uVyO3N/F/GRLG29bDo2JEIjmcQeAwS5pPrMJfDczP05Q156eHmu1WlatVoMHNjIv2AqB33gLPwfgZ7PZSLncFlbkarlBuWNjY57XAC6cDsB4fHzcSqVSJOiawanWGTzG2WQAyuyO5fmk9VfAqosYBUJxsojf4xgoLSMkVzD/prL8IG1oARkXa5jQzKQEBM0CwsSCkMfKHNtwcS9YKIhTrT4KREITNCRI+bfQcxY6Kjz0f+Sjq3MWTiFhEgdsuPzQam+qtpiFwRG7rlTpgff4rVarWbVajeyC4jwZsGhd2Z2D/PkDRc/1dM5ZPp9vu/ICQl/7gsGGBqUjTwZIPN4QzAo3GFswoNBgzTCLWqY4XgWAhgERB2jzuUOoD9wzvDV8bGzMent7rb+/3wMDjteBgucLPNXyFup7Hitcf/zF73ztBfqXQQXawjvnADbZeoBy4CJS6y3fv4U+Zgswlx8CQHjO7Ud+PMZRD52Tzeba6zFw6KQulDhvdcnyidjIi8dwnBwKAaDpACF9T9vD30NglNNwUDTaForjUlLQxnkmNHMpAUGzgEJb4mG2xjkk2IWiSgaTUr+bWZuA6DS5mVSJhPKLA1d4fzrUCXApyJkqT61zSGFoWczH0OoXLjLcA4agULyrAjquXtpmdicxqNF2M3hikz7Xj5U5gwKANz4DSIGz2STgg3JggALlDMI5MAy4VcFwO+BGgGJn10/IgoT2cGA22oW6hsCemUWAZEiphvqJ5w5+Z/CIeur26Uwm4y1IOCWd3abMFwbGPEf5Sgw+SBN8Qv8ifdziQxcW01HKqItzUbcqW+o0b45PQ31woCbkFfcRu0WZ97wY6FS/0JzVdoWAnY5D5gsIbVEwFWcZmg5IS2jmUgKCZgGxXxorEpjHcWy9rrLZchECQDo52Y0QAgyh90LCVVfc/I6CmpAQiatfHPBCvqH0/Du7SOLao3komORVL2/1RzA6m9HZ5M8r4lDdGOw4Fz3LRftVA3R1VY33GRSZRXdjpVKTrjGcZ8Tv8PlBvPrnsvP5vK87AmtHR0cjlhhYLOP6hscqYpA4DimVSlmtVrN6ve7nQHd3tz9xnM/B0vGHfkOAd7VaDYIE7X8dG+Azg0DeRcUBziiTLTcKxlBfVcA8zvAO8w/P8JxdmKGxi/5SK42OC64P84aBJ4AQn0jPZaLN6gaG5UpBNcYeLGBx4FNJwUUIRIEUoMXlrzxhaxDmWwhIhngQArOhuiU0sygBQbOAWIgiFmR0dNSGh4f9NmIWUKy8zTqbcJk6WXeQD56xIA0JIlZ0uorSQET+cF4cGwRFwRRq11SAStuAOobSs5WC4yYAGLq7u23VqlVtl9MiPw5iVmWH3+EmQX042Jrrg7xYybDJnt1FfHAf3CoAZVjdIy3iS8zMu3nYYoJ34A5BHXFCMx+eyOXClQVFDXDDMTXcPgChfD5vvb29Zmb+qIdcLmc9PT1WKpUsl8tZo9GwlStX+jKgrECs/NiyoC5P7ge2oOE3VYxqbUO9uWx8B6hNp9O+XXg35FoFwR2psUIMujlOi+uic1JBEJ5z+0JAOxTT4pyzkZERazab/lRutYIhP4xfxMsxMEAdMS5x7ETIaqPzEs8UxIZADI8DlUtxco7HgLqmMYYV8MZZfhJL0OyhBATNAmKzt16JwUGaKmzWFfywMFNAgt/jnoNYyYeEGK9I2Xyu+Xda4XJafRZqCwMurrfWiQkCnlebZtGbz3GSsbqdUqlUxI0QqgevspEW6VTQ81UcXGd1icCyA1DGdVLBDmXMCjQEmlEOAxzUHeMxzn2B+B3kxXEhGtfCLsB6vW7FYtEGBgZs/vz5frcYDgKdmJiwQqFg+XzeAyvwDaAI9UTslir6EEhQ1yMDFgYtyiNug44hgDY+wFLnCwAqW3vwYbeoXp3C40kBHse1cJ/rdwYzWjfmA6jRaESAjFoKUS4Df17AAEQrgOLfVf4or/W7AiCtsy7AlBQA4RlALP9Va1hovoYWXQnNXEpA0CwgCCqsrkZGRjwAChELAhZEPElDVpzQOyB+xsBFrTmhenA5usLV1SaTAhkISgYmKjw7va9CSgUlt4EPElQrA0DByMhIBIggPZ8NozzkFTjiiLAdF7+HglVD7QvFimUyay8Q5RUtgzKk5SBdfV9BEEjjhhhwM8BSpcBuBTOLbAXnPslkMt7aA/53dXVFAq7NzLu4stmsFYtFy2QyNjIyYs65SGwc8oUVhfuZV/j8nC07DEpCypMXHcwrdvOx9Yx33LEVx8z8DjtezIA4P4ydkDUDfYc0DOTQBzpHOUieAUBoIYK/OJTVORe5S4zlA7vHeO4qn9jKime6cOCymff6f2i+sOwAX0Pz3ix6kCR+0zaEgtKnAj8JEJrZlICgWUCYuHCDjYyMeMER56MHhYSlEtKokAytpvA/CypWOCFQExI6LDC1zqE2qHINrQa1TaHVIgMRFWAKgtSShTywPZ6BBbvANO4i1Jbx8XEPgHh7uirVEJDi+rIrCGk56BTvThU/wnmGvnN5IRdHnAuB+QJAwudDMZjCBZwcowTAxm1B20K7H/E79yeD5zjQzOl5rPA7bAVkPnGfIS/cCaf9jnfV8gLgx4sM/GVwFNeHWge1GDH44j5itx3nHQIvIFh6cGUMQLf+jsBo1IeBFtqj150wKZ/xTEnnbigGSIF5qAxuPwNltgTxmWChuRKaWwkImtmUgKBZQFiRNBoNbwVi4WwWnoRxky8OGIWAhH4PvRsCO/wb16PVakUEcWjnU6jeIaWlFgZ9NwTcVKnHCVU9r4aFYqPR8JfAqlWMV47aLrSXz3zR7bghPjJgC1lZVNlpOrYMsBJiixP3T0jJc3wRFFtI+eg2auTPViQFv1CQ3d3d1tPT48+8QnyJ7r7isY8DJHmlrrEtKIf/an8r4GGwruAj1L8aR8NWRP6dwSLXD5YvBRNxFrdQG9jtqePCzCK7u/jE8RAfppIRGFOjo6NWLBYjoBtggV15mFM6X7u6urzLVAF93EKKf4/rS/6uoDZugcJzCqAHgA53BzIQ0nd1zCU0OygBQbOAIExGRkZscHAwMuF4ldsJAIVWO6CQ9YZJrTahfFiA8O8hK5EKUlXeIeuQChcoVI6Jias3l8dp4wQ9FJICr3Q67Y8kQGwExwDp/WGqKPmKDcQCqWBWa4MCHj4nJhRPZWYRKwuew7LFLjI+dE/bqfzEqdAAJKgn4pDQv6ijHvTHSgjnzqjLp6ury4rFouXzeRsaGrLVq1f7gGnui1wuZ319fV4J45wg3ioPqwfqjTmk4015h/e5H9m1w+Oqk6sH4wjjFLvlGCQzKFFAwuUzAFI3K4NIjslhYmDIc04D/xk0M6DVxQSPj3q9biMjI9bf3x+xCKIctghls9nIHHHORS54Rnu0PP4Nz0LyTRcGTApqOe+4BZbZ5BlNbKXDM40/43rw/EtoZlMCgmYBYSv80NBQZMeFAg+zcMBmiDqZmlmws2DG76w0FeSwsuOVsIIuvM8CuZMlKc7Co9aNOGDTqd1M6XTaK119PjY2ZpVKJRIciuse2M3D76CNsB6xGwL1URDCgBP1YSsHt6NQKETcD/idgRLHoqiFABYYs0nFy3VEOr4YEzwfHR318Uxma60yZu0X/jYajci2aIAT7Bhj99rf//53GxgYsL6+PstmszY6Our7FvzAvVS4kR2KlEEFtxcACS5I8E/7mAEKgwzdLcfKNATO8RsfLMlgFB/suAtZQzmGBW1lIMcAVxcOatFh0KYAiV2R6Hu1moBfAEWh4O1KpRIZq85NxkHhUygUInVigAjexrmS42QV+k37UvnB/+tci1twAFgi9AC/MRhV0rwSEDTzKbHdBeiWW26xgw8+2BYtWmSpVMq+973vRX53ztk555xjCxcutEKhYPvss4898sgjkTSrV6+2o446yp9se/zxx1ulUnlW9alUKv5ARD1sLU5IxFGnycnCUs+a4ed6kB9/V+UZKpvrq66FON+9Ai+2PDCFVl9cpgJGXskp0EB+eF6pVNrO0OGVNVtzkKbVit6uzat1FfQM0ABO9NoTBjBs1eF2MLhgXjH/oPSw2xAnXvPfer3ut77jOf8GEMRn1sDVNzo66tNx/Ai20yM9tyGVWhtUPjQ05M/1UWsnVuSDg4NWrVa9dQ1KmvkAXsLylk6n/fZutlTxmFHrIfpbxyyDLLa+sKJFuXB94gO+4l4x7lMGBgoOMA65X7lOIcXPpDxiFx34y+Vy/6jrmt8DSEZ/83xlGdFqtSKxduCrtkfnaycgpDIqzkrEc1z7nHmmZQNgcnwXl6+ArZOFKqGZSQkIClC1WrXtttvOPvOZzwR/v/jii+3Tn/60fe5zn7M77rjDSqWS7bfffl4AmJkdddRR9oc//MFuvPFG++EPf2i33HKLnXjiic+qPnoidMj0GjfZdKKD4lYxIaECxa4HorFwC/2ueYRIhTe3S+sc1yZNGzKhh95RRQIloGVC0eEiTAZTISGIfKH8EUDNYESFNQtdVnQh5cCWIt1iD56yMlXXE/qTFTE+anFgSwD6mYO6uR1QGDwWoDh1zOg4QRnj4+P+8Em1TOIKDbyrCq2T+4HdQWqt1HGk44X7l3dToT8Z1GKhgMtgAYD4L3YFAkgySNK+QBoGpAy6GMhw/A2PxdCYUn7wGITrLgQUNBaG+xb1h6wKgSBexCEN70jsNIe5P+JkSidZE0dx8pTPZGKLJ8pRGReqa9yzhGYOJe6wAB1wwAF2wAEHBH9zztmyZcvsQx/6kL3uda8zM7OvfvWrtv7669v3vvc9e9Ob3mQPPvig3XDDDfbb3/7WXv7yl5uZ2WWXXWYHHnigXXrppbZo0aJ1qk+j0WhT2nGrmE4TThVvyCwc90xXg5wWSkrzYFeZlsdlhIIzlUICUoVXnPALASF21+E3KAoug7e981k5IaDHgpMPEGTLUIiYT3GWmxB/ARq07ycmJiLuCq6vgljmmcaThMYZxsL4+Ljf0aTWOOYpwIpaE8EbdafyPWhwJ8EFDCWOjQHcj1weeI3ywFfUOxTYynUIjSXtX7RDQR1AIlynaCfHgWF8MG8YSILgauLDOBk48BlJHJ+E9iJf5M1xQ9puBfDs0tJxGCdD2O1bLBb9WOBxx3fFab4h17nWsdM84vEXB0riFmZxMhXtxbhh+cCuyZA1qtNCLqGZQwkIWkd69NFHbfny5bbPPvv4Z319fbbzzjvbbbfdZm9605vstttus/7+fg+AzMz22WcfS6fTdscdd9jrX//6YN5YAYJwLQCEh06qkBBXAcVCg4V7J8DA1h+Ur7EsLGggCNicDusJXyvAdcG76nOPE4Ch2AsFMZ1WgXEWNOTL7icFEa1Wy2q1WiSfuLge8KFWq3m3D9cvpLRQPpcXihPRmA7mIdcNiotPik6lUl5Jgd+8Akff6A3fyI939EEhMLhj0Ki84Xan05PB5bBQFAoFH4fFO4WwZR5zAtYVvgKDrRp8rxXzOZvNeksL2qJWLtSdv7MiZetbd3e35wHzAoAIIIh3/+n4UEsNj1/0N+fLVjcOSseZSbpA4nSszMEbtK+TewxAFGl1scHzjcF2rVazYrHo575a/PAciwoeh1yPEJhQwB8XmxOaIxpvFCLUQTcoYO6wu1z7lgE455fQzKYEBK0jLV++3MzM1l9//cjz9ddf3/+2fPlymz9/fuT3rq4umzt3rk8TogsvvNDOP//8tuchv7iuVMzid37FrTSVQivgkMlX434gNBEjwwoIJvAQoV5YKUMYqttC2xMCfwwO9DcVnPrdzCLxNygb9Yb7Bytz3vWCdFxfxLSoy0KVJSshXXWHeKUAiAGGWovgcmEAhbSIq0G7Veky73iVjmfgAys27nuN+cD/bDWBhSObzVqhUPDpxsbGIjfTg0ejo6NtioxjsgDO1IqRz+f9waI8flXhgthCoWOct0fzTi/wDHFfAEEYO+wO5fqBnyFlD0UMSxLSoE4YqwBbqDtcWXoKNdxV6kIEX9AG5gfeZQsp5ir3MerEfK9UKv6kb4wfHq8AQjzWmBchSxanQ/8oaZ5cx7h0Wj7/xmNEA/zBDwbgUy0yE5p5lICgGURnnXWWvec97/Hfh4eHbaONNgoKApCuxPkZEwvROIsL56GrG/6weRsClC0zap1RMKBlIj9dzcYBG6ZOFqBQecpHKFLeQg5BDSvI2NiYtx5wu5EXVuJwgSA2TMEpK2wITnYHQbiqFagTADJrBy+8DTmVSnmgowpJLRKwgvH9YXzicUg5oE2oD1uHWKlxLAjaw2k4uBrKN5VK2ejoqD9LBhYstjJxfZrNZuQEY/zFDjPkq3OGQSBvFWerGtoA5QfrEsAX/gdo4dgdttyw1VOtLwB2aqVU60sulwuetYVxgGs6crlcJC8eQ8xrM4uMEZQHwKxusDgAw3zHFScAjDwWOG+9Dob7E2OkUzmhucF9imdTWYDwG8sMtU7ByqcLJrV08f8JzXxKQNA60oIFC8zMbMWKFbZw4UL/fMWKFbZkyRKfZuXKlZH3JiYmbPXq1f79EOVyOcvlcm3PVaHgGUgVylTmWBUk/D//VcHBIEetQfxOiDg/tcRwPlOBvTjzMq+uuZxQPZA3xz+w8A/VDW3XnUB4jwNfla/MFwUe2g9Qtky8yuZ0UBTaFwqK8T7eAdBCG9F+DvZlPvFKH6SBtlyvUB78Gz4cgAurB1syzKwtboj5r1YDWCjQVgZP7Mbkv8wjBnMKPrldAEu84w2ubJQHEKTAnnnN7QJPGRTBAqTuIXbbheYb6gkLFKxX3L9qmeF68vlbvPBBGrZ8Mq8U7I+Ojlo2m40cORGafwzIQWot43Z1opBsY97FvR8ao/xbOp32YLe7u9sDzKnkYUIzn5LdYetIm266qS1YsMBuuukm/2x4eNjuuOMO23XXXc3MbNddd7XBwUG76667fJpf/OIX1mq1bOedd17nMhUM4G9I0YTe7QQGVHhNBWRCkz5UR/2EyubvoRiNULtD/6tyDaUNCTZe2epvIUUTAkBQCBwDEuIDlArH/oRAHisl/uiuGrNJxc3uObZAoGy1XnG+sD4hlgsHRbJiVOEOgKF1Yp6EeM2KD5YKxLSAvwyMAGwAhFAXblco0JvbCUuOtoH5rgpM0/MzlMfb3xkA8aGZbAHl9nPcHPc985NBEPNNLUAKcJl/Gp/E9dM5z/U1s0gf6qKi0zhmnjJfFHTyHNL5yO3VOdhJPnVaJHWSadMhBpaheR43vvBuQjOXEktQgCqViv3pT3/y3x999FG79957be7cubbxxhvbu971LvvoRz9qm2++uW266aZ29tln26JFi+yQQw4xM7OtttrK9t9/fzvhhBPsc5/7nI2Pj9spp5xib3rTm9Z5Z1iIQhaT6VpNGCTEWUx0taaKR+NB+L0QONJ0WncoO7Y2hIAOP1eriIKdOADFvyFfKCS2qLHbxGzyJncFE2aT5zgh5iLEf47NCAl1tUown3SVCuUPq4PmqXE9ZmuVGlbkqsTUSqDbgRXo8AF3bCVAOTiYELEqeM7gKpvNWj6f9wcGIl+AMLSj2Vx70Szihrht4FOr1YrErbCrjnkb55bl/gq5jDDukQfibWAN4iB4nTs6LnGGE4MZAF+uD/IPjUkNyIULkEEUxwmZTca1AXzyIZWYf9x+BESj7jpGkDfGNLcRbUDcVy6Xi1zYy2OL3b9cHv/luRLKQ2VMaEGmaeOAlYI9pGdZqDGMIStQQrOHEhAUoN/97ne21157+e+I0zn66KPty1/+sp1xxhlWrVbtxBNPtMHBQdt9993thhtusHw+79+59tpr7ZRTTrFXv/rVlk6n7dBDD7VPf/rTz2s9eVWP7/gbWnV1AiOhvBWIQOiHJjqv9KazauN88X4csOK/XD+uIysvBUX6vvIHMQ5Iw+4oBLrCwsJ5dHd328jIiD9EkQUl0rDJn7d/q5JmKwq3h8EWzotBffCuxk6psgBwQmwM2gylCfN+Pp+37u7uiAKG0gdfOJCbjwwIuS9YwbFFC7e/FwoFvzMM/IQ7mC04zk0GqSOuRkEGwAHSplKpyNZyEAOhuPHJ5aqFBMQ84BPEGTAA3PB3nBbNPOZ6IZ26q0IWOXUhATQy/3U8NptNq1arHnAWi0XPW7Y4clt4DKrlBv2GZzwf0Vejo6M+sJ1duDymQAqy2PUZ6qe43xi8IA0/C8lDvMfjWWUFxh7AHf+euMRmJyUgKEB77rlnx8GbSqXswx/+sH34wx+OTTN37lz7+te//rzWSy0LIWuQrqLMwu4lfi8EMGBux++wPOiWVOTJFhwV3pq3CpbQ6kxJAYOWr3lw+aH0+B/Cjl1dEIIc5MqKEJaA8fFxGxkZiQhqgEE+PweuAbViwAoVahdbG3CZqF5IyfE9GsPBvOTnXH5IGUNxMS9QR+5PVn7sOmMggsBXAB/cDTZ37lzr7e21vr6+yFUKuI1c655KpfxdTdjtpfFJOESRAYQG3YLPbJXg39AWWJaQVl2BuCoF1kGeQ2w5wmGH1WrVb/0Hj9hFyVaskBWQ52BIuaLv2XLEt9LzWOfA7Far5QER7oVja0/IVcXEY5ABKVtJABSxQ4+BDfIAENJxzIsKHcsMHqey7E0HiITmjMpQHuPsEtM5F7I0JTRzKQFBs4SmAhP8PQSA1qUcncC87ZeVFFswtCwIJ1UOujJjIa+rbgVWurpTXsQJnU4gkIM8uVwIO961xOmbzaYX7EqwrnDd1ezPK22tT6vVipwgDIuLXkrKcSHaduV3qO0cSxOnfFBOKI5F44qcW7s1ny1gqDeUcrFYtJ6eHuvr67NyuezzRH6spJk3GB8AVIgf0iBjKH7kh/8Z1OFdnishSwHceqEVPsfawD0CFxTS8knRAEu8vRr1YbDM9WFSEMPvQtlj/KBPkCcrZZUNeAZrFixV6lrk+cXzlnnMwJHHIY9nnfP8nubNfGBri5Jad1QG6vwIAR6WVVxeXDqAIJUfvCDqtKhLaOZQAoJmAcVZPjp9zKYHgHTih1YxfMIvnvHKOQ6AxIGREJAJCQ0VXFzHTqSCvpPVCUKMf4dSCm2Jh2LEKh/v8AcrW13BqstIg4h55YxzfvheLAUGfBp1iN9ModWyKipe7XL7NeCWQQbfGM/WQwZIuO4ClpxisWjlctlbgVAHgE6OHVJg4JyzbDZrjUbD5486Ib6I+ysuBguAKm7ssPuO48NgAazVar5/GAQxoNfrQdjCwspa6wFeqJVDLXFcN+dc5IJagL2QgtYxq8cgoL7IJ+SiVTnD45q30DMvOE6JLTl82KP2Qwikan+FwAvzUq1BoTw6fdffOC6IQXeonAQIzXxKQNAsIF3l8DOesKro9N3pkgpOHIXP25XVVx+yPoWEACu1UPpQPfj3EGjR9sZRqI4hsMIH4bEFALxEwKeedM2Kn5WJ1gnpIPjZGlCv1yM31UMJsWJJpSavlIB1TvnHbgQuK9QPrGhYIWGlizryDeEMIhkwMK/gZuF4o3w+74FQPp+PKEmtL+rGfIKSBUBghV8oFNpAblxMD37vpHh5yz23u1ar2dDQkL9AFn0Afmk5obnKwApWKea77vyC8gVfOKAd/c5B5li0KFjhsYr3ebwCrAC8quzh+oQACsYQA1D0gV7xomNQZRw/53Lwf6hfFZihX7g/Qv/z+yHgwmMQlvFGo2G5XC7SRgVCneRRQjODEhA0SygkSEG8nXtdJl1o1aKrVtwazmeOcF14BcQCQFexUG5avgo1lK3ATVeCKpTBoziwxyt8tdwwf6FEeNs5VtTd3d1WqVS88mOFZWYRiwjH7bArhstCG2BNwA3joS3MGkNSKBS88grtEOOy2fLByh/ABgHJHKgMIc/9yAco8rEC4BsfIAflns/nrbe314MhuMNwmztf2AprE49hvsgT5aTTa2+Dx4nYrNjBH4BV8Cc0TkLgm8ejBnWjH1Fnrg8OauQ5wZa+7u7uyJk59Xo94rZiQJdOp/2YALBBO3gcY54hJsrMPC/Rd+rG1DnGrkgFzJVKxcbHxy2fz/txwTzC/3rSeqvVigBmlKULKR6rvLONidOG3L5cD+47rk9IdjCAUtCjY0XHGNpVqVT8OMZ4wSex/sweSkDQLCBV1qroOE3I2hGiEADSc3Cq1aoNDQ0FAwC5XCYAJRYWcW1BnvjOZnitW5zw4zRchgJC1FkFOL8LRcQrSAYerVbLAyB+nwU4849Xh4VCIRJIi1U4AmdxpxcrBAWYqBMUHQKJ8TyOR6wI2H3E4AU8h3ULAAKKml2hHH/CY4f7G1ag/v5+mzNnjj8ItFAoWLlc9kCLTy4OBQezO4ZdPdgyj/qWSiUPHjDGYDFCnp2sGjofGLiqSwr1hWULIAtxX+wSDO3WwuWznH9oMYBYKgAgzEMAPPzP45nL1y3cyJ/bzNYrAFteCMDlNzY2Zr29vVYqlSL8YeDDsVmoP5c3MTFhjUbDu0G5DizLdNyGFnehfuOxr3JDn2neDC51FyjK0QVNpVKxvr4+P27Ba90EkdDMpgQEzQLSCa+rk5D1J2TSNQu7o/CcBdv4+LgNDw9HzowJlcWrIxbooZVZJ1LhFfpfBb7yhNNoPfU3XgWH4hJ4RYe8q9Vq22GEbBFRgcrK3Mx80CnS4iJR3n2mebC7g9uAOvD2ft7VBUWGD995xGBN+5EVLufFIALlMy/hPkH+bPWB1QqWEJyTozFmfFEru9gUzAL0McgBuOB0XEceS3HzBr+zS48tEQz4eAxxPdS6Af7xmOFdW/idLScAebAmcb8ySEIZenxD3Hxja53yBGCIQR+3HZfXmlnQLaoE/nCgNkCV3inGVlM86wRyVA7EtTvkCp1qkagyhf9qW3FHGsY1zw0Ew4cAXEIzixIQNAsoNIk6gR/8ZUEXJ/BBLGQnJiasVqv5rdkgBjhcB/aXx5m1uR4hsNJJOMUJ9ZAwDFmAQvxipc/f8Q4L0FQq5YNhARDAF2wzV8DDZbFSwYoYsT84y0bdWUpsrWJ+sgXFLHreDPcXQBDHnSiwQRkMgrjfQlYLjlniW80LhYIVi0UrFose/DEAYp5xP+hz5Suew/IEgAH3HStx7iflYdx40/gw/p3TaUyNAlnuGz5oE+8AiDrnIvxjFxyfpK0gleun7UQdeCyizbx1XcE68ueAagYjvPuNT/pGW+PkFNycZub5xOCWy+E+D+Wllh3mg5KCNJ1fIXA8VZ74DZ9KpeLj23BuEHgYd6hsQjOLEhA0SyhkgZnq+3QFBsf6tFprt7OyFYgFoSoSBUGhVXbI/Kx1jLPcaBv4/aksP/xX3XcK5liIs3sJ6er1uo/XYVcRVuKqNDRffHBo4fDwsNVqtTbeoPw4haIuAygZnMsTB/p4e73yhUED6shAiK0HofehwOG+QeBzsVi0XC7nn2OHGKwb2jdm1sZfPpCRrVtsPYBVDSd2szuHLVrMM1WIcTxXkAzrDLe5u7vb6vV6pB85rk7dzABCaCcAKlv12C3MFieAJrWUcJt47IfmpG4G4LIQHM0xTQzewVP0L1vu4oBDKjUZyA+rlcZ+cR+rlZHlTAiQxskQtW7reyGKy4tdm/hkMhkbHR21arXqA/4hA9h1ndDMpgQEzSJSYBFnCWEKWRdYIOpEbTQaVqlUrFqtRgJKWehOF/woqZUqrk6d0mtbOBZHBZ0CgpBQNZsMvuVyOQ6KD3tDzAncYKGToqF8+OqBVqtltVrNqtWqB1MQrAqE8D63gWMoQAA+fJEpAIZujwYf8BexJtyfrIQxLqCkzSYBiplF2o/4GNQZW+KRBoG1fIAfB/NzOQBJUIisyOBiA69RJvoHz1kR6RjTNDqHeBzgN969hXpgJxrq2mg0zMwilhz0O0AAu6P4bCVY0MBzWEtg2QIPkJavEAGo0LGhiwPwWccqu+xQX/CGrUYM4nD2Ua1Wszlz5lihUGiztqBOHJTd3d0duYSUgSDeD8UDah+q/IiTE3GAKe57nExSCzjKwfwdHh72wem4NaDVannrZEIzmxIQNAtpOoAD1GmSc+AuhNvw8LANDQ35M3BYuXL5apUJxU6EBFWnNiEd70ji90PtDaVlawG+c/1U2em2ZlgRACg4bofN+ByDghWzBg2jzGq1asPDw14RYZeQHkDJAIz5yu1glwosBEjH9WCTPIMOLYffV/cRB+ky0ATIg1sEZfJuJAYzcIkhHW/x5utEzCziNgPw4t1wfGZVsViM7KBicBMHDLBDifnI40IBP4N9KHIGqjjNGmMRoBEHR3KAMOaaXnuCnVPgxdjYmK8b73ZrNBreqqLWSgBM9D36icEan/LN80mtLxrkzLxgd96aNWssnU57UIh66FgFvxikoy4og/tIZRzLnE6kxxTwHJzKzaZyMgSS9b1sNmujo6OWTqc9CMKGBfRXQjObEhA0iykO3PDvoZgKs8nAWrYYjIyM2MjIiL/nJ0QMIOIsLFoHXaEpaEFecSs/bmtIqbEiiANLWl9ui4I61JFXcwjaZQChVhvOD/XCinlkZKTt3BYoG+4rbQuvyjmwWV1IyBP9xuccmU0CNi4zZIVCGoAQ/p8tEhpzFIrFYZcQ73wLWSNCfQDFXCqVIn3KCh18y+fzXuHEKXcePwoOAHp1nHB6kHMuYrnJ5/ORIyS4XwCA+NwfjBmMJz6VmnnHbi/UE0HFqBfzkHfXAXAq+Ne5oP/zOFALE7uqGDiPjIz44xD4zKHQPOft5OArgzmAJgbFqKOCXJUVao0KxeOExnqczNGxwP2A9rE7dmhoyF8Fk8/n2+ZgQjOTEhA0C6jTqhYUmuxs5eH3WOBCqCBQV4OhWZGxcAnVT8vvJKSmqn+IB9p+BVdxeYXqh+dqBWJBC9cEXEAAAnoOSJwQHR8ft9HRUW9J0nI0ZkGFs4IrWFm4TA3kVUuI9h2ENsfUqEWEFataltjCBP7AjaVjhXkPIIQ8kV7HCVsfuA7qZoJlCXUBf/S2cnUjMlBla1WoP3Vs4Tv3BYMhgGa0a3x8PLIzTPPA/xzYzPwAr5GWgbDOQbbcID3fEh8aoyHrLYjz57RqXcU8qdfrvg4KYhTgM59D1pUQ+OF+0P+1f+MsRnHySKlTnbR+3N5qtWrVatV6enq8m5J39iU0MykBQbOMVECAVKAoyOF0vKKHIMAE5l0uUA4MfiD8OoGWOEuMrtQ4PZfDAieunBCgCglxNfsjXzxjSwyXiZiMsbGxiOWDjwzAKjZkRcDFpxz/w3XnFX8cAAIAAPF3jqUAD9jKwGf/wKqgihYAgIOmERiP8tgixuCHeYvrMLLZrHcB8FjBOAQoiNumrZYx51xk9x0rYlg64BqDZYiBGOrIYzcEFHk8xy00eIwBYCAoWl3KAM76O5cL3mngNvODAR3e4YBi9F8qFb3JHX3HVzqECGk1Lofbyf3MY5dBmZnZ6OiobxsCphU46fyeyu2tFqpQGu2v0HzSdMrrOJDYCfzw75hb9XrdRkZGbO7cuRHXZnJm0MymBATNAtJVdYhCQEdNyiANhh4fH7c1a9ZErEBQFuy2YIWi9VGBokofgotdAlrvUPrpAqo4gcn8CQk1tSiBoMw58FfbzcKT85iYmLBVq1Z5AIX4HwhENpOzAmQriQp6tt6hDyHwNXYDfcYKV8+qwdjAycRQmmZr3RsATtjqzmOKQRK2daOtGFt8Zxjqi98BKhUgwO3GfdjV1eWtDBg/+B07wgAW8vl85H11vcSNs1Af6njQ8ab1N5u0CjQaDX8oII9NxPkgfwZqmBPqSkSbuR/RxxwLpRZNdjsq2GMQojICdUKZ6gJmt6jKimq16hcEvb29kbIVROJ7V1eXHzvIK856Flr0qaWI6x8COXGgp9NvcYsoBoIIUl+9erXNnz/fyuVycGdiQjOPEhA0C0hN+koqEDAhdcVrNgmAMDknJiZsaGjIB+2yEEAwLFtHVDCG6sIrd9QhLi0LZLN2YBUCQixYVFB2WvmCWICFygY4YDcLbo1mQcluMZQ/Pj5uK1asiMR0wArCSoP7lBUcuzBQN36XlSPnxUG6sOahjbi3C5aKer1uo6OjfvcRtve2Wi1v1eHysfUc5SEwF2BNXTup1Fr3and3t5XLZSuVSpH4HdQPO8HQbwiaBR+gXEJ84ROUWeHz7hy+1JRdYDyeuf9C84V/4wUA8553OZlNBo0jH4A7DRjnudJqtaxSqZiZ+fga1FXHOHiB8tFWEAM1nTs6ZgG8+bZ7tEHzY7cceMwAHGB4aGjI8vm8lcvltgUDA3F+zrxnCzRIrXWdQEwqlYqUw2l18aJ9yb8pyOI0zB88NzOr1Wq2evVq6+np8XI2biGX0MygBATNMlKrhVo/4syvqoBSqUmXzfDwsHdhIE9dYTGoUaGi9WGFqXUICRn+La7NvNpVUKVApJO1B78B3PD7IPCJV96ZTKYtsBllACzW63UPJtlFApcQLBbMIw4wDvEMSoeVJSsjCHpenbMrwsxsbGwsouTwDsf8AKjB6gUFqmftcPwQ3gWfkB4ABTvr+N4ptnawaweKnN1z4DnXkXnKIBtjg9OaTbp6GLygP6ZLqnxZiTOowm9YhMCaODY25vuAQR0T4scQO4Z+5gP4UA/mu3OTJ4XzeNaxx9ZHBgsAZnyHmcZ2cXqk4XEaAnbVatUDagWeDFCYD1oO817/n2pRyAA31JdcngLc0BzXZywbwGccmjk4OGjrrbee9fb2RlzlCc1MSkDQLCFdLYVIBYxZdOUDYYgJ32g0rFarWaVSiRzxzgqWJ3oIAE2nziHBFnoXQppXuppfCCyotUlXrkgf+j9EfFifWqW47WqBYfcZ94GucjmWQ8sIxYegP0KrZrVqsGWFx4KODa6LKig+WZotESrweaywdQD5gCejo6MRYMVtVUXFbVM3rO6wYl5wGgYJrNR53KgiV+DPzzQPVmpwi7HVCXyAq5EPnuSYO+ZDtVq1SqXif+M4Lb2SQeUA/8b9y7vLuE1aPucJYIo+DFlB8B7ayf2KdNhVCYse84VdiLqdPW6B1Qnw6O869/T30P+64AuVx3OOFzJm0QDpRqNhIyMjfkOEAt6EZhYlvTNLKQQQFADpb3wey/j4uL+8E9dBqAkcf0NAZipSgRZagamFJs4aFLcy1PJCVpTpADUtBxYRBhQhEASwgBgQnPmjCpaVEoQlW8uYx/yOxprwCh/P9RlbY1j5huK5+C8rNa4Lyub3oPjVvcd1YtDN5/rw77CsheJX1GqhSjmuHxkM8ofTKIDVMajjQZUd/4b/4TbENn1YtrgdPJZ4+znu5RodHfV14TgtXpSAZ865NpDDO9M4xovbzO5UBk+cBmUpYArNJeUXW4RwphF28jHY5noqL/Uv9xvzEHwOycLQh+sbAlwhucnplG/6DG2fmJiwkZERq1QqEVdyQjOTEhA0C6jTahnfeYWlqyJemSN9o9Hwq08Ibn0vzjSuCitOMZmFBWecMOUVIlaYoOnERWkZyqdQutA5MmNjY5FzUEIAzsy8uwZ3gPHOKU2LVTYH7oZiiiBIWUniN1ZqXAZ4A9ADi5S65Hi3Ecri9vFvMONnMhl/+BtvU9erNPAurBbsamPFCAsBAx2cJM3KErFNbM1R5cdtD/UpW9sYTKmlaypgrfEfeA5rDXg1Njbmz9jSU7vxYZ7rmFYly/3K7jR21SI4Wq2/as3hj+7cUoCPOchxXJyOPzyeVS7AEtjd3W35fD4or3jcTbVgYV6FAI4+5zETArr6N/Qb1yskY3iMmU2eg4SzwSqVSnDeJjRzKAFBs4BYMIZW8CFhAOIVOQTB6OioDQ0N2eDgoFUqFS/EVZjw/6FyVHCysmElF2dR0e94xgBMV1GaNiSY9DcFQqyUQ6tMjTtR4ostV69e7UGHXpjIlhzERuC9kFWDA4DVogKlC0GNPBDLxXE7CIpnoABwgXK5Xegndmuhvqgjdl6xdYDdHPjOMVQAfbiiAzyC24gtDlDm+Xw+YsVS15eSPuM4Geecd1UxPxhEgDopKrZWcb8xGO7q6rK5c+dG3KMcvA3wgjqyZY/5jfIwBgBAcd1EJpPxu6lSqbUB6AClfJimmfldfAyq+IgFzC8AVwYPnB6gnF3mUP6cNmTFGxsbs3q9Hrlwlcdds9n0Zy1pvNJUIIndtDoO2ILFzzoBXpSrAKgTOOO5ijmKMVKtVm3NmjX+mpOEZiYlIGgWUchEzIIrFE+isSDj4+M2PDzsL/BUQcnvxn2QPgTOOA8VklznOCDEIMhsElzhdxWMobqreZrrGlqBc3tQHz4PCARlA4UGn79ua8Z7fDEm1x3lcZwP15XBBpv7GRTggDo+bZjT6uoWu9vY0sYuLLbcwCLD27FxLg8AGFusuBx2q/J7CgrQnu7ubuvp6bHe3l6/FZ4tOZ36mL8zMQ96enqsUCj4q2BU0bOVTEEdj299RxUqeJvP562vr6/N+oB+5d1vDAxh1WFAA8sdyuHTmDVvPiqArVQ81gH+AKrVGhbnSmerE+8sRf0BYtW9yHNpdHTU71LEGOK2MyANLfBCMo/ryL+pBagTiNZy9Lv2Y4gYCDGQnZiYsEqlYoODg8H3EpoZlICgWUZTgRV+rgCo2Wz6W49HR0cjMSycJ+cRmviaPiQ441btuoru1B78HqoLC+KQ4leeMVhTgcZCjnnHq1614sCto8oD6Xk7NOoLXsfFo6gFiPnAAIYViAaZQgGqa5SBiQIAHOrHwcupVCpyKjPuwWKrAoM7DdjlvDH2uJ74rVQq+cP1YC1g5cn9EupTtlbw/3inq6vLW8tCypP7QJUYjwe1VOgHPAAgKJVK3jXGafCd5yRcXQADADAMOADQuBzuA97wAHcc3+OGfgqBhzj+hiyhOBsJZTHA4z4Aob4IEsfxCzxmdCwx4ERdQjKG/3J7Qr+F0oTaHFdOiHQBqMASFrxqtRqbR0IvPCUgaJZRSGjFCWUIWbPJQM1arWb1et27cJBPKMAw5IpSq0qnenYCQ+om0xV3SBixcJlK2MUBHf6N39NVPz/nw9vAR91ujrQQgrxdWV0oXD6/o3xTpcZuLj7kjoEJ/vJBgWiDKmTnJt1WuAyV2w1LDlbynDev/rVtrAxD1i48LxQKVigUvHUAylCtMaHYGShadQVx2lQq5V2G6n4MWZJYqXN/hLaX62KBxwFcgIVCIWIp5IMBkR8DWnVRMkjhmBMGQOze4jPAOH+2LHI8UGhxAVIww3zHWNJdlAxMmQAGOHAbdePyQq7POFnH/4f6YCr5wDSVHIiTYUiv7/F8bjabVqvVOpaf0AtLCQiaxRRa1bCAZRcJAFC1WvUgCG4N3kHEk5mtISqQ48zDIeEzHbDEwAAKI2QCV7DACk+VZ6iOIcDBFhgFWKz0nXM+2BOB0LqzBlYVrH45H84/pCi47izYYXXiC0J59c3Br+hznNSsbeby+FwggCC2KPB2Xz7VF/kBBLHFB/nxWT8AhfyBG4xdRFDSqAtceAqAuD0M1jh2BXzgYGUFn/9fe2cba9l11vfnnHvvOffcOzOejI09NnFSJ1AgjRNoCMZFTVNs2Q4RApIPvESQUJSI1EaFUBolokCg4Dat2gqUhi9VwgcCLRIhakpTEoITBUwAlyhNAha2UlxaT6zG8bzc13Pv3f0w+u/72//7rH3O2DP2nZn1SEfnnL3XXutZL3s9//Vfz1rLAb23BbYRf884/SG9Ce7lDMzjRlQeBLAsM4IV5lf6KW7fLFHfSougV2UgZs/fKzf4+k+w40CHezLJT0n6+TtL1nFzc7MFhO4Xp3bE8D6IyurCARBBK/M1y7+o1Edldc93qATY9X9v7/z+YVUOr1QQdJkKfTuyFU7uKLu+vh5nzpxpz7MiU0QnVKfQ1VGpo4vonlkkyTqJUgeWgRCGz+LSdfdj0HUfkblh81GajzZlQFluPrrd29trd1omOxCx7xwrnyE/90mARfXFUTB15Ao+bbLHpe5ckaRl1GwT3hYyHTl1QRZFcSoeGTg5r5L50jfbC1fGkXEYDoftCeNkniaTSezt7bVLqY8dO9Ypb8Uh8EmD7Kv3NLXrz3PvHYZ3HxRvkyo7ihs8rzuVkYDIsWPHOvvubG9vx3g8boGffJSkN6cOyeaRXWObIchgO+Pgh+BA9SPASN8kiU8pOiB00L+6utq5xtVi/o5pc1YyhCx/pc26LuVTafBbvwUW2UdmfREBcZaOh2cc3l4yEKny9wFPlcMlFQRdBsLOiC+qsxYcYfHF39jYaE+IFyMUsf8Cy/Cp48s2MOPL7KNoioMd7yTUOftUGNOPiHbkzDgzRiADQtkonoZE+dEI3v0tWLZKKyI6Z1W5QfZVN1z5RANGnQkmuQxaDBJ116nrfJ51ofgyRsynWTRdo3w7O0AfEh3hQP8N3d/Z2Wmns8j6ROxvIsjyEQM0mUza1VBqywJd2iFZrIU2G9SUmfLkO0HTn0b5yfYmYh4dLJfaO9sq64D6eNnp9+rqaoeVOHfuXMv8EPSqDFjnmlJl2frhtQI3Ai4EQRHR2Q5AOuiwU07bZRv6OcPCgZEDWh9sSOj0LP8YPuPlSJ80f//6QIiDc4/XB2x94ulkgMpBlLcBvicZsKpyeKSCoMtA+FJnHw/HkeD29nbrByRGSP4HGtk5dazfTm9LvKPz/4zL4ywZHe+oBEicuenrwLzTzIAaOyalS7DlnaiuyRgT1Dho9I43AywR0Rl9N80+40P/EcbvYCqr/8xgZGWlOpfjLIGfjBOBhUDJ+vp6q4emrHwXaIEQAR85OgvQyOByybAf20B9BBacdcsYGTIJ9EPi0nfF7eVCI8d2oDyxzbAOvFzJRKksptNpjEajWFlZaZe50+Fb8Ukv5ZVL4QmCfNDAPPQBYAdwKk/lw+vTy4lp8b1qmv2jL7zNM23lTVPxOuON75jicJYua+N8Jhv0ZH2ah3UpvUuUWWCKfZkDqCqHUyoIugzEgYSLOkV18uzcNjc3OwyG5uW9s1A8WdoZ20BdshFgSX+Pt89YzwI9pQ6y9KH+jJdGMwMXYil8moJxEFQpHe+0eT9if+8YHq/AdDO2ggaGAJZ6OFOhbwIW7vuiOHTqO/eQUZwsO4EgsUDOEIo9EoASY7C8vByTySTG43ELdMjeZHVPkMC8uFGmbiwvMSPU33055jWImYFXGOXdBw46NkHnaGnfH8XhwJZgT0yWgKSmJpkPnzb0MuyTpmnaKSr1CQKuDqYcjHv5qewz/yDqwkUFpb7MHbIzvT1/2bublUX2XsyKe5Zk4JPl1Nc3VnnupYKgy0B8aqY06vcTxHd3d9sdoXmIpgy7v+zZC8trHFlKaKz8uazDyUZZpTAOHBgfR8XeYTnwoX4+OtU1XwGkMHt7+6vBFFaGR2E4RaGRn5cH/YAUr0bFqisffcvg6RlOSek+wVIGavWcwAkNmPJEB2vqR2DtZ4WJ3aDRY30tLS21myQKFGmfGLJc7pPEtkHdnd1zkOl17kyAsy4KQ6OXtX9nf7x8S+8DWTOBMfpBcb8gruRjm9JGiCxj+uiRgRNIYduV4zvBaQbiyFCNx+N2B2+yYIpTrB3bEUGldKEjvfcRWg3nZU7d9B6VgIrnlZ8Sq8c2UQJgnk5Wt1lYF5Z79Qk63FJB0GUgnCKJ6NLB+pbDLjuXtbW1OHv2bGxsbMTGxka7uV9JMvDAb3WA2QiPo3Z2AFnHwvi9IyW4YZ79+Xk6sUwHB5ECM+5Lpee0PFxghQZH01iKgyDBWRoBAwEq7dMUER1A5R02y9zBj/SkgZYxVR1oSknpZMvIlReF4TN02lXeFxYWWlaDU2oc/WtFkqbA5APibBfBnaYbuWeRDDn3RfJpILJABLQEgQIT9P/y9s0pGaah6SmCITq2e3tj3WhaS7oLGK6trXV05xJ3+pW53prKln7ys1EdOQvBtuxgT+8FmSgd97C8vBzPe97zOisAmU/qrjg0bSwA7NN++hazqvvOzCnPPlDzfk/PcADj21G4OOj1a0xnHvE4MrBeQdDhlgqCLgPhqFFGJyJa47W5udlS2hH7o8Annngizp071+4MnXXclD4miJ0YO9GMGmcHQsPuxiVjg/SbHZ6Do1l58LgpGTPgnWvEeTCgqUQtcaUemcMo0ySroevaooBsneIS8BDwYlnSFymrIy5Dd0ZJhlh+OdJN/kfcCVpL8K+55prW+Mm4cBXYcHj+OAf6sgwGg3YjPLYJTk+5yOi7AVXeycxxt2TupExgqiXpCqdpRi5R5/Qd24yD31mMkLclXssYDF7XhoPa9oDggMZU042MX75VEfsMjvy7tCfQcDhsfW6oXwby1W7oeK6tEb7yla/EeDyOlZWVOHLkSLtnlIuXGduzsy/0OVKfxClL6bq0tNRhkygCST4VnDE8/O/tMANLXpcevvTxeqbz+Kw+q8pzKxUEXQZCR2Z9c+8Ynl2l0fPZs2fj7Nmzsba2duC4gpLMM6rxjoQdYNYJeZyUrPMhAHIQNC8D5Pf8QwaFLAoNhNgMAhY56XKTOO/oGQd9N86ePds6pdMIEdDSSJQMMaco5q0XhaEvE0f/mT4RXX8dGV49m/nweF3pngwtnW+Hw2HLBEi4sovPugEVa0W93X+J5aC8KiwNaGnKhXnzfAq0eZvPfpNBUr7oBK98C1SqPe3u7rbTUtJT4IKMkYytl53aCsEFyyLLp8qIQFGMXkTE0aNHO4MwL2ev+1K9qNwEUn2lmL8HJTAS0d0p20EJQSrT9fsev793/o7wWpYu/bo4dV7lcEoFQZeBcNSkl1DgRx2qjKumb3Q2mIz4hUgGKjLWR5KNoB1EMWxGD3tH4ixJqaNiOtl/hc2ukaWgD0zEPlvC6SAejhgRHTDiI20ZJK2I0fYE2UiUv53qZ9novtLmdAl1kJC9I+CTkREo4n1fLi/fH03j0NeFRkX3spGv+7QpjBynmTdO6fizPh1Fw87VZSW2kqvXXEcBGwp1ZvjMuHtdKrx0o/Oys4TUycsy22pBAIjHaqicpBeBhLepLD8ESwTa0mU6ncbm5masrq522DrmN/sQdHn6TbPPcmbxkYn0MmZ8LDMXTzu7l4FXj7sExDIg5P1bnQ473FJB0GUg6vAi9n005I/CUeVwOIytra04d+5cnD59uj3bah7JAIv+uzHJOpRM2HH4CLTEdCgsnyfDoOslPUrAy40AR2gEQdJR5crRvAwSO2ndJ0CVbgJAa2trB/wess7ZDSR1V5rO1NBfRGXn+SQIUBjmneF8umhpaamdCiFgVH6Zr8xQaPpKTr4EbTo5nqDCgUDG7CwvL7cbDRLcePsigKATsrMSKhPWiwOgzLhn+vIa25nK26cXxaywbJm2T7tqSortVQMksWxqG5PJpM2f6kvxOFhl+5UQRDfN+f2FFhcX48iRIwcc4kvvIssgGxhxes3bD53lMwDk7ZH1mrVFioObDBBlz/aBn6wfqXL4pYKgy0A48hN9LCpZQEgdwtmzZ+Opp56K9fX1p/UiZqM2sg40BBH7tLvC+v0Sq8F0spFkNgrPRmkZaOP0h+cl4iBQ0PQCO1wdtUDGxJkc+sMQODTNeQfT9fX1Fpxyvxulq87bV4X5aJLpOHCjs7CMqvx5aCQizk9naLpF2yYwXRo9+c9oCov+Kbu7u61vk56TcONI5U8smPIq9mNra6uz/NvboQNosmw6l4ttk347EdGWg6aMCHRYZ1623oa9fTG8G0Nvh3TY1fs7HA7bKaCFhYX2KBb54pDN4vSTT60I2KkdsK1oF+6MlSDrJ8dtglm1KR1fQtbr9OnTMZ1O49ixY7GystIBD8qryogAl+2C7x99ojQIUJx9/mRsJ36yfRZGdeJtKwvnYTJg3geGHMhWOdxSQdBlIGR9REmrQ+VKkjNnzsSTTz4Z586du2AA5H4LEblfSalTmqeDKbE0fFadGQ0pO+HMOGXxMj/OYnEUnHVkmmbkCNZXuiis7kfs7+fyla98pT1wlKCF+RF7o3AsDx+ZKm/czE5hCCzkILu6utrRkYaPzsHyH3NH6ul0GisrK7G6utpOf8g/hSN/GW+OwH36ant7O5aXl9vrmma84YYbIiLaNry7u9thhkqjdKUhHxrVK+tHgEB17PXNd8bZtb42W2p3bHN0bnbQSzZ0YWEhVlZWYjQaxblz5+LMmTNtWUg/sT5svz79rbjYpiR0ZhdbxPbudU9WhQCP/mrD4TDOnj0bm5ubceTIkbjuuus6U4ksM9/0UwMBT8vZRE7tsb/hYEntwNnCWYCJdcl60nVvc/683+cUONunrzatcnilgqDLQGSUdeYX/QDowyLjO48T9DxC5sQdcvXNTikbQWeGg51aab6cHSNHwuyoSoCtLx+cCsh8QHZ2dmJtba1lHHRtOBx2jrPQKF3xiCHR7tzy3SBIKRkIGREfiQqw6eOddDatEbG//4/yLrZAh75qSkhggUvw6Z+i6Tzd0zSMDlVVW+N+RWwjBI0ZO8RDXgXgtI0A45UBJguilWQqOxlulZ2+2cbIyNDIloz4PP+V12yPJe6HI/ZnZWWls0+RVuQRDEhfbmkgXbnKjWCBIEiAg8vbBRTF+rgPkNo632WCNoIF1dfa2lpERJw4caK4Csqn0N0nS4M5AjiWhcqAx4uwLsk8eb17vfGb/ZC/V1m/4MDIAZGD/9JzVQ6fVBB0GQhXgmkKg6tzxCho9dHTkexlVUforMq88WUgRfd0jeFLv7MOiKCCI0RPx5krZ7vYYQrwbG1tpayXO5/SYHCrAhpUGRxPl1M3DiSpp4dhR5uBIIINxSe9NeXizIj7YgnwcHdxZ8XETJJZoU8R0yAYUhpbW1sdfyYZWa56Yl6VNlcDaXqO9UhxA6Xn+xidvjbu7dbrguk4O8DpRYnyMh6PYzQatSBH77ue1b5J0p8gngabbUZxCcgQKAlgsi1yult5KQ1mCFZ0Ftjq6mrb9kqAlHXJdqqz4dQOnAnK6mEecJH1Kf5dijeb4uwLz/eIgCjza6tyuKSCoMtAOBWmzlHTAeok5Aj9TF84dvSZES49k4ES3lOcTMN/Z9cyw+ZpleLIjF3GPLET0xSB2JNsdOkASYBB+zEReDDNTF+VL4GcT01mxpuAQnGLASArwRE8AYQYIp5QLwPFje7od8N9hpyNlMHd3t4+4OMj3choyaeNvjr0zWI7loHmAoESg1iqW4IGMhwu2RQMvxmn543gl/dZfvo0zXmHZvlwTSaT9nwxAWnVF5kfZ0OzfaEioi1Hb0tc2eXl4rtXZ2XM9ixAfPr06RgOh+2huP7u8f3y5fwC0XyGde+DGg4smGfe88FLCSjzPS21m9KAjPeok/67TlUOr1QQdBkIj7zQaD4iWqO0tbUVZ86cmTkyulCRoeQoUeKdAK9nknVKWXoZeCql45R9Fp//7mOjtJuzRt3+EdPBTljOoppmcOOn3z66lAGhv4SM6WAw6EyZ0Ej4cnhPz9NSXuk8TJ8T+i3o+b5jEwQUCbjY6WtUT53cwdXzyHrPAJCmyDhdxG+WizNmFJYPp8ic9eAovq/dMu9cVedsgtKm8Vc9yMdnOBzGsWPHYm9vr11NKECutqU0Pd9i5pim/IZ83yX9JxhS2Ig4UO/+nvi0rBinM2fOxO7ubqysrLT9Elfsef3zvDjf/oPioCsDySxzloG3hT5A4oOdLD7e53P+XmfxVDm8UkHQZSDqKHnQpk6o3tnZedorwSjZKIkfSukeO55SGtkom06YZEMi4oCByoxVpl9JH3f4lJHmwY6j0aj1n1EcOl1du0fLCfbJJ5/sMHBa1kufBUm2Eky+InQKdoOvZwlEs3IQu5A5mmqZOutAPirLy8stc7O0tBQrKyutMZTR1BSh4lQ5kgFhWRMAOYgWCFF5aDdrTcsIJAiQsRwVz/Lycmffpslk0pkKFkgkI0UjKB3Yzhiu9D6wvJmO0uYO1QQKqmf5Q3H6VAzv5uZmTKfTOHfuXGxsbLTPKizBG+tiODy/gzd9vTSAoSj/Dm6dcWSZkalTuvTXEUOnneknk0mcOHEiJpNJROyzeN7m5f9FNkbtxRkVAWZngDxv2WApu8//BHQMQ70yYOPASLrpva9O0ZePVBB0GQjBj0ZM9Md4un5AmbghywCGdyb+nb3484CjEugiQGJHpI7Kl1cL3Chd1yHTT8ZUhlWdPJ103TH07NmzHWMnkaGgQXfwo3ACCT5VQ7ZDAEx6Ki4yMeyEI6Kd6uKJ3dKJoGQ6nbZsiw45nUwmxU0FKVxpprLJpn5UlmQVKVkbY/pujHQgKxkM6ZJNDamtSD+/74wir2cg3Ns8AZ3+qx3RoOu/pk+5D9X29nbLKG5sbLTO+QwjsKjpWrVDMZTSj6yfl4PKSuUrcM1Vji4EKQ40NTAgk3P27NnOcSwRUfQVUz6yOiuBDqbvg4FS/1MCSCVWh+8TBzR8x9zfhyAt6yOrHE6pIOgyEAKgiH0K+2I63fmLShZC/7PffL7PYJae6wvb18GVQJODOAqdNTlCJ0hxp1B2iD4y1yosN7ZkGGhgNcrOfKzcETibjuCUjy9tpp6cbhErQIZNcSnfXJ1DX7MSOGCaZCYUr1gt5UPASyBI9/hb8bMMxapl6WtgwDrT9AtXlVFKUzxsO/zN/JXaFctBQIDl7MacaQssaS8m+ZRx/yYOfHZ2dtqduwlQVcd+xhzrkfkhyPSVV2xT3H8n4uD74+Wk32K4OHXmTJ4+dIh2diljW/qATialwZnH44CrBIay+izFVeXykAqCLgMhvSrxjfsuhvjLm7EmbgAyADKL8ZklGRPkDJCk5CCbpeOMEcMx7hITJQMrJ2gaPZaVjL9P7xEEOEPknXyfXgImpY5XcanN+PEU0o3+I/KD4jJr5isDwfSJoVN15gdEhkjlI+OfMU6ehhvdbNqPYCRrtwR/rFsPw+sEPl4WZKnUvggIOJVJ3QVCWN/Ly8tx7ty5zh5GCqt2xylSd1z2KUOydO5DJB35PlBH5d/BNsvMWSbWoZy7uZeT+8vp232MGL+nXQIdrht/lwZs/s71pZGll4GnrJwqGDr8UkHQZSCZM+ClermyjipLzzssda7emZWeZ9weJ/9zJOmGqNTBKW433L5iKWLfcJGVoNGJ2AcdcgAl/U+w48aGvj0ECIqfeshY0J8oM8gOGFjmAlr0UdK1iK7fi0CErxZSmXA6yo0U/WgIgrQEnFN3PLuOZaPpN7FGipvGnQyFt0e2B4n8uTg9x3Iiu8Q43GeFZd3Xptg23F9Lz6od8MBUloHa1fLycozH406b0VQly0/AYGNj4wDTpjw5a0z/Ln+/vW2pDgaD835XPJaHoLYEgvRfIIi+P+4rQzDFzS4VLhtUZcCiLxyvsx1zmpLf/rwPTmaxQdnzFQgdbqkg6DKQeU+BvxjiBo/CDpDhnDHK2AM+nwEjH+mXni2N7py9yK6734Ouy9dCgEZ+FmRxmqaJr3zlK3HmzJkDjqEECn5KvMLQB0PGXUcn+JQcGRaVNwGI0mRcSkuGjrsB0ydIQpAk0bOLi4vtKp/d3d3OikQyNDSAMsRc1p05RZM1mkwmnfLTlBYBNYFpZrA4DSO9BAi0EaG3W88/GR1vRwThJeOre75CbW9vrwV5EfuGXvnjIbvj8bg9pV0rQQUIHeg6iNPUoEAHy0P1T2dt1iOd31k32pRxMpm04Gxra+uAw7cDbALkjY2N9t3SN523+V6QPWM7zYBn1n8wnLf10jMloOP3/ONAiKwry6LK5SEVBF0G8mysMigxKxLviPtEDr4OlJROFj4byekeRcyF+92wfDJnaY50+X9xcTHW1tY6xwp4h7m3t9eu2NGzcnDVJndkaej7w+kAN7xkIFw310GGT+d1ZcvOedI946JvkPSR8ZHhHI1GrUGTcdOUjdgddv6cpnKGSkZP+99oyT0/KysrB5gWPcsyKYHrDAi5IdOxE2wLNFQZQM5ANHVh+tlo39s641d5kPFQnnVPx55oq4G1tbUWGAmAuJ+X6lxHvWiqcXl5ua1/glZndKg7AT6ZMm1TUNqniW1L6Wxvb8f6+nrLek0mkzYN1sOsvo1psaxZ55TSAM4BDttEH5PDssni8LCZH1GVwysVBF0G8myMLDJwktG5pZES72fgJxvJu6HnyKpkAAlwSsDNwRQBUGa4BYDc0GvUvb29HefOneswYBH7q4IIdpQ+/xM4urH08pMByoAYpyBoGJi+Awg946wVgY5G6UqHcSwuLrYbQJKxUnlxSsbBg4yffzRl5YCGbBkBibf/PlDNPIvly/w+vP1k8WV1w+veXkrCFX084JYH0AokKf88XV5lrGX0zox5fQsosX6YrxILxnYivdnW1GYyfx096++kViiWmBkHjNkgxOutBEY9XBbW4/M+qQSWSoDH+8Gsv6tyuKWCoMtALvXLVAITpdGu3+dvp+KzOOeRzPhEdJe/s9Px/LihdMMhIx0RnTPB3EBqOkhTKxROTTi48HJwkJKVpXTKWDQZHt3zvZUUBx1oWa++5F0AQaAkO3me4I2O4c4I8DnGT3aKaYnNY305+MsAin47qMmAkHTPVjR5/CVxsO7pZwZR3/Q5oZ8O61hlqxVhXOa+t7fX7rVDkKmVYwSq7u+jdDWllTFb+u3vEtsbAbjC8lT7bIWivz9sM16epfLPBgdeJ9m1TIdZYfueL/V/Xs8OgvyZOj12uKWCoMtAns1RRfbi01+CvxXenyt1btloSZLFl40OfTrDn2daYo3UgROw0EmWfjX6aKSu5fDOvjA/mR+MABSBhE/fOeMlABXRXREop2o3JOxgaWi594umNQRGCLLo88GVWhEHHVW5CSB3nFacahtceq00NdXG8F7eNNbuu+Vthn4jWRug8eW0Hj8+xeKG2QE90xgOh526cL8dpcE9nAgENF0q4KmpVT8zTY70mtoSG5QxSNwjSbqrzsgU0nFd16SP8sYBAgGQwqhuHRCTdfR2Kr11dpq3XwLX0vSX1zevzZoWy36XAA9ZV+XL+8K+fpJsqa/iq3L4pIKgy0CeLQDkTIHr4CsqSuEIYOYVH0n1Pes0Pztv3XdWwX0+9Dx35hVo0Iom7YJLZ1uBjVJ5RERrfN04ZuXsewdFnGcGyPTQd0Rxcldgxe+rggjI9LxWZNEoavUQDZZYBHXgBFgCOysrK7GystKWjfIt/xb5uMiIKx2uZpJxzYCNG1UaLBp2GUE9x2vKB4Ea2w3Ty+qSxjUDaRwc6JtGlPUhsKM45Guj3a7FCNHJlv5MTXN+Om19fb11VpdO7iekaVy2dcXFXaDVln26VODI3y2Wj5cry4hlot+bm5uxsrJyoKwFprINOrPBkT/vgMvrK6tXCtPw+GcxQ5nvj5fFs9V/V3l6UiFqIp/85CfjO7/zO+Omm26KwWAQv/M7v9O5/6Y3vanT4QwGg7jnnns6YZ588sl4wxveEMeOHYvjx4/Hj/zIj8S5c+eexVxcmHiHkVG4PtrJOg0P3xeHp88OlPpwuoVx+GjbOz/vTKWvRrLu/KlOvWmaWFtbi/X19dZoyaC6n8Z4PG5H6TJyJcdI70DH43Gsrq52AILiWV9fj42NjXYqThvQ6XpmLAU2xOwoj5qeozGU7gJELHeCGuWHZaddpY8cORKrq6uxsrLSgh4dBKpjHDgFRjZKeZ9MJu00kDNpzsRwSob50LXM70mMSNOcPybk2LFjbX1lZeLXHWypHgkOSkZOINWZFH8PhsNhrKysxLXXXhvHjx+P1dXVWFxc7DB00v26666L66+/Pq655ppYWlqKra2t2NjYiDNnzsSZM2da4C4naYJbHZ2iYzrEPu3t7bXtjEvifQqU7xzbnY4w0Xvi762ua5dsZ1PY/rIVhYqLcfq7TQAs8fcv22+tJBng4XXGkYXx7QCqHF6pTFAia2tr8fKXvzz+0T/6R/G6170uDXPPPffE+973vvb/eDzu3H/DG94Qjz/+eHz0ox+N6XQaP/zDPxxvectb4gMf+MAl1f3pSDYSKr24pdGQr8byzkLGnZ1UxvawY3Sj40KgMQ/rlI3yOWrnqFrnsbFDY/lwZE1gyE5fYWnU2eHTiZV7QWlfGQec7n/kDsQCHcqr8uYsGHXh+VIEHm6wFb++Bbh8PyGyPQ4uWC5k/pQGWRNvX6X69LbLsNLD2S7fjZj593Ji3CxXAiG2H5UP27mWnKtds10xvqWlpTh69GjrP7W1tRVN07RAXKBqODx/Yrva29raWvq+eJtU29b1DFCwTWi6WEKgQ6AYEa0+rBNuPSG9BEglPphSm5kFHNh+MkDUBz4cWGcM5LwsUGlQ589UObxSQVAir3nNa+I1r3lNb5jxeBwnT55M7/3FX/xFfOQjH4k//dM/jW/+5m+OiIhf+ZVfie/4ju+If/Nv/k3cdNNNF13nSyXZi9zXMfR1HDQyFKeNs3DZc316ZM9wmoxTF543jYa9s3Ods2kR3cuYLRoNja79m1NsHN2yo2Yc7MQjot2Aj+VK40yfHGc4IuLASNx9aBQXD31VWBlvGXtnZlQHAiJKT/H2sWYOzglAMsaAYaQHgUffVIWDRTea/pv1Qx8vhpOeBBL+idifspTohHnGrylGxS3n/SwPWf58Gpd1q/uapmUbZ/v19j3PlKXq3cGLl2/JmZ1Sqjd+8zf7H/3P2GzGP2+/lrXP7F6VwykVBD1NeeCBB+L666+P5z3vefHt3/7t8S/+xb+Ia6+9NiIiHnzwwTh+/HgLgCIi7rzzzhgOh/HpT386vud7vieN01chnTlz5tJmAtLXEZR++6jIO92+DsxH3bzu6XPqgaI4lL5f53/GL6NIZ1XFwSkg0tklgKNrbvzcwZMjc/lrcBNC3ctG2WKHxGZE7AMgggeWAxkYAT9OSznIUlo+LSd9WaaDwSCdShMoEmhyFoCGWexG0zSd/Y1KO2VnBkXpsI0wPbYjTfGovDOwouuMP2vPZHMYD98Bv+ZAlFNRCktna+2pw+NZlE9N59G36ty5cx3Wpmmati6clWT+VL4O+tTeeMAp35/M6Hv5850hcHfmRb5kEl/p5rp5W8ryMEscBF0IyPE20QeECHCrHE6pIOhpyD333BOve93r4pZbbolHH3003vnOd8ZrXvOaePDBB2NhYSFOnToV119/feeZxcXFOHHiRJw6daoY7/333x/vete7LrX6RZk16po1MuPHjcG8aXl8NEruv5ExQz41R+MoA8SOmh2qfCOUbrYLrDpogQMfGfM/dY+Idtdd+lxID4EGduxc3aU4qYvS0LEEEdH+9ikrroDz3ce1cosjcDlHC2jI2MufZ3l5uRNeejVNc8D/x/Wl8VO9LiwsxMrKSmeFFIEdjR3bgxs+n1qUPw39uWTkGV8Gml2cSeB1Ala1DQrBiBghAhktfecUmTaV1Iou1ct4PG7Zyu3t7dZ/SD49yhuP5SAY83wTHCqPu7vnz8ijb5kPNHwQojhV9wS6EgFSHRUyHA47Z9dFRIe5Yx9Cfy1/F1wvppfp4P2PDyKUfub7k9Up+xIOnioIOvxSQdDTkO/7vu9rf996663xspe9LF784hfHAw88EHfcccfTjvcd73hHvO1tb2v/nzlzJm6++eZnpOvTEXaQfaOjeeIhA5KN0hhXRt9ztE/A4kKDSCDEsHS6pU7aEFAghRsn0h/I2QN2mMqL+0ApnFb/6FyvrIzl06NpAxpTsjYKx5E5QYr+CwRNJpPWsVphRqNRrKysHDjWQE7YDhq0vFkOzVq+rfwpDHf07pvWoCFTWlxu70bJ4/G0ubRc11ROBFuse2+HpTaYtXVvQ6o/n9IjA8V2RGZI/wVWBeJ4Xc8dOXKkXUU2nU5ja2urreO1tbXY3Nxs7wsMqdzEcnIgIP196lLhtdGhH2/Bd8CnydQGeRwHRXlkX0LgQNDtoM31zvoTl1I/xjxkgKaP4SmBoQtho6ocDqkg6CLIi170orjuuuvikUceiTvuuCNOnjwZTzzxRCfMzs5OPPnkk0U/oojzfkbuYP1sCDsb/c++9ZvX2Yn6825Q6FuSpU+g434KrsesPGTTc25gORWllVcCAOx8+Zxf6xN2rlrNxSmMiC4bIlH+M/BIvx49mxkPGbz19fUOoFlaWmqZHLE5ekbsj3SVXsq7WKDJZNL6pHD6jSCGzJj0UTxuTKk3y17iPlEEMRkwIivGOlN4/e8boXvbIdB1J3nmzaebWHcZ26DnRqNRuzcT86tzwSIiBRXSQezLeDyOzc3NdhUh9x9iWSpdMVA88d2ZFn0ElD1PLCMBarKvErUN7i/EOlL5sD14nWT1mA0osrp2YOPXKBkA8mfJ8rBP4dRuxgpWOVxSQdBFkL/5m7+JL3/5y3HjjTdGRMTtt98eTz31VDz00EPxile8IiIiPv7xj8fe3l7cdtttz6Wqc0vWOZR+z3OfHYeP7hi+D+j0pZtdd58OAiAZ3L2988vaNYKmYVSH74wQgZqDN2e/uL8O9ciMiHTh8zTwnD7h4ZtkQMi++OZ8MlACQAJBZKm4GaJExksOuTJyZDborKtyccDn4Flh/T7bCCVjadiW+Izqh75TpXaSxUWd/H/2Xni7YBi2C30c/NJ3S0DF09Cmj776bjwet/flnC4WbGNjIzY2Ng5M37pR5zQc645AwcG/f1Mvlmnfe8HnfcAiQNwHhrLrWd/jec4A0Dy/szr3ewRIXo9VDp9UEJTIuXPn4pFHHmn/f/GLX4zPfOYzceLEiThx4kS8613vite//vVx8uTJePTRR+Of/bN/Fl/zNV8Td999d0REfMM3fEPcc8898eY3vzl+9Vd/NabTadx3333xfd/3fYd2ZVjpRZ3VUZTiUUfD0Tk7WTd+NBjZsw46Sp1dxiBRZAjYEQsAcQpiMBi0uzS787QbBQdOipsf6SOj7MZCcWuDO+Y7ItqDTiWcBiITRDCmcCxzB0ECCmSNCB64LF4GliPdiGjjle8KnaIz5s9ZGP2nzrru7YfPOANAQKHrfYYxa7+ZQc5AEP9ncZBxIcPiU3LOmvFZgVfmjxsYcusDgSCBUbXdM2fOtHW4ubnZYa2apunE775nLEe1YV9hKNE1B72c5uQ1tTnWJcvZl+dnQLLvutfVPADI67QP6ESUz3SsIOjykgqCEvmzP/uz+If/8B+2/+Wn88Y3vjHe+973xmc/+9n4tV/7tXjqqafipptuirvuuit+4Rd+oTOV9eu//utx3333xR133BHD4TBe//rXxy//8i8/63m5EPGXvjQSYgfOkWREd3k7wQKfdb8Cj1tG0R1fZ43Q/bobGAk7qN3d3djY2Ogs3Y3o+g/5VILrxV2bI6KNkyfT6xk6TGYjZKXjYEbHW+gYj42Njc4SeYIcB4DcFVhg5ejRozEYDFo9OW3CMhOg8eMxBBi5gojAicZSZc0pDrIeDjxoOORjRINDY521LdWFdoum4StJCTRnzInrm7VDliGBi8pJcQvM6NuNp7cNHQirMld+5WAsZmhlZaVdXq8dvNfW1uLJJ59sw/mUkwO0ra2tjq+QNlsUgyhgQ/bIj0Wh/5Ev6xfzKmaR5SpfLtab1xH7Gr9eAiAl0EOApPbtoIn6lICS68K6q3I4pYKgRF796lf3dpj//b//95lxnDhx4lBujJiJgxa/J+lzHPRReSYepjTtQTBBY+xxsRPMDBMNkS/rVWc3nU7b6QICieFwGNvb2xERHeZjNBqljIX03drairNnzx5gOvTNkbf04fSTpjR4DILyL30FhPb29tpjMOQPsrq6emDqbnFxsd2ZmsxP0xxcBUbjKEOonavlT6TykYM1zxxjHdLniuWvaw6GdZ11KWdr6pSFUxqqF8XP+94unSHKABnbU5/xU/17PpwpZNtTvPLHYVyDwaD1lxGgUxtdXl7u6KlVYQ4U5UhNBmppaSnOnTvX+gtl7ZNgzFf57ezstO+Ldgj3d1Rps03ov690EwjK6sLbha5n/QvzoG+PM6szAqVS38b09UypL/TBYZ8dqXI4pIKgKhFRHhmVXu7sOX8+mwrh/T4A5AZuVmfinSDBkTpgdfqSvb29llGREZXhcSpeI1p3iJRx13EEAk6eN46WZUx8VKkRsvseibHhNFtEtCN8+oJkfjD00dF9TZOIAdLoW/vTaNdqgTGeOUZmR3sqkTUSS0QHV2d9nMXJ6trBptezs41aXZUBeQes0qcExj1+XsuMIOuZdU1wo3blU0ZkC8m26X7EQRZSeqvdKh0CWukj4EFQM5lMWj8wHsGieMnq0A9I8YoV0hlyDhZ8OpsO8zzQVqwU24fypHJie/b68Y8PirJ2xevZ/RIoIpPLdlUCS+w7qxxeqSCoSkf6OgP9Lk0dZODJKWtec0M/byfF+6V4I7p7BGV6iLnhNJR3+GSIvKONiJYt0XlNJTDpRtOnxRRXxP4J7srDYDDojPQF1gQ6ZARlCOksLaOjZwja6BuleLVnjf7TKMlnSWUj3TTF5j5cEgdAHiZrAxlIUrosK4V1H5UM1Lg4cJ51j3UrMOm6CcxQP2chm2bfyVnAhXVIICuwwCkmsiECG/TH0nSOnhPTMhgMYmtrq/Ub0oKAJ598sm03NPSqf/mJMT213e3t7RaAs7zIKkpnr6+maQ4c8io9WA4u3neU6i7rj0rSB4AkfUy4tw/GW0HQ4ZYKgqoUhcZ6Vjj+9o7EjRuvqaOelYbCZQaWkhlfTosQEMkIlICYnqf/Dg1Q05yn9NfW1lqQwjgIeJxB8nJheUdEB4y5M6ympQReWEasMxkbjf7FZonlyTpvAUOWifSUwWqapp0W1PSh0pHuBJ/8Xaq3rA5Z/qwDZ3wULmMMMgaI5e31zXuZnv4+ZHF4++Z0rE+FMUzEwQNCCarYXggqBFjIBGp/Ij3Pw3Q1tSkW5uzZs+l5asobWT5nzXRQq+5Ld993yOtX18TO8r1Ufpw5ZL3MknnASh/wKT3ng5h5dahyeKWCoCoR0T9qcmNe6hS8884AkN+LKC+JpoHIWAQCnMzYqgMnS6Bn5bwsRsR9Tjiad4Ckzn5zczNOnz7d2d+FI3TX2Vkllh+nrHgoqeLSmVIadS8tLbV7GikMDSQBE5fH0+kzIjrTIDKeOr6FDtUnTpxo9eOon/sOaY8Upc0P8zsPINE1lp/qhzsSk2XIgAsBUhZ/ZqC8bhjejTHriO+HM33OdjRN03EaZtv1NPgc26PKVgCVK/LciX1nZ6dtQ2fPno3Nzc02jWuvvTZOnz4d586da0GJmD/qy32uWB/nzp2LiIgjR47EeDzugHf3y9Jghr5HOzs77ZErs9hAH4w4y6I8s248HNthVl++Y7l/MlbX4/d4qxxeqSCoSisZiPHOK6Lr91ASPss4Pf559XIjkbELngeOgAluRPGvra1F0zQtOPC9S9wQcsnydDqN06dPt0CAHaMMlMqIfjI8GoMsmOeHK6zkdyGmRWFWVlY6x2+wLOQorRWLk8mk3XhP4EFGZ21trXNiua8UO3r0aGscWD4LCwuxvLzc2T2ae8WQSWKds3762gjDEUyoHsRGSW8vAwr3xllIuAAAlQ5JREFUvFE87s9BRsbblLcJtv/sPo05jaoAmdJWm/BjS9RG2W4zUdo6GoRbQGjVovaBWl9fj729vbYtyblefmWLi4tx7ty59rp0YToCxVw5ORicn67d2NiI4XDYOucTfPjGiGyn0lnthu8NDzLOwLPrmIVhXbj0gR3dZ14IbiK64FdpOSCuIOhwSwVBVVrJgI13CKWOguFJ3ZeAT2lEzXgyBiij2GcBIqYrI6SjBbi8nfpmxnQ0GrUsyfb2drtknccTUDjK56GQ3kl6WWifFx1S6vsDCZBERAdw6L7XBc/Oot+IVvpsbm62y6m9s5f+DogjomUedF1+QRzpU3eydln9qM55jyN71uve3t6B5fNebzR+bGfS0evBpWR0PS0HdtLJw3Bak+yb8u2sJ9uiD0YIpF0nfgTyFe/m5mYHXC8sLMTa2loLjqTf+vp6xydHYJ9AjWXGadTd3d1YXV3tvMMZK0IWT+2Y+Wb76gMyWX9A8ecc+JbAivdrrnvWFyrsrLZV5fBIBUFVUim93H2AiMbAgVDEQX8J74xKo3hnFPy6d3q6LtZF+ios/SW4KVuWF04raLSr0ak7JCsO5lVGgTowfoI6Tltp/x2lwZ2nOfIUGCBL575DBGAOcjTtJZ3lL6R4uGs2n+c0nOLiKh9OybDeszrzETzLpg+cME7lsQ9cKz7WmYOtPkPr96gz/ZG8raoNZFO7Etanvh1ceZzOQDCc52c4HMby8nI0TdP68Tijw/zt7e11VlMSgJHFYhns7e21Z+9xpWUJPLje7ueUMTulPqDURygu/+77ZMDIgThBXamfdJaoyuGUCoKqdKSvcyjdnyeuzDjNel7h+tgphvNnnKmQYRWYIGDjqFrhyUrs7e11jtYgcKGhccPEztKNIEEWAZBvRCeDxKkBfjInUoIp6eb51bSX7kdE6z+i/HHzRYIX93kguMn8WzzPmY+LM0VZ3UocIHFaxeuRgMqBj+vm7ZNtzsNmkhlkGkUfABAkMhzblOLhHlOK11kw6u2GXMCEK658CooASvtdZeCAOjnokv/RkSNHOvWVlRvfNerBNFi2WXn771LdeB/mIOZCPt5nZPEzbJXDKxUEVTkgs4CPOio3RHrZ3RH26QqZEr+eXXMgQCo+orvHiZb9Clhwuog6i4VZW1uL9fX1Tjz0EVJZCETQ0EiPjC3gWU9kUBiXAJgADw0O64AAhCN8+WNwekqO4W6I5QyteLi83tkpL3um7XXBeiMTkxk7d6b15/WbBlm68rmszTgQ9HgdDJTANqcOnUXJQBCflRDE6j+BuueX++YwHW/fikfxkz0cDocdhoZ1xhWEbCM0+DzMlXGwfxgOh7G2thYLCwvtZopeNsy/nmFe2NZZdll/4kAySycTB7lelyXQo/LMHKizeJ9JH1jl0ksFQVVa8Re2NKKhYcqmELIRNKU0Upt1P+sQHRDR0HJZctOc91nhf3ac7NRoqLUHkDaG81H4YDBoV8Q0TdNOtem/77WiDl+OvfRrcYdlbpwowEWDpme5VJ5gRp/pdBqTySSOHTvWGlJNiXBzyK2trYjoOlVrDyCdHq/pNfr/+FEJGQDi9Es2xcY6dD8XTpWwvrkv097e/lESZBMkJWaBYM73GvJnZhlVMiKMw0HQYLC/zN+nllT3uu8Ai4CJ5aU6p78TgaGXK0G72vCJEydiZWUlzp49G08++WTrL8Qzx6SD+xWpXbK8Tp8+HRH7J9yr3bKNqJ1Lb/rXOQgsTT2XQC9/l/oo1jH7Br17XAzg02QEmA7Y1Z/45phVDp9UEFSlldKoJvuok43Y7xwIOjg6U+frI1WmK/GRrzpLOhl7WI8jIjr+QHpOrA6BSER39Y50lwEgABKYYRh3gOTI2GnwwWDQAgoBMi0rF8BSx8lpKo6IFY+zADKCWrEl9mhra6sFM9rlVzsFq0zkA0RmYDQatSBNh62SCdJvOW7Tx4ZlrjImWOK0h9epiww5D7F14Mn8k8kg+HBDyXbGeL0NezujZPH5dKFEbYS+S96+fbpLzzENAQbf0dzbofRgnE2zvyyfPkp8f1WnCwsLLYgZDAYta0i9fLdwlQmBwNraWkREJ12CHt8tm0DIGTVdY1nxcGKlTzDj9Zf1bz5tWOrzvP8r/WeZCgxVObxSQVCVA9IHhgh2MlDEDtBpchoW7yx9dFgy+tl/v+YjYIIo7xwzh8emadozs3wzN+70q/CKi50g41b6Ag5araN867qe4cibgIpsAaeruBEemSc/DkT5F5Dz5frKn4CaWCCel6Yw7r9Ep2iVF6fNuHQ+Aw/8TRaABr8EYjIWKQOJrCtvmx5vCbCzrhk/4/P24O9Apjf/l9hVv6Z8cEDCcqBufr6b58HPj/P2rakx15fPZKKz+RYXF+PEiRMH8uT5YTxsB/yflVkWbwaIZgEghuF1943KgFAJRFWfoMMtFQRV6Ujf6If3s7Cl0XNmHEqja0l2vwR6so+f7F4yMN7ZyyBo2XgG3GR4SmVEICB9BETcWBFEcKqDo0ffHVllSKBBVoFTEwI1ZAsUF32PlN5wOOxsyijWKvMd4aaOzmyonAjWPO8ZEOD1DFhI71KbyACNt08PV0rf0y21mSw+z5sPFvri9bQ97gzoEYCqrh3QeRq85oyTlrgrbjE/bIsECIyTg5q9vfOrKtfW1uLIkSPtSfLUn+WesYJ9fUFWj66bPrxX+vS91xfSJzozV+XwSgVBVQ5I1jH4yLl0n0yRx5fFXeogfASYGTcPT3G2SuCAfjZkrijaC4gdOf0ZpJM6OB5BEbHPCvAASjokE6RwSk1gQVM9MjruE8M8K38CMdw0UMBDU2/cGiAi2l2nuSKMO1KPx+NYWVmJ8XgcCwsL7c7QmgIju+NG2Jkqr1fWC6Vp9v2oVGecaiPAJQBwJkVtQGXu7czrK9OP5e3tOWMQXLKpHQd1ZFTYJqWTA2Bv0yWfJuntK8EyQMUyVDjFJRZJeTlz5syBfLqPHae/dW17ezvOnTsXR44cafUnYJ4FKEv3XJzhcuE1Z3fob9cHlBiX921ZvJUJOtxSQVCVjtAwlToDdRjshP2+71vjPkMSH31z9EpjWmKOPBxZEa6icTCjZ/Wt3Wmn02mcO3euBRa+nF55Yh4IuJSmHIvJgHBPHl+FoyMrtMMz9ZaPBlcMcXrM/YeUH4GvyWTSpk3wtbOz0zlFnKv6CGA0LSbfIIGhkiMxGSON/FlmNLLeDpQPgms9L715ZAbLyQ2c/K0IWqhnJhnwZpulYSuBc4IU15V5cb2dFdGyf4IMZ+/8PfSyzFgWAm/VNQGLPktLS+1u0gK/f/3Xf93uPM24uXM580mgs7GxEefOnYujR4+208qsH9V9BhgdCGflpbJX2iXgkvnzZH5BakMER7zGMNSNcVYm6PBLBUFVOpKNzNlZ6FuGmIaZbJFG8BkVz3iz84UIThwE9VHnZDgiDh486oyA0pP/zPr6epw9e/bAURQEUN45uwGT4V9eXm6Ng06qb5qmw6Ls7e11liBTZz0rY6RjDnRf6fDEd6UbER2mRnFpl2wB0o2NjdbvSfkTCOMqLh+1u49JicVwIMNypxFlOQqcOWCh4yz3TKJOrF+CCx4s6j5hFBoxtW/ecxYnE+pLw+7/PW5f9s641FbE1vm0V8a8ZPF5mhmrJjCu+hFL2DRNHD16NG6++eZ4/PHH20ODpacPOPy9VZhz587FZDJpr/l2C3Sc57Qa9fY2w9+zBnBsV9ngrgSMsvtZf8K4s6m4KodPKgiq0hF2iH0fhS39d7aCcZfScjagZGgo2chQRoOjXOqXPbu5uRkbGxstSFB4D0tWiPfJmmiDQRlrgQ4aiIjoXJeBlsFh3rPl9ZqiENOiVWE6XZ7TVJpWYycuFoh5oL8PnZ7pcJ2xFwQoXMnmQFG/uZTb0+cqMD5D0OxLy8kk+EieQEzpMR8Km4F/r/sS+C2N9PVcVm4EjGJ81CYIorwNT6fT1kfLwzEtMS0Efpx2JdiTrtKLy9kdpKyursZ1110Xo9Eo1tbW2ncmK4csr2p3k8kkJpNJ285YRnp/WY6Khyya6+7ibYhtpARuMgCkeuGzWfxsD6VwVQ6fVBBU5YDMC4BK4Z0xmdUJlEbkvOcUf+kjg8FOqQ/UyQBpOTk7X+rONGg86HfDU7y5YSINsAw5R4gCbhH7GznSMNCIC5TIeChOAiN22M5+EBg5aBW7RLZKutEZWgyR7rkRcwBLA0ljREZDYUqjZuUlouvcPs+3l7NP5Xg6uu4MBNs2gV4Govgc26SHdXDk7wrvLywstHsjUT9O/VJ/5t+nZ7K2zPR0T3XPFYV0mp5Op+3+Ul6OzrqpDjUFy7bF9MX2eV4YJgNCXi8Mz2tZX5b9Zl76+sHS/3n7vyrPrVQQVOWAZIakNGry+2583ODNSpMdmYQGtg8AsVPlVBgNmBtZTTP5GVqeJx+NNs35Ebp8JcT+CMTIWNFPSSwT92hh/jhl51MBSotskwy68kqfq0x3MgQyQrouIEdfJuaZmydyiX62Ioz1xm+2lQy8arrHDVifMcnAcmbENO3qG17qGQKlPoaBYCbTxXUl28O2w/TVThgnfaAIdn3rA7JEZMhY1q4r2SCCoqxMBa4VTocOyy9sY2OjPYBV5cN0yJyqDvS+EWQRrHLnb9ZJyQ8rGyCVJOun+u71gZtMnxIjWeXwSgVBVYoyq7Mgvc7RNQ2FdyxyVqWIdve03UjO0lXhBCbomyADIVG80+m0PZKCvhoOnNxHSOEFDvb29tpRsfuCDAZd34qI7s6/Pm2jkbfSkk+Qb1ioVV9ra2sd8HXu3LkWMCk+XyHGspAhEshhuppiIxtE0EADrbrs8+XSdW6cqLLmjs8OJLwtMr4+1ontQ0ZZ7UNpUT+P30V1T52YZsZGEMhmUy0R+8dQOEvo7V4An0xKtirM084GKNSdvmgZK+fTuWQmV1ZWOlOrSot+WAJTbIebm5ttW3Cdmb4PfjxsiQFifbJ9OiuWARp+Z8djlJ7LAH+mU5XDIxUEVUmF4Ea/S50Ap7+882ZYjj4VhnHPI94ZStg5Sw/uZOwgSKDlzJkzHfDEPCucTydpykjGZ2NjI13Fo/xLbzI/ilu68bnBYFAEHmSS5FRN1olL6rkJo1goHaMR0d3AcDQaxerqaqyurnb2CVK9CmQJ0NG5O2sTZNVYN16HbCcSB1YsKxruWaN+glqWO9uhx+vTXd7uHCwrPuWB99wnh2kzfWdexChSJ4Ylo0RgzfdAwEP3vR07e+p1wMEEV1tye4elpaVYWVmJ3d3d9mBWpsP09Fs+TU3TtG3SpwoJivy94SBEAIXCPGR9RVa3DlYIRh3YsY1naUpKYLfK4ZMKgqoUpTT66fv4lEDWCXh4Z3p8JJ5NeWSG1P2BZMRpjBQ/fRPYyTszQKOj5eac2nA/C88H8+AbBmp1jfuEcGk9O22N1hV2bW2tNQIynqPRKFZWVjpMi4APDfze3l7H+VlTes7QCPSoDGWgfCosouvPxNPnI/aPMekzQix3/iZbNMugOPhm23DDL6CWGSsHC9SplAeCM/m1sH4JYtR+slVcZGe8LDyfLnxGdcS26VNyjJ/AhbromkA5QQn/q23I+ZnsjA+Q1K50hh3DsW8olblf8z7B046IA+AsA4Repw6OHFD29W0KW4/NONxSQVCVovSBHXbos4CQx0XpG3Vno/zMSErY6avTjogD0z+cuqIRkuFhxy99fbqIxo5MmOdXcfsqG+aBq6QWFhY652KxTEXLy2mU53+pvDSFxaklNxQCPWKz+N+dorN64m9nMxzMeBmw7Ch94Ca75/Fn9yIOOl9LyGJlcWVAvATWSm3d03UmkMbfw9HZPKLLzJK9kdAxWvEJuCtNTrOWBhkEDCwTtnexkzqrTb/po0TWiOnQkV7vYfb+OzvsAyEPn0kGakv9mYfpe473svbHZ/huVDmcUkFQlVT6AFDfh897XCU/B0+vjymQuEGmjwIBBUd+iku+M+4cHLE/WvQRNf0ZyL6IUeBImqDI85uBI10XiBmNRp2l4LrPazIyy8vLLQhSGQjIiJmR3wVZLjpzi7nRR6wN9c5AUWmU6/4l0qEP2MpwOiDIjJSeya5nbcPvCRD4RpgEv0y/D3BJskGCniVb5u9KidEhaBYAYloOShWO5aKpLNWd6tUBlJeT2lrGdnB1oupfDtLKq8Aa/c/YPqmv2FAvYzJ1LhnA5qcPrGTfJTDjafX1dxTWP/u9KodTKgiqUpSsY6eRd1qYL7zukylivO5HpI45Yx8ywEPhCFPTP+qst7e32xU1MrSbm5udjQcjuqNvskNcFh7RPcZA39oV2MGTGwUaM+XZ86vO3092l58NKX3FQ6PoRmh7eztGo1F7XMHW1lZMp9O2vMks8BpX7IgxokHQNAavUwdnF2SQfTpF4ZeWllqjmQEXZyTIKDkYKAEfiVg9gUQCnb5n/dvBLKcNfaUWQY0bRv6nLsPhsLMpJH3cqFvTNK1Pjq/G8m0aBF70LNs6dfFpYb6/AtS6pjxrYKFpYzJCXKjA9167lXtZCKQyXbYrhs/KYx5xxqbkA5T1cSUAnuk2rz5VnhupIKhKr/iLnL3YpakxD++dVSm9TErh3eDK0GT+QMPh+eW5a2trsbm5ecAQDYfnV3upU6bzM6fJlIYMqHTgFEumP0+PdzbJHUpphDiy1zUZ3el02qYv0CNmSnF4WWQ73cpHSsvkMxaARl4HqxJ8Si9vGzJ+PiXYNPtTewRUWfmNx+P2Wd8Tp9S+nN0gODh9+nTKTBJc8RoZBgeeDn6ZJn8zXvp8CTQRHGRGlmCV++hwPycxb9KHTEzTNJ3BBhk46cBnpaeXORklvVME6mwL2qiT4u+I8q7f0lP9ifTkVJ7XLctYdUp20duJl2sf48N0OBBkeylJqW1UOTxSQVCVXvERkDM7ft87hRIgyIRMhrML3vE5I0SnaLEX7hC9t7cXa2trHV8g6qOOe3l5+cAIVM874KJxo0+SOl8ZGB3l4c6hGp03zf4KLN1XZyuAMp1OD5zeTuZnY2Oj9dPQCi+yCvqm3xSBAzdglJ5KT3mUESb4YdnROLK+ZHxp8AgsuP+Nl692SFa4bHStfPkqwGwk723LxX119Jv5oO68722KOnjcHqeus12Nx+MOK5hNs4hlo07SPXPG5nuTtWnqoTAELnwfNdWqaVS1962trc70NMETy0RhWY5kqkrMj4OYrH6pb6lPKoGdrI35s6UBD+PoC1PlcEgFQVWKUhpBlT58pjRCygBUJplx8qmJDChJOJ2jTlWrVrJltezUxQaRefEpOOaBht3zrm8xNs6ceD5p5KSDRtPUMyIOAC7GkemdGTPpkgGX4XDYmQqTIc2mI5mWj6yVh8Fgf/mzO1Nnhk15jOiyUCxXZ2M4Su/Ld+Zjk+lOXTxs37XsOXcS9jasMme5iSlyIOXsFP2wWG5Mi8yIAymWi8CTMx9sfwRA8i/jwEPtXYDd9WN9E+R5vWblXKqrrD/p62Oy+w5aZvWBs+KdFa7Kcy8VBFWZS9yoz+oQ+gBSBoJmjahKnQk7fWd03N9gc3OzczYY49czGgGzcyXL5Dqr08+AGDtUhdG0Dg2ZMxU0PgRjZIHkN8HphmxpOnWifwZBjfsmRXSdwbnqx3065NvkAMrrWEumffrPy4uGmFMizvB4G9Hz80w9OMhhG/Cyy57NQJEDDIVl3EzTf7P9EESLufGpUDrUOwjLfLIU1kGN1wGBrG+s6fqq7WjDUOV/c3OzBTZiQPumsvSeKh8OPmeBiL6+ycPNAjWl57J3dB69HGhWOXxSQVCVXvEpsKwjkWSdAjtaTldloKJP2KH46paI6FDtWuLNFS57e3tx+vTp1iFa8em3L9sVC1IaCdOg+OhV+8PQF0nCzeuyqSnprfh8WblvbKfn5IyqqSMHLGLC5DPE4yNUF/RT4moxXWN9RkRntK97meFXWWi6T8AqczJn+nIMdkNNfTIwJem75vr1Cevd88eyy8AR85cxP4rLGTb6Cwk0CkgQWGjvJgJAtRM5I+uewmdsDHVU29DKLZYzdVX+dIQGmTjueC7QRqBDoKaDhjMQVKojDh4y8O3vZen5Un1njJADoVmidlFB0OGWCoKqzBQHIJyz58jRn8mmPDzOvtE4DQ+nZJySd1pc4EVL4IfDYWxsbMRTTz3VGgIyC+zQBUQ0+qYzLsN7R6n0fVl7qTw1yvaykQOo4nRWSiJQMxqN2n2BRqNRh12Sr8Xy8nILuui3oZVCXEYvx2gBFd336TwZXho6Pw6FQsZJK8tGo1FEHJyuYjnqGg+nVX2wnJgOy1/33JdNz2WGshSO8TnA8fpl/bFuqafyrvxRVI8CrIxLjKKYQAEIlmN2fl5mjN0pnHn1d5R+bioHxSlner2r2ubB/cyy8820YnM6ncZ4PO6Ul/cz87Av/r+PvfFy83olE+txztJjVj9Q5XBIBUFVZoqzN37PwQw7w1J83tlmAMeBlU9V6L876Gokq3jlEC1WgR/3gaChJVM0GJzfW0dshjpzskfq5Jm2nEYjun4tAhY8EkOdrc4fIztFw+fTWGR+6JysPGrV2GQyacPv7Oy0y6o53be9vR2rq6vtnkgZW8MycoZEZUpgGRGt46w729LIua8RnZB5fxb7487dWRtyMJMBlRJb1Ad6/ON6OtCnEGRH7E9fsv0x/wQnao/+UdtTubj/DRkn6si6kRBA+3QaGSq+K8qTT9XqecUlx3+KD06oH+uGZeGDhlmAJZsaL/2elwFSGbAsqxxeqSCoSq9kI6kSi5N1+Pwmc5Clk4kbC/d3cPAkIECAsrOz05507f4QCs9lvM40UT8Hb55/GRaNxrn3EDt+jqojugBpc3OzY0A18tYqMjeONJ4EdYpPzIuAiM57ktHhCN3ZAOaJ5cv/Cu++UbyvabpSvdOIubEhu0Ng5eJ1RaDG5/ntBsoZoD4Q5Ho6OMlAlLMN0tN3cnYWosQKql34dC1ZCOaRbcN15Hvh74qXSdYXqG0IXLPd6zmBawJaOv97/fnAh1Kqm1ngpfT+sqwyIOVlMUsuFDhVeW6kgqAqc8ssQDSro/G4vEMvhc1G2OwAM0ZEq5E0ytzY2Oh0ZN7RZnS7T/VpFE2dMl31nMACQQanAzTlRmMjY+A7BtN3SNdkIBWOPkYKQxZI8WhjQh28yvzqeWe0lDdn3VgXe3t7nTPCVBfcbDKTEpikOAtZKnsCAL/HMEpP8WQGNYsja8cEnD61UtLD75NBY7xe5z59xSlOioMgxUOfM9YvwRHrgf89POOQPt5OdZ3TdCx3Trf6nj7+nnuc2fXsP6/39UlZGF7z+uiTCnwuH6kgqMpcUhrVlEZVWZh5xTs/GtssHoIg3wl5e3s71tfX21VhHF0TpCgd5sNH3jotXvcIYpzhapqmM3UgXyQ/VJMb5XnHrnTkVyGR4fNRKk+QF5CRI/TRo0fb4zQizk+5aeQ9Go1iMpnE6upqO2UifyqyWWTcsjr2etCH562xnL2OfeRPY+nl4uXN/8726HeJLckYKoqD9WxzS240mDEM1NHbFvVwQELHZpUxy1nxiiWUsL0QVGa7Tns9sowc5Hncuk/Qq+fUrslycqWhdNve3m7BP9lP6uiDDy/fDLj0sXhZnvvAOEHlhfZnVQ63VBBUZaZ4R6DOua8TyqhrdqrqyEudsD+ja2R71OEyLuq1t7cX586dizNnznT8gRiXnEozw+VTb0tLS51pM7ImMoCcptJyeIaRiKHK/GJkqAh+pB+NocQdk1W+YmVWVlba6Sjpub293a7qcQZJYIoG16fAlL7XRUS0S+sd1GTTG27QfM8jBzQOplgXs8TBDoFoJlmaEmdKsqkj5tHfEe6srHC+HN2Bm9LJdNOUmJ6N2J+ecx1VnxJusaD/amME8rpHPzK1CzGvrhffC+WHoIbn+PHYDS/L7P0sATl/Jvs/a/DmZeb1XkHQlSMVBFWZKRxVZVMzCqPv0mhLz/Kad0QRB+fjM7BEdihjUCIiNjY24ty5c7G+vt7pzOmbw9G058dXsrAjF4Mj46MOXJ380tJS54BW5YNTEb7xn/SR7w6NkpcjjZD0l16TySSOHTvWYarI6AwGg1hdXW0BlwCTH4eg+pZDdgZKlbbiFnAjMHKWR2XkdV2qX15jXc3L4Hgc1F+6lAwqDXcfA5G1XdWTX5MQ0NBpnG2DwF73svz4VKRAv+qB4ENxKD1Ni7JNEeiQmZLe3LuKgI16sZ/wuqKe+ogR0jtFhsn7CJesL/HpK9a5O4L31avqwwFRlStDKgiqMpeQXck6lswQZCO0DLTwu2T4PA6JO+gyzMbGRrv0lqNZGkJORaiz4w69PuqT/0K2S7TicGNDQ8XOlHGXykW/FUeWVzJIS0tLMZlMYnl5OcbjcVsOEd2pEKUtAMQT5AmCONqnPhmDpakvnxbzOvRpK9ZJCdzyWgl0lNodw2YgotTest8OZLwdeXgHWZ5fCadZqbMLn2O+nOHUlJ2XDad/nflgGqx/TnEprH77e+DtOQNSzKMGBgRBXqdkd1nmLt5H8VpfeL/m97O+rsqVIxUEVbkgKbE/FyIl+roUhsYtG6mXOur19fXW98XBG4GJhL47GVCKiM4SeRplgRDG64abG9Y5k+KGX4DJwQFZm4j9jSG1N4sAkEAQd5jOpl/E3ihOMlBuyCQc3bPsySZlQEZCsKj4vE757DzAmPe8bLP2OYv9KV3PDCIBbxY+Ay0enwOWPkCUvYMeP4FQH3tCPRzIOajydqs27fnx94xsFO9TRwIhCZmsrBx0Lftk90vPzhtnKXyVy1sqCKoyt8waiTFc1nGwk+wbtfcxSN4hZj4pEedXcp07d66douJ0QGaE6LtAnyVOC4m2pzEQwOKuuDoGgP48g8GgZZFI8/OAUjeAzibpYFQ5OBN4LC0txXg8jtXV1RbI6EwnLVnmDtZcVk3/H4KmiIN7MGVlT6PLKbCI6Ew7eB1lbSZLZxYIKoGcDGRlbcAZohJAKxlFd+LNdPHnMydzZwbZ1jOgyPdRdUa2k22IU8DZe5jVAduf70rNLR8iDm5H4NN5auMcZIg5pG7y0aM+PpiYB/R4eUtKoJBhS75UFQBdmVJBUJW5hSPGkl9Q36gz68hLxor3PR5nGnjGlIzx+vp6bGxsdPx0SiNexsvVTGJ8BH6yU959s0GBDD/bSQZAz+qaAI3HPZlM2jCaYlpdXY2jR4/G6upq537EeWdkOUAzLwI129vbsbm52ZbR8vJyROTHC3DpvTtm67c7RrMestPCs3ouGSvXiVOWJWbH2w11zfxR+JvTNdRB9z0vzmj0tScHQH6f4myldgTvY74yoOhplQAR68Z3dfb4h8PzO3xzEODTTpxS5saHZDUJjtSG9M1dwPXffcuyfHtdcEqbOni+OVXJ6xmQ4u8Khq4sqSCoytySAZ5sKsBHlC7ZqI5h5+loGG+2B81XvvKV2Nzc7Iz6ffWNgAkdtrn6RQBIy8wjcuPofkRNs39sAYFUZgTplDoej2NhYaEFOmJ0lpaW2uktTnWJnRLw0FEXu7u77eosglYCpIho05Thop8QgaU+dKwm2BMLxRVheobTJfrdx3DoureV7F72P2Nd/H42bZU5Dut519cNbh+z4ODKwxCgZNNnm5ubB5a1ex0OBvvn1em6wAzZN20KynbqDKni1l5VDjrlbE8g4avryAZl7KGDSW4oKhaV6eg57l2VgbkSuPbyL7UZCfNV2aArXyoIqjKX9I2GvOOWZFMOmWQMgcfHuLL46T+gzRE56vSRo+LOVoxxf5PMD4Kyt7fX8WOI2Hdy5flg6sQ5PSAnZp3Cvby8HCsrK50pL4Vz52exVbqn69KbI3vu2UMjz2sqG434VaYyPF7+ZM2kvzNA/BD80Dhmdcz6nSdc1ha9LbEN9rWhPikBMObZ23mWpyxeN7Sc2iIw5aqsWb4ynq7qS8CbZeTO3h5XCQQIJOq90X89w+nqDKjt7u62DvwalAiA+fl+7ryd5Tlj6bLyVT4yhoj3vH+ocuVJBUFVnrZkoIXXZ0kGbErsgML5FJquU5fsHKKsg/TOkg6aAjFuND2PBE2+woz7rxC8aB+d0WgUq6urHQB07NixDughUCFwEUDinj5c0UN/Hzor0y/I91cis6O8MR5nFeiUzVVgLOd5wO+sexcChDIQ5GGy1Wnzpts3GMim2Xi9VBal8sneBddDbUNAhEIQRTChj2/s6Gn6u6E41R7oLK1w3EaCg4yM5XIfJoKg5eXlNgyn60r1m4GeUtmVyrnUP2QsU5UrRyoIqnJBUhppZ0CI00ylTqSPOShJCQDp9+bm5oF9QDhSVTgfARK8TKfT2NraisGgu2uyOnh1ztwckfdpKAR4xuNxHDlyJMbjcQuEVlZWWmCk/X2yjf/E7nAJu46/8OlFTm9I/4g4AGi4QWJEdzm84vFNGR0wEfxkhsTZQAKDDMg4qMhYRGcOKZlPhz9PQMC0s2kvplMylCXxtsm0+p5h3pUGGUWBhYjoTF16+9RzXh8EFGL7PK1sypIgWu2Kp9gT2Pj0IqfWCEZ9NaY2T5xMJp30yWyWQErm81QCSxlAKoGsWfVc5fKWCoKqzC3zdCQalVKcvfHn1Ok6mJnV8agjprHd29trHaIZvy+Tlz8NDYGAkDpihRc9LxAitkijVq3CEkDRTtHy0xHDc+zYsdZvh07LYl8Uj/JBkb8QnZCbpukcScGRfeYnRcOm8vIpLNYvARTrkIyTL9lnPaj8eHo4n6e4scrYPt7XNQfMDsQdhDioysC7xyfjz+kZsgOuWwayM/H3yOvH2R21T7UB7uxMEOfsik/rqm3qndve3m7jIGiiPvQDcsapb0qZ7xt3tWYZ8d3c3T1/gPCxY8c6eckAKgGX12E2LdYnGbDqY5WqXDlSQVCVC5Y+EORhJNnUl8L5PdL4/oynzTOT9vbOH0WxubnZGgo6W6rjpa+OfHrUAZdGtnpGLI5Az2QyiWuuuaYFN3Jill+Pwore527KnE6iURDIYb59NRbLiQyOr+xR+XK6js8RLCmvnram3FiXvtyd/5um6cTrYCQDY8o308jaTLbMPmPoSiDK089G/4yzjxnIQHuJYWCcrq8GDhnDWXKI1nNeN3J2Hwz2d42W0FdN7YUO9mzzYkPJBHJQ4GCYIMvZIF3TNK/S0TspNkjPbG1tdeJiG/YyZVxc+MB77E+yPmoWu0TgW+XKkwqCqlyQlIBPNlLKprT6prkonErTc5mRFNARQ6NdZxXGR3S+4oMnWLMz5souGSNNWR0/fjyOHDnScWwmsBH40TQY9wKK6Ppl+HQSDR3D65qzKL6KS/GyI3ejT8PKOiG44TUxOR6O7IGOO8iez8AF80cdMpbIGZ8s7gxo+H+ClQyMe5r6VhugkS2xEDT6DuK5co7pMm6WDaeqFGdEHNi4MCtz1RsPJdX7QP3UrjMAwWcjosPYeN6dKSSg1/N+vpgDFInew1KYjKmRELT0ARsHWR7O468A6MqVCoKqPC3JRr28578dxEhKRsH/++gvomtUSqwPn5NRUYfPw0R92a+eE1MzmUzak9avueaaOHr0aEwmk45jsJgggSGtmKJjMsuCrE4p3xH7U1uZURWIos70u+EomuWn/DoDwelMBxCss4zB4lSN17G3jz4g5O2ixOhk90qAgNdKzICzWZleGdvhoIrtk9M/Dj69TLJ4sndJQqPu74I/68CDbYJt0cEBmSYyLgrnW0NkoI4gyk+79wEAQTXFwaUDm6yf8HhZhtkzfZ8qV65UEFTlgmXejqLUEZf+Z/Hzv4/8vNOXMzNHkUxfnSuZHt+lloaU01vau2d5eTkmk0msrKzEyspKmz6ZHz0rFkhGxB2eabgyGl9xi0XKpgY4JeHlSiDhTsAEeQ6QCIII1HRNOjloECOXAYJMSkxC9pwb9qwtuV9ZNsUUsb+iytNy510HDPo4a+h6uw7MnxvtEjvl+fT7jI9Tal5WWbw+9ShA6+8V/eSUlq7pw2llxV3ypdnb2zvgq+bvgNqR/PC8LDKGhm03Y4f6gJAzPJ4Hr48qV55UEFTlgsQ7hsx4Z2F5LWMLPEzWgfK+DIyu7+zsxNbWVuesMN8niABImyDKAZpTVPTr0Vlc8vkhwxMR7VSYQNBkMjlwGrv7wPjHO/LM0KvcfGqAI/qmaTqskQNQTl/x7DEaRhopGnGeJ8ZVas5q+YaIWZ6Y3jyGJjPk7pyblVfEPvijj4oYtCxN1hENvOLSNU2ReR69PqSXG3peV71IJ4GNkmRL4QlKHdRGRCe/BDiedwdOziBxlaV8idgm2Y44tax2wUEB68v9iHZ2dtq2yJVwCsu4+fystpG1NwdOBFgZqKpyZUkFQYncf//98du//dvxl3/5lzGZTOLv/b2/F//qX/2r+Lqv+7o2zObmZvzkT/5k/OZv/mZsbW3F3XffHf/hP/yHuOGGG9owjz32WLz1rW+NP/iDP4gjR47EG9/4xrj//vvTlTuXo/iI2f97x+vP+ii7FC4DCDK6Wk67sbHR2VGWZ4Ht7OzE5uZm63Cp1V+aBtMKLgEfblZIg6+pLQdFXOZOgOR5oJFinn0PFIII5tlH8A42vAy9vMgelcq7tISd4EHPl6bN6LsiMOFAxtMrSR9YniUCtwQsbngzIENx4CIgSiPPcF5uHq+zdPxo929Np5amhKQHfbXoY6b2JIAiYCDQwgUAWkXpwGE4PH+0igMZd2L2MmDZchDCtsF2pLS8D9na2orRaNRJg0BSQFHvc8bysPy9DB3sEYRVf6CrS64Ma3yR5ROf+ETce++98cpXvjJ2dnbine98Z9x1113xhS98IVZXVyMi4id+4ifiv/7X/xq/9Vu/Fddcc03cd9998brXvS7+8A//MCLOdyqvfe1r4+TJk/FHf/RH8fjjj8cP/dAPxdLSUvzSL/3Sc5m9ZyzqGNh5caonM8TOBGRG0TuobPTlo2iNaHW0hTpNrfiKiM59OUKr4zxy5EgcO3Ysjh492vHhoZ8Pl7Jrvx8eYCoGiEdVUN/S1AwdmktTSGS8PB4+x3JhvLrGUXRp6oZO2g5s6H/ED9PMjL/H5+JsEEFUCQB5XFk7yVg2hZWfSwZ4mK6+6ffiZSNDLrZCYNeBJg0q35ts6kVpcGdwB7zcLyqi6xxNnXzqygGMpoK1wajekZ2dnVhfXz9QrnqO7ZZn3qnMtOOz8rKwsNACLx74qzzw4F7pwSk2OVVLh2zQlTGqWbnyHhdKOOCtDNDVIRUEJfKRj3yk8//9739/XH/99fHQQw/Fq171qjh9+nT8x//4H+MDH/hAfPu3f3tERLzvfe+Lb/iGb4g//uM/jm/91m+N3/u934svfOEL8bGPfSxuuOGG+MZv/Mb4hV/4hXj7298eP/dzPxej0ei5yNozFgc4/l0agfHavKwPr7GTYmcYEQdGqaVl7jzFnfv3HD16NJaXl9uOmCNVAiKu/NI1giJOfbn/TmnVE7+zMmJYX0kW0d0/JYtb4iwUAaLCs1zd0Pt/Gno+6/VHUNanX1Y2Hq/0zu55mXk+vSwd8Dhg8zKR9AGuTLzt8rq3EdWx2h6nUxW/ypKAtFRuAijOFBHUyVFZzBZXRS4sLLSrLQVMtEu5gziyPs6+UcQ8EZiLAdOzYmgJULT60PsFB0OlfqUULgNSlfm5uqSCoDnk9OnTERFx4sSJiIh46KGHYjqdxp133tmG+fqv//p4wQteEA8++GB867d+azz44INx6623dqbH7r777njrW98an//85+ObvumbDqQjnxbJmTNnLlWWnpHM6kxKozE3ZBEHl8KXOiZek+GXn4EofgIg/dcnItrOfTwex9GjR+PEiRNx5MiRFgDRyDsbJCdpboqoqTH6OUQcBCYEAn1Gl2VANkf/adjpp8K0aFQlKmP6tFA3PaM0ZDhngSDfqThLvwSS/LckezYTD0fgRh2y9LzcWS7OMJUcbT1sH1hiHBn7RwBAJlJTrq5zBiizqSc5gGc6s/24rnRM3tzcbKeOm6bpMK98PzktpvpgPpUuWdjhcH9PI5aFwpC1EoOkvJT6iew+62TWNdY571e5cqWCoBmyt7cXP/7jPx7f9m3fFi996UsjIuLUqVMxGo3i+PHjnbA33HBDnDp1qg1DAKT7upfJ/fffH+9617sucg4uvVyMTiLriJym1lSCOu7pdBqj0agzWmUnK/ZHn42NjVhaWoprr702rr322jh69Gg7hcWP6HqOtgV6BIIEiHxFEacDWC4OgiJyR97Sf+4HJIPP5fFKQ/HS2NF/xMtaYfg8vz1OB4Y+hebP8lppmotlJv2Yv8wgOfhz53MX5tfrwAGDwvtOyDSQ2lsn81dhnRH4e5oEk9kUrK8mZD5YZ17+Djo5EIg4P5Wmd4P+WgTD2hZCO6BPp9OW8VxYWIiNjY2Ojx398Urp+v5GPujQdbJR0ovHayj/DoJmAR4vx2ywxvKtjNDVIRUEzZB77703Pve5z8WnPvWpS57WO97xjnjb297W/j9z5kzcfPPNlzzdCxXvNAgC5h2F9Y2us1G1U9XuRKnR6tbWVqytrXUMlH4fPXo0vvqrvzqOHz8ey8vLLaCJiM6J7RHRAhzq5FNiBAg09DLe2RLfWYCRDAYNvDMpGUBxUDUYDDpL1rk3EI2Tr9bxfY2oA0fsBEEEZpl/EPOfsRp9aWWgKYtDefMycOdxCtPnGWsCj5nPCFducaduGmnF7YCO7Ygr7JxVY307eMzKOWMaBS4cEDlwdB8p1acAENPSysLV1dV2d/azZ8/G+vp6O91MZ2uxsmTBdI87tfM9nU6nsbGxESsrK53Vi2TJ9ZziYv14+WcDDAInB1MMV4HQlS8VBPXIfffdFx/+8Ifjk5/8ZDz/+c9vr588eTK2t7fjqaee6rBBX/rSl+LkyZNtmD/5kz/pxPelL32pvZfJeDyO8Xh8kXNx6cRZmtJ/B0zOSKiD5Gjal24PBoN2Kosd2GAwiM3NzZYF0pSiRpPyL1heXo7nP//5cezYsY5TqQwK9/ShkeFoXUdmuP9PBkAyUEfgUTLsMtrs2F0cADgbQ6PJKa4sHeqb+S1FHDw4VeWhPDVNkzIXBHSMy42wRExBiSmadU3lloGnLG8OwrM4FU8JtPPZks8Kfcg41co25O3F2R2+C6orsm0l4826U/lGdJ2LxQzx/ZOTsn7r3mg06oBLDQoWFxfbqbPhcBhra2ttmmJy6Psj5mhtbS0Frzr/j4wS2xP9/EosUOk/y5vTee5I3sckVblypIKgRJqmiR/7sR+LD37wg/HAAw/ELbfc0rn/ile8IpaWluL3f//34/Wvf31ERDz88MPx2GOPxe233x4REbfffnv84i/+YjzxxBNx/fXXR0TERz/60Th27Fi85CUveXYzdAmkRCWXRll8LjNSpVGbp+cj1og44Ly5u7vbrnaJiFhZWYmjR4/G8573vI4Pgjpy7fEjMKHO20fty8vLqUNwxl5lwKhPnOlhGRFIOEsiIyWhwcrYFBpd34TRDbKe4xQX9SwxOf5cxgB5XZbKbZ57jI9ggGXE5xyYSTL/Gfrw6BpXPkmyaSmycQQ9XNXlA4JMJ/cp8jJgnZcAprcH7e7tDI3iEGDi9B+ZUQ4WNNW6vr4eGxsbMRwOY2trKzY2NjpxZPWnchQIUbwazBDg7e7udlY5lqYqdZ/lmfVHfWxQBUBXj1QQlMi9994bH/jAB+JDH/pQHD16tPXhueaaa9oDM3/kR34k3va2t8WJEyfi2LFj8WM/9mNx++23x7d+67dGRMRdd90VL3nJS+IHf/AH493vfnecOnUqfvqnfzruvffey4rt6ZMSAOq7l43IZnU2DJPtbKvl73SK5iqwI0eOxIkTJ2JlZaXDVpAF0vQWDZWDIE4TuVHld0S+Q3PJuJfAB39n/+kjxXtuuLNy07WI/VPAnVXIWIlMnN3zawInDoQypqgPBPUBrj6dSmXp9dIHwAlC+uL0acJsmqvEuGXsBdkJ1pvX7yyQJ2ATsT9l6+CEwEHtimyRT+kJKMmJmlN8XObOtuVAkbtRcyGDptW46IAgiGWkPM3qf3g9A099/VSVK1cqCErkve99b0REvPrVr+5cf9/73hdvetObIiLi3/27fxfD4TBe//rXdzZLlCwsLMSHP/zheOtb3xq33357rK6uxhvf+Mb4+Z//+WcrG8+aZNNfEf2rNMgOZM8xLIXOpupEBYDkoyAANJlM4ujRo3Hs2LH2pHfvhNlxOwhyR9XMkLl+mWMq7zFfGRug/6VrDhxKrIAbhYwl4cieZe+7RmfiLJeMLFkClnNmmEtsl+uU3WPZZHHxmSzvWZtjm1QZqhz1rfbHKUimS8DsALWvXWdsRtN0nYsFXKifAwv+nvU+lZgzlgHLUmyppoblh6cFB/Kp42ajZ8+ejY2NjXYqzOuICxlUfgJ/W1tbrU/SYDBozx5z0JYBHP3PwnAKrASAKhC6eqSCoETmafzLy8vxnve8J97znvcUw7zwhS+M3/3d372Yqh0K8Q5FhqHUKTFsyTeDHx+p65o6Q40IRbvv7Z1fsru2thbnzp2L6XQaKysrcfz48fbMr8lk0gEwAjYR+6N3MkCaJvPjCCIOMiQZeOF15tlXdlGoH5kHsgyMh745TEvPsewyBoLL5n3HYAcgGatCMOp+Qxk465MMmGQgowTKPBx/O9DJ4nL96G+iPDkgURqqB7WXLA030CzDzHBLyNbxuBPmzZk7lb/vtcPvTAjsybqwXobDYXtUDAcJAigCRzps+OzZs+1H02MCX5q6PnPmTKysrLT5HY1G7S7vk8mkZWn1jN4fllkJVHrZen+kb64EVP1XEHR1SAVBVZ6WOKDhCKtkyDKhoc8ABON2w76wsBDr6+uxu7sb6+vrsb6+HtPptD3zS06bGk3SSBFAROwDAunB6TF3PC4Z5xKjoY8MAA2jO8eWmBMva+nuU2GqG5eMJWB+3anZy79Uj+6gSyBUSj+TjNXJ7lNvOu/6s96W3JeMYNPzSFZC0zUlAEo2MWM6MhCmOGioNaVEYKpwzB93piZA9e0KaNx5hEzEPqDyMmUd+i7ZEfvMkfKuARB3T5cj+GQyaYHQ8ePHY319Pb70pS/FU089FWtra50NEeX7wziaponNzc3Y3NxsWaWmadqdo/nOOOApMTneR2XPV+Bz9UkFQVUuimQdjK6XPpmx82s0XG7IIvY3XxMAWlhYaDcwXF5e7uzmTL8GGuoSm+EOrOx8nZ1xYMRnaKycJekDQV4unnfXjXFm5ZqxOBHd0+1LLF4G7jJfFy7JnofJycBPBsDcf8XbQuk3yz+77vnz8ASJLNdsyjRLM2OCsm83wK6zvztknAR0CNwjop0m9v2MfP+jiIMHFBOEZcCWwIthvV1pxdze3l4cOXIk1tfX4+zZs+3CBQEpskuTySSGw2HHr0hp07+IaXpZZm2Y+cs+ZIGqXD1SQVCVpy19AIegyFmczLhmoza/xpGoDCPPAxsMBp1l7NzcjaPsjL2hcaUDqAMfZ1Tc4GdgiP8d4GSMQZZOxMHOuQ+AeboOgPy+xz8LtM4CjaW0mZ6DD97P6t7Lx/8rD331o2doVKlLFk5MieeJec6AbyZkaLx8synJzKjreenEzQU5fSsGyDdFzPbV8TS4s7jyo7hZ7nxXsvyxTMTQjkaj1ndP6WxtbbXTaVtbW22bku7y5/OBQFZWJWZnVj+VPVPlypcKgqo8LaHhouHh/Wx6jD5EClca7bqoA1ZaXEWiTlYj5PF43Nn7xw20AxymwSkzZ4zY4WcgxK+50c0YiBK4KsWV6eLX/Zr7d5TAUlYXvjqJYM4dyvvAHK9nI3R/1g2e582nRyUZyCuVYcT+8StZeZDhUZolIMz6ytq3rvNICD3n74oDPertjIsWBfA4F8bpTsDuI5MBMJal6p7+UT5I4PQZ/amY9uLiYnten/IjHx+BuN3d3djY2GjzIRbLmaCI80wTD0r2PGUMT5+jdFbWVa58qSCoyjOSrOPwzsev0yhk/iNZeIXVqFydsoCQVq4ojHyC+oCMfzIWyNkb/i8xMDRgGVgp/e9jEGiQs+cyPbL0/JviPjK+dJ7PuQ9QBgZcHNz2sSV9I/4MaPHerPxnAD4DTmS6WEZZvA7GOMUpQ64dzTUNpLZccnbO8qh4spVNAgtqx9LDgQ6nw9yfyplKDl5YXg6GCCYyR2PFry1G+E4qP/RdIsO7vb3dbm/hq8mkk9dfBnY8T/5dAp1VrmypIKjKRRHS4BnzkjE+/ryDpCwcDYI6Op3jpf+j0ahzLEbG2PA/dXXjKx103w2jG955wE7f7744Svr3penSBxoIgnxkTAOpMuGKOgdoTM8ZEge2lBL4KUmfsSrl1euWec7Kr2/akekTcEhkxLWbMqemFI/8ecg6cfWTdNvd3Y3Nzc0DuySL9eHJ7YPBoDM1xvIi2HDHbx+YZKBA+eSzBF9LS0sHgArBIc8kW1paijNnzrT52traislk0tnxXSBJ6XI1XMZqlYCMAzWCzYwRqnJ1SAVBVZ62cISp1Rs+ilfnoo6aG72VOqzMwDgDQXCi877U6aqTdbaCzzM+PyurLzx14W83thkrkRl9ZxY8/uy/rmUGuwSyMnamlCfWHxmFbPqJTEDmG5OxVyXGZl7jMwsosS58FaO3rRJIYtvls0yzxHTKkIq10cdBikSgSI7NrFvFRydn1adPPfn75KCO7yvfPzf8Dpy8vHiEBRcdMD1uZyHgxXtasUmfQQEfvt9cyUZg1jf4yPoXv+5ThFn4KleHVBBU5WkLO9pSJzKL3fH/3mHrWon1kB+EOkk5RGfGl7/9UwI7fYxNFnfp2izQ8nR/zwJBzF/WwZcAiQMn31iRwCd7dh7gWErb9fPfGUjue9bTydqcwng7070sbm+rnAriFJg7JrtuTdO0R7yQRXUgoOksr2M/k47Mlqfl/l3UXc+XVkdx4KH2QQZJK8X0W0BIgx8CaYU5duxYC4I2NzcPAByCNAdBmW7+jN8v9T2lAVmVK18qCKpyUSTrXLJVF31gKPuWlFgVTnfxMMc+YELQU/JtoVEsgaNM+oBT9p2Bu3nCuNHO9GK+SrpSVOZiGfw648zKp6TLrPIqSQYa+qQUhqCt1K7mqWcHRLy3t7fXWY5OnxaWq55zFoJL2H3FGVkLLw/qqHrjPZ/+IRibVfbZNYIo9+fT+6g9j+jMrGky1087QCsuTn1laXodZHpmAKi0+sv7pgqArj6pIKjKRRN2WO5Tks3BR+Qj7lKnlPmdqEP3Det887iI/NRy39+Fv7NpAaYrmQV6smmiLJwbtllALovffTlKTr2Mj6uUPKwbVDIBCueMgE/pZEDCWRo3zA6GMwNI6WN9Zj2X3VMc7ptTStMP8N3b24utra1UJ10TUNJ/ASkyJ5oii9gHQxKVs/biycqM7xyXvXseXE9dz3Y2p5O0hBtHyr+JgyGdPq/y0TNa0KB9vdbW1trtLqSHgKV0IXNVGlz1MUUezvupKleXVBBU5RkJOzpS+M4GlQBM6Tn/OKPBe1wZloEDPqvfHKlmzFHJiCttN7R6RuKr0RhvSRzIzGJ+Ss/zN3XLHHeZFz6TsU+cUmO5EhS50cwAAEFJX34ofeFLjFEGCigEf6U8u74UMS/b29stCOKUGFke1p3ADx2UNzc325WOuj4ej2N1dbXd74rPSy+1Yx9cUHfd7wOb+u9Tbtn2Ac4skc3RYERl4nFp4EGwMRwOY2VlJcbjcRw5ciS+8pWvtLrRH4qDHNZxBlz6WB8O1HyVXB9grnJlSgVBVZ6xZKOuzB/BARPD6zqPligZS4KT8XgcEQfZEIIiX9HF50srf2Y5ErvRdMDkhjlzzuXvEgjzuDxsBvxKBnuefPCaG4SsjEpgSGGycsr0LDEyZEFKevSxOdl1D5/p5+GzNMXcaNm7HJ/pF0QmRvkQS8Qps62trY4D9d7eXnvw6GQyaVdSUR9vIwQnfW3T22VpOTnLVvEPBoM0P9yZ3Rcv6J3mQcVejnpn5WC9vr7exs8w3h68f8lWeFFXX5nnK8WqXH1SQVCViy4lipqsTym8g6QMBPEad4LOrnnnT4OdGe0S+8Mw81zLwEUp7hIQyu47W5TloU+HLO4+AOZAppQfftxIzwIZ80hfuTtYdpbDn6fPEw1xCQxmaQoACfzoW8/59C9XcjVNd/qM+wfpW2H0rd2WBfolrncfmM8Mffae6qN3lSCJZa3/PgWud9CBt95LAR3pT4CjDRVVvqwf6eT1y34jA8TZ/Szf3maqXB1SQVCViyZZB6Pr2WizrwPmPXXmziBJnNFxkMOOm/fcsdPjcSaBxl2SMUl8PgMBJUDhz2b3GUefw7Prmumn8uSovcTkZHqUQCZ/E6y5lMBVxhA50JnHWPWVoU/t9QEeB0VN07TAh87Qfigp9ee0jgw8l71zaoygYmNjo8MQyU+I5cN69Hyp7B28uJ5kVtzfxleU+fvkAxgHpPoQAPG4DE6ZD4fDWF5ebvNO/bwtOhuVASCJO/qX+qMqV59UEFTlGUtGPet3CRTNesZ/06+BHTJ9L+icmZ0TFrHvwKl73CHaR5kZc0GjXJpK03cJ9JSMrYcpga3MOCtMCfRk4sDE2ZxSehGR7q3EeEsARKJRvX5nwKYEAJnnUtvKQKIDPS/jjEFQfmhEBX7I/ii8LwjgdU5/OXiSPgTn9C/Spou7u7tx7bXXxmg06oCbPkZIorbuOrNMHRR5PrJ6kr5Ns+//5Lu1k+mhfxIZIcW/uLgYq6urra565wWUvM6ciWJZEJzxv3StUqWCoCoXRej8qU6H2/i7QeB9iTM97PQyhoLLhp3poUEhwHHmww3mLHZilqGJOLiKrS+sXy8BE+YtiyMrI48/YztKemRxORDrA2YupbRnjb5LbAzv08hp005/1sN5mTlwYdzKOwGJQAz9fzJ/FDpOi/HRMz7N5FNK3k63trZaJ+rrrrsujhw50h654Xl2/R2UZ4AzA28entdYdtwTaGtrq20fPGWe9TMYDGJ7e7stW3//FhYW4vjx452VYWS8vKydicr8gpzZquxPlYgKgqpcIvFOh9NZPmrL5vkjorPyRPfUAeq+JOvgacC4HN6nyjLg4UKD5EYkAwF9oCAzJCXWgx8ePEtxv6BZ+WDZ9BlN6up57ctnKe9ZHbtkhsnLW2FKTuAEu9l1j8d9RVxfhSWbw/jIajF8RHTADvcQojFWmxZA4vMZ8N3e3o7Tp0/H3t5eHD169MDmiqVBA8st4uCgQ9ckDkz4frGM/XDeEthUfHqnteLL7zPvYrxUPj7F7X1JBn4yFqgCoiqSCoKqPGMhMMg6Gfcb0DNZpxURHeOgzjxzZHUWSPFmxoyUPJ023a9F4T1/ut4HbtxI+KcUfwlUZCAtAyoZo1ECIP7bQcEsMMey9DQyo0nx617v1P1CDVJWLn335omfbZVTWdwBmsyNr1zKmAqFEzhyQOR6l0C0To3XOXm8p/z6tCR1yPKZtVXqQhaV7YBH5lAHPqc8E9BrOT3DefnJB2p3dze2trYOsFOZs3N2zfuECnqqSCoIqnLRxEdXmfMhw2UdkV9XxyvWh0ySjzYZh8SNNoFFCaSUxMFKH9NSMsRZHFmcfbrNYlpKuvfFkTE+Wd4zYJY901emfYDFdepLY5YRc3Du6ZdYJ49b01e+t0+2Kkpl4+2e7Zl6cYrMy8SZEeZJq8o2Nzc7YCLLP+NzNigiDvjG+KCl1CbJsDqDRIaMbBafFxAqAVTfRdvTKAGdEujJytKvVbn6pIKgKhdFSOuz8y4xQD6VkXWE7MB54nVGX3PU61NdbgSUzixDTj08TJ/Bn/Xf9fVRc0nceM3SPzOqBI6l5/x6qVyZhucji1e/nfG4EB2UZonN8KnVPkPnzEF2X/pm7AKntxzEkNXg0nnpyCksLYvPHPmpC8ttMBi0S+oXFhbiyJEjnbRLdUEHZl4vsUT872BGIIar4sQM6br8+hYXFw/sBD0YDGI0GqXlG7H/zrPdk03KgCgBJsvc645hGK7K1ScVBFW5aOJAxzsnbpqmcE5j04BwRKlpg6ZpOqdpcyt9dqC856PXzCl7lmRAxUfs2TMlo+ZxZsDJ0/Hffddm5aPkT5Pp5vp4uFnGs8S26J7yngFb6tqnb19+MiYly0P2nNoK26ie4YdtXvqoDZb8kDilq1VQ7sCf5UFpTKfT2NzcbM/l4o7KBDtZ3XmZ8kR35Y/psh1w5SVXmkmPyWTSOdRYgx6BIb7LLEte46BqOp3GeDzuHLdB8OXMMOuuxAplfkJVrk6pIKjKJZGs45mHtmZ4jjzV4dGxlOd+6ZsGLfNdYSe7s7PT2XOFz2bsh1/3tCWZv0zGmPi1DBT1ASDXhaPceViVLAz9PvhMNn1Ivy0HBCzPeYBbBpT6wF2pPGnwxRR4em58/TrbjzvdZmEZPuLgzsRsy1pdph2iqSPrz8EU9aUvnIDQeDzulL9AFVkUlhfLKtul3Vd7ejskyFDelpaW2gOM2Q7ZTlmmykvWF/A+p8LJqhFQevvxAZkDVe93SkC4ypUvFQRVuWhS6sy8w/LroszdwGaOkjIcbhgYZ0QZiHh4v8943CHZ05sXpMz6Pcs5exZo6dOxlL++qTR/tuQ/xe++KRhPf5Y4oJz32awtlBgN/c4Aj8fhrEWWH/r6kIXhhoj+Xii+bPo4y4fHr3dHgwLGxzgcnPIe24EvNHDHbr2X/g4rnlL7oF6lsvWyYRq+is6vuy7Kw6z4SwOwKleXVBBU5aKJOpfMaVH3vePxzoideBaP/C98JZIbpD6mxnXOpisyANUHVjKj0icZg5LF2QdsMuZlnjx7OllYv1cybn3p9RkYZxgykDGv7vyfOfWW9HBAQr0iur5AvJ+VM4F7BvidNWGZaqooY9a8Lfq7FBEHfHI0FTVPWRKEebzuu8V8MO8+9Z2VzWAwOMDcZml6/0Cg5+CG4bO+ZRYQ8jBVrk6pIKjKRRcxOz6VoM65ZCwichaAxoT+BIqTYZ1ZycCDjwgduLgBmRdMlEbApecJ1jy8G6csrVnMUEn/Eugq/e4DQKW0MqPiQLEvrGQWA+OAwcOUwJVPbclIk3UsrfoqASGxSdJlOBx2zvqS87NPP2kqyd+Dki+RlwF3nSYIckCYlXn2Tuq94lRd5ttH/yUBFW5qyLxIN7+WARAOOJS24mbdDAaDjoO34mWefZA1a1BW5eqTCoKqXBIpdTCZDwBHsaS8M4O+vb1dPOrCwYN3+Bxp63pGr2dTaRI3elm+ZwGfjFnJRs6ebinePrajpHspnkyfvvj6wGYGcjLAwmsZkOkDQLpWSrt03ePPwBSBBJlHGv+maTqbWPJ5xTcej1twsrOzE6PRqD1DjG0w22nc48pE8cg5mvEofgcdzjSR0ZEQdPC99HioLxczeF2Rxe1zdle8HAQRBGmrAi936ZixPdS5gp8qlAqCqlxU6aOq9/b2ivuZZCNV7/ibpmmX2WbUu/Ys8Q6/RPdrJOk70Uo4EnW9aATcGDioK7EGNBpu4LJrfYbd9XYDmpVpX/yzQFjJOJfKb1YelOfMeIo9KUkGrLJ8UW9/tqR/1n4Gg/2Vh+68z6kh6cz2r/RGo1Ebj1Z1+WqnTE+CL5bP4uJijMfjdjdmXfeVU/Sny8rJp5n5rnGajUCF6Y9Go045U+/t7e2Oo3o2WOG7w36ELBOnFv051hPL0sFRBUBVJBUEVbkk4tNfz7QTckDixlidMTvWzMBl4IUdc8ZKZGCM6fcBFv7PfEFKBrgvntJvBwJeTlmZZGEzoOJTGX3g4UL15D2W7TzxZ2HYJjxu1n9mhB1cZ7pmbUwMh3xXvA3p9/b2djv9JXaIIM8Bt0+bNU1zYIPB0WgUKysrnZVZes7BjINjb//KH8uJDKnLcDhs09V3JhmrVxqcUAcJGVtN/+l9F7DzsibrnPVB/K5y9UoFQVUuqvQxQbPo6FnG2a87UHE/BdcrYzMGg+5u1CWwU8prZoQzg10CPbOYiL5Re9936Xk37H1pu44ZQ+PXst8lvft0KLUNGvNZOmcGLgO2DDeLKYrYN9A+RcZvlo+XofvURMQBFojAiu0nIjps53A4jMlkEqurq51ztrL68zxnAMHfJ+qftXf5PQnUOdh04Ol6ZSyfl42DF/pqKb/eFjKwk/U7lRWqUkFQlUsiWSfonW1f5+OdJePlt6+6yXyESvqxw6ZRYfrZiHEWOJmHNZkFXrKyKEmfPqX784C3vmeVRwKB7Nk+/UvMAus2ez5zJpcOXrZqG+7kzPDUv89IehvIwnlYgnOBF52BlZUTl9Pr9HTPE4HR0tJSHDlyJFZXV9s9rwgeCDZ8ismPAuG75FPL2dSuwi0vL7cMVAaolF7GoPmO06xflnFpKTz1csDlkrFDFQBVqSCoykWXbPRFJ1AaIx/xqePm6jJ2vt5xcUToLJB3iFwBk+mcdaDUMXOanqejj4jOQZE+sucIOivHEjgpySxQlD2fsScl8NYHAPt0YF3SqJXAUlYmfWXB79JZU57uPIyBG89SWSicwAXDKX0eE8Hnxab4Qa0R0foMuc4LCwsxHo/jmmuuieXl5QPviByxs/xNp9P2QxZKz+vbBwXMz+LiYiwvLxednMnSOCPm7yvTLwFMAlaVn787DDPr435XVa5OqSCoykWXvo6H9/XbR3I+OqevT0QcAEfeuc4CADQmmRHLwFSJsekDBPpwtY4bT/7OGA7eK7EHWdp+rwSoMmOegYpZkoGoTEoAlL9Z7yXDWIqbRpX6cxm5h2eYUpvNysjZBIKgEhvh+eJzeobsT2nZvBYZTCaTdirK2z6PzOA5XFtbWy3Y4krMzNGYO0fr3uLiYgfISB8vMx+wKG8K4z5RGagsDaKy8pz1rOsnHatc3VJBUJVLIqLyuTojAy8RB411CVzQCGTXZjEVPh2QASGCMWd+svAef5++pef62BCPL/tfYlD6DPisNLJyzOosA1e8l/lmlcCMg2E+P4sxyr4zoO3AIpPMWHrb8h2gI8osJeMQg8IVW1l+BBAIKBhuYWEhRqNRLC8vtw7JDmKysufu0mzbno8MwHCg4dNlzD/j5+Gy2aCFcbuPValeWGYO0KjvLCaoSpWICoKqPMfCDsw7psxIeOfovgoebymdPrCkcBnrUzK4WQffB/bmkT7wNU+ePVxmLDy/CtPHSjG8x+Hxe1pZHA5WSnmZFR/jyp7JQHLGTpZ0y9LwduXhBKa9bH2H6Cw/DEeWKyLaJemTySTG43HnUGIBvcFgcMCnaHd3t2WOnC3xOlA6bAv0b3LQxXikQ7bc38tecZb8trJn+oT14HVagVAVlwqCqlxycSOUMRQZc5EZPHfE5dRVyYBmneK8zMss4OP5yMCP9OyLO0s7i9ufn8X2ZPGwHDKdPK3sP41VZnAUvmToNdrPjJSHYzp9ekhKU2h9hjXz+dE3AUKpTAgAPO6MBXFH/tIqKS8HgZrl5eVYWVmJyWRyYFWYAyYyN03TdHaDbpqm85u6Dofnl7/7ponUX+WTgUBNwfnSfJal4srSyMo6A5mlOs3ATgVAVVwqCKpyyYSOlZkxkpQMshu4zJBwRJoJpxOYNjtDjzcDZ32gqfQ8WaoMwGT5miXe+c/7nMfBuKiv8lwyRq7HvOLLvWU8Wc6z2oobQq9DiRtHOs9mAFtAoCQ+jerp6FMKl+WF52ixnDVd5XUiWVxcjKWlpbjmmmviyJEjsbKycuBMLpal4mia/XP3uGkhfYKoJ0Ea88uy8/pjWnK6LrFAzF9pwYIDJR/4yOnby9FBjvy0fFq+AqEqERUEVbmEImOadTolYEAhcHEa3kfSPsLLDKqnVQI6fXr68w52StNzffnOwvSFLemTAYKSLrrmq3/0u8R69LEhfc9F7BtNZzguxBhljB7z7Q7HAjiZXmyfLqW8cMWVCw26t60sfrVlrgrjqfPZFNFkMolrr702VldX2+M4HIBkIJKO0Qw/GAwOXOcznteMnVJeVJ5acl/KM52c5SPlZcV3fzAYtH5UYrIi4sAKPD6n+Nj/9DlIV7l6pYKgKpdcSsacI2gCnYwp0bePcBm/f3TPmQ3Xp8Qk+ShX4uzRPPr4iiUPVyqzEpjKdPSycn39mVJaWf4YdpbxmEdvSsYC9MXdN+3kLFkGCnzVGVc4lXR3ZilLi7tF8xnqka3iiogYjUZtOyVgEVDQfjyrq6uxsrLS+uo4YHadyH4IcKh+lY5+OyB0HfWcwBuBtNIVCMpAhtcdgRSBUHYoKste6fWxd14/dU+gKiWpIKjKJZM+Y1gasZbC+cjTmaBSh12aMunTbZYRzwBOH3DLgJLr2XetBJJm6VeK35/PgE72faEyj9FhvfpUU6ZDibGb5/88gDIrF9YbAbWzaGIofDl+BiozAMPwBGk6kkJO0N7evEwynyhvqwIR3JMo84tyRlVAhqws3zEHqNTLy8FBlN5nlR3zRv8mhZEeJZ8tB8aV/amSSQVBVS6JeOer37zHsCUg46NpGRofUTNOGimPI9OPbFQGlErGimCsL2ypDMguZPFnUgIvfQDPAUSWzqz/NLSlsH0AhfHMEy57ztOa535Wnix31oP7v5SWaTvj5/WvNEvL4PtANMMsLCzE0tJSLC0txXg8juXl5QN5I9BXWlxaT2HY3d3dmE6nsb29Hdvb2weW/JdYK4KgiGgPbPVyJDBhnHwv+Z4SWHEZPwGmTzWW9hbK6qyCoSolqSCoyiUTUtBu/LO9SBSuzwAvLS2lfhd9fhglNsSlD4T4hocSN4B9I3zp4vFkAGMWKHFHVo76s+dK4Mfjzn67f0YJiMxTxpJZdTIPcC4ZPH++xFCU8p3FRf8ZLjt3A67pLK3A8g0JqRPj8HLRbtCTySQWFxc7J7iX2gav0xnYmRqxP9vb2+3GiQJGBG5cVeaA0K9lzK4AU2n5vevMQYXnVd+cuiRj5JL1N/xm/Va5uqWCoCqXVLIpjllCY0vH0IhoO2UeJZAxKvqfXZPRKvnwZPq4bv68h52H1cnyO0/Y7Hf2v++ZjCkpAbZZAMvD9+nSd3/WiF6icqfDs3Rkm2Bd9DkNq535tdLBnrpO0KB49X9paamdFuNUE/fvcaZlcXGxXf2lT4nV8XLKmA76A4n52d3dja2trdje3u4cm+GATWWwtLTUYWAJuMkAsf2WVmJm9ZrVkQNMZ6dU7ozD2TRP23UorVqrcvVJBUFVLqm4L0XfNImDERpfGSo5UJamKjLJOliFL3WeGZjJwFApXCneWc9nxnsWY1ECYRd6rU+83GgESyCuD9hlcem/C49acIPGfJTYg9Lo38N62vRVkXi+M0bKwYc7O3v7kMPy0tJSy/qUVjdmgD+b4tH75oekEvzwmn4zLoEQ6TYYDNojM7hjNOu4xLg5WPMyVxxin8jyKL2dnZ3OHkcKP2vVVzYlWVmgKpIKgqpcMsmYAnZ6WSfIztCf971mPE7/71NkF2qoPQyNVuaYXQJFSt+vlwBUCVRQnz49PcwsXWYZBJ/GyPaWycrX66kP6GQMQSnOefVUHM4OlQCGl1HGwjhI8PbGMvKPM1dsS2KBsjopMZ1Kx8PoN5fb67d/eM91FeBQXofD88dg6LT6Un1kA57st/KfsXB9AwQyOaX0SwyQ61KlSgVBVS6ZlEZeWSdUAhDOFHAaqjQCdoNbAhizOt0MiPg0Rim+CymbPjA0K74+4HUhujhDQukzHg5kny6wKunFdEsAS9/cvI+6ef3QMVfhfHl8lucMaFAyHxkCAt+gUCBgMBgcWGmVlVdWLqWwTbO/+kvfYoHIDPlv7vLMoz24hJ3MHGUWePdnWD+6zzLxOB0Eld7fvjKpS+WruFQQVOWSSF9HqI6s1ImWhBS8j/Cy31zFMgssENjMYney1WB9eZgFUjKD3seAZGH9m2WbLXPO9CgBIWdS6CTu5eLP8D4Zk1JaWZtwx2yFc6YomyJlnFxm7dM2maNvpo9LCTDyv8dV2ueodK0EMjPAT2NP8LWzsxObm5uxtbV1wA+I/kLc6JCMl84bk/5ef36t5MvEvLj+uq4pMZZdNiCYBbj4uwQYq1SpIKjKJRd2dtkIWZKN2P15Xfe9UGhYSsawdI8jS34c7HCTuAykZAZxXraj735mAGbFVXqmL46+dErsTqkcyM5IaEQ9zYzt8bT1IWtSqoMMJDGMjHuW/4ytKN1nvjLglNWJMz7ZJo2zQNEstkggZ3d3NzY3N2N9fT3W19c7/j8EQvq4k7cckbe2tlJfpcwvSHnlLtJ8Tx2UeD0uLCzEaDSK7e3tji78reXxqkfXwYFmBUJVSlJBUJVLIt7p9HXw6sQyQMR4nK1hRzedTtMVWwQzJaPn19gpEwDNYn+y+85CePhMnz4Q52FL3z4SZrq6lgEbTzsri0xPXnODlm3ex2dc3xIY8fzT+GWMgRgKP14hm3bKptL0fFZulMwZuASkXGYxTg58MiZVelIfsTubm5uxsbERm5ubLQAiEHHQz3j5Pik+HV+hd2JxcbEtX7YHlrnAUHZsx3Q6TcvUByIK46vxfABE8F1i5SoQqkKpIKjKJZPM+GYdOMOW4mmapvVLkHBahZ1edjglR7GZUXcD6Kt3Mj8gxpXl2+9nYKkEzDIGweNxpoPhSk7LpfLO8lFKe579bkpgi8aW+mXPZXp42+mrBw/D9EogMNM9A0DzGlPq6s84CCyxpMyj+xfp2QwEceVXtk+ODxRcN98PScJVbiVh29B/L7vSQIAASf99ii7i4KaMXpa+vUaVKplUEFTlWZfMgJQ6KhoGXyqdjfr8nsedAZ4SKHIwVAI0rm8Wn+d1VnzZMy6l+Hm/ZGwyXf25kvQBuxKomMV0zDKoF3LdwQrTzwB4ySm6Ty6UTSiFLwEh170vr/5fAIBOzqWNSel/I1DhvnG+n9G8dTbPwKb0rNL0MpjXsTkDe1WqZDKbd78K5f77749XvvKVcfTo0bj++uvju7/7u+Phhx/uhHn1q199wAD86I/+aCfMY489Fq997WtjZWUlrr/++vipn/qp4gnUV6r0jQQZpg+MkAniqDd7xke7TM9X5ZScobNrmZ6Z07XSy8KzPLKycUAyq1wy5iX7zbxko/CsjkrAqQ+MscxLo3DqMMuYZW0gu5fFWWonfcwPJWNw5tG7FC57zlkN18f32PIpu3ny4GXiedPRHDqWYzKZxGQyidFo1C7bFyPkz3KPnhJ492uMJ/PbYdwEXvQryp7x33rGgdCFgtcqV75UJiiRT3ziE3HvvffGK1/5ytjZ2Yl3vvOdcdddd8UXvvCFWF1dbcO9+c1vjp//+Z9v/6+srLS/d3d347WvfW2cPHky/uiP/igef/zx+KEf+qFYWlqKX/qlX3pW83MYRJ1P3/4elAxA+NEBmXFUGtnotY/BkEGQUYiIDlBywJMBCOazlG5f+fQBkJLumQ6lODw+163EoGWgjsa7lA7rigY9A4zzSpbvWSyT5ye7Ng+46XtuFsjKgFr2TEkPhvXVehkwyECK/rP8CPQ1jayVZBqwOZDSO+LT066rtyX5hymu7BR4Lc2PyA+kZX6yuvOy9GnDKlVcKghK5CMf+Ujn//vf//64/vrr46GHHopXvepV7fWVlZU4efJkGsfv/d7vxRe+8IX42Mc+FjfccEN84zd+Y/zCL/xCvP3tb4+f+7mfi9FodEnzcBhkXuPP7+weja9GxFxp5E7SfSP7TD8tAeaIN3OEztgiScmxdh52hXFn+vm1WQCnFEcJqGVhsjg8LzJSGcPg4R0oZIZMQiNfYmS8vNQ2+vKZ5a+PoZkHwDKvJVDpDBbLa550ZrErpbbN1Yxq4xlg0Gos6ba3txfj8bh1qKYjtU6017E1XrZe5r6Kz52vd3d3U1+9pmnawQjBGDec9PwSbJd2Ca9SxaVOh80hp0+fjoiIEydOdK7/+q//elx33XXx0pe+NN7xjnfE+vp6e+/BBx+MW2+9NW644Yb22t133x1nzpyJz3/+82k6W1tbcebMmc7nSpVZNH32nU1vROyfueSbrGXTYv7scDhsd+rtkwwwlFiNEmi40E+W11ll2Rc+AwV+PQNZNDDyISFgLMVXMlbZ6rdSvvvCurhR9qkpAo4MdPYBomwH6Cy869ZnsPm/VH+lOvOyyu4NBoPOlJbAzmg0as8mG41Gsbq6GpPJJMbjcftZWVmJ1dXVWF5ebutaq8F4tIfSydpgX/moDjwMQYzny1ktB9GzGMF5Bw5Vri6pTNAM2dvbix//8R+Pb/u2b4uXvvSl7fUf+IEfiBe+8IVx0003xWc/+9l4+9vfHg8//HD89m//dkREnDp1qgOAIqL9f+rUqTSt+++/P971rnddopw8+1IyKP67j93gPZ7grTj6OlQfgfOanhF40r0LWcrO/7NASAnY9IGWkpErhXumQuPlurmT7KwpG9fLR/nz6pzVYal8+Uw2DcLvUh50P2ursxi0efNUAo2Mx/MwKx5v+w5auYqKztCLi4sxHo87oIVgUcyLzu3iGWdsKyUdmD+yQiyv7DgcL4sLKYdS2SpsZYaqUCoImiH33ntvfO5zn4tPfepTnetvectb2t+33npr3HjjjXHHHXfEo48+Gi9+8YufVlrveMc74m1ve1v7/8yZM3HzzTc/PcUPicwCJS7eSbHDlL+Ad9ilfUJKGyNG7DNAcrbOOmcaEh99lgw+73PUWsrzPIbT09LvbMPAeaUE7ErXfYuAPlbJ4/LReglAZSCWwLQPaPKemBrp7fvi9DFVbFMZCPL8eVvxcsvi57NKK9OrxIJl5ebvQOb47+lrimxpaSkFjZxm1maJAkHOBGaMjN+nT1L2DNm50oq00kBK/1n3WZlXqeJSQVCP3HffffHhD384PvnJT8bzn//83rC33XZbREQ88sgj8eIXvzhOnjwZf/Inf9IJ86UvfSkiouhHJCr6SpEMAF3IKEwjVjomK46maQ6cNJ356fh9TQsIAO3s7ETTNL3TOw6ApEMfm5MBKg+bXfMpvdJo2/dIyuLV76zs+wxsNiLn6jLfBZoAJhv9sy48rRILwnQVT2bMSoBKBteNosquxLIQALF83fhm5ZXt+eTlkuk9Txl5HK6D+2cNh8N22kuHo2rfHZWB/HuWl5fb94k68HgUpaPwOlWe+czK0gcFHh8HCz54YNlyn6BS+czDnlWp4lJBUCJN08SP/diPxQc/+MF44IEH4pZbbpn5zGc+85mIiLjxxhsjIuL222+PX/zFX4wnnngirr/++oiI+OhHPxrHjh2Ll7zkJZdM98MkmWEgK1JaWeRGRf99ZcnOzk7L5EQc9NFRx7+3t9dS+AJBTdPE9vZ2REQHAFHPWavLJJmRy4xetsrMZRZbVjK4fWn79RJgy6aIfIQ+K/6SoeO94XCYrgzyeLIyL7FFrnNJD0m2yd48wIjXHAA2TdNOE3F3ZOXZ9XC9CQAc5HjYbPqXYcXyTCaTzknxu7u7LfsjnyCeC6a86liK8XjcThnv7e3FkSNHYjQate+MwhEw+dEYGdDV72xj0+l02hkMZgMgAp6sPWQDsAyMValSQVAi9957b3zgAx+ID33oQ3H06NHWh+eaa66JyWQSjz76aHzgAx+I7/iO74hrr702PvvZz8ZP/MRPxKte9ap42cteFhERd911V7zkJS+JH/zBH4x3v/vdcerUqfjpn/7puPfee68otqdP+tgPv+/PeedfMoCc9iJL4vEqrHbPFSBRB++gJxuRZlJihErAyEe9/hyfLbEcDFPSqySluvB0MzaGeeiL38FEBi5KPjl9cZfYGLIbzkZ5+5F+JZ8hN6IZwGK+CNY43SMgwTSlKx3xS+AmA0QZKCRLonvSY2FhIZaXlztnhOmaO0yTSRKYY5rSiyxQBuL48dV6pWd4FtzOzk7H78wZogz06l7pvLCs7qpUkVQQlMh73/veiDi/ISLlfe97X7zpTW+K0WgUH/vYx+Lf//t/H2tra3HzzTfH61//+vjpn/7pNuzCwkJ8+MMfjre+9a1x++23x+rqarzxjW/s7Ct0JYsDgsz4K1zpOb8ekR+M2AcEqIPvkRJxkPHxjnwW+OkDFZkefdccePXl00EAr7vhz8oiM6aZfm6AmHamO9Ppy0dm5LM4Pb+lcCXDm6WRGdHScRSeb+aRIEjAQ8ZbU0uldkLmxPOR6T+rbTn40/XFxcVYXl7uTA2KyaHjNEGp53c8HnccqRV21u7NJb2dHeMApWmadrl+acuDLK4SOPJwVaq4VBCUyKwX5uabb45PfOITM+N54QtfGL/7u797sdS6LCUzwlnn6MDDnZAzhoLPlgyV6+IMR7YfUAaISlICdv4/mwbsA4NZ+ZWkBJBK+mb6Z+EcyOo7Y1c87T7DRZ0dnGT6ZXF72clIexoE4Lzm6ZT8frgcnqCG/zOGKfNh0X8eOMp2nbUhd/DOyrHkOK572pNsMBh02Cl9uNiA8RCscGNE5nPWu0HHdHfe5sBma2vrwNRa1tYyUFgC5bP0q1IlooKgKs+SZB28d1AEB33TJT7q41QDDYv++8qmeYCL6zzP9Vl59jzOepaGqaQ3y8ClxCKU8l7ahyUzivw/r3h8upb99jCz0nJAlhnBjA3icxlgUZmI2XFg6IZd4QSCHOhEdEEEfWsUPsub58WF7IyXM4GQDlRVfEqbBwxTV/qxCcDN2phUbWlxcbEFXQRNXJEpBmg6nUbEecdr93ciWPLrXrauhw9usjZY5eqWCoKqXBIpgZ4M+JTClDo3N2ai+Al23Ii6PhrdeifZFwfTLIGRPiOchc/0dJ36nidbUIo3i8dH4h5GxrTkvO7hxTo4YJr1nBs41zEDvZ7HDDANBoN2ZVQGbpi28kjwQp2y3Yd5MClFcfCYB1952DTnnfIFBmj0uUJL00LUNSuLEgDgqjP6wzmY82Xr0pFMaWkFYqntCfxw+iyrr93d3djc3GzrgfozHxkTVhok8H7fwKFKlYgKgqpcQpnV+bCDcoZExkPhaEjc+GTAIfO5kJSYoT6dM0BUAijZyNPjLk2BeFx96ags+oQsR188GcgTAGA9zEpD/2fplOmfsX+ZXqU8DwaDllHgtXnKKCJag02w4CudWH8OKHgtY8+oi/sQqSzIOG1tbXU2MqS/EeNm/WarvHZ2dtp4d3Z2Ymtrq43PfXz4btBBmeXpTsslkEp2S87UdNKWLnxfxTbpyAym6VteeB1m4LAyPlVmSQVBVS6J9AEBv559PKwzEurgsqmZEpBhx14adfYxJgzr8Zb07nuupG8fQNH/PpaqLz0f7Wf6uvHIAJun579dN8ZdCu/6zGIBFdanrXgvc94tMUgE5BlwYrnR8TkiOtM+GUNEXQkc6KxPsEUAyqkqBx0OhJhvAiAyU2Sbdnd321ViTDtjQwl8WK/URXpLCOp4TVNgDqD76qcEaLw8Mvaw1H6rVKkgqMolkwxcENDoWp+/Tmn5ekR0RtLZSD0DXB6X63qheev77XnP4ijpUdoHyI0P4+hjUZheZsAYngakb6RPoRHKQOA8UzhZXjMwlokbd1739DJgRBYlYn+jzgxkZECH1zKGSE6/LGNu75DlR6wI264ACv23mD/Wl8APnaEJVPjdNE0HCKkMSsA2GyC4ZPUlBkjgzAG5nsvylenh6WW/S89XqRJRQVCVSywOQPpYHjfCg8GgM0qNiM7BjTJ83J+lD9xkB3/2bTpYikc6zkovu5+BjgycROSbxOl+ZigyPSUZmOwL78Z6VvhZ/hrzyqxnSlMemaF3RiFjLGjwPX357BBIkWlim1Sc2pBQ9ekMi9qv4sz8cZh3OTFLR+qXgdgsjw6gpJPKzMGIAyxvM3zflH9n4BwAKy1tXso69rrmlCHrxwdLXl8Zu5uVTZUqlAqCqlxSyToj+hz0+ZsMBud3rNXKFnWm8mNYXFxMfTDckJIB8vj72KGMQvcpgdJouG+6rQ8UOPDh8x6nG8AMRM6T7oWClFJ+MyA0D8gq6eLsS2bEnM1gnBnD4Ds5e1oO+AiaBRYYjtNGYl2kjzv08jnGmZUJ4yTrxGkxHYza5x/n9bK0tNSyMPT5EevEcAsLC+23dGXbEpjycs4YpOFw2AFb1N/9pbL69LbMei6BmwwwVSBUxaWCoCoXXTLmJwvTdz8i0i39OQrl2V/eqWcAiEZtHsCj6zRodLgudc6zGCJnkdhZlxgej2cW++NxZ0vzZ42WM/BUAi0qI32X8krJDGjJSHEKyMMrTRpx3ucUFZ2KmT9fxaW8yXh7PjLHewIWhXfHcgdBWXvNymRv7/wRMFrRyIFECXxSR+ZBTsp6j7hkXu1c4IeDh9I0ov8ne0NfKQLIjPHL3hH9ngVessGPS997VeXqlQqCqlwSyTo377x5nWHZGZPW5wqSDESV2AAHHCUfI8bho3IPl8Vdyj/FwRbj6EunVKbzSJbGrPCl/30GxsuqNFUTkddViekp6VdifBh/yVfHWQa2uyw9PaM26dNcdELO8lVqIwIjBPolIKr8+OosgQ0+Q/DibJlvjhixvxqTYL+0d5DnISt7b28ZgM2AP9PyvOsZT8fTdqmgp0qfVBBU5VmTjPnIRr40chq9czQ9bwfJtMiEzMOKuN5Z+NLzTydcX9qzrpemdi40jlkj7lkj6RKI4zMlJodhpP+FsmJ8zgGKMxBZnJya8XjVbnRNfjBchcWNBEvG2uvfHfsZhrr0saaZozRBkAOiwaDrq6RpZfqNEQD1SQl8ZuL14P2Bi4O/UrrZAMLjLPUZVapUEFTloksGckqMR3aCuzop+VgojIAQ/TB8VK9vMk7yIcrS4nN+rcSglFaXlYDJrLClZy4EpOnbDSnjYfyZse8bRfcZD8bjxmge8OLpZOnrd198+u0Mh6+EyrZVyETxqt35SjO1z+l02tlbiHowPa8TX4bu7a0EfLKpu8w5WUCH35m/DRcbuAOyl4eXb7bqTTpmwMN9svgeZ8L4svopDU6ye1WqZFJBUJVLIqUONOvgS4CBzqDZSimOEDO6nSPbUseuZ0s6ZcCNeVA6mf6zfKKeqTydEW0JFPWFv9C0+hiEUvn2MTSuN695PEqfgCRjWfwZ6uHXeabVYDBo/XP4UXvIWKmsbDjdpLAEDgLupT2HsrL09H3Kl749Xgf+fgiw9JWzNl9kmat8PP+zQImDQr7f0ldgrrTK0d9Db7uV/amSSQVBVS6quDHKlrU6iCjdJ7CRIdKyZXaA3mHu7e3F0tJSu7yeHbtPeWSjxix+5o9peufLMBQfFWf3Pf5slNv3jH6X0mJdlJiXUj6yMiiNzjP95mFdSgCVUzi65u2D6TgTRH0Ytm9XccbnfjHuY8R88ygWBxf0c3OHf4IHASSBDLa1xcXF9jBTMp5eZlm5Kl5ngsi2SE8uo/d3Q3ptb293lsp73bN+pCuBJMuOn729vXbRQ9YvZO8r8+v5ct2qVKFUEFTlkkuf8e8z9H3707CTVVg3mN5Jzst8lHTKrpGNygCRx+169HXOru88Hfms6SJemyf+CzEeHpaGPdMxA5SZTmwHPpXlo303vNnBp5nOGRAXYPEl7p4GQb8DIAFxHxA4ANLz7r/j32R9snL1tiWGJhuMeNzZwMLZUW7AyHLJgJiD1GzVIMueOmt6r6RzxjJ5nXr9ZmVUpUoFQVUuqmSjtVkfPkfxzs5/lxxdOQJ38Q4w68BLOmZ5LcXh+vSFzVgff96f7evI+3SeV0pGpQTgvC6zeqGUrpWMWx87V4pXesxTvg5efHWiwnubY559SblYGzEwYneyOnSQUjLWZDMpfMafy1aTuc8O81IqXweBXob8pi4OeBxc+rMqx6wd9OnY1x6rVClJBUFVLpq4EekDErM6e4lGnZoGyzask8wLgkj7+z2OgD1O1z8bzTJ8ZpD7wIUb/KzDdwPaB+D6ns1Gz64vr5XqyevY809jNisu91XJyq5k0LK9Z8QouK5ZHvSdtV33LSKzwQ0Dubmg4tK0rMAQDzOlLr7/VGkvHeXVgZD0Ku0ZJP18m4lSe1T+vGyzclN8rj/DORuk9DOmMGOMVC8ldsjz6+KAqrJBVSQVBFW5aNLXMfmKrtLI0YXUe+kkecavzl5xMm7vtLOOOTPAGSNRYiay0WjJWJTizMBKxh5k5dx3P8tzKY4+o5eBJf6mrxdBawa65kkrA5tuoAW4hsNhezSDgELJR4bp+H2GywC1proI9hYXFzubDAr80P9HhtxZEGdOmO/M8X5nZ6fDVrEsvJxYNloOT9+cUrsnY5SVnW8KydV3/n4zHumkKS8OOvQMtxuQuJ5eV8wzV7uVgHOVKhEVBFW5iFLqkErAwA1bZpDUyS4uLsby8nI0TRPb29spmJD4qdsROW2v39ptOgub6el5KTlGz+p8fZM8T6NvSsRBBePIJNPb48viz1YNOejg6NqNmS/ddl1d5+x/H0OV5VGOuyXA47qXykvp0GFZwK5pmpblkSMvp9HECmX1u7S01MmbH/yqsO647WHo6ySwyXhLgwCeiba7uxtbW1tt/EyboCUDoWS32F4c4Pi75w7R3tZGo1Gsr6+3YQg4S/XUd4/1UlppV+XqlQqCqlx0ccPJDsqNT59x9lGklibLqGYGlweu9k13sTMsnV+WAa0MxCksjVDGfjAsmQoaAa388TJUOShefUrHeLhkecuccz3vGcNFQ9cHEslkZau0PA0aa2d/mA/G6XWqcuSeUhkLQd+dEnjPyrDktEzmge3QAdmsFWklppB5zdpEJr5yS9NzmpJTGE/Dy0nPOnhxXyPFo3y6/xDrlXoxTT3He3wm6x8c7GThyJhVqUKpIKjKRZVZRjgDEdlIjh2WwM/i4uKBJbsSTj/oGWeDGHffNExmfEthqGsfCPG0syXWmYHoG933AS3q2ve/zzBITwcLEQd3Ic7ivhDx/HkdlNggN7ScolFYsTX670Y1K/MSa8GPl50MMB17pZ8Msdcp7/exY878zFuvLNcMnDCcl2O2Wo310/d+kHmZB3yIlSJgLoHfUn316ZSVUZUqERUEVbnIUgIXklJH1deB7e3txfb2djtSzEbpdD51hkVSmtpxHUpO3RfaibpBd6PtS7dlCJyZUjzZQZ7ODpT0zZiVDLw4o6WPl3nGsvF5/89RvT/DtDwPPoLP4qOOfn4XQVCmE+vb06YonJ7XlJKXI593vxYHMQ7gXAgiMmdoT8/rjuVKHX35edM0nTITe8U9j7L3xK97eyoBoawd+EGrTEthZk2tzwJCFQRVyaSCoCoXTUpshX5HzB65+Uhd10qsTsR5ADQajWIw2D8R2w9/pLCjJeBwQ5eBgHlG4j5yJ02fnS/FsuH0BH1pdDyDwvIoEZ0KnjE2WXll7BHLvcSQSejknrEW8zBEGetB40k9HaB4GixP3y9K/l6M3/VhfGQ+spVWfSAkYt+R3/2gmBefEmO9l+KVzMu+lVa0KQ5O1e3u7sb29nZnQYEAecR+W2PcJUDpuuqj99J1ZzuSzgJfPkgovXOlwUrWz2TgrcrVLRUEVbloUgI4BAKl57L7GXjJOsbRaNSZftCzGjnT8PD5Wf4ZrgtBixtoXZ9Op7G9vX2gTATUZCBleN2vxpcwu/Fi/maNbOcd+bLcS/HOMrbStVSmzEtp2kfh3OeLoItx+eqoDJD59T5AVmKEyCTxPk9jF5iQk3BfWg4c9Jy/LwQwg8Gg42jNcIrXf3M5vtcN3zeF4X/t2Kz3iEDI68L/s00oTTJNmf7+HrH8CZK8LkvsUOZ3mPkLValSQVCViyrs2LIVOCWgxPv+38P2GTUyGi5ufLIOk8Y1AzkcVdMgaVS9ubkZ0+m0M3XH8hBrI6NHoKbpPOpKJ2QaRolP3WX1kZXnrHBZmTpYKsUx70g7M4reVmaFdSAwK42S3j4Nk03t8B6B2c7OTuuw7+DA85KBLE9HefJViwR8/i54XFq1xbTYdpRfgnPFl02llY7PcP3128tB+XEH+aw9CnR5HXm6WX/ANOfpX6pUqSCoykUV7+QzwOEAwzusEmiKONjhZSNh1yczGA7OSnmYJeqUt7a22o9Ai/yUOC2gOLmHjQBTyd+JZUAjpvzP0nMe1ohp+YoefWfTm55GaYqM1xxM6jeZHdd3lqGjftTDwUsJzLk+nvesDYmZFJPjdVICoNRDbZGGndczISuij28LkYGAUpmPx+N2b6WI/eXxAlNer87IsayyAQpBkOvhdSfJlrIzv57OrL6kgp8qJakgqMpFkVJH5B+f/onIT2HPRr0UTid5p5rp0Hd/Vr4yHWgYtre3Y21tLTY3N9sR89LSUmcaw1khnzLgieKeHgGk8l4KVyovXi+BjBKT4oaU4R3cZIyKG+zSNQIpppUZRC8TGVkyCNw7x1fieR4JSJk2gbuXo9g/Ljn3MutjIgg0eGI788Y6Y9llK7zY1ofDYWdVHMvcgdhoNDrABmlKTHsacZdrbxPOUGaAkcxUSai/13nW3pR2NqgqTW1mfUKVq1sqCKpyUcQ7boKZzKD3dVp9afjo2DszxslRbKabJBthun5O3RMAPfXUU+0GjvSroHF1/bVfCw/Y5PNZmWT7vpSmFDIjVSpTBzL89vxnjI7HQ/DCVT9uxHldcThwcZ8RhaXfEMucoDhLbzDoOtx62WXGV98ObJQ/7oo9q4xZrwR+2trB6136KC0vN300vUowrS0lWA/aaZr5WFxcjJWVlTafitt3xCaQ9Py5sLwcqGZhs7iod8RBB23Fyb4nAz/+UV4qCKoSUUFQlYsoWQfFe3RSdsq/BI7cWPhHI1aKmBWNaHVNaUfkUwOUDBhwlCr/nyeffLI1LJxGKDEr0kH3xRIxv1lZ9pV5BoI8Pl4rSTaaj+hfDs8pIDfuJZA0Sx9nS0ph2X4IELnqiWEzhoKMSMkouj8M25szC2zn80z7OlDweMUSuT9NVkZyZCawFhBSOG6zwHjG43FbdpnfDsWBKwF5Fl5CZ+ssrw7wueM0N6D0emQ+srL18sr+V7l6pYKgKhdFfKTlHaOHKRmJiO40AR2MdY/GJmIf9Php3RKm4x1n1gFLSgZga2sr1tfX4+zZs50znHRfnTbzyTSls75Lnbr0JtBgHH0d+6x7GdOTCcvGV0jNkszYOQBxAFHS3wGXgxqfTtL1UjvM9MrKocQA6X92Th2/S0bZpzb1IcAgMFMbm7WRoPTjzuOuewZyyGZ5nrNVWV6GvkiAYfW9tLQUe3vdXd9LeWB+VYcOtPVcxj7zEFs+z3ZSpUpEBUFVLoJkxss7f+/EfNRXGgnrfuY0nN1Xx8npgQzkZEaWvx2YqOPd3t6OjY2NWF9fj+l0esDoZtS9s0KZXsyP6zSrfF1KcWRhZwEVhisBWk+3xLKVdCEQ8Li9HjJ2idNdpQ0lfSm/p1Vi7pi2A2s9T7DCOHw7hyzvGWibp9xLYJ7i6YgZEhuTlSVBF/NA/bLwWZp+XUBI/7mfkvTz8mUZeD/iDJ3fZ1+TgdEM9Fa5+qSCoCrPWLKOhvfUIRGoeAeVxZGFKxlM/VaHqdFwKW5JiR1wUZybm5uxsbHR+gB5R+q7+upaRt1nq388vr6pmj6jV8rDPCPgEvvRZ3izvGT58XqkZNOnmaiM3d9ob2+vrRcHTSVmpq88SiA2Y7O83BiO/7M8ZboRePWBDWdFM+DIZ0pnepXyTodxd6zO0ijpwPjEUgm0Sn/qQcbHwRLZ3qw/8D7G81TKc5WrUyoIqnJRRB1RnyM0Oye/T3EK22lwPiPnSd7LmKUsrQxIZQZHHbGmwbhzswwEn+OJ16Wdd31EXwJrJcDn+vn1DMjwXiYanXt5+WngjD9jRBx4lNLjdIfnzZ2DPU46zOp7a2urUzcZ8MzaKMOWQIy3EWeWsrLsA/kZYHLg4GXuU1kCBAJXzKMDRMbrDvWldkK9NIjJdPC2kJUbgYyAUNPsO2r7+0CWZ2FhobPwQCCIAIr9Q4l19v9VqkRUEFTlIkjWwfu8PDsvPSNnx4iDqzycNdJ9xqHON1sqrDhd3EhnTr80GtPptF0Grb1gvCP1jpdlQiftrJxYhs749AGgLL9ZXvsMXBY+S9ufp/6sY+pVAkIOpJxV4W8HphlAlchXaxYAYr1k+Z63bJzxK4EJheljJbwssutZOXnaTEOO1A5Y+LxAaLbiy9N20Ob5zcC84sjSGA7Pbxzqm0xSptNp+9HGkeobNK3H67rnYTOfvCpVJBUEVbmoQmPvo1OCk+yeAyafCiOY8Dj1vwR8uPW/G4MsrAxqdiCn9KNx8E8JxFFXGdOMKZB+JR39t8fvYK3EjpWmYnxJOcV1Y1lm+9eUQFEJoNEPhaDS06Ievj+R4mmapt2lm/qXJGPVvCwVhgyIgHAJfHm6Wf32sUMOkt1BWvXL8uAeQVlcHgcZrhL4ysqZZS1d9H542xF4VHly9ZqXSwnkEwg54OGqOAElgiPF19cHVLm6pIKgKs9IMiCSMRgOUNxAOxAo+Q0509IHtrwjVcfIezQEbgz4zSmH7KM4lB8u6dXvLHzJ76U0Au9jVvo69sx4ebwOfjKdIqJjtMim9T2T5a2ki4vnKWtzYqUUP415Ft7Lg6AmAyK6VtpQsQR0Mn1ZBhmgJeDg8wQvpSktByqs04jo7P0T0V2lRt8f6uh1keWZYfXulhge6p3t/ZOVZTaI4BSds0EERRxQKXxWJ1WuTqkgqMozlsxAzQNoSvecQfGpsiwdXeO3d8DD4fndcbnJXcS+3447Y2adLuN2fxh9BLaWlpZiaWmpA74Y3yyds5G4sykeNmNnGHcJKJXiLMXPfOi6Rv8uJWBWYkG8Xv2ZDGhERId9oHHPgE32fMko9k2n9DFafMbroJR3Z8/4vL8Dfi9rA5k/lcdL8EKAlW0o6H5c1KOPVXGgpDh8i4Esv7zm6Wf9RN90ehZHZYOubqkgqMozkpLRyzqvzGcm69S9E+Oo0Z+NyA9qlW7uu8FdpLmc2vegiTi4ezBHmlqCv7Oz02F7HAAtLS3FaDQ6ABAyA+fgi0aLUx0SP2Czz7Aq/j4wkOlHNiozomSQMpbE42J6jJ/POij2fW1oQEvAz8vWyygDWtSzBFLZNlhvGRDKyszveZrOYpV8iXxlFJ9jufrHp3YVl4TtLNvcMCvTkm4ZCI+IjkOz3nPfxJH6EJzxPwcmfWwyw3j4KlUqCKryjCXrhOgwyx1sM4DEOJxd6et0S+EkbgC2t7fbsG4wCJQygyVgo3A6a0mrVhYWFjqAh1NhHO3Sh0HXpA+Nn+uS+dlQCFYyoZEsTcEpryVmQve9/CTZRn6UDMgxTs+zjsFwZqLElpRYrHnFgVnJyGd59LZcChfRLScadM+TwvLd0H+CR68vB1IOVKkTV1dm6bsfUok5IRDrA2S8JiZW5+w5a8W+pMT+eD+zu7sb0+n0wJQ0QRdXbJbyU+XqkQqCqjwjYcfvh4BmtP08U19+rIazSJ5+yehmI1MCoRILQLZI8RDMUX9Nq0lvHpZKNqs0Ko7o+thQMtCTGRPGO+t6nzjQcWPo0yPusyLDxjJykELDT2d1SQl88b6zGs7EOEPjenjds732pZvpod9ksbLn+8TL2kHKLGZK7VDpZm1GdcUyZ/nw2dLyf087A0t8hu1abA/Dqg61k7RWXypunpWWMci+Esz7lNJO8gRDpZVxVa4eqSCoyjOWrFN0BicDPrPu06nR2ROl4Z2j7ntcEQeNtq5lhoVLqCPigD4ERuxYHcj10e4+Qi4BmeyZUvm7cfRwDvxotGQAM6N4IeAkM9qZvv6/BGjdh4MGnOUhRkHMhi8P1zfbTKbbLEaN3xmomldKwKekRwbalc+MFXNmRWDCgRKvKc3MQT57v1UvDia8narcM5BVYo0cdPvUmPclpQGUv7e8l4H7KleXVBBU5aLIhYIcNx5Z5+Rz+jSA6rwzY6tO1c8P4mjYR8Kuj8dd0klhfQVKlkcaGe/sPQ8u87I/7gPF+vF4+N8NQcYmKB7PQ1aPWX0RcPnGkdmz1J3GmuHZFgiWNOVB/bP4HUC64e4zjrOAXhZnVhcl0DUvuMqAMePnb6+TEpj1Z7LwpTbFdDJ/o4g4wPh4fFnZEdzQR8gBkLPK2WAqa6NVrk6pIKjKM5IM1PgobBaocXCUgQh1kNwptmRw5bSc7YNCZqPvo06Yfgd9ZeB56JPMXyMzRoynxED4NWdi5qm/0nLyDPjoP+8zLgeELG/XyxkIXvdwKjc3qhRNTSpPg8GgnVLxdunlo/vetrK6YTllYJdxlsopY+GyZxgmA71+3XV2oJrp6Xn090TXsm0jvPxYLtk+RayzzH9IYbJ2U2JySqAnY2jF3Oqj6bQSkKxy5UsFQVWetpTm3bMpIy0V905L1/RdGrlx9RVHlOpUNX3FVSY0sNw5lh2rL13n9FmfZJ16yaDx241T33Ol0fAs8ZUzJZYhyw9H8H1GwUFiaeWedO5jFzKwyrhKRsoNN+tDcXHqRNe8DKkrV/HxGZaH12spLs9/H9PWF18GbEvAjDr65qIcZLiTtEBLtvKOeaffjsKpfFwvglcyQARJDKPfDOtgZWdnp5NnMkm6Jh35/m9vb7fPMn7Wd2lfoypXtlQQVOVpSWlZOL/H43GMRqMYjUada3Ig5kdOx/qv37yu39kolJ0ZHZi9Y88YATfg7uCte06/Z8xINmqV0FBdiEMmQRvjLDEPT0f8WebTjQPBBoGqswcM72Au88ViWGekCG76AJqDHe0LpTQdPM8qB5aHs1YZ6MrYn+xZTu3NMrwEka6nnudUIMvbnaB9MECQR8CpPGS7LPtZciwHAgzpxfxTFzlEk41hXbku29vb7e7f3j5YLnTAdhYxY6MFrvRdnaWvLqkgqMoFi5gbByi+N47/10fgyYEQP0zDPxzlEZxExAFWgkyFd6BkmRTemSzG4ywRwU6JzaE465ExH4yb4sCLYTJg5PnM7jnjQX1Kec7agqfvOmYMlzNoGpVn4sY0Y0SydDJ20IFCnxB4Zsyd55d5clDgYKfEbDlI87SpV6arL78nkzMY7DOfBCOsb4I1jzNif0k9j5NxQCTwRMBK8M9yzJid0m8OUnZ2dmI6nXbqQCDGpzQVh5bO+5So/nPvr9KKzSpXnlQQVOWCROCELFAJBGUfsTxZeF5Th+0f7hvD0W1mGAmMOB3HvHBkTFBEI+R+H+x0ffScgRU3AvMY4ez5bBqnFJfrzPAef5ZmBqJYtll8DhoYro/JoL5Mo/ScgzWG5RQOy0LXsrr0fGU6Uhdnu7IyLZVvVi7Z9QxIlsqF74A+AgIOdDIm1f9zHx0NCgiIWIb062HcGfMjMOthuI9WCQSxXAjMs/adrQrc29uL8Xh84N1lm3XAX1eNXR1SQVCVuYXsDIEPp7scBI3H4860mDNBzhjpWkS0YRR+NBq1tH/EfufI0a1PcfE6WSKJT5Fxjx+PU/+9Iy2BI+nYN+3hjAGFnXoGdpzhyZ7N9M4AlsK4cczidaOUSQYu3NhmIKoUtpRGlh8ZW07JcHqlZEC9nrJ7pXJgfH1sYKmcSvU8D5PkU5e87/G4fxJBQwb02D4z8JX54HFHaIoDHO0RRKCS+RbpP1kcDlyy946gRrqJdWJfwAGGs8iaGqvTY1e2VBBUZaawkyBoIZDJpr+WlpZaEEQwNBwOD/gD+fMRcYAF0rMcRWZTVAJN2QiyNNWlMHrW6XI3gIzT09B/fisepul6Z78j4sAon9dLQsOYgRUyBp4ndzSlTs6yZXH6sz5l4uHJkHmdeTn6t+tBo82NLAmeS6Axy3MWlv5nJWCbgapMnEEs6URdyPI4OPOpHteRPjKKl0yMG3ym4/ljPunAnJULdfINEKlnHwgSkFV/QB00TT6dTjvT39PptH2f9fx0Oo2dnZ3Obu+6Np1OO32FrlUgdOVKBUFVeoXAgIDH/wvEuCP0ZDJpAZDuEwTpv0+XDQaDljWiE7YzJxkIcZBCg5QBIcVDA+LO0vzNa9m0E8vO2YEsTr8mIVWfPVt6Tvq7Yc2Msa8g4pRFRHfVDuPPJAMxmWHtk1J5lMCRMxxep7ymVVGz8sB4XVgnzoB4eWd6OgDgs6X6d335bOYDxJWVPvXEwYPH61NDBC1kRDzPpXxnmx36QKHEbtGXiO1I55mxfQsA6bqu6QgN9SkR5wdW0+k0ptNp249tb2+31wSaGG5hYSG2trbq9NgVKhUEVSlK5vScgSAyPs4SLS8vx/LycofpUbyKS4BHYTi64xJ6giBffZIxBz4qpjFk553FMa9PTQaMsnu83vdb/90wltLJAJaP1CNyZ9oMCNCAUUpTP/4sGR2fyikBD4+3FLakv085lgBnxD4Q6tNlVlr6dp1LDIyDplLcGQgqhXOH4wzsR3SPjBFT4875AsKMkzp4ugTJYtwc7AiYMB5nPz1+5rkEgrSKi4OVnZ2d2NnZaQGS0heAYb8hJkjMj/oiASHFo+foHzidTjvlV+XKkAqCqqSiDoZAhz4+7sejqS4CndFoFMvLy+0z2SnrDoLU8UTsL3V3NogddgZgMjCjPEV0qXlnhrIPyyT7fyHXS79pZDNWg/r26aLfpWkwBzP6nRnc0qg30yuLN4vPAcqs31k88zJTF6L3PM/NApRZeXu6DiBKbWRWOblvD+NVOGf4SjpRd68jvmv0WfI0HHx5PhXegXmW7+w5/c8GLeoXCGAEgLTSi++NltoLBDnzo/jZ/ygtAaUKhK4cqSCoSirqBAh+RqNRTCaTWF5eTp2ZsykugSBfGUYgNBwOW2BF50Tdo9OigyD3l1FH62ChDzBw+kB5Z9jsm+WUGUQHIRmoyeLOfCU8DjeEGbgrybyAoS9dibMvJSCUAaULmVbwOpz1PO9fSHkwP9l96uL5zYBKFlcJDDpo8Xset++mPBh0WTjlx9OKKLdZ6uZ15gwQn/F3UP43WXwESiUQVNprSvH4NhZiiDQFJmZHQIfTZ4PBoPUVImukaTH2Udvb2x3/I9ZFBUJXjlQQdIjluZp/HgwGB9gaX8ZOH5/xeNzx86HTojMxPkJUp+dOlcPhsO282Jn7Rm3ZERqepv92cBIRB3ao7lvKnhnhEtAqPV8Ky/990yF9TtEePpN52lYJDJSmNTxtH9Vnac4CM0xTcc5rfLKl0hlYyxgUT5+MC/9fCKhk+q6Hl2cW9ywQyWt6T8ji7OzspM/5O+Nx6v1smvMbFtI/hv5CfOf5rOcleydKZcVnm2Z/N2g5vatPKPkfUScx2yx7rURVODpGex/moHdra2tmHrL8VDlcUkHQIZazZ88+J+k2TRNbW1uxtbUVp0+ffk50qFKlSpUrSc6ePRvXXHPNc61GFZNBU+HpoZW9vb14+OGH4yUveUn87//9v+PYsWPPtUrPipw5cyZuvvnmqyrPETXfNd9Xh1xt+W6aJs6ePRs33XRTyvhVeW6lMkGHWIbDYXz1V391REQcO3bsqugwKFdjniNqvq82qfm+8qUyQIdXKiytUqVKlSpVqlyVUkFQlSpVqlSpUuWqlAqCDrmMx+P42Z/92RiPx8+1Ks+aXI15jqj5rvm+OuRqzXeVwynVMbpKlSpVqlSpclVKZYKqVKlSpUqVKlelVBBUpUqVKlWqVLkqpYKgKlWqVKlSpcpVKRUEValSpUqVKlWuSqkgqEqVKlWqVKlyVUoFQYdY3vOe98Tf+lt/K5aXl+O2226LP/mTP3muVbqo8nM/93MHDhr9+q//+vb+5uZm3HvvvXHttdfGkSNH4vWvf3186Utfeg41fnryyU9+Mr7zO78zbrrpphgMBvE7v/M7nftN08TP/MzPxI033hiTySTuvPPO+Ku/+qtOmCeffDLe8IY3xLFjx+L48ePxIz/yI3Hu3LlnMRcXJrPy/KY3velA3d9zzz2dMJdbniMi7r///njlK18ZR48ejeuvvz6++7u/Ox5++OFOmHna9WOPPRavfe1rY2VlJa6//vr4qZ/6qdjZ2Xk2szK3zJPnV7/61Qfq+0d/9Ec7YS6nPFe5cqSCoEMq/+k//ad429veFj/7sz8b/+N//I94+ctfHnfffXc88cQTz7VqF1X+zt/5O/H444+3n0996lPtvZ/4iZ+I//Jf/kv81m/9VnziE5+I//t//2+87nWvew61fXqytrYWL3/5y+M973lPev/d7353/PIv/3L86q/+anz605+O1dXVuPvuu2Nzc7MN84Y3vCE+//nPx0c/+tH48Ic/HJ/85CfjLW95y7OVhQuWWXmOiLjnnns6df8bv/EbnfuXW54jIj7xiU/EvffeG3/8x38cH/3oR2M6ncZdd90Va2trbZhZ7Xp3dzde+9rXxvb2dvzRH/1R/Nqv/Vq8//3vj5/5mZ95LrI0U+bJc0TEm9/85k59v/vd727vXW55rnIFSVPlUMq3fMu3NPfee2/7f3d3t7npppua+++//znU6uLKz/7szzYvf/nL03tPPfVUs7S01PzWb/1We+0v/uIvmohoHnzwwWdJw4svEdF88IMfbP/v7e01J0+ebP71v/7X7bWnnnqqGY/HzW/8xm80TdM0X/jCF5qIaP70T/+0DfPf/tt/awaDQfN//s//edZ0f7rieW6apnnjG9/YfNd3fVfxmcs9z5InnniiiYjmE5/4RNM087Xr3/3d322Gw2Fz6tSpNsx73/ve5tixY83W1tazm4GnIZ7npmmaf/AP/kHzT/7JPyk+c7nnucrlK5UJOoSyvb0dDz30UNx5553tteFwGHfeeWc8+OCDz6FmF1/+6q/+Km666aZ40YteFG94wxvisccei4iIhx56KKbTaacMvv7rvz5e8IIXXFFl8MUvfjFOnTrVyec111wTt912W5vPBx98MI4fPx7f/M3f3Ia58847Yzgcxqc//elnXeeLJQ888EBcf/318XVf93Xx1re+Nb785S+3966UPJ8+fToiIk6cOBER87XrBx98MG699da44YYb2jB33313nDlzJj7/+c8/i9o/PfE8S3791389rrvuunjpS18a73jHO2J9fb29d7nnucrlK/UU+UMo/+///b/Y3d3tdAgRETfccEP85V/+5XOk1cWX2267Ld7//vfH133d18Xjjz8e73rXu+Lv//2/H5/73Ofi1KlTMRqN4vjx451nbrjhhjh16tRzo/AlEOUlq2vdO3XqVFx//fWd+4uLi3HixInLtizuueeeeN3rXhe33HJLPProo/HOd74zXvOa18SDDz4YCwsLV0Se9/b24sd//Mfj277t2+KlL31pRMRc7frUqVNpe9C9wyxZniMifuAHfiBe+MIXxk033RSf/exn4+1vf3s8/PDD8du//dsRcXnnucrlLRUEVXnO5DWveU37+2Uve1ncdttt8cIXvjD+83/+zzGZTJ5Dzapcavm+7/u+9vett94aL3vZy+LFL35xPPDAA3HHHXc8h5pdPLn33nvjc5/7XMfP7UqXUp7py3XrrbfGjTfeGHfccUc8+uij8eIXv/jZVrNKlVbqdNghlOuuuy4WFhYOrBj50pe+FCdPnnyOtLr0cvz48fjbf/tvxyOPPBInT56M7e3teOqppzphrrQyUF766vrkyZMHHOJ3dnbiySefvGLK4kUvelFcd9118cgjj0TE5Z/n++67Lz784Q/HH/zBH8Tzn//89vo87frkyZNpe9C9wyqlPGdy2223RUR06vtyzHOVy18qCDqEMhqN4hWveEX8/u//fnttb28vfv/3fz9uv/3251CzSyvnzp2LRx99NG688cZ4xSteEUtLS50yePjhh+Oxxx67osrglltuiZMnT3byeebMmfj0pz/d5vP222+Pp556Kh566KE2zMc//vHY29trjcnlLn/zN38TX/7yl+PGG2+MiMs3z03TxH333Rcf/OAH4+Mf/3jccsstnfvztOvbb789/uf//J8dEPjRj340jh07Fi95yUuenYxcgMzKcyaf+cxnIiI69X055bnKFSTPtWd2lVx+8zd/sxmPx8373//+5gtf+ELzlre8pTl+/Hhn9cTlLj/5kz/ZPPDAA80Xv/jF5g//8A+bO++8s7nuuuuaJ554ommapvnRH/3R5gUveEHz8Y9/vPmzP/uz5vbbb29uv/3251jrC5ezZ882f/7nf978+Z//eRMRzb/9t/+2+fM///Pmr//6r5umaZp/+S//ZXP8+PHmQx/6UPPZz362+a7v+q7mlltuaTY2Nto47rnnnuabvumbmk9/+tPNpz71qeZrv/Zrm+///u9/rrI0U/ryfPbs2eaf/tN/2jz44IPNF7/4xeZjH/tY83f/7t9tvvZrv7bZ3Nxs47jc8tw0TfPWt761ueaaa5oHHnigefzxx9vP+vp6G2ZWu97Z2Wle+tKXNnfddVfzmc98pvnIRz7SfNVXfVXzjne847nI0kyZledHHnmk+fmf//nmz/7sz5ovfvGLzYc+9KHmRS96UfOqV72qjeNyy3OVK0cqCDrE8iu/8ivNC17wgmY0GjXf8i3f0vzxH//xc63SRZXv/d7vbW688cZmNBo1X/3VX9187/d+b/PII4+09zc2Npp//I//cfO85z2vWVlZab7ne76nefzxx59DjZ+e/MEf/EETEQc+b3zjG5umOb9M/p//83/e3HDDDc14PG7uuOOO5uGHH+7E8eUvf7n5/u///ubIkSPNsWPHmh/+4R9uzp49+xzkZj7py/P6+npz1113NV/1VV/VLC0tNS984QubN7/5zQcA/uWW56Zp0jxHRPO+972vDTNPu/5f/+t/Na95zWuayWTSXHfddc1P/uRPNtPp9FnOzXwyK8+PPfZY86pXvao5ceJEMx6Pm6/5mq9pfuqnfqo5ffp0J57LKc9VrhwZNE3TPHu8U5UqVapUqVKlyuGQ6hNUpUqVKlWqVLkqpYKgKlWqVKlSpcpVKRUEValSpUqVKlWuSqkgqEqVKlWqVKlyVUoFQVWqVKlSpUqVq1IqCKpSpUqVKlWqXJVSQVCVKlWqVKlS5aqUCoKqVKlSpUqVKlelVBBUpUqVKlWqVLkqpYKgKlWqVKlSpcpVKRUEValSpUqVKlWuSvn/JIsFw/4onzcAAAAASUVORK5CYII=\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "###5.2 Show Table of images"
+ ],
+ "metadata": {
+ "id": "o-to1VD8iosZ"
+ }
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "hotpoGa_YUmj",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 426
+ },
+ "outputId": "a20ca6a9-7e7b-4267-a95f-981e09def7ca"
+ },
+ "source": [
+ "df[::5][['filename', 'label',\"guess\",\"confidence\"]]"
+ ],
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " filename label guess confidence\n",
+ "0 00013615_052.jpg pos pos 0.984043\n",
+ "5 00019187_000.jpg pos pos 0.921424\n",
+ "10 00004533_014.jpg pos pos 0.877944\n",
+ "15 00016414_000.jpg pos pos 0.788136\n",
+ "20 00000087_000.jpg neg pos 0.693979\n",
+ "25 00000090_002.jpg neg pos 0.603835\n",
+ "30 00000093_002.jpg neg pos 0.545232\n",
+ "35 00004344_014.jpg pos neg 0.470473\n",
+ "40 00030279_000.jpg pos neg 0.370510\n",
+ "45 00000091_006.jpg neg neg 0.326562\n",
+ "50 00000073_007.jpg neg neg 0.169149\n",
+ "55 00000082_000.jpg neg neg 0.119252"
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " filename \n",
+ " label \n",
+ " guess \n",
+ " confidence \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 00013615_052.jpg \n",
+ " pos \n",
+ " pos \n",
+ " 0.984043 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 00019187_000.jpg \n",
+ " pos \n",
+ " pos \n",
+ " 0.921424 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 00004533_014.jpg \n",
+ " pos \n",
+ " pos \n",
+ " 0.877944 \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 00016414_000.jpg \n",
+ " pos \n",
+ " pos \n",
+ " 0.788136 \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 00000087_000.jpg \n",
+ " neg \n",
+ " pos \n",
+ " 0.693979 \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 00000090_002.jpg \n",
+ " neg \n",
+ " pos \n",
+ " 0.603835 \n",
+ " \n",
+ " \n",
+ " 30 \n",
+ " 00000093_002.jpg \n",
+ " neg \n",
+ " pos \n",
+ " 0.545232 \n",
+ " \n",
+ " \n",
+ " 35 \n",
+ " 00004344_014.jpg \n",
+ " pos \n",
+ " neg \n",
+ " 0.470473 \n",
+ " \n",
+ " \n",
+ " 40 \n",
+ " 00030279_000.jpg \n",
+ " pos \n",
+ " neg \n",
+ " 0.370510 \n",
+ " \n",
+ " \n",
+ " 45 \n",
+ " 00000091_006.jpg \n",
+ " neg \n",
+ " neg \n",
+ " 0.326562 \n",
+ " \n",
+ " \n",
+ " 50 \n",
+ " 00000073_007.jpg \n",
+ " neg \n",
+ " neg \n",
+ " 0.169149 \n",
+ " \n",
+ " \n",
+ " 55 \n",
+ " 00000082_000.jpg \n",
+ " neg \n",
+ " neg \n",
+ " 0.119252 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "summary": "{\n \"name\": \"df[::5][['filename', 'label',\\\"guess\\\",\\\"confidence\\\"]]\",\n \"rows\": 12,\n \"fields\": [\n {\n \"column\": \"filename\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 12,\n \"samples\": [\n \"00000073_007.jpg\",\n \"00000091_006.jpg\",\n \"00013615_052.jpg\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"label\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"neg\",\n \"pos\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"guess\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"neg\",\n \"pos\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"confidence\",\n \"properties\": {\n \"dtype\": \"float32\",\n \"num_unique_values\": 12,\n \"samples\": [\n 0.16914884746074677,\n 0.3265622854232788\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 25
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "###5.3 Show Histogram"
+ ],
+ "metadata": {
+ "id": "P9uso4o5pxXX"
+ }
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "RxNsG158YUaU",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 472
+ },
+ "outputId": "d2bba2ed-d7c6-4d9b-ad46-42b32230f7b9"
+ },
+ "source": [
+ "pos = df.loc[df['label'] == \"pos\"][\"confidence\"]\n",
+ "neg = df.loc[df['label'] == \"neg\"][\"confidence\"]\n",
+ "fig, ax = plt.subplots()\n",
+ "n, bins, patches = plt.hist([pos,neg], np.arange(0.0, 1.1, 0.1).tolist(), edgecolor='black', linewidth=0.5, density=False, histtype='bar', stacked=True, color=['green', 'red'], label=[finding, 'Negative'])\n",
+ "plt.xlabel('Confidence')\n",
+ "plt.ylabel('N')\n",
+ "plt.xticks(bins)\n",
+ "ax.xaxis.set_major_formatter(FormatStrFormatter('%.2f'))\n",
+ "plt.title('Confidence scores for different values')\n",
+ "plt.legend(loc=\"lower right\", fontsize=16)\n",
+ "plt.show()"
+ ],
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUZUlEQVR4nO3dd1gU1/s28Htpu4AUFRBQBARFLIm9oWIhmgiKseFXY4stsYsllti7MWqixpZYYuzdiN2Ixq7YFRUQUFFERYoobfe8f/iyP9ddEBTYwdyf69or2TNnzjwzLuzNVJkQQoCIiIhIggz0XQARERFRdhhUiIiISLIYVIiIiEiyGFSIiIhIshhUiIiISLIYVIiIiEiyGFSIiIhIshhUiIiISLIYVIiIiEiyGFSoSAkLC0OLFi1gZWUFmUyGXbt2Yc2aNZDJZIiKinrv/C4uLujZs2eB10n558mTJ+jQoQNKliwJmUyGhQsXFnoNUVFRkMlkWLNmjbpt8uTJkMlkGv0yMzMxevRoODk5wcDAAG3btgUAvHz5En369IG9vT1kMhmGDRtWeMUXMfwZpXcZ6bsAKnoiIiIwd+5cHD58GI8ePYKJiQmqVq2KTp06oV+/fjA1NS2wZffo0QORkZGYMWMGrK2tUatWLRw5cqTAlkf6N3z4cBw8eBCTJk2Cvb09atWqpe+SsrVq1Sr89NNPGDZsGGrUqIGyZcsCAGbOnIk1a9ZgwoQJcHNzg6enp54rzd6GDRsQFxfHMEWSIeOzfigvgoKC0LFjR8jlcnTv3h1VqlRBeno6Tp48ie3bt6Nnz55YsWJFgSz79evXMDMzw/jx4zF9+nR1u1KpREZGBuRyudZfuO9ycXFBkyZNNP4yJmmzt7eHj48P/vrrL73VEBUVBVdXV6xevVr9135mZiYyMzOhUCjU/Tp37oyTJ0/i4cOHGvPXq1cPRkZGOHnyZGGW/UH8/Pxw48aNXO2hLAj8GaV3cY8K5VpkZCQ6d+4MZ2dn/PPPP3BwcFBPGzhwIMLDwxEUFFRgy3/69CkAwNraWqPd0NAQhoaGBbZc0qZSqZCenq7xJV1Q4uLitP7NP0ZqaipMTExgYPBxR76NjIxgZKT5KzS7WuPi4lCpUqWPWt7bCnP7E+kbz1GhXJs7dy5evnyJP/74QyOkZHF3d8fQoUPV7zMzMzFt2jS4ublBLpfDxcUF48aNQ1pamsZ8Li4u8PPzw8mTJ1GnTh0oFAqUK1cOf/75p7rP5MmT4ezsDAAYNWoUZDIZXFxcAEDnOSpCCEyfPh1lypSBmZkZmjZtips3b+pcr4SEBAwbNgxOTk6Qy+Vwd3fHnDlzoFKp1H2yzlGYN28eVqxYoV6n2rVr48KFC1pj3r59G506dYKtrS1MTU3h4eGB8ePHa/SJiYnBt99+i1KlSkEul6Ny5cpYtWpVNltf0+HDh9GwYUNYW1ujWLFi8PDwwLhx4zT6pKamYvLkyahQoQIUCgUcHBzQrl07REREqPukpKRgxIgR6nX38PDAvHnz8O6OVplMhkGDBmH9+vWoXLky5HI5Dhw4kKf1WLRoESpXrgwzMzMUL14ctWrVwoYNG7Jdx6x/VyEElixZAplMprHH7N69e+jYsSNKlCgBMzMz1KtXTysoBwcHQyaTYdOmTfjxxx9RunRpmJmZISkpKdvlJiQkoGfPnrCysoK1tTV69OiBhIQErX5vn6OS9fk4duwYbt68qa41a/mRkZEICgpSt2d9VtPS0jBp0iS4u7tDLpfDyckJo0eP1voZ+djtn1XHli1bMGPGDJQpUwYKhQLNmzdHeHi4ul+TJk0QFBSE6Ohoda1ZP2e6VKlSBU2bNtVqV6lUKF26NDp06KBumzdvHho0aICSJUvC1NQUNWvWxLZt27IdW9d2flt256bt378fjRo1grm5OSwsLODr66v1sx8bG4tevXqhTJkykMvlcHBwgL+/v972IlHOuEeFcu3vv/9GuXLl0KBBg1z179OnD9auXYsOHTpgxIgROHfuHGbNmoXQ0FDs3LlTo294eDg6dOiA3r17o0ePHli1ahV69uyJmjVronLlymjXrh2sra0xfPhw/O9//0OrVq1QrFixbJc9ceJETJ8+Ha1atUKrVq1w6dIltGjRAunp6Rr9Xr16BW9vb8TExKB///4oW7YsTp8+jbFjx+Lx48daJ25u2LABycnJ6N+/P2QyGebOnYt27drh3r17MDY2BgBcu3YNjRo1grGxMfr16wcXFxdERETg77//xowZMwC8OUG0Xr166i8gW1tb7N+/H71790ZSUlKO5wfcvHkTfn5++OyzzzB16lTI5XKEh4fj1KlT6j5KpRJ+fn44evQoOnfujKFDhyI5ORmHDx/GjRs34ObmBiEE2rRpg2PHjqF3796oVq0aDh48iFGjRiEmJgYLFizQWO4///yDLVu2YNCgQbCxsYGLi0uu12PlypUYMmQIOnTogKFDhyI1NRXXrl3DuXPn0KVLF53r2bhxY6xbtw7dunXDF198ge7du6unPXnyBA0aNMCrV68wZMgQlCxZEmvXrkWbNm2wbds2fP311xpjTZs2DSYmJhg5ciTS0tJgYmKic5lCCPj7++PkyZP47rvv4OnpiZ07d6JHjx7Z/nsAgK2tLdatW4cZM2bg5cuXmDVrFgDA09MT69atw/Dhw1GmTBmMGDFC3V+lUqFNmzY4efIk+vXrB09PT1y/fh0LFizA3bt3sWvXrnzb/llmz54NAwMDjBw5EomJiZg7dy66du2Kc+fOAQDGjx+PxMREPHz4UP3vn9PPWUBAACZPnozY2FjY29ur20+ePIlHjx6hc+fO6rZffvkFbdq0QdeuXZGeno5NmzahY8eO2Lt3L3x9fXPcvrm1bt069OjRAy1btsScOXPw6tUrLF26FA0bNsTly5fVoat9+/a4efMmBg8eDBcXF8TFxeHw4cO4f/9+jsGM9EQQ5UJiYqIAIPz9/XPV/8qVKwKA6NOnj0b7yJEjBQDxzz//qNucnZ0FAHHixAl1W1xcnJDL5WLEiBHqtsjISAFA/PTTTxpjrl69WgAQkZGR6nlNTEyEr6+vUKlU6n7jxo0TAESPHj3UbdOmTRPm5ubi7t27GmOOGTNGGBoaivv372ssu2TJkiI+Pl7db/fu3QKA+Pvvv9VtjRs3FhYWFiI6OlpjzLdr6d27t3BwcBDPnj3T6NO5c2dhZWUlXr16JbKzYMECAUA8ffo02z6rVq0SAMT8+fO1pmXVsWvXLgFATJ8+XWN6hw4dhEwmE+Hh4eo2AMLAwEDcvHlTo29u18Pf319Urlw523pzAkAMHDhQo23YsGECgPj333/VbcnJycLV1VW4uLgIpVIphBDi2LFjAoAoV65cjts0S9Y2mTt3rrotMzNTNGrUSAAQq1evVrdPmjRJvPsr1NvbW+d6Ojs7C19fX422devWCQMDA411EEKIZcuWCQDi1KlTGtvgY7Z/1nbw9PQUaWlp6n6//PKLACCuX7+ubvP19RXOzs66No+WO3fuCABi0aJFGu0DBgwQxYoV09jm727/9PR0UaVKFdGsWTONdmdnZ42fUV3bWQjtn/vk5GRhbW0t+vbtq9EvNjZWWFlZqdtfvHih8/cISRcP/VCuZO0qt7CwyFX/ffv2AQACAwM12rP+onx3F32lSpXQqFEj9XtbW1t4eHjg3r17ea71yJEjSE9Px+DBgzV2GevaS7F161Y0atQIxYsXx7Nnz9QvHx8fKJVKnDhxQqN/QEAAihcvrn6fVXNWnU+fPsWJEyfw7bffqq/4yJJVixAC27dvR+vWrSGE0Fhuy5YtkZiYiEuXLmW7flnnQOzevVvj8NTbtm/fDhsbGwwePFhrWlYd+/btg6GhIYYMGaIxfcSIERBCYP/+/Rrt3t7eGudZ5GU9rK2t8fDhQ52HyT7Evn37UKdOHTRs2FDdVqxYMfTr1w9RUVG4deuWRv8ePXrk6mq0ffv2wcjICN9//726zdDQUOd2/Fhbt26Fp6cnKlasqLHtmjVrBgA4duyYRv+P2f5ZevXqpbE36d3Pb15VqFAB1apVw+bNm9VtSqUS27ZtQ+vWrTW2+dv//+LFCyQmJqJRo0Y5ftbz4vDhw0hISMD//vc/jW1haGiIunXrqrenqakpTExMEBwcjBcvXuTLsqlg8dAP5YqlpSUAIDk5OVf9o6OjYWBgAHd3d412e3t7WFtbIzo6WqP93S91AChevPgH/SLJGrt8+fIa7ba2thohA3hzX5Zr167B1tZW51hxcXE51pk1XladWb/wq1Spkm19T58+RUJCAlasWJHtFVLvLvdtAQEB+P3339GnTx+MGTMGzZs3R7t27dChQwf1CaIRERHw8PDQOtnzbdHR0XB0dNQKn1mXzr77b+Tq6vrB6/HDDz/gyJEjqFOnDtzd3dGiRQt06dIFXl5e2daXk+joaNStW1er/e3a3/43eLf2nMZ1cHDQOtzh4eHxQXXmJCwsDKGhobn+7H3M9s/yvs/vhwgICMC4ceMQExOD0qVLIzg4GHFxcQgICNDot3fvXkyfPh1XrlzROAfnfVfq5VZYWBgAqIPeu7J+h8nlcsyZMwcjRoxAqVKlUK9ePfj5+aF79+4ah69IOhhUKFcsLS3h6OiIGzdu5Gm+3P4Syu6qHVHAV8+rVCp88cUXGD16tM7pFSpU0HifH3Vm7QX55ptvsj334bPPPst2flNTU5w4cQLHjh1DUFAQDhw4gM2bN6NZs2Y4dOhQgV0B9e4eibysh6enJ+7cuYO9e/fiwIED2L59O3777TdMnDgRU6ZMKZB631aQ9/b5UCqVClWrVsX8+fN1TndyctJ4/zHbP0tB/JwFBARg7Nix2Lp1K4YNG4YtW7bAysoKX375pbrPv//+izZt2qBx48b47bff4ODgAGNjY6xevTrHE6qB7H+HKJVKjfdZ22PdunU6A8fboX3YsGFo3bo1du3ahYMHD2LChAmYNWsW/vnnH1SvXj3X606Fg0GFcs3Pzw8rVqzAmTNnUL9+/Rz7Ojs7Q6VSISwsTOPmVk+ePEFCQoL6Cp6CkDV2WFgYypUrp25/+vSp1l+Obm5uePnyJXx8fPJl2VnLyynQ2drawsLCAkql8oOXa2BggObNm6N58+aYP38+Zs6cifHjx+PYsWPw8fGBm5sbzp07h4yMDPVJvu9ydnbGkSNHkJycrLFX5fbt2+rpOcnrepibmyMgIAABAQFIT09Hu3btMGPGDIwdOzbPl9k6Ozvjzp07Wu25rT2ncY8ePYqXL19q7FXRtayP5ebmhqtXr6J58+YftFchPz5HuuS1FldXV9SpUwebN2/GoEGDsGPHDrRt2xZyuVzdZ/v27VAoFDh48KBG++rVq987ftZen4SEBI1Lv9/d4+fm5gYAsLOzy9X2cHNzw4gRIzBixAiEhYWhWrVq+Pnnn/V6vx7SjeeoUK6NHj0a5ubm6NOnD548eaI1PSIiAr/88gsAoFWrVgCgddVM1l+P+XWWvy4+Pj4wNjbGokWLNP5S1HXr9U6dOuHMmTM4ePCg1rSEhARkZmbmadm2trZo3LgxVq1ahfv372tMy6rF0NAQ7du3x/bt23UGmqz7xWQnPj5eq61atWoAoN6l3r59ezx79gyLFy/W6ptVR6tWraBUKrX6LFiwADKZDF999VWOdeRlPZ4/f64xzcTEBJUqVYIQAhkZGTkuR5dWrVrh/PnzOHPmjLotJSUFK1asgIuLywffs6RVq1bIzMzE0qVL1W1KpRKLFi36oPFy0qlTJ8TExGDlypVa016/fo2UlJQc5//Yz1F2zM3NkZiYmKd5AgICcPbsWaxatQrPnj3TOuxjaGgImUymsRckKipK68omXbICyNvni6WkpGDt2rUa/Vq2bAlLS0vMnDlT52cqa3u8evUKqampWsuwsLDQuiycpIF7VCjX3NzcsGHDBgQEBMDT01PjzrSnT5/G1q1b1Xft/Pzzz9GjRw+sWLECCQkJ8Pb2xvnz57F27Vq0bdtW570X8outrS1GjhyJWbNmwc/PD61atcLly5exf/9+2NjYaPQdNWoU9uzZAz8/P/Xl0CkpKbh+/Tq2bduGqKgorXne59dff0XDhg1Ro0YN9OvXD66uroiKikJQUBCuXLkC4M1loseOHUPdunXRt29fVKpUCfHx8bh06RKOHDmiM4xkmTp1Kk6cOAFfX184OzsjLi4Ov/32G8qUKaM+ubR79+74888/ERgYiPPnz6NRo0ZISUnBkSNHMGDAAPj7+6N169Zo2rQpxo8fj6ioKHz++ec4dOgQdu/ejWHDhqm/IHKS2/Vo0aIF7O3t4eXlhVKlSiE0NBSLFy+Gr69vrk/QftuYMWOwceNGfPXVVxgyZAhKlCiBtWvXIjIyEtu3b//gm7m1bt0aXl5eGDNmDKKiolCpUiXs2LEjz1/cudGtWzds2bIF3333HY4dOwYvLy8olUrcvn0bW7ZswcGDB9/7uICP+Rxlp2bNmti8eTMCAwNRu3ZtFCtWDK1bt85xnk6dOmHkyJEYOXIkSpQoobVHw9fXF/Pnz8eXX36JLl26IC4uDkuWLIG7uzuuXbuW49gtWrRA2bJl0bt3b4waNQqGhoZYtWoVbG1tNf4YsLS0xNKlS9GtWzfUqFEDnTt3VvcJCgqCl5cXFi9ejLt376J58+bo1KkTKlWqBCMjI+zcuRNPnjzRuJyaJEQflxpR0Xb37l3Rt29f4eLiIkxMTISFhYXw8vISixYtEqmpqep+GRkZYsqUKcLV1VUYGxsLJycnMXbsWI0+Qui+dFOIN5d6ent7q9/n9vJkIYRQKpViypQpwsHBQZiamoomTZqIGzduaF36KMSbyxrHjh0r3N3dhYmJibCxsRENGjQQ8+bNE+np6TkuW4g3l45OmjRJo+3GjRvi66+/FtbW1kKhUAgPDw8xYcIEjT5PnjwRAwcOFE5OTsLY2FjY29uL5s2bixUrVmgt421Hjx4V/v7+wtHRUZiYmAhHR0fxv//9T+sS61evXonx48ert7+9vb3o0KGDiIiI0Fj34cOHC0dHR2FsbCzKly8vfvrpJ41LqbPW8d1LhPOyHsuXLxeNGzcWJUuWFHK5XLi5uYlRo0aJxMTEHNc1p2VHRESIDh06qLdxnTp1xN69ezX6ZF2Wu3Xr1vcuJ8vz589Ft27dhKWlpbCyshLdunUTly9fzvfLk4V4c4nunDlzROXKlYVcLhfFixcXNWvWFFOmTNHYNh+7/bPbDlmf67fX6+XLl6JLly7C2tpaAMj1pcpeXl46b0mQ5Y8//hDly5cXcrlcVKxYUaxevVrnNtT1MxoSEiLq1q0rTExMRNmyZcX8+fN1/txnrWvLli2FlZWVUCgUws3NTfTs2VNcvHhRCCHEs2fPxMCBA0XFihWFubm5sLKyEnXr1hVbtmzJ1XpS4eOzfoiIiEiyeI4KERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJVpG+4ZtKpcKjR49gYWGRbw+2IiIiooIlhEBycjIcHR3fe4PGIh1UHj16pPXgLiIiIioaHjx4gDJlyuTYp0gHlaxbbz948ED9CG8iIiKStqSkJDg5OeXqERpFOqhkHe6xtLRkUCEiIipicnPaBk+mJSIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyTLSdwGUv7q1aIHE6Gh9l5EnVs7OWHfokL7LICIiCWJQ+cQkRkdjz927+i4jT9rouwAiIpIsHvohIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJ0mtQUSqVmDBhAlxdXWFqago3NzdMmzYNQgh9lkVEREQSYaTPhc+ZMwdLly7F2rVrUblyZVy8eBG9evWClZUVhgwZos/SiIiISAL0GlROnz4Nf39/+Pr6AgBcXFywceNGnD9/Xp9lERERkUTo9dBPgwYNcPToUdy9excAcPXqVZw8eRJfffWVzv5paWlISkrSeBEREdGnS697VMaMGYOkpCRUrFgRhoaGUCqVmDFjBrp27aqz/6xZszBlypRCrpJIW7cWLZAYHa3vMvLEytkZ6w4d0ncZRP9pVWtXRWREpL7LyBNXN1dcv3Bdb8vXa1DZsmUL1q9fjw0bNqBy5cq4cuUKhg0bBkdHR/To0UOr/9ixYxEYGKh+n5SUBCcnp8IsmQgAkBgdjT3/f09gUdFG3wUQEdJN0pEyNEXfZeRJ+qF0vS5fr0Fl1KhRGDNmDDp37gwAqFq1KqKjozFr1iydQUUul0Mulxd2mURERKQnej1H5dWrVzAw0CzB0NAQKpVKTxURERGRlOh1j0rr1q0xY8YMlC1bFpUrV8bly5cxf/58fPvtt/osi4iIiCRCr0Fl0aJFmDBhAgYMGIC4uDg4Ojqif//+mDhxoj7LIiIiIonQa1CxsLDAwoULsXDhQn2WQURERBLFZ/0QERGRZDGoEBERkWQxqBAREZFkMagQERGRZDGoEBERkWQxqBAREZFkMagQERGRZDGoEBERkWQxqBAREZFkMagQERGRZDGoEBERkWQxqBAREZFkMagQERGRZDGoEBERkWQxqBAREZFkMagQERGRZDGoEBERkWQxqBAREZFkMagQERGRZDGoEBERkWQxqBAREZFkMagQERGRZDGoEBERkWQxqBAREZFkMagQERGRZDGoEBERkWQxqBAREZFkMagQERGRZDGoEBERkWQxqBAREZFkMagQERGRZDGoEBERkWQZ6bsAIioc9x4+RBsPD32XkSf3nz1DWRsbfZeRJ1bOzlh36JC+y/jkdWvRAonR0fouI88ynjwEWui7iqKFQYXoP0KekYE9d+/qu4w8qWlsjD3x8fouI0/a6LuA/4jE6Ogi93kGgKoKY32XUOTw0A8RERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUmW3oNKTEwMvvnmG5QsWRKmpqaoWrUqLl68qO+yiIiISAKM9LnwFy9ewMvLC02bNsX+/ftha2uLsLAwFC9eXJ9lERERkUToNajMmTMHTk5OWL16tbrN1dVVjxURERGRlOj10M+ePXtQq1YtdOzYEXZ2dqhevTpWrlyZbf+0tDQkJSVpvIiIiOjTpdc9Kvfu3cPSpUsRGBiIcePG4cKFCxgyZAhMTEzQo0cPrf6zZs3ClClT9FApEVHu3Hv4EG08PPRdRp5YOTtj3aFD+i4jT8JfPENVhbG+y8iz51Dqu4QiR69BRaVSoVatWpg5cyYAoHr16rhx4waWLVumM6iMHTsWgYGB6vdJSUlwcnIqtHqJiN5HnpGBPXfv6ruMPGmj7wI+gLK8DUJbxOu7jDwz/t0YgErfZRQpej304+DggEqVKmm0eXp64v79+zr7y+VyWFpaaryIiIjo06XXoOLl5YU7d+5otN29exfOzs56qoiIiIikRK9BZfjw4Th79ixmzpyJ8PBwbNiwAStWrMDAgQP1WRYRERFJhF6DSu3atbFz505s3LgRVapUwbRp07Bw4UJ07dpVn2URERGRROj1ZFoA8PPzg5+fn77LICIiIgnS+y30iYiIiLLDoEJERESSxaBCREREksWgQkRERJLFoEJERESSxaBCREREksWgQkRERJLFoEJERESSxaBCREREksWgQkRERJLFoEJERESSxaBCREREksWgQkRERJLFoEJERESSxaBCREREksWgQkRERJLFoEJERESSxaBCREREksWgQkRERJLFoEJERESSxaBCREREksWgQkRERJLFoEJERESSxaBCREREksWgQkRERJLFoEJERESSxaBCREREksWgQkRERJLFoEJERESSxaBCREREksWgQkRERJLFoEJERESSZaTvAoiISL/uPXyINh4e+i4jTzKePARa6LsKKgwMKkRE/3HyjAzsuXtX32XkSVWFsb5LoELCQz9EREQkWQwqREREJFkMKkRERCRZDCpEREQkWQwqREREJFkMKkRERCRZDCpEREQkWXm6j4qBgQFkMlmOfWQyGTIzMz+qKCIiIiIgj0Fl586d2U47c+YMfv31V6hUqo8uioiIiAjIY1Dx9/fXartz5w7GjBmDv//+G127dsXUqVPzrTgiIiL6b/vgc1QePXqEvn37omrVqsjMzMSVK1ewdu1aODs752d9RERE9B+W56CSmJiIH374Ae7u7rh58yaOHj2Kv//+G1WqVCmI+oiIiOg/LE+HfubOnYs5c+bA3t4eGzdu1HkoiIiIiCi/5CmojBkzBqampnB3d8fatWuxdu1anf127NiRL8URERHRf1uegkr37t3fe3kyERERUX7JU1BZs2ZNAZVBREREpI13piUiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyZJMUJk9ezZkMhmGDRum71KIiIhIIiQRVC5cuIDly5fjs88+03cpREREJCF6DyovX75E165dsXLlShQvXlzf5RAREZGE6D2oDBw4EL6+vvDx8Xlv37S0NCQlJWm8iIiI6NNlpM+Fb9q0CZcuXcKFCxdy1X/WrFmYMmVKAVdFRPTfkqRUoqrCWN9l5MlzKPVdAhUSvQWVBw8eYOjQoTh8+DAUCkWu5hk7diwCAwPV75OSkuDk5FRQJRIR/ScoTAxxY0yGvsvIE+PfjQGo9F0GFQK9BZWQkBDExcWhRo0a6jalUokTJ05g8eLFSEtLg6GhocY8crkccrm8sEslIiIiPdFbUGnevDmuX7+u0darVy9UrFgRP/zwg1ZIISIiov8evQUVCwsLVKlSRaPN3NwcJUuW1GonIiKi/ya9X/VDRERElB29XvXzruDgYH2XQERERBLCPSpEREQkWQwqREREJFkMKkRERCRZDCpEREQkWQwqREREJFkMKkRERCRZDCpEREQkWQwqREREJFkMKkRERCRZDCpEREQkWQwqREREJFkMKkRERCRZDCpEREQkWQwqREREJFkMKkRERCRZDCpEREQkWQwqREREJFkMKkRERCRZDCpEREQkWQwqREREJFkMKkRERCRZDCpEREQkWQwqREREJFkMKkRERCRZDCpEREQkWQwqREREJFkMKkRERCRZDCpEREQkWQwqREREJFkMKkRERCRZDCpEREQkWQwqREREJFlG+i6AqCgKf/EMVRXG+i4jT5LSMlhzISiKNT+HUt8lEGWLQYXoAyjL2yC0Rby+y8gT49+Ncb9Phr7LyBPWXDiMfzcGoNJ3GUQ68dAPERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJFoMKERERSRaDChEREUkWgwoRERFJll6DyqxZs1C7dm1YWFjAzs4Obdu2xZ07d/RZEhEREUmIXoPK8ePHMXDgQJw9exaHDx9GRkYGWrRogZSUFH2WRURERBJhpM+FHzhwQOP9mjVrYGdnh5CQEDRu3FhPVRGR1BU3KQ5LY0t9l6GTcWljZJhn6LuMPGHNhaco1u1o54jU1NRspxsaGsLY2LjAlq/XoPKuxMREAECJEiX0XAkRSVFdm7ro4NIBHtYeMDIwggwyfZek7XMAxfRdRB6x5sJTBOs2qmmEyMjIHPvI5XLY2NjA0jL//4CQTFBRqVQYNmwYvLy8UKVKFZ190tLSkJaWpn6flJRUWOURkZ7VtamLcdXGwaGEA2QK2ZsD1xLMKbIXMojiQt9l5AlrLjxFsW6TlyZwdXXVOU0IgYyMDCQmJiImJgYA8j2sSCaoDBw4EDdu3MDJkyez7TNr1ixMmTKl0Grq1qIFEqOjC215+eHxw4f6LoGoQHRw6fAmpFjKJBlQ1GSQ0G/WXGLNhacI1m1gYACFQpHtdFNTU1hYWODhw4d49uzZpxlUBg0ahL179+LEiRMoU6ZMtv3Gjh2LwMBA9fukpCQ4OTkVWF2J0dHYc/dugY1fEGoW4HFCIn0pblIcHtYeb/akSDmkEP1HyWQyWFlZISYmBhkZGfl6zopeg4oQAoMHD8bOnTsRHByc7a6lLHK5HHK5vJCqIyKpsDS2hJGBEe/8RCRhWeFEqVR+OkFl4MCB2LBhA3bv3g0LCwvExsYCAKysrGBqaqrP0ohIYmTg3hQiKZPJCuYHVK9/nyxduhSJiYlo0qQJHBwc1K/NmzfrsywiIiKSCL0f+iEiIiLKDo/4EhERkWRJ4qofIqL8MKjPIDx+/li/RSgBGOauq0NJByz+fXGBlHHuxDkc2HkA1y5cw/Onz5Geng5La0u4ebjBq5kXvmr/FYqXLF4gy86LNnXb4PHDx9h9djccnRzV7f079MelM5ewbOsy1GxQU48VFn3ZbeOigkGFiD4Zj58/xv1W9/VdRu7ty/8hE+ITMH7AeJz/9zwAwNHJETUb1ISpmSmexz3HtYvXcP7f81g+bzmWbFqCKjV032CTSCoYVIiIPhEvk16iT9s+iI6Ihou7C8bNHYfqdatr9ElPS8ferXux4ucVeBb3TE+Vvt+UX6Yg9XUq7Evb67sU0jMGFSKiT8RPP/6E6IhoODo54vddv8OquJVWHxO5Cdp90w7eLb2RnJishypzhwGFsjCoEBF9Ah5GP8TBXQcBAMMmDdMZUt5W0rYkStqWBACkpKTg4MGDOH3sNCJCI/D0yVMAQGnn0mj8RWN0+74bLKwstMZ4+9yHsFth2PT7Jty9dRdJCUka55bcu3sPK+atwMXTF5H6OhWlnUvDr5MfuvTtkm19OZ2jkpmZid1bdiPoQBDu3b2HjPQMlHIohQbNGqD7gO6wc7DTGq926doAgAsxF7Bv+z5sXrUZkXcjIVfIUadRHQwePxj2pe0hhMDWNVuxa8MuPIh8ALlCjoY+DTHkxyEoYaP7gbnREdFYv3w9zp88j6exT2FsYowKlSqgbde2aNW+lc55EuIT8PuC3xF8IBjxz+JR0rYkmnzZBP1G9MPPk35G0NYgTJw/Ea0DWqvnefH8BQ7uOogzwWcQFRaF50+fw8jICGXLlUVzv+bo3Lsz5Ir33xRVpVLha6+v8ej+I/yx+w98Vusznf1mj52N7X9uR69ve2HVH6veO25B4VU/RESfgJNHTkKpVMLCygKNWzTO07xhd8Iwc/RMXD1/FSXtSqLRF41QrU41PHvyDKsXrUaPVj2QEJ+Q7fzrl6/HyG9HIiUlBfWb1EeN+jVgYPjm6+XK+Svo6dsTR4OOophlMXi39IaNnQ1+m/0bxn03Ls/rmZ6WjqHfDMXsGbNx9+ZdfF77c3i39EZ6ejo2r9qMri264vb129nOv3jWYkwNnAozczM0aNoAClMFDu0+hD5t+yApIQnjvh+HX6f/CptSNqjXpB4MDQ0RtDUIgzoPQkZ6htZ4R/4+gq4tumLn+p0wNjZGg2YN4PmZJ25fv41JQyZhauBUrXmePXmGXq17YfOqzUh9lYqGPg1RsWpF7Nu+D71a90JKcorO2s8En8HPE39G+K1w2Jexh3dLb1SqVgnREdFYPHMxvu/0PdLT0t+7DQ0MDNCpZycAwJY1W3T2eZn8Evu374eBgQECugS8d8yCxD0qRESfgNCroQAAjyoeMDTM5WVH/59DaQcs2bQEtbxqwcDg//5+TX2ditljZiNoWxCWz1uOH2b+oHP+7X9ux7zV8+DdwlujPS01DT8O/BGvX73G//r8D0MnDlXXFnYrDAMCBuQYgHRZ/vNynP/3PMo4lcGSrUvUV7FkZmRi9tjZ2L1xN37o9wO2Hd8GYxPt27jvWr8Lf+77ExUqV1Cv4+Aug3Hl/BX079Afqa9TsfX4VjiUcQDwZs/Ht62/RVhoGI7sPYKv2n2lHis8NByThk6CTCbDnJVz0KxVM/W0xw8fI7BnIP7e/Ddq1q8J346+6mlzxs/Bw6iHqFm/JuatnodiFsUAAMmJyQjsGYjgA8E6193zM0+s2rMKVWtW1WhPSkjC+AHjcfb4WWxetRndvu/23u3o/z9/LJ+3HP8E/YPnk56r965l2bdtH16lvEKjLxqhdOnS7x2vIHGPChHRJ+BF/AsAyPbwRE5KlSqFOo3qaIQUAFCYKjBm9hgYGhni6N6j2c7v29FXK6QAwD/7/sGTR09QyrEUhvw4RCNAla9UHr2G9MpTnWmpadi2ZhsAIHBkoMaltkbGRhg5bSRK2JbAo/uPcDRId739R/ZXh5SsdezS780hqPDQcIycOlIdUgDAuoQ12ndvDwC4cPKCxlirfl2F9LR0fDfqO42QAgAOZRzw47wfAQCbV/3f3dYfP3qM4weOw8DAAGNmj1GHFACwsLLAD7N+yPZW9K7lXbVCCgBYWlti5LSRAIAje4/onPddxSyLwbejLzLSM7Br/S6t6VvXbAUAdOrVKVfjFSTuUSEiIgDA1QtXceX8FcTGxCL1dar67uHGxsZ48fwFkhKSYGltqTVfM99mWm0AEHImBADg09oHRsbaXzd+Hf2wYPKCXNcXei0Ur1JewcraCo2bNIaA5t3NFaYKtGjTApv+2ISLpy/iy6+/1BrDq7mXVpuTqxMAwNDIEHW962Y7PevcHeDNeR6nj50GAHzR5gud9Vb6vBLMzM1w58YdpKWmQa6Q4/KlyxBCoOJnFeHi7qI1j3tFd7h7uiPsVpjOMZVKJUJOh+DaxWt4FvcMaalpb/6d/v+miI6I1jmfLgHfBmD7n9ux468d6DGoB4yM3vwbnf/3PKLCo+Ds5oy6jesCej7nmkGFiOgTULzEm5u3xT+Lz/O88c/jMbrvaFw5fyXHfikvU3QGlexuIhb3OO7N9LK6p1taW6KYZTG8THqZqzrfNx4AlHEpAwB4GvtU53RdVxOZmZsBAGzsbNRf1m8zL2YOABrnfyS+SFSfS+JX2++9tSe+SISdgx3invz/dSiT/To4OjnqDCr3793HqD6jcO/OvWznze78Fl1c3F1Q17suzgafxfEDx9HcrzkAYOvaN3tTOvToUGAPGswLBhUiok9Axc/enIx558YdKJXKPJ2nMm3KNFw5fwVVa1ZF/5H9Ub5SeVhaWar3gnxV4ys8e/Is2+ez5eZKE6l49/BWbqe9S6VSqf//7fNPsmMiN9F4n1MAyG7amH5jcO/OPTT0aYjuA7rDtbwrilkUg5GxETLSM9DAtUEuq/8/nXt3xtngs9i6Ziua+zVHbEws/j30L8zMzeDX6f0BrDAwqBARfQIa+TTCwikLkZyYjBOHTqDpV01zNd/rV69x+uRpGBgY4Jd1v2hdhvz61Ws8j3v+QTXZ2b+5TPjxA92PNUhOTM713hQA6suOH91/lG2fmOgYAICtvW2ux/0Q1iWsIVfIkZaahmETh8G6hHWu5rO1e1PXo4fZr8OjB9rTosKjEBYahhI2JfDTHz9p7fm5H/lhd2Ru0LQBypYri5AzIYi4E4GDOw9CqVTiq/ZfaZw/o088mZaI6BNQxqUMWrRtAQBYOHUhEl8k5tg//lk8osKj8DLpJZRKJcwtzHXeK2X/9v0f/KT7GvVqAHhzCW9mRqbW9KBtQXkaz/MzT5iZmyExIRHHg49rTU99nYpDew4BAGo1qPUBFeeeoaHhm/M3ABzeczjX81WvUR0ymQy3r93WeT7Jvbv3dB72yfr3tCml+/DU/h37c13D22QyGQK+fXP58YYVG7B7424A0jiJNguDChHRJ2LUtFFwcnHCo/uP0PfrvjrPOclIz8CeTXvwTctvEBUehRK2JWBpaYnkxGTs26b58KHrIdexZPaSD66nmW8z2NnbITYmFotnLdY4XBJ+OxyrfsnbTcTkCjk69OwAAFj480I8fvh/e2oyMzLx86Sf8TzuORzLOqK5b/MPrju3+gb2hbGJMX6d/iv2btmrsX5Zwm+H4599/6jfO5Z2RKMvGkGlUmH22NlIefl/55S8THqJ2WNn6wyGzm7OMDQ0RMTtCIScDtGYduLQCWxcufGD18Ovkx+KWRbDnk17EP8sHrUa1EK5CuU+eLz8xkM/RESfCEtrS/y++3eM+24cQs6EoO/XfeFY1hHlPctDYarA86fPcevKLbxKeQVzC3PYlrKFoaEh+vTvg/k/zcekoZOwdc1WlHYujdiYWFy7eA1ftfsKl89d1ggFuaUwVWDq4qkY1m0Y1i9fj+MHj6PS55WQ+CIRIWdC0OiLRrh97Xaexu4/oj9Cr4biwskL6OjdEbUa1IJZMTNcD7mO2JhYWBW3wuzls3XeQyW/VaxaEVN/nYopw6dgyvApWDp3KcpVKAfrktZISkhCeGg44h7H4Ys2X2hcvjxm1hiEh4bj4qmL8K/njxr1a0AIgctnLsOquBUat2iME4dOaKyDdQlrdOzZEZv+2IQBAQNQrW412JayRXRENG5fv41vh36b5+CXxczcDK07tcbG39+EnY69On7chsln3KNCRPQJKWFTAsu2LcMvf/0C3w6+MDQwxIWTF3A06CgiwyJRtWZVBE4JxO4zu1G5emUAQJdvumDeqnn4rNZniL4XjX8P/4v09HSMnjEak3+Z/FH11KxfE6v3rkbTVk2RnJCM4APBiHsch/4j+2Pm0pl5Hs9EboJf1/+KMePHoEKlCrhy/gqCDwTDyNgIAd8GYMPhDfD8zPOjas4Ln9Y+2HxsM7r07QILKwtcvXAVx/YdQ+TdSDi5OGHQuEEY8MMAjXls7W2xJmgNOvbsCLlCjpNHTiL0aihatG2BVX+vwquUVwCgdd5L4JRATPh5AjyqeOD2tds49c8pKEwVmPHbDHw/+vuPWo96TeoBAEo5loJ3S+174uiTTHzowUcJSEpKgpWVFRITE2FpqX3J3Mdq4+GBPXfv5vu4BammsTFCMrRv8yxlbSpUwJ47d/RdRp54eHngboui9dkw/t0YGX2K1mcjq2Znc2cs81oGm9I2Oe4HHtRnEB4/z/tf/vlKCSCXF9w4lHTA4t8XF2g5uSF7JoOwKVpfBUWxZuD9dScnJqNtg7Z4mfQSB68ezPVJuh9rwuAJOLDjAAaMGYBegzVvxKdIUqBKxSrvHSM1NRWRkZFwdXWFQqHIsW9evr956IeIPhn80qei4ublm+o9WllePH+B6SOnIykhCY1bNC60kBIeGo7Dew7DzNwM7b5pVyjLzAsGFSIiokLW068n7Bzs4FreFVbFrfA09inu3LiDVymvYF/aHqOmjyrwGqaPnP7m8vRjp6HMVOLb0d++96nb+sCgQkREVMi+HfotLpy8gLBbYUhKTIKxsTHKOJdBQ5+G6NKvS6HsTdm9cTcMDAxQyrEUvun/DboP6F7gy/wQDCpERESF7PvR33/0CbAf60LMhfd3kgBe9UNERESSxaBCREREksWgQkRERJLFoEJERESSxaBCREREksWgQkRERJLFoEJERESSxaBCREREksWgQkRERJLFoEJERESSxVvoE9EnY1rnQXgd81i/RSgBGOauq2lpB0zYlH9PfG5Ttw0eP3yz/rOXz0Zzv+Y6+w0IGIALJy9g4vyJaB3QOt+WLwUhp0PwXcfvUKN+DSzftlzf5VA+YFAhvbv38CHaeHjou4w8yXjyEGih7yroXa9jHuPQvfv6LiPXCvIj9Nuc3+D9pTeMjD6tX/O1S9cGAFy8elHPlVBh+bQ+wVQkyTMysOfuXX2XkSdVFcb6LoEoWwpTBe7fu4/dG3ajfff2+i6nUFWuXhlbj2+FwlSh71Ion/AcFSKiT0zn3p0BAL8v/B2pr1P1XE3hUpgq4OLuAvvS9vouhfIJgwoR0SfGq7kXatSvgWdPnmHDig15mjf0Wih+HPQj/Gr7oYFrAzSv3ByDuwzGqaOnsp3n8cPHmDxsMlpWawmvcl5o59UOy+ctR1pqGvp36I/apWsj5HSI1jxrl6zF9x2/Vy+rqWdT9GnbBzvW7YBKpdLov+LnFerDPgBQ6/NaqF26tvr16MEjAG/OUaldujb6d+iv7nsm+Axql66Njt4ds12HzMxMtKzWErVL18bdm5p7eFNfp+KvZX+hl18vNPVsCq9yXmjfqD1+nf4rEuIT3rtN6ePw0A8R0Sdo8LjB6NW6F/5c+ifadWsH6xLW751n4+8bsXDKQqhUKlSoXAFVqlfB86fPEXImBGePn0W/kf3Qd3hfjXnu3b2H/u37IyE+Abb2tmjcojFSX6Vi/fL1uHjqolbgyLJv2z4s+2kZHMs6omy5svi89ud4FvcM10Ou4+qFqzh74izmrJgDmUwGAKhQuQJ8O/oiaGsQAMCvjR+EXKjHMzM3y3a96jauCzsHO0SFR+F6yHVUrVlVq8/pf04j/mk8KlatiAqVK6jbn8Y+xZBvhiA8NBxW1lao9HklmBUzw53rd7Bu6Toc3XsUy7Ytg0MZh/duX/owDCpERJ+gKjWqoGmrpji27xhW/7oawycPz7H/meAzWDB5AayKW2HOyjmoUa+Gelp4aDiGdhuKFfNWoEa9GqhZv6Z62qQhk5AQn4AW/i0wacEkmMhNAABxj+MwIGAAoiOidS6vXpN68P7SG+4V3TXan8Y+xdBuQ3Fs3zEc3XsUPq19AABNvmyCJl82UQeVydMmQ9gIrXF1MTAwgF9HP6z6dRX2btmrM6j8veVvANC4CkoIgbHfjUV4aDj8/+eP4ZOHw7yYOYA3e2AWz1yM9cvXY+rwqVi6dWmuaqG846EfIqJP1IAfBsDQyBDb/tymvmw5OyvmrXjzxTx7rEZIAQB3T3cMn/Qm6GxZtUXdfvncZdy+fhtm5mYYPWO0OqQAgJ2DHYZNHJbt8ipXq6wVUgDA1t4WQ34cAgA4uvfoe9cxt7ICyKE9h5CWmqYx7cXzFzh55CRM5CZo2baluv1M8BlcvXAVFSpXwJjZY9QhBQCMjIww5MchcKvohounLyL8dni+1UqauEeFiOgT5eLugjYBbbBz/U4sm7sMU36dorNfwosE3LxyE3KFHI2+aKSzT80Gb/aiXAu5pm67dOYSAKB+k/qwKm6lNU9Dn4awsLJAcmKyzjHT09Jx9vhZ3Lp6Cy+evUB6ejqEEHiV8goAst0b8yHKuJRB9XrVcfnsZQQfCNYIJPt37EdmRiZ8WvtorEfWeTnNWjXTeZm3gYEBqtetjojbEbh28ZrO4EUfj0GFiOgT1m9EP+zfsR8Hdh7AN999g/KVymv1iYmJgRACaalpaODaIMfxXjx/of7/uMdxAAAHp+zPz7Avba8zqFwPuY5x349DbExstvOmvEzJsZa8ahPQBpfPXsbfm//WCCp7N+8FAK2b38VExwAAlv20DMt+Wpbj2AnPE/K1Vvo/DCpERJ8wm1I26Ny7M9YsXoMls5Zg4bqFWn2E6s25HmbmZmjaqmmel5F1wmtup6W+TsXI3iMR/zQerQNao3339nBycYK5hTkMDQ0RHRGNDo07QIjcnYOSWz6tfTBvwjxcOHkBTx49QSnHUrh9/TbCQsNgZ2+Het71NPqrxJsTgavVqYbSzqVzHLucR7l8rZX+D4MKEdEnrsfAHti5fidO/XMKl85e0ppeyr4UgDehYuL8iTAwyN3pi7b2tgCAxw+yP/9F1x6TS2cvqa+wmTh/otb0B5EPcrX8vFKYKuDT2ge7N+5G0NYgfDv0W+zd8mZvim9HX631LuX4Zrs0btkY3b7rViA10fvxZFoiok9cMcti6DW4FwBg0fRFWtNt7WxR3rM8Ul6m4MyxM7ket3q96gDenHSalJCkNf3UP6d0tme1ZXdTtv079me7TCPjN39fZ2Zm5rrOt2Ud3gnaGoT0tHQc2HkAAODXyU+rb4Ombw6DHd17NN/37lDuMagQEf0HdOzZEfal7XHj8g1cD7muNf270d8BAKYGTsWJQye0pgshcOPSDZw9flbdVqNeDZSv9Cbg/DThJ2SkZ6inPY19il+m/qKzFtfyrgCACycv4N7dexrTdvy1A4f3HM52Pewc7AAA9yLuZdsnJ5/X/hzObs64H3kfi2YsQuKLRFSrUw1ly5XV6uvd0huVqlXCzcs3MWX4FI3zc7IkJSRh+5/bPzg40fvx0A8R0X+AidwE/Uf2x5ThU3TeVr9xi8YYMXUEFk5diBG9RsDJxQnObs4wtzRHwvMEhN0KQ/yzeHQf2F19LodMJsPURVPxXfvvcGDHAVw6fQmf1f4Mqa9TEXI6BBUqV0DVmlVxPeS6ek8IAHhU8YB3S28cP3gc37T8BjXr14SltSXu3ryL6Iho9BrcC6t+XaVzPZq1aoa/lv2FAf0HoFbDWupLhgeNG5Srm9oBb/aqLJ65GJv+2PTmfWfdT5A2MDDAvD/mYVj3YQjaGoR/gv5B+UrlYV/aHhkZGYiJjkHE7QgolUr4dfL75B4AKRXco0JE9B/RqkMruHtmfwlt596d8dfBv/B1168hk8lw4dQFHD9wHA+jH6JClQoYOW0kOn/bWWMe94ru+PPAn2jVvhUyMzNx/OBxRIVHoXPvzli8cTHin8UDgFaImL18NoZMGAJnN2dcOX8F546fg31peyzasAj+XfyzrfG7Ud+h+4DusLCwwPGDx7F7427s3rhbfUlzbvh28IWhoSEAwNTMFD5+Ptn2tbW3xeq/V2Ps7LGoXK0yoiOicTToKK6evwoAaNetHRZtWAS5Qp7r5VPeyEQRPvCWlJQEKysrJCYmwtLSMt/Hb+PhUeSe6lvT2BghGRnv7yghRbHmqgpj3BhTtGo2/t0YGX2KZs3O5s5Y5rUMNqVtctwPPK3zILyOyfnGZgVOCcAwd11NSztgwqbFBVpObsieyXJ9l9e8iLkfg3Ze7WBWzAxHbx7N9Um6uVFQNRe0oli3IkmBKhWrvLdfamoqIiMj4erqCoUi56dX5+X7m/upiOiT8Sl/6UvV61ev8ejBI7h5uGm0P374GBMGTYBKpdJ5RQ1RbjGoEBHRB3vx/AU6N+uMMi5lULZcWZgXM0dsTCzu3LiD9LR0lK9UHt+N+k7fZVIRxqBCREQfzLqENb757htcPHURt67cQnJSMhSmCrh7uqNZq2YI+DYACtOcDwMQ5YRBhYiIPpiZuRmGThiq7zLoE8aDhkRERCRZDCpEREQkWQwqREREJFkMKkRUJAgI4L9z1S9RkVNQt2VjUCEiyUtVpkIlVAwqRBKmVCoBIN/vmcOgQkSSF5cah/i0eIDPfSOSrNevX8PQ0BDGxsb5Oi6DChFJnoDAhbgLSHuZBqj0XQ0RvUupVCIxMRFmZmaQyWT5Ojbvo0JERcLmqM2obVsb5Q3Lw8jc6M3zdPL392H+ECh6e35Yc+EpgnWrVCqkpmo/cRt4c15KWloa4uPjoVKpYGdnl+/LZ1AhoiIhLjUOU69MRSeXTqhrVxfGhsaQSTGpvASQ+wf5SgNrLjxFsG6jVCMYy3I+nGNubg57e3uYmJjk//LzfUQiogISnhyOmddnwsrYClYmVpIMKsbbjJHRoYg9pZo1F5qiWLfrKVfs37g/2+lGRkYwMiq4OMGgQkRFTmJGIhIzEvVdhk7GMcbISClaX0SsufAUxbrlcXIoFPp7XhNPpiUiIiLJYlAhIiIiyWJQISIiIsmSRFBZsmQJXFxcoFAoULduXZw/f17fJREREZEE6D2obN68GYGBgZg0aRIuXbqEzz//HC1btkRcXJy+SyMiIiI903tQmT9/Pvr27YtevXqhUqVKWLZsGczMzLBq1Sp9l0ZERER6ptegkp6ejpCQEPj4+KjbDAwM4OPjgzNnzuixMiIiIpICvd5H5dmzZ1AqlShVqpRGe6lSpXD79m2t/mlpaUhLS1O/T0x8cx+FpKSkAqkvQ6lEwYxccJRCsOZCoBQC0H1HackSKtZcGFhz4SiKNQNFs25lpjLfv2ezxhMiF49EF3oUExMjAIjTp09rtI8aNUrUqVNHq/+kSZME3jwpgS+++OKLL774KuKvBw8evDcr6HWPio2NDQwNDfHkyRON9idPnsDe3l6r/9ixYxEYGKh+r1KpEB8fj5IlS+b70xqTkpLg5OSEBw8ewNLSMl/HLiisuXCw5sLBmgsHay48RbHugqpZCIHk5GQ4Ojq+t69eg4qJiQlq1qyJo0ePom3btgDehI+jR49i0KBBWv3lcjnkcrlGm7W1dYHWaGlpWWQ+UFlYc+FgzYWDNRcO1lx4imLdBVGzlZVVrvrp/Vk/gYGB6NGjB2rVqoU6depg4cKFSElJQa9evfRdGhEREemZ3oNKQEAAnj59iokTJyI2NhbVqlXDgQMHtE6wJSIiov8evQcVABg0aJDOQz36JJfLMWnSJK1DTVLGmgsHay4crLlwsObCUxTrlkLNMiFyc20QERERUeHT+51piYiIiLLDoEJERESSxaBCREREksWgQkRERJL1nwkqS5YsgYuLCxQKBerWrYvz58/n2H/r1q2oWLEiFAoFqlatin379mlMF0Jg4sSJcHBwgKmpKXx8fBAWFqa3mm/evIn27dvDxcUFMpkMCxcu/OgxC7rmlStXolGjRihevDiKFy8OHx8frf6FsZ3zWveOHTtQq1YtWFtbw9zcHNWqVcO6desKve4P/bfctGkTZDKZ+iaLUq15zZo1kMlkGi+FQiHpmgEgISEBAwcOhIODA+RyOSpUqKD1+0NKP4dNmjTR2s4ymQy+vr7qPlLczgsXLoSHhwdMTU3h5OSE4cOHIzVV8yE6UtrOGRkZmDp1Ktzc3KBQKPD555/jwIEDHzVmXp04cQKtW7eGo6MjZDIZdu3a9d55goODUaNGDcjlcri7u2PNmjWFWjMA6PVZP4Vl06ZNwsTERKxatUrcvHlT9O3bV1hbW4snT57o7H/q1ClhaGgo5s6dK27duiV+/PFHYWxsLK5fv67uM3v2bGFlZSV27dolrl69Ktq0aSNcXV3F69ev9VLz+fPnxciRI8XGjRuFvb29WLBgwUePWdA1d+nSRSxZskRcvnxZhIaGip49eworKyvx8OFDdZ+C3s4fUvexY8fEjh07xK1bt0R4eLhYuHChMDQ0FAcOHCi0uj/03zIyMlKULl1aNGrUSPj7+2tMk1rNq1evFpaWluLx48fqV2xsrKRrTktLE7Vq1RKtWrUSJ0+eFJGRkSI4OFhcuXLlg8cs6JqfP3+usY1v3LghDA0NxerVq9V9pLad169fL+RyuVi/fr2IjIwUBw8eFA4ODmL48OEfPGZB1zx69Gjh6OgogoKCREREhPjtt9+EQqEQly5dKrSa9+3bJ8aPHy927NghAIidO3fm2P/evXvCzMxMBAYGilu3bolFixZp/a4r6JqFEOI/EVTq1KkjBg4cqH6vVCqFo6OjmDVrls7+nTp1Er6+vhptdevWFf379xdCCKFSqYS9vb346aef1NMTEhKEXC4XGzdu1EvNb3N2dtYZVD5mzIKuWQghMjMzhYWFhVi7dq0QonC2c37ULYQQ1atXFz/++GOh1f0hNWdmZooGDRqI33//XfTo0UMjqEix5tWrVwsrK6tsx5NizUuXLhXlypUT6enp+TZmQdf8rgULFggLCwvx8uVLIYQ0t/PAgQNFs2bNNNoCAwOFl5fXB49Z0DU7ODiIxYsXa7S1a9dOdO3atdBqfltugsro0aNF5cqVNdoCAgJEy5Yt1e8Lo+ZP/tBPeno6QkJC4OPjo24zMDCAj48Pzpw5o3OeM2fOaPQHgJYtW6r7R0ZGIjY2VqOPlZUV6tatm+2YBV2zPsbM7/FfvXqFjIwMlChRAkDBb+f8qFsIgaNHj+LOnTto3LhxodT9oTVPnToVdnZ26N27t9Y0qdb88uVLODs7w8nJCf7+/rh586aka96zZw/q16+PgQMHolSpUqhSpQpmzpwJpVL5wWMWdM3v+uOPP9C5c2eYm5sDkOZ2btCgAUJCQtSHGO7du4d9+/ahVatWHzxmQdeclpamdejS1NQUJ0+eLJSaP8T7vgsLq+ZPPqg8e/YMSqVS65b8pUqVQmxsrM55YmNjc+yf9d+8jFnQNetjzPwe/4cffoCjo6P6Q1/Q2xn48LoTExNRrFgxmJiYwNfXF4sWLcIXX3xRKHV/SM0nT57EH3/8gZUrV+qcLsWaPTw8sGrVKuzevRt//fUXVCoVGjRogIcPH0q25nv37mHbtm1QKpXYt28fJkyYgJ9//hnTp0//4DELuua3nT9/Hjdu3ECfPn3UbVLczl26dMHUqVPRsGFDGBsbw83NDU2aNMG4ceM+eMyCrrlly5aYP38+wsLCoFKpcPjwYezYsQOPHz8ulJo/RHbfhUlJSXj9+nWh1fzJBxUqGmbPno1NmzZh586dWn91SJGFhQWuXLmCCxcuYMaMGQgMDERwcLC+y9IpOTkZ3bp1w8qVK2FjY6PvcnKtfv366N69O6pVqwZvb2/s2LEDtra2WL58ub5Ly5ZKpYKdnR1WrFiBmjVrIiAgAOPHj8eyZcv0XVqu/PHHH6hatSrq1Kmj71JyFBwcjJkzZ+K3337DpUuXsGPHDgQFBWHatGn6Li1bv/zyC8qXL4+KFSvCxMQEgwYNQq9evWBgwK/h95HEs34Kko2NDQwNDfHkyRON9idPnsDe3l7nPPb29jn2z/rvkydP4ODgoNGnWrVqeqlZH2Pm1/jz5s3D7NmzceTIEXz22Wfq9oLezh9Tt4GBAdzd3QEA1apVQ2hoKGbNmoUmTZpI7vMRERGBqKgotG7dWt2mUqkAAEZGRrhz547katbF2NgY1atXR3h4OABp/hw6ODjA2NgYhoaG6jZPT0/ExsYiPT1d0j+HKSkp2LRpE6ZOnarRLsXtPGHCBHTr1k2956dq1apISUlBv379MH78eEluZ1tbW+zatQupqal4/vw5HB0dMWbMGJQrV+6Dxyxo2X0XWlpawtTUFIaGhoVS8ycf5UxMTFCzZk0cPXpU3aZSqXD06FHUr19f5zz169fX6A8Ahw8fVvd3dXWFvb29Rp+kpCScO3cu2zELumZ9jJkf48+dOxfTpk3DgQMHUKtWLY1pBb2dP6bud6lUKqSlpRVK3XmtuWLFirh+/TquXLmifrVp0wZNmzbFlStX4OTkJLmadVEqlbh+/br6y1KKNXt5eSE8PFwdBAHg7t27cHBwgImJiWR/DoE3t2RIS0vDN998o9Euxe386tUrrT0RWeFQCCHp7axQKFC6dGlkZmZi+/bt8Pf3/+gxC8r7vgsLreZ8Oy1XwjZt2iTkcrlYs2aNuHXrlujXr5+wtrZWX+rYrVs3MWbMGHX/U6dOCSMjIzFv3jwRGhoqJk2apPPyZGtra7F7925x7do14e/vn++X6+Wl5rS0NHH58mVx+fJl4eDgIEaOHCkuX74swsLCcj1mYdc8e/ZsYWJiIrZt26ZxeWRycrJGn4Lczh9S98yZM8WhQ4dERESEuHXrlpg3b54wMjISK1euLLS681rzu9696keKNU+ZMkUcPHhQREREiJCQENG5c2ehUCjEzZs3JVvz/fv3hYWFhRg0aJC4c+eO2Lt3r7CzsxPTp0/P9ZiFXXOWhg0bioCAAJ1jSm07T5o0SVhYWIiNGzeKe/fuiUOHDgk3NzfRqVOnXI9Z2DWfPXtWbN++XURERIgTJ06IZs2aCVdXV/HixYtCqzk5OVn9PQFAzJ8/X1y+fFlER0cLIYQYM2aM6Natm7p/1uXJo0aNEqGhoWLJkiU6L08uyJqF+I9cniyEEIsWLRJly5YVJiYmok6dOuLs2bPqad7e3qJHjx4a/bds2SIqVKggTExMROXKlUVQUJDGdJVKJSZMmCBKlSol5HK5aN68ubhz547eao6MjBQAtF7e3t65HrOwa3Z2dtZZ86RJk9R9CmM757Xu8ePHC3d3d6FQKETx4sVF/fr1xaZNmzTGk9rn4126gorUah42bJi6b6lSpUSrVq007jkhxZqFEOL06dOibt26Qi6Xi3LlyokZM2aIzMzMXI+pj5pv374tAIhDhw7pHE9q2zkjI0NMnjxZuLm5CYVCIZycnMSAAQM0vvTfN2Zh1xwcHCw8PT2FXC4XJUuWFN26dRMxMTF5GvNjHTt2TOfv3Kw6e/ToofWdcezYMVGtWjVhYmIiypUrp3F/ncKoWQghZEIIkX/7Z4iIiIjyzyd/jgoREREVXQwqREREJFkMKkRERCRZDCpEREQkWQwqREREJFkMKkRERCRZDCpEREQkWQwqRFSohBDo168fSpQoAZlMhitXrqBJkyYYNmxYjvO5uLhg4cKFhVIjEUkHgwoRqcXGxmLw4MEoV64c5HI5nJyc0Lp1a63nfXyMAwcOYM2aNdi7dy8eP36MKlWqYMeOHZJ+8i0R6c8n//RkIsqdqKgoeHl5wdraGj/99BOqVq2KjIwMHDx4EAMHDsTt27fzZTkRERFwcHBAgwYN1G0lSpTIl7GJ6NPDPSpEBAAYMGAAZDIZzp8/j/bt26NChQqoXLkyAgMDcfbsWQDA/fv34e/vj2LFisHS0hKdOnXSeMT75MmTUa1aNaxbtw4uLi6wsrJC586dkZycDADo2bMnBg8ejPv370Mmk8HFxQUAtA79xMXFoXXr1jA1NYWrqyvWr1+vVW9CQgL69OkDW1tbWFpaolmzZrh69WquawHePOl17ty5cHd3h1wuR9myZTFjxgz19AcPHqBTp06wtrZGiRIl4O/vj6ioqPzY3ESUSwwqRIT4+HgcOHAAAwcOhLm5udZ0a2trqFQq+Pv7Iz4+HsePH8fhw4dx7949BAQEaPSNiIjArl27sHfvXuzduxfHjx/H7NmzAQC//PILpk6dijJlyuDx48e4cOGCznp69uyJBw8e4NixY9i2bRt+++03xMXFafTp2LEj4uLisH//foSEhKBGjRpo3rw54uPjc1ULAIwdOxazZ8/GhAkTcOvWLWzYsAGlSpUCAGRkZKBly5awsLDAv//+i1OnTqFYsWL48ssvkZ6e/mEbmojyLl8fcUhERdK5c+cEALFjx45s+xw6dEgYGhqK+/fvq9tu3rwpAIjz588LIYSYNGmSMDMzE0lJSeo+o0aNEnXr1lW/X7BggXB2dtYY29vbWwwdOlQIIcSdO3c0xhRCiNDQUAFALFiwQAghxL///issLS1Famqqxjhubm5i+fLluaolKSlJyOVysXLlSp3ru27dOuHh4SFUKpW6LS0tTZiamoqDBw9mu52IKH/xHBUigsjFQ9RDQ0Ph5OQEJycndVulSpVgbW2N0NBQ1K5dG8Cbq3MsLCzUfRwcHLT2hrxvOUZGRqhZs6a6rWLFirC2tla/v3r1Kl6+fImSJUtqzPv69WtERESo3+dUS2hoKNLS0tC8eXOddVy9ehXh4eEa8wNAamqqxjKIqGAxqBARypcvD5lMli8nzBobG2u8l8lkUKlUHz3u216+fAkHBwcEBwdrTXs70ORUi6mp6XuXUbNmTZ3nx9ja2ua9aCL6IDxHhYhQokQJtGzZEkuWLEFKSorW9ISEBHh6euLBgwd48OCBuv3WrVtISEhApUqV8q2WihUrIjMzEyEhIeq2O3fuICEhQf2+Ro0aiI2NhZGREdzd3TVeNjY2uVpO+fLlYWpqmu2l1zVq1EBYWBjs7Oy0lmFlZfVR60hEucegQkQAgCVLlkCpVKJOnTrYvn07wsLCEBoail9//RX169eHj48Pqlatiq5du+LSpUs4f/48unfvDm9vb9SqVSvf6vDw8MCXX36J/v3749y5cwgJCUGfPn009oD4+Pigfv36aNu2LQ4dOoSoqCicPn0a48ePx8WLF3O1HIVCgR9++AGjR4/Gn3/+iYiICJw9exZ//PEHAKBr166wsbGBv78//v33X0RGRiI4OBhDhgzBw4cP8219iShnDCpEBAAoV64cLl26hKZNm2LEiBGoUqUKvvjiCxw9ehRLly6FTCbD7t27Ubx4cTRu3Bg+Pj4oV64cNm/enO+1rF69Go6OjvD29ka7du3Qr18/2NnZqafLZDLs27cPjRs3Rq9evVChQgV07twZ0dHR6qt2cmPChAkYMWIEJk6cCE9PTwQEBKjPYTEzM8OJEydQtmxZtGvXDp6enujduzdSU1NhaWmZ7+tMRLrJRG7OoiMiIiLSA+5RISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyWJQISIiIsliUCEiIiLJYlAhIiIiyfp/mgxP3BwbI1gAAAAASUVORK5CYII=\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "###5.4 Create cutoff point"
+ ],
+ "metadata": {
+ "id": "sDugc5wnpLMU"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "cutoff = 0.79 #@param {type:\"slider\", min:0, max:1, step:0.01}"
+ ],
+ "metadata": {
+ "cellView": "form",
+ "id": "gXm2lUiCpHSd"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "6Jk5kI74-OWZ",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 734
+ },
+ "outputId": "3112717e-53d7-47b8-c32c-759a50f5124e"
+ },
+ "source": [
+ "def create_with_cutoff(cutoff):\n",
+ " __, ax = plt.subplots(figsize=(12, 8)) # Increased figure size\n",
+ " TP = df.loc[(df['label'] == \"pos\") & (df[\"confidence\"] > cutoff)][\"confidence\"]\n",
+ " FP = df.loc[(df['label'] == \"neg\") & (df[\"confidence\"] > cutoff)][\"confidence\"]\n",
+ " FN = df.loc[(df['label'] == \"pos\") & (df[\"confidence\"] < cutoff)][\"confidence\"]\n",
+ " TN = df.loc[(df['label'] == \"neg\") & (df[\"confidence\"] < cutoff)][\"confidence\"]\n",
+ "\n",
+ " # Plot the histogram\n",
+ " plt.hist([TP, FP, TN, FN], bins=np.arange(0.0, 1.1, 0.1).tolist(),\n",
+ " edgecolor='black', linewidth=0.5, density=False, histtype='bar',\n",
+ " stacked=True, color=['limegreen', 'forestgreen', 'orangered', 'salmon'],\n",
+ " label=['TP', 'FP', 'TN', 'FN'])\n",
+ "\n",
+ " plt.xlabel('Confidence', fontsize=16)\n",
+ " plt.ylabel('N', fontsize=16)\n",
+ " plt.xticks(np.arange(0.0, 1.1, 0.1), fontsize=14)\n",
+ " plt.yticks(fontsize=14)\n",
+ " ax.xaxis.set_major_formatter(FormatStrFormatter('%.2f'))\n",
+ " plt.title('Confidence scores for different values', fontsize=18)\n",
+ " plt.axvline(cutoff, color='k', linestyle='dashed', linewidth=2)\n",
+ " plt.legend(loc=\"upper right\", fontsize=14) # Adjusted legend location to avoid overlap\n",
+ "\n",
+ " # Calculate statistics\n",
+ " sens = round(len(TP) / (len(TP) + len(FN)), 2)\n",
+ " spec = round(len(TN) / (len(TN) + len(FP)), 2)\n",
+ " stats = f\"sensitivity: {sens}\\nspecificity: {spec}\\n\\nTP: {len(TP)}\\nFP: {len(FP)}\\nTN: {len(TN)}\\nFN: {len(FN)}\"\n",
+ "\n",
+ " # Display stats in a box to make it more readable\n",
+ " plt.text(0.75, 0.35, stats, fontsize=14, transform=ax.transAxes,\n",
+ " bbox=dict(facecolor='white', alpha=0.8, edgecolor='black'))\n",
+ "\n",
+ " plt.show()\n",
+ "\n",
+ "create_with_cutoff(cutoff)\n"
+ ],
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+UAAALNCAYAAABJS8BlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACU0ElEQVR4nOzdd3gU1dvG8XvTSScJJBBC76EJSEeaAkpvSlOaIoIVLGCjqGBBRP0JIqiIIIoUKUoTRJAOggLSIZQgHVIIpM77B2ZfQgpJ2GSS7PdzXVwmM+fMPDPZjbl3zpyxGIZhCAAAAAAA5DoHswsAAAAAAMBeEcoBAAAAADAJoRwAAAAAAJMQygEAAAAAMAmhHAAAAAAAkxDKAQAAAAAwCaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJMQygHgLuzZs0cPP/ywihUrJicnJ1ksFtWqVUuStG7dOlksFlkslmxt+277Aznh66+/VsOGDeXt7W19fU6ePNnssrIsufZ169alWB4WFmZdFxYWlmbfjN73yTZs2KB27dqpSJEicnR0lMViUefOnXPkWGBbmXkNAIAtOZldAAAkJiZqwYIFWrZsmbZs2aLz588rJiZGvr6+qlixopo2bao+ffqoWrVqZpeawvHjx9W4cWNFRUVJkvz8/OTs7KyAgACTKwNyxocffqgXX3xRkuTk5KSiRYvKYrHIw8PD5MpyT2be91u2bFHLli2VkJAgi8Uif39/OTo6qnDhwmaVnevGjBkjSerfv79Kly5tai0AkNcRygGYasuWLerXr58OHTpkXebs7CwvLy9dunRJGzdu1MaNG/Xuu++qa9eumjt3rlxcXEys+P9NmzZNUVFRKl++vNatW6fg4OAU693d3VWpUiWTqgNs74MPPpAkPfvss5o4caKcnZ1Nrsj2nJ2dre/btI7vTu97SZo8ebISEhLUuHFjLVmyRH5+fjled14zduxYSVLz5s0J5QBwB4RyAKZZunSpevToodjYWPn7++vFF19Ut27dVKFCBUk3r6Dv2rVLCxYs0JQpU7Rw4ULFxMTkmVC+Z88eSVKnTp3S/MO8Xr16OnDgQG6XBeSICxcu6Ny5c5KkJ554okAGckkKDg7O8H17p/f9rW169uxpl4EcAJA1hHIApjh8+LD69u2r2NhYVa1aVStXrlSJEiVStHF0dFTdunVVt25dvfTSSxo4cKBJ1aYtJiZGkuTp6WlyJUDOS369S/b9ms/M+57fDQCArGCiNwCmeP311xUZGSk3NzctWrQoVSC/nZ+fn3766Sf5+PikWnf27Fm99NJLCg0NlYeHhzw8PBQaGqqXX37ZemXvdrdP5HPu3Dk999xzKlOmjNzc3BQYGKiePXumecWsdOnSKSaIGjt2rHVbty7PzERtBw4cUJ8+fRQUFCQ3NzeVLVtWzzzzTLp13y4qKkrvvvuuGjZsKD8/P7m6uiokJEQ9e/bU5s2bbX7st0pKStK8efPUuXNnBQcHy9XVVUWKFFGdOnX0yiuvaO/evTarOTOuXLmiN998U7Vr15a3t7dcXFwUFBSkGjVqaMiQIVqzZk26fbdu3aoBAwaofPnycnd3l7e3t6pWraqBAwdq5cqVafaJiIjQuHHjrPsrVKiQKlSooKeeekrHjh1Ld1+3vk7Onz+v4cOHq2LFinJ3d0/ztfLzzz+rW7du1nNcuHBh3XfffZo6dari4uLS3c8PP/ygBx98UIGBgXJ2dpavr68qVKigjh076rPPPtONGzcyOJv/L/l1fOsQ5DJlyliPI62hyevWrVOPHj2sNQcEBKhVq1b6+uuvlZiYmOZ+xowZI4vFoubNm0uSFixYoNatW6to0aJycHCw3qOcWVeuXNFLL72kcuXKyc3NTcWKFVOPHj20c+fODPulN8lXZt73t/cbMGBAija3Txpmi/fv0aNHNXjwYJUpU0aurq6pfh5JSUmaM2eOHnroIQUGBsrFxUVFihRR69atNXfuXBmGkeZ+ko935syZiouL0wcffKCaNWvKw8NDPj4+atmypVasWJGqX//+/VO8jlu0aJHiHGR2KPtzzz0ni8Wi2rVrZ9guOjpaHh4eslgs+vbbb63L4+PjtWTJEg0ePFh169ZVsWLF5OLioqJFi6pNmzYZHntGZs6cecfjyMxEcXFxcZoyZYpatGihgIAA6++rTp06afny5elu+/r165o4caIaNmyowoULy9nZWUWKFFHVqlXVr18/LViwIMvHBCAPMAAgl509e9ZwcHAwJBmDBg26q22tW7fO8PX1NSQZkgwPDw/Dw8PD+n3hwoWNDRs2pOp3/Phxa5tly5YZRYsWNSQZ7u7uhqurq3Wdt7e3sXv37hR969atawQGBhrOzs7WfQYGBlr/bdy40TAMw/jtt9+s20nL8uXLU+zL09PTcHNzMyQZxYoVM7766qsM++/atcsoUaKEtY2jo6Ph5eVl/d5isRjjx4+36bEnu3DhgnHfffdZ20oyfH19DU9PT+v3nTp1slnNd3Lq1CmjZMmS1u04ODgYhQsXNhwdHa3LmjVrlqpfQkKC8eyzz6Y4Dg8PD6Nw4cKGxWIxJBk+Pj6p+u3duzfFcbi5uaU4DldXV2P+/Plp1prcZvr06UZgYGCq/sliYmKM7t27p6jN29vbWpcko0GDBsbly5dT7WPAgAEp+nl6ehru7u4plh0/fjxT53bjxo1GYGCgERAQYO0bEBBgfb3XrVs3RfsXXnghxc/T19c3xc+hZcuWRmRkZKr9jB492vpzGj58uLV/8s9x9OjRmarXMG6+xkuVKmXdp4uLi+Ht7W39evHixdZ1v/32W6q+aZ2jzLzvk79O/v3m7e2dos3Jkyet27PF+3fOnDnW95y7u7vh4eFhlCpVytr20qVLqd6nPj4+Kb7v2LGjERsbm2o/yefv008/NerXr29IMpydnVO8xy0Wi/Hll1+m6Pfss89aX9fJv4NvPQe3v17Ss337dus29u7dm267mTNnWl/j0dHR1uW3/v5N/lncen4lGT169DASExMzPMe3v0++/vprQ1KK85yV/oZhGGFhYUZoaGiK83j7z2XIkCGp+kVGRho1a9ZM9f5ycnKyLsuoLgB5F6EcQK6bO3duilCYXSdPnrQG8qpVqxp//PGHdd369euNSpUqGZIMPz8/4/Tp0yn63vpHU+HChY3GjRsb27dvNwzDMOLj443Vq1cbxYoVMyQZTZs2TXP/zZo1MySlGxYyCuWnTp2yhoQaNWoYW7duNQzDMBITE43ly5cbJUqUSPFhw+3OnDljDdNdu3Y1duzYYcTFxRmGYRjnzp0z3njjDesfaosWLbLpscfHxxuNGze2hs/33nvPOH/+vHV9eHi4MW3aNGPUqFE2q/lOBg0aZEgySpcubfz6669GQkKCYRg3Q3dYWJgxdepU45VXXknV7+WXX7aei4EDBxoHDx60rrt69arx008/GY888kiKPpGRkUaZMmUMSUZwcLDx888/W/+w3717t9GgQQPruUnrQ41bg3KlSpWMNWvWWPvfuv++ffsakoyyZcsac+bMMSIiIgzDMIzr168bixcvNsqWLWtIMjp37pxi+xs2bLB+MPHee+8Zly5dsq67ePGisXLlSqNfv35GeHh4ls7xnYKGYRjGp59+am0zePBg499//zUMwzCio6ONjz76yPrzvf2cGsb/h/Lk0PfKK69YX1c3btwwwsLCMlVnQkKCUbduXevre968eUZ8fLxhGIaxb98+o2nTpineW5kN5cnu9L43jP8PtF9//XWa6231/vX09DTq169vff8axv+/hhISEqy11qpVy1i6dKlx7do1wzBu/jy++eYbaw3PP/98usdQuHBhIzg42Pjpp5+sNR44cMD6Ovf09DSuXr2aqn965zcrqlatan0tpKdVq1aGJOOxxx5LsXzr1q3Gk08+aaxevdr63jGMmx9UfPzxx9bfvx9//HGqbeZkKI+OjjYqV65sSDKaN29urFu3zrhx44ZhGDd/50yaNMn6Hpg8eXKKvm+99Zb1/2kLFiyw9ktMTDTCw8ONWbNmGU888US6dQHIuwjlAHLd66+/bv2DJavB4FZDhgyx/tGY/Mf/rW4NvsOGDUux7tY/mipXrmzExMSk6r9kyRJrm1OnTqVafzeh/KmnnjIkGf7+/sa5c+dSrd+zZ4/1ilxa/QcOHGhIMnr37p3mvg3DMCZNmmRIMmrWrJli+d0e+4wZM6xXaX7++ed092/Lmu+kSpUqhiTju+++y3SfgwcPWq9ovvzyy5nu9+6771qvGu7ZsyfV+sjISKN06dKGJKNdu3ap1t965S6t15Vh3PxQSZJRtGjRFFdXb3Xq1CnrqJBdu3ZZl7/33nuGJKN169aZPqbMuFNYjYmJMfz8/AxJRq9evdLcxieffGLdxo4dO1KsSw7lkozhw4dnu84ffvjBup1ff/011fpr164Z5cqVMzWU2+r9W6pUKSMqKirN/rNmzbK+x9MKzYZhGDt27DAsFovh4uKS6vdQ8jG4uroa+/fvT9X3/Pnz1pE9s2fPTrXeFqF8woQJhiSjRIkSaV7RPn36tPU9nNbPOiM//vijIckoV65cqnU5GcrHjRtnSDdHhCR/yHG7hQsXGtLNESnJHygZhmE8+OCDhqRsjSYCkLdxTzmAXHfp0iXr19mdmdgwDM2bN0+SNGTIEAUFBaVqU6JECQ0ZMkSS9P3336e7rREjRqhQoUKplj/44IPWmd6TZ1O2BcMw9MMPP0i6WXvRokVTtalWrZq6d++eZv8bN27ou+++kyS98sor6e7nsccekyT99ddf6d6jnp1j/+qrryRJDz30kB566KF0959TNafF19dXkvTvv/9mus8333yjpKQk+fv7Wx/flBnJP7vu3burWrVqqdZ7eXnp5ZdfliQtX75cERERaW7n0UcfTXcuhS+//FKS1KdPH4WEhKTZpkSJEmrRooUkpbjvPflcXLhwId37t3PC6tWrdfnyZUlK9/7voUOHqlixYpJkfT3czsHBIcPXyJ0kv9cbN26sVq1apVrv7u5u/fmYwZbvhaeffjrdyeSSX0NPPfVUmnNxSFKdOnUUGhqquLg4/fbbb2m26d69uypXrpxqeZEiRdSwYUNJ0t9//53ucdyNPn36yMHBQadPn06zvjlz5igpKSnFeyGz2rVrJ0k6evSozp49a5N6MyP55zJ8+PB0n2DQuXNneXt76+LFiynmQMjO7zkA+QOhHEC+dPz4cWsAuP/++9Nt98ADD0i6+UHA8ePH02xTv379NJc7OTmpSJEikmTdly3cWnvLli3TbZfeup07d1on6WrdurWCgoLS/BcaGmrtc+LEiTS3ldVjT0hI0Pbt2yVJHTp0SLf2nKw5Le3bt5ckjRw5UoMHD9aKFSsUGRmZYZ9NmzZJuvkacXNzy9R+4uLirAEkM6+7pKQk/fnnn2m2ady4cbr9N27cKOnmH/DpnaugoCD9+uuvklKeq1atWsnNzU27du1S06ZN9eWXX6b72relHTt2SJJCQkJUsWLFNNs4OjpaX9fJ7W9Xvnz5ND+oymod2Xlv5QZbvhfSew0lJiZqy5Ytkm5+QJLRa+jgwYMZ7iO93xGSVLx4cUm2/f14q5CQEOvEf7dO4pYseVlyeL9dVFSUPvjgAzVr1kxFixaVi4uLdQI2d3d3a7vTp0/nSP23Cw8Pt57nQYMGpfszKVasmKKjoyWl/Lkk/5773//+p169eumnn37SxYsXc6V2ADmLR6IByHX+/v7Wry9fvmz9wy4rzp8/b/06vWcFS0pxJfL8+fMqU6ZMqjZeXl7p9ndyuvlrMj4+Pss1pic7td/qzJkz1q8zezX51sdZ3Sqrx37p0iXr96VKlcrUviXb1pyWl156SX/99ZfmzZun6dOna/r06bJYLAoNDVXbtm31+OOPq1KlSin6JF8dy8pxXL582Xr1OSuvu7RkFDyTz1dkZOQdP1yQUp6rcuXKacaMGRoyZIg2b95sncW7SJEiatGihXr37q2OHTtm+FSA7Eg+zozOi/T/5yY758VWddzpaQ85yZbvhfTO1eXLlxUbGyvp5iz0d7OP3P79eLvHHntMa9eu1YIFCzRlyhRrmN69e7f1CQ/JowpudejQIbVq1SpF4HZ3d5evr681wCef/2vXruVY/be69Wef2TB968+ld+/e2rZtmz799FN9//331lEh5cuXV+vWrTVw4EDVqVPHtkUDyBVcKQeQ6269ArRr1y4TK8mfbh2SfP36dRk35wfJ8F/y1aa7ld0gl9M1Ozs764cfftDu3bv15ptvqmXLlnJ3d9fevXs1ceJEhYaG6sMPP7TJsdiKo6NjuuuSz9fUqVMzda5mzpyZon+fPn104sQJff7553rkkUcUEhKiCxcuWB9h16xZs0yFfTNkdF4KAlu+F9I7V7fuY/ny5ZnaR1YfOZdbunXrJnd3d0VHR2vRokXW5clXyWvXrq2qVaum6jdgwACdPn1apUuX1o8//qhLly7p2rVrOn/+vM6ePavw8HBrWyMbj0bLjlt/Lvv378/Uz6V///4ptjF58mQdPHhQ48eP14MPPihfX18dOXJEU6ZMUd26dfX888/nyrEAsC1COYBc16JFC+uVilv/yMqKW68QZTT08NZ1d3sFzlZurePWPwxvl966W++fz8oQb1vw8/Oz3geZlX3nVs01a9bU2LFjtWbNGl29elW//vqr7rvvPiUmJlqvpt9eU1bq8fPzswahnHzdZae22/n5+enJJ5/U999/r5MnT+rIkSMaOXKkLBaLNmzYYPMQlnycdxoKnLw+p96PydvNznsrN+TGe8Hf3996FTu3f0fYmqenp7p06SLp/4N4YmKi9b78tK6Snzp1ynp7yty5c9W9e/dU85dk9z7y5POafAtCWtKbR8JWP/vy5ctr1KhR+uWXX3Tp0iVt3rxZnTt3liR9/PHHWrJkSba3DcAchHIAuS4wMFDdunWTdHOyp0OHDmW6b/IVjTJlylj/yFqzZk267ZPvufX3909z6LoZbq09vcmVJGnt2rVpLr/33nutk7AtXbrU9gVmwMnJSfXq1cvyvs2o2cnJSa1atdLPP/8sV1dXGYZhfT1IUqNGjSTdnKAsoz+wb+Xi4qIaNWpIytzrzsHBQbVr185y7cn3Ci9btizLfdNTrlw5TZgwQb1795Z087htqW7dupJuhu703tOJiYnW1/y9995r0/3fXkd23lu5ITfeC87Oztl6n9pS8kgUW1yFTg7ev/76q86ePWv9r5OTk/X1fKtTp05Zv77nnnvS3OatvwuyonDhwpJu3iaRfIvA7bZu3Zrm8tKlS1tvq7DVz8XBwUENGjTQ/PnzVbJkSUm2f28DyHmEcgCmePvtt+Xp6anr16+ra9eud7xydeXKFXXr1s16BcJiseiRRx6RJE2bNi3Nqx5nzpzRtGnTJEm9evWy8RFkn8Vi0cMPPyxJ+vzzz9O8t/Cff/7R/Pnz0+zv4eFh/UP0vffe08mTJzPcn60nYRo0aJAk6ZdfftEvv/ySqT45XXN6fxxLkqurq/Xq9q2TQfXv31+Ojo66dOmSRo8enel99ezZU5I0f/586z2tt4qOjtb7778v6eYM9enNfJ2RwYMHS5L27t2rqVOnZtj22rVriouLs36f0bmQZJ1tP62Jse7GAw88YJ0vIr2r8NOmTbPeV5tT78nk3wt//PGH1q1bl2r99evX9cEHH+TIvjMjt96/ya+hzLxPc2KiNm9vb0nS1atX73pb999/v4oXL67ExETNmTPHesW8bdu21gkpb3Xre+7W0THJoqKi9Pbbb2erlpo1a0q6+WFDWiO9rl+/ro8++ijd/k888YSkm5M43un2rdt/Lhm9tx0dHa0f9tj6vQ0gF9jkwWoAkA2LFi0yXFxcrM9jfffdd43Dhw9b1yckJBh//vmn8cYbbxi+vr6GJOPKlSvW9adOnbIuDw0NNTZu3Ghd98cff1ifXe3n52ecPn06xb7v9CziZBk9b/hunlN+4sQJw8vLy5Bk1KpVy9i+fbthGIaRlJRkrFy50ihZsqT12NLqf+bMGaN48eKGJKN48eLGrFmzjMjISOv68+fPG/Pnzzc6d+6c6nnVd3vs8fHxRpMmTQxJhpubm/H+++8bFy5csK4PDw83Jk2alOrZ33dT850EBgYaI0eONDZv3mzcuHHDuvzw4cNGjx49DEmGg4ODsW/fvhT9Ro4caT0XgwYNMg4dOmRdFxERYXz//fdG586dU/SJjIw0ypQpY31+8i+//GJ9hvLff/9tNGrUyPp85927d6eqNXl/d3p+84ABA6zPg3/++eeNo0ePWtfduHHD2Lx5s/HSSy8Z/v7+KZ53/vjjjxs9evQw5s+fn+LZ01FRUcbUqVOt77lRo0ZluP/bZeZ18+mnn1rbPPnkk8bZs2cNw7j5bPCPP/7YcHZ2NiQZjzzySKq+yc8pb9asWZbqul18fLxRu3Zt63t//vz5RkJCgmEYhvHPP/8YzZo1S/HeMuM55bnx/k1ISDDuv/9+Q5Lh4uJivPXWW0Z4eLh1fXR0tLF27Vpj6NChho+PT5aPwTAMo1+/foYko1+/fqnWNW7c2JBkdOvWzbh27Vq628isF1980ZBkVKlSxfDw8DAkGT/88EOabRMTE42SJUta/9+wY8cO67pNmzYZtWvXNvz9/bP9Gkj+/VesWDFj9erV1tfXjh07jEaNGhl+fn7p9o+KijKqV69uSDJ8fHyMTz/91Lh48aJ1/ZUrV4xffvnFePTRR42qVaum6FuzZk3jmWeeMX777TcjOjraujw8PNx4+umnrftcsWJFZk4pgDyEUA7AVH/88YdRvnx56x8TyX9A+vn5GQ4ODtZlFovF6NWrlxEXF5ei/7p16wwfHx9rOw8PD+sfbJIMX19fY/369an2a3YoNwzDWLZsmeHq6mpt4+XlZRQqVMj6x95XX32VYf9//vnHqFixorWNg4OD4efnl+L4JRn333+/zY/9woULRtOmTVP8fHx9fQ1PT0/rsk6dOtms5ju5ta+Dg4NRuHBhw83NLUV9H330Uap+CQkJxrBhw1L09/T0NAoXLmxYLBbrH86327NnjxEcHGzt4+bmZnh7e1u/d3V1NX788ccMa71TKI+NjTUef/zxNGu79b0hKcWHTslB6dY+t4ZQSUaTJk1S/FGfGZl93bzwwgspznvhwoUNJycn67IWLVqkCKDJbBXKDcMwjh49aoSEhKT4eST/nnBxcTEWL15saig3jJx//xrGzQ+W2rdvn2J73t7ehq+vr/X1LclwcnLK1jFkFMq//fZb6/adnZ2N4OBgo1SpUkbjxo0zrDk9f//9d4rj8PX1Na5fv55u+6VLl6Z43bm7uxvu7u7W/0/8+uuv2X4N7Nq1K8X73c3NzfpzCwwMNH7++ecM+4eHhxsNGjRI9fvz1m1KMsqXL5+iX/LP5NY+t79eXnjhheycXgAmY3wLAFM1btxYBw4c0Ny5c9WnTx+VL19ebm5uioqKkp+fn5o0aaLXXntN+/fv13fffWedZCxZs2bNtH//fo0YMUJVqlRRUlKSDMNQlSpV9OKLL2r//v1q2rSpSUeXsXbt2unPP/9Uz549VbRoUcXFxSkwMFBPP/20du3adcd74KtUqaK///5b06ZNU+vWrRUQEKDIyEgZhqHy5curR48e+uKLLzRv3jyb1x4QEKB169Zp9uzZevDBB1WkSBFdu3ZN7u7uqlOnjkaOHKnx48fnWs2rVq3SqFGj1LRpU4WEhOj69euSbk6INGDAAG3fvj3NWYkdHR31v//9T3/88Yf69OmjkiVLKj4+XoZhqGrVqho0aJAWLFiQql+1atW0b98+jRkzRrVq1ZKTk5NiY2NVrlw5DRkyRPv27VP37t2zdAy3c3Fx0fTp07Vp0yb1799f5cqVU2JioqKjo1W0aFE1b95cb775pv7+++8Uj/9644039Mknn6hLly6qXLmynJycrH0eeOABffXVV1q3bp08PDzuqr70TJo0SWvXrlW3bt0UGBio6OhoeXl5qUWLFvrqq6+0evXqDB+zZQtly5bV7t27NXz4cJUpU0aGYcjNzU3du3fXpk2b1LFjxxzdf2bkxvvX29tbS5cu1S+//KJHHnlEJUuWVGxsrGJiYhQcHKzWrVtrwoQJ1meV21Lfvn317bffqkmTJnJ3d9e///6rEydOZPuZ4NWrV1etWrWs3/fo0UNubm7ptm/fvr3Wr1+vdu3aydfXVwkJCQoICNCAAQO0c+dOtWrVKlt1SFKtWrW0detW6+/upKQkBQQEaNiwYdq9e3eas8Hfqnjx4vrjjz80d+5cdezYUcWKFVNMTIzi4uJUunRpdejQQZMnT9b69etT9Pv+++81duxYtWrVSmXKlFFcXJzi4+NVqlQpPfLII1qzZo0mTZqU7eMCYB6LYeTScyAAAAAAAEAKXCkHAAAAAMAkhHIAAAAAAExCKAcAAAAAwCSEcgAAAAAATEIoBwAAAADAJIRyAAAAAABM4mR2AbkhKSlJZ86ckZeXlywWi9nlAAAAAAAKOMMwFBUVpeLFi8vBIf3r4XYRys+cOaOQkBCzywAAAAAA2JlTp06pRIkS6a63i1Du5eUl6ebJ8Pb2NrkaAAAAAEBBFxkZqZCQEGseTY9dhPLkIeve3t6EcgAAANit7777TjExMXJ3d1fv3r3NLgewC3e6hdpiGIaRS7WYJjIyUj4+PoqIiCCUAwAAwG6VKFFC4eHhCg4O1unTp80uByjQMptDmX0dAAAAAACTEMoBAAAAADAJoRwAAAAAAJMQygEAAAAAMIldzL4OAAAAAAVRfHy8EhMTzS7DLjg6OsrZ2dnm2yWUAwAAAEA+ExkZqYsXLyo2NtbsUuyKq6urAgICbPpUL0I5AAAAAOQjkZGRCg8Pl6enpwICAuTs7HzHZ2Hj7hiGofj4eEVERCg8PFySbBbMCeUAAAAAkI9cvHhRnp6eKlGiBGE8FxUqVEheXl46ffq0Ll68aLNQzkRvAAAAgJ0ICgpScHCwgoKCzC4F2RQfH6/Y2Fj5+PgQyE1gsVjk4+Oj2NhYxcfH22SbXCkHAAAA7MSOHTvMLgF3KXlSt5yYcAyZk3zuExMTbfJz4Eo5AAAAAOQzXCU3j63PPaEcAAAAAACTEMoBAAAAADAJ95QDAAAAduLJJ5/U5cuX5efnp2nTppldDgARygEAAAC78fPPPys8PFzBwcFmlwLgP4RyAAAAAChAHur5kMIvh5tdRpqC/YL1y/e/ZLt/VidZMwxDYWFhKlOmTIrlzs7OCgwMVNOmTTVy5EjVqFEj2zXdLUI5AAAAABQg4ZfD5fRu3ox64SPv7sOC0aNHp1o2efJkRUREpLnuVuXKlVPfvn0lSdHR0dqyZYvmzp2rhQsXas2aNWrcuPFd1ZZdefMnBQAAAADAbcaMGZNq2cyZMxUREZHmuluVL18+VZvXX39d77zzjl577TWtW7fOZnVmBbOvAwAAAADs0jPPPCNJ2r59u2k1EMoBAAAAAHYtq/eq2xKhHAAAAABgl6ZMmSJJqlevnmk1cE85AAAAAKDAO3LkiPWe8mvXrmnr1q3asGGD3Nzc9M4775hWF6EcAAAAAFDgHT16VGPHjpX0/49E6927t0aOHKnq1aubVhehHAAAALATvXr10pUrV1S4cGGzSwFyXZs2bbRixQqzy0iFUA4AAADYiQ8++MDsEgDchlCOAq3JPdV15Nhxs8soUMqXLaM/du0xuwwAAACgQCCUo0DzU5zO1r9mdhkFSscLcWaXAAAAABQYPBINAAAAAACTcKUcAAAAsBOVK1fWmTNnVLx4cR04cMDscpBDgv2CFT4y3Owy0hTsF2x2CXkOoRwAAACwE9HR0YqKilJ0dLTZpSAH/fL9L2aXkKvCwsIyXF+6dGkZhpE7xWQDw9cBAAAAADAJoRwAAAAAAJMQygEAAAAAMAmhHAAAAAAAkxDKAQAAAAAwCaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJM4mV0AAAAAgNzx+eef6/r16ypUqJDZpQD4D6EcAAAAsBPt27c3uwQAt2H4OgAAAAAAJiGUAwAAAABgEoavAwAAAHZi586diouLk4uLi+rUqWN2OQBEKAcAAADsRqdOnRQeHq7g4GCdPn3a7HKQQx7s+qBOnT9ldhlpCikaouULl5tdRp5CKAcAAACAAuTU+VO63vm62WWk6dRPtvmwICwsTGXKlMmwzZUrV+Tr66vSpUvrxIkT1uUODg4qXLiwateurWHDhqlTp042qSm7COUAAAAAgHypXLly6tu3b5rr3NzcrF87Ojrq9ddflyTFxcXpwIEDWrJkiVavXq2JEydqxIgRuVJvWgjlAAAAAIB8qXz58hozZswd2zk5OaVqt2rVKrVt21ZvvvmmnnrqKbm7u+dMkXfA7OsAAAAAALvTunVrVapUSTExMdq3b59pdRDKAQAAAAB2zWKxmLZvhq8DAAAAAPKlI0eOpDl8vW3btmrQoEGGfdesWaODBw/Kw8NDoaGhOVThnRHKAQAAAAD50tGjRzV27NhUy319fVOE8oSEBGt4j4+P18GDB7V48WIZhqG33npLhQoVyq2SUyGUAwAAAADypTZt2mjFihV3bJeYmGgN78mPRGvZsqWGDRumjh075nSZGSKUAwAAAAAKNFdXV924ccPsMtJEKAcAAADsxP79+2UYhqmTWgFIiVAOAAAA2AkvLy+zSwBwGx6JBgAAAACASQjlAAAAAACYhOHrAAAAgJ2YNGmSIiMj5e3treHDh5tdDnJISNEQnfrplNllpCmkaIjZJeQ5hHIAAADATkyaNEnh4eEKDg4mlBdgyxcuN7uEHFe6dGkZhpGptmFhYTlbzF1i+DoAAAAAACYhlAMAAAAAYBJCOQAAAAAAJiGUAwAAAABgEkI5AAAAAAAmIZQDAAAAAGASQjkAAAAAACYhlAMAAAAAYBInswsAAAAAkDtq166tkJAQFSlSxOxSAPyHUA4AAADYiSVLlphdAoDbMHwdAAAAAACTEMoBAAAAADAJoRwAAAAAAJNwTzkAAABgJzp27KgLFy6oSJEi3F9egD3avrUiwk+YXUaafIJL6dtlq7Ld32KxZKm9YRgKCwtTmTJlJEmtW7fWypUrU7XbsmWLGjZsqH79+mnmzJnZri87COUAAACAnfjzzz8VHh6u4OBgs0tBDooIP6ElRQ6ZXUaaOobfXf/Ro0enWjZ58mRFRESkue52q1at0tq1a9WyZcu7K8SGCOUAAAAAgHxhzJgxqZbNnDlTERERaa67VenSpXXy5Em98sor2rZtW5avuucU7ikHAAAAABR4lSpV0qOPPqodO3Zo3rx5ZpdjRSgHAAAAANiFcePGydXVVa+//rri4+PNLkcSoRwAAAAAYCdKliypZ555RkeOHNG0adPMLkcSoRwAAAAAYEdeffVV+fr66q233lJ0dLTZ5RDKAQAAAAD2o3Dhwho5cqTOnz+viRMnml0OoRwAAAAAYF+effZZlShRQh9++KHOnz9vai2EcgAAAACAXSlUqJDGjh2r6OhojR071tRaeE45AAAAYCeGDx+uyMhIeXt7m10KYLp+/fpp0qRJmj59uho2bGhaHYRyAAAAwE4MHz7c7BKAPMPR0VHjx49Xp06dNGbMGNPqyLPD1w3D0MKFC9WiRQsVK1ZM7u7uqlSpkp588kkdO3bM7PIAAAAAAPlcx44d1aRJEx09etS0GvJsKH/xxRfVrVs3HTx4UJ07d9YzzzyjMmXKaPr06apVq5b27t1rdokAAAAAgHzuvffeM3X/eXL4+tmzZzV58mSVKlVKf/31l3x8fKzrPvroIw0fPlyTJk3SV199ZWKVAAAAQP4SFRUlwzBksVjk5eVldjnIIT7BpdQx3Owq0uYTXMrm2wwLC8twfenSpWUYRrrrGzVqlOH6nJYnQ3lYWJiSkpLUuHHjFIFcktq3b6/hw4frwoULJlUHAAAA5E9VqlRReHi4goODdfr0abPLQQ75dtkqs0tAFuTJ4esVKlSQi4uLNm7cqMjIyBTrli1bJklq1aqVGaUBAAAAAGAzefJKub+/v959912NGDFClStXVqdOneTt7a2//vpLa9eu1dChQ/X000+n2z82NlaxsbHW728P9gAAAAAA5AV5MpRL0gsvvKDg4GA9/vjj+vzzz63LmzRpot69e8vJKf3SJ0yYYPoD4AEgs/p26ayI82fNLqPA8CkapNmLfjK7DAAArAKCAnTp/CWbbKtUqVL6fOrnunbtmk22lx85OTupVs1aZpdhM3k2lI8bN05vv/22xo0bp759+8rX11e7d+/WCy+8oObNm2vBggXq2LFjmn1HjRqV4hmMkZGRCgkJya3SASBLIs6f1cLWjc0uo8Doumqj2SUAAJBCcI1glXrXNhOcBRlBcnFykVuImxxc8+TdyDnOCDdvUrackCd/ir/++qtGjx6tp59+WiNHjlSJEiXk6empJk2aaOnSpXJ2dtaIESPS7e/q6ipvb+8U/wAAAAAAyGvyZChfvny5JKlFixap1gUFBaly5co6cuSIoqOjc7s0AAAAAABsJk+G8ri4OElK97FnFy5ckIODg5ydnXOzLAAAAAAAbCpPhvLGjW/eWzlp0iRFRESkWPf555/r9OnTatiwoVxdXc0oDwAAAAAAm8iTE7316NFDU6dO1fr161WxYkV17NhRvr6++vPPP7V27VoVKlRIkyZNMrtMAAAAAADuSp4M5Y6Ojlq1apU++ugjzZs3T999953i4uIUGBiovn376tVXX1WVKlXMLhMAAADIVxYvXqy4uDi5uLiYXQqA/+TJUC7dnEF95MiRGjlypNmlAAAAAAVCnTp1zC4BwG3y5D3lAAAAAADYA0I5AAAAAAAmybPD1wEAAADY1rJly3T9+nUVKlRI7du3N7sc5JDXej2nmAuXzC4jTe5F/PXO3I/vejthYWEqU6ZMhm2uXLkiX19flS5dWidOnFBAQICOHTsmLy+vVG3d3NwUFBSksLCwu64tqwjlAAAAgJ0YMmSIwsPDFRwcrNOnT5tdDnJIzIVLWta2hdllpKn9it9sur1y5cqpb9++aa5zc3NL8f3Fixf1/vvv66233rJpDXeLUA4AAAAAyJfKly+vMWPG3LGds7OzihUrpo8++kjDhg1TUFBQzheXSdxTDgAAAAAo0BwcHDR27Fhdu3ZNY8eONbucFAjlAAAAAIAC77HHHlO1atU0Y8YMHTp0yOxyrBi+DgAAAADIl44cOZLm8PW2bduqQYMGKZY5ODjo3XffVfv27fXqq69q/vz5uVRlxgjlAAAAAIB86ejRo2kOR/f19U0VyiWpXbt2uu+++7RgwQJt27ZN9erVy40yM8TwdQAAAABAvtSmTRsZhpHq3/PPP59un/fff1+S9Morr+RSlRkjlAMAAAAA7Eb9+vXVtWtXrVu3Tr/88ovZ5RDKAQAAAAD2Zfz48XJyctLIkSOVlJRkai2EcgAAAMBOeHp6ysvLS56enmaXApiqUqVKGjRokPbs2aNvv/3W1FoI5QAAAICdOHDggCIjI3XgwAGzSwFMN2bMGLm7u+vNN9809Wo5oRwAAAAAYHeCgoL0wgsv6OTJk4qPjzetDh6JBgAAAAAFiHsRf7Vf8ZvZZaTJvYi/2SWk8PLLL2vatGm6ePGiaTUQygEAAACgAHln7sdml5DjSpcuLcMwMtU2LCws3XXe3t66cOGCjarKHkI5AAAAYCdeeuklXblyRYULF9YHH3xgdjkARCgHAAAA7MbcuXMVHh6u4OBgQjmQRzDRGwAAAAAAJiGUAwAAAABgEkI5AAAAAAAmIZQDAAAAAGASQjkAAAAA5BOGMvcYMOSczD6KLbMI5QAAAACQT8QoRglGgowEwrlZ4uPjJUmOjo422R6hHAAAAADyiShLlE4mnVRidKLNr9jizgzDUEREhFxdXeXs7GyTbfKccgAAAADIR9YZ61QysqSKqqgcPR1lcbKYXVKuMhIN3bhxI3f3aRiKj49XRESEoqOjFRwcbLNtE8oBAAAAO9GuXTtdvnxZfn5+ZpeCu7Dfsl+zEmep+dXmKhlZUk4W+4p1xhVDTiZFWVdXVwUHB8vb29tm27Svnx4AAABgx6ZNm2Z2CbCR/Zb92q/98kr0UiEVkoMd3ZmcMD1Bi79cnOv7dXR0tNmQ9VsRygEAAAAgn4qyRClKUWaXkasSLiTIzc3N7DJsxn4+TgEAAAAAII8hlAMAAAAAYBJCOQAAAGAn6tatqxIlSqhu3bpmlwLgP9xTDgAAANiJs2fPKjw83OwyANyCK+UAAAAAAJiEUA4AAAAAgEkI5QAAAAAAmIRQDgAAAACASQjlAAAAAACYhFAOAAAAAIBJCOUAAAAAAJiEUA4AAAAAgEmczC4AAAAAQO54//33FRMTI3d3d7NLAfAfQjkAAABgJ3r37m12CQBuw/B1AAAAAABMQigHAAAAAMAkDF8HAAAA7MTBgweVkJAgJycnVapUyexyAIhQDgAAANiNVq1aKTw8XMHBwTp9+rTZ5QAQw9cBAAAAADANoRwAAAAAAJMQygEAAAAAMAmhHAAAAAAAkxDKAQAAAAAwCaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJM4mV0AAAC2dPzESXVo3MDsMgqUU/+eVUixILPLKDB8igZp9qKfzC4DSFfJsiV15vQZs8soUBzcHFRd1c0uA3kUoRwAUKC4WKSFrRubXUaBUn/GXM6pDXVdtdHsEmDHtm/frsTERDk6Oqbbxru4t5yHOudiVQXfuf+dM7sE5GGEcgAAAMBOFCtWzOwSANyGe8oBAAAAADAJoRwAAAAAAJMwfB0AAACwE1988YWio6Pl6empwYMHm10OABHKAQAAALsxbtw4hYeHKzg4mFAO5BEMXwcAAAAAwCSEcgAAAAAATEIoBwAAAADAJIRyAAAAAABMQigHAAAAAMAkhHIAAAAAAExCKAcAAAAAwCSEcgAAAAAATOJkdgEAAAAAckfFihXl4+OjwMBAs0sB8B9COQAAAGAn1q5da3YJAG7D8HUAAAAAAExCKAcAAAAAwCSEcgAAAAAATMI95QAAAICd6NOnjy5evKiAgADNmTPH7HIAiFAOAAAA2I3ff/9d4eHhCg4ONrsUAP9h+DoAAAAAACYhlAMAAAAAYBJCOQAAAAAAJiGUAwAAAABgEkI5AAAAAAAmIZQDAAAAAGASQjkAAAAAACYhlAMAAAAAYBInswsAAAAAkDueeOIJRUREyMfHx+xSAPyHUA4AAADYidGjR5tdAoDbMHwdAAAAAACTEMoBAAAAADAJoRwAAAAAAJMQygEAAAA7UaJECVksFpUoUcLsUgD8h1AOAAAAAIBJCOUAAAAAAJiEUA4AAAAAgEkI5QAAAAAAmIRQDgAAAACASQjlAAAAAACYhFAOAAAAAIBJCOUAAAAAAJiEUA4AAAAAgEmczC4AAAAAQO6YPXu2YmNj5erqanYpAP5DKAcAAADsRPPmzc0uAcBtGL4OAAAAAIBJCOUAAAAAAJiE4esAAACAnVi3bp31nnKGsgN5A6EcAAAAsBN9+/ZVeHi4goODdfr0abPLASCGrwMAAAAAYBpCOQAAAAAAJiGUAwAAAABgEkI5AAAAAAAmIZQDAAAAAGASQjkAAAAAACYhlAMAAAAAYBJCOQAAAAAAJiGUAwAAAABgkjwfyhctWqQHHnhA/v7+cnNzU5kyZdSrVy+dOnXK7NIAAACAfOX06dMyDEOnT582uxQA/3Eyu4D0GIahIUOG6IsvvlC5cuXUs2dPeXl56cyZM/r999914sQJhYSEmF0mAAAAAADZlmdD+SeffKIvvvhCQ4cO1SeffCJHR8cU6xMSEkyqDAAAAAAA28iTw9evX7+usWPHqmzZsvr4449TBXJJcnLKs58nAAAAAACQKXky2a5atUpXrlzRgAEDlJiYqCVLlujQoUPy9fXV/fffr/Lly5tdIgAAAJDvjB07VhEREfLx8dHo0aPNLgeA8mgo37lzpyTJ0dFRNWrU0KFDh6zrHBwc9MILL2jixInp9o+NjVVsbKz1+8jIyJwrFgAAAMgnpk+frvDwcAUHBxPKgTwiT4by8+fPS5ImTZqk2rVra9u2bapSpYp27dqlwYMH68MPP1S5cuX01FNPpdl/woQJGjt2bG6WDAAAkCnHT5xUh8YNzC6jQPEpGqTZi34yu4wC48K5C7r2v2tml1GgJMQyHxbSlydDeVJSkiTJxcVFP/30k4oXLy5Jatq0qX788UfVrFlTH374YbqhfNSoURo+fLj1+8jISGZqBwAAeYKLRVrYurHZZRQoXVdtNLuEAiWoTJCc3s2TMSHfOtL3iNklIA/Lk+82Hx8fSVLdunWtgTxZtWrVVLZsWR05ckRXr16Vr69vqv6urq5ydXXNjVIBAAAAAMi2PDn7eqVKlSQpzcB96/Lr16/nUkUAAAAAANhengzlLVq0kCTt378/1br4+HgdOXJEHh4eKlKkSG6XBgAAAACAzeTJUF6uXDm1bt1aR44c0YwZM1Kse/fdd3X16lV16dKFZ5UDAAAAAPK1PJtqp0yZokaNGumJJ57QTz/9pMqVK2vXrl1au3atSpUqpQ8++MDsEgEAAAAAuCt58kq5dPNq+Y4dO9S/f3/t3LlTn3zyiQ4fPqxhw4Zp27ZtCgoKMrtEAAAAAADuSp69Ui5JISEh+vrrr80uAwAAACgQmjVrposXLyogIMDsUgD8J0+HcgAAAAC2M2fOHLNLAHCbPDt8HQAAAACAgo5QDgAAAACASQjlAAAAAACYhFAOAAAA2ImWLVsqNDRULVu2NLsUAP9hojcAAADAThw6dEjh4eGKiIgwuxQA/+FKOQAAAAAAJiGUAwAAAABgEkI5AAAAAAAmIZQDAAAAAGASQjkAAAAAACYhlAMAAAAAYBIeiQYAAADkA2fPntXVq1fvahvx8fHW/x44cCDNNjeu3ZDTcWKCLSXGJurG8Rtml2Fzjl6Ocg5wNruMfI93GwAAAJDHnT17Vt27d9eNG3cX7CwWiwICAmSxWNS3b98020Sfi5bG3tVucBuP6x66Ovaq2WXYXLxzvIImBBHM7xKhHAAAAMjjrl69qhs3buitt95SmTJlsr2dy5cvKzExUY6OjvLz80uzzeHjh2UJtGR7H0gt7nScXEq4mF2GTYWfCNe40eOUGJVIKL9LhHIAAAAgnyhTpowqV66co/tIdEiUJZhQbkuxLrFyLeNqdhnIo5joDQAAAAAAkxDKAQAAAAAwCcPXAQAAADsRFxdn/drFpWDd4wzkV4RyAAAAwE7s379f8fHxcnZ2Vs2aNc0uB4AYvg4AAAAgl7365KsK9QxV+InwTPf57J3PFOoZqm3rt2V7v7bYBmBrhHIAAAAAptu2fptCPUP12Tuf5ep+w0+EK9QzVK8++Wqu7jdZUlKS5kydo871Oqt2QG01KdVEL/Z/UaeOn7qr7S6fv1yhnqEK9QzVLz/+kmr9A1UfsK5P79/OjTvvqgZkDsPXAQAAAOSqF8a+oMeHP66ixYtmuk/vJ3vrwe4PqlhIsWzv1xbbsLUxz47RgpkLVL5KefV5qo8u/HtBKxau0Ka1mzR37VyVKl8qy9u8cO6C3h7+tgp5FNL1a9fTbPPosEcVdTUq1fIrl65o7hdz5V3YW9XqVMvyvpF1hHIAAAAAuapIUBEVCSqSpT6FAwqrcEDhu9qvLbZhS1t/36oFMxeobuO6mr50unXyvXYPt9OQrkP09oi3NX3x9Cxvd8wzY+Th5aHOfTtr5icz02zz2LDH0lye3L7DIx3k6saz1XMDw9cBAACAfG7BggVq1qyZihYtKjc3NxUvXlz333+/FixYkKrt4cOH9corr6hYsWJycXFRqVKl9Mwzz+jSpUsp2t06rPvE0RN6tuezaliioeoWratB7QfpwJ4DqbZ94sgJvTbkNbUOba1afrXUMKShujToogkvT5BhGNZ2t99T/tk7n2nAQwMkSVMmTEkxhPrWNrfeD37m5BlV86pm7Xe7+Ph4NS7ZWK0qtVJSUlKa21g0e5Fah7aWJC2eszjFfret36aPx36sUM9QrViwIs19LJy1UKGeoZo+MevBWZLmz5wvSXrmjWdSzIbftHVT3dv0Xm1as0lnTp3J0jYXzV6kdb+s07j/jZO7h3uWa1rwzc3XTNd+XbPcF9lDKAcAAADysalTp6p79+46fPiwunTpouHDh6tt27Y6e/asFi1alKLtunXr1L9/f/3+++9q3ry5nn/+eVWvXl3/+9//1LBhQ125ciXV9s+cOKPeLXor4kqEujzaRQ1bNtSWdVs04KEBunjuorXd+X/Pq2fznlr2wzJVrl5Zjz39mNo/3F5Fgoro++nfKzExMd1juLfpverUp9PNr5vcq6Gjhlr/efl4pdmneMniqtu4rnb8sUNnw8+mWr9h5QZdvXxV7R5pJweHtGNP5RqV1XdoX0lSpeqVUuw3uFSwegzoIQcHB2tQvd38mfPl5OSkzo92lvT/92lndgK77Ru2q5BHId3T8J5U6xrf31iStOOPHZnaliT9e/pfvffKe+oxoIcatGiQ6X7Jdm3ZpWMHjym0dqgqV6+c5f7IHoavAwAAAPnYjBkz5OLiot27d6to0ZT3aN969fvSpUt6/fXX5evrq5kzZ+rBBx+0rvv+++/Vq1cvvfnmmxryzJAU29j+x3a9MO7mPeDJPhn3iaa9P02LZi/SEyOekCSt/mm1Iq9GauR7I/XosEdTbOPq5atycko/etS7r56km1er7216r4a9NixTx96hVwdt/2O7fp73swa9MCjFuiVzl0iSOvbsmG7/KjWqyHuYt2ZPma3KNSqnud/G9zfWH6v/UPiJcAWXCrYuP/LPEf217S+1at9KRQKzNhRfkmKuxejC2QuqULWCHB0dU60vVe7mveQnjpzI1PYMw9CbQ9+Uh5eHXhr/UpbrkW5e+Zek7v26Z6s/socr5QAAAEA+5+zsLGdn51TL/f39rV/PmjVL0dHRGjZsmIoXL56iXc+ePVW7dm19//33qbZRonQJDXx+YIpl3fp1kyTt3bk3VXvXQqnvQ/b1883UcWRV686t5ermqmXfL0uxPPJqpH5f8bsq16is8lXL39U+Hh70sAzDSHW1fP43N4eedx/w/wH2y2VfaunOpZmawC46MlqS5OnjmeZ6T2/PFO3u5IcZP2jT2k0a+7+x8vDyyFSfW12LvqYVC1eokHshPdTjoSz3R/ZxpRwAAADIx3r27KmXX35Z1apVU+/evdWiRQs1adJE3t7eKdpt2bJFkrR3716dOXNGQUFBKdbfuHFDFy9e1JXLV+QX7GddXrl65VTDvwODAyVJURH/P3t384ea66MxH+md4e9o67qtavJAE9VtUlchZUJsery38vLxUouHWmjFwhU6sOeAdcj1ykUrFRcbpw69Otz1Ppq1babA4oH6afZPGvbaMDk6OiouLk5L5y5VUIkgNXmgibVtybIl73p/2XHq+ClNfH2iuj7WVU3ub3LnDmlYsWCFYqJj1KlPJ+sHAsgdhHIAAAAgH3vxxRfl7++vqVOn6sMPP9TEiRPl5OSkdu3a6aOPPlKZMmUkSZcvX5Yk/fjjjxlu7/r1lI/Q8vBOfdU1eSh6UmKSdVlwqWDNXTtXn43/TOtXrdeKhTcnRytbsayefv1ptenaJvsHmYEOvTpoxcIVWvb9MmsoXzp3qRwdHdXu4XZ3vX1HR0d169dNUyZM0YZVG9T8weZas2SNrl6+qqFPDk33fvU7sV4Jj0j7Srj1SnomAvIbQ9+Qt4+3Xp7wcrZqkf5/6HryKAjkHoavAwAAAPmYxWLRwIEDtX37dl24cEGLFi1S165dtXjxYrVv3946wVrylfM9e/bIMIx0/xUPLp7R7jJUIbSCJs+ZrE2nNum7td/pqZFP6eL5ixrRb4T+3PynTY73dk0eaCK/AD/98uMvSkpKUviJcP25+U81aNEgW/d6p6Vb/25ydHS0zpa+4JsFcnBwUJfHumR7m+4e7ioSVESnT5xOcxK8E0dv3kuemeeUH/j7gM6dOacGwQ1SzCA/ZcIUSdJLA15SqGeoZn02K83+R/Yf0e6tu1W2YlnVaVQn28eE7OFKOQAAAFBA+Pv7q3PnzurcubMuXryotWvX6siRI6pUqZLq16+vhQsXavPmzapWrVqO1uHs7Kya9WqqZr2aKlmupEY9MUq/r/hdtRvWTrdP8mRnGc3SnhYnJyc92P1Bzfl8jrb9vk1/bf9LhmGoQ8/MDV13cLx5nfLWq/63CwoO0n1t79OGlRu0a8subVm3RU0eaKLiIdn/AEOS6japq+Xzl2vX5l2q26RuinUbf914s03juml1TaFjr466cf1GquX/7P5H+//ar3r31VNImRBVqFohzf7JV8l5DJo5COUAAABAPrZu3To1a9ZMFovFuiw+Pt46XN3NzU2SNGDAAL399tt67bXX1KhRI4WGhqbYTkxMjP7++295+aX9CLI72bdrn0qVK5VquPWl8zdngHd1TT0B3K18CvtIUpqPN7uTDr06aM7nc7Tk+yX6e9vfKuRRSK06tMpUX29fb1ksFp09nfF+Hx74sH77+TcNf3S4DMNQ9/6pZyg/eeykEuITFFI2JM2J927XY0APLZ+/XJ++9ammL51ufVb5hlUbtH3DdjVq1UjFS6YM/scOHpMkla1U1rrs1Ymvprn9z975TPv/2q8eA3qkO3lbfHy8ls5dKidnJ3Xslf5M9cg5hHIAAAAgH+vcubO8vb3VoEEDlSpVSvHx8Vq9erX++ecfde/eXaVK3Rz+XKRIEU2bNk2DBg1SzZo11bZtW1WuXFmxsbEKCwvT77//rkaNGunDTz7MVh1L5i7Rj1/9qDqN6yikTIg8vT119MBRbVi5QT5+PtZneaenTKUyKlqsqJbPXy4XFxcFBgfKYrGoz5A+6T6rPFn1OtVVpkIZ/TzvZyXEJ6hjr45y93DPVN0enh6qVqeadmzcoZGPj1TJciXl4OCgjr06pgjETR5oouIli+vMyTMKCAxQ84eap9rWoPaDdObkGa3atyrF49PSU79ZfXXr300LZi5Qj8Y9dF/b+3Tx7EUtX7BcPn4+em3ia6n6dKhzcwTAvuh9mTq+O/nt5990+eJl3d/xfvkX9b9zB9gcoRwAAADIxyZMmKAVK1Zo27ZtWrp0qTw8PFSuXDlNnTpVgwalfHZ31apVNWvWLH333Xf6888/tXr1anl4eKhEiRIaMGCA+vbtm+062vVop7gbcdq1ZZf27tyruNg4BQYH6pHHH9GA5wfccai3o6OjPv7uY016Y5J+mf+LrkVdkyR16NnhjqFcunm1/JNxn0iS2vdsn6Xa353+rt4b+Z5+X/G7oiKiZBiGajesnSKUOzg4qEPPDpr2/jR17ts5w+euZ8WYT8aoYtWK+vHrHzV7ymy5e7jr/g7369nRz+bKbO7WZ5OnceUfucNiGIZhdhE5LTIyUj4+PoqIiEj1aAgUbB3vqaQlRQ6ZXUaB0vFCRS3ZddDsMgqUDo0baGHrxmaXUWDUnzFXWx/vZXYZBQrn1LY4n7bXddVGLd24xewyctSBAwfUt29fzZ49W5UrV872dv766y/Fx8ffvOe7Zs002+w7tE+WYEua6+zd0O5DtX7lev28+2eVKnfnCdiSxR6PlWuZjIfv5zfHDh7Tk/2flO9oX7mVccvVfSeMTNBfq/7K1X1mR2ZzKLOvAwAAAMAdHNl/ROtXrlfDlg2zFMiBO2H4OgAAAACkY9m8ZQo7FKYlc5dIkoaOGmpyRShoCOUAAAAAkI75X83Xzk07Vbxkcb015S3d0+Aes0tCAUMoBwAAAIB0zFwx0+wSUMBxTzkAAAAAACYhlAMAAAAAYBJCOQAAAIBc90DVB/RA1QdSLb9w7oJGDR6lVpVaqbp3dYV6hiryaqQWzV6kUM9QLZq9KFv7Cz8RrlDPUL365Kt3WzpgU9xTDgAAANgJZ2fnFP/Ni1578jVtWrNJD/V4SCXLlpTFYpGrW84947t/2/7a/sd27Yvel2P7yMienXv02TufaffW3UqIT1CF0Arq93Q/te3WNkvbOXrgqKa9P01b1m1R5NVIBQQGqFX7Vnpq1FPy9fNN0fazdz7TlAlTMtxe18e66q0pb2X1cJANhHIAAADATlStWtXsEqy+XPZlqmVxcXHavHazGrZoqPe/ej/Fuvs73K+a99ZUkaAi2dpf0eJFtXTnUnn5eGWrf07Y+vtWDe48WK5urnqw24Py8PLQ6sWrNaLfCJ0NP6v+z/bP1Hb+2vaXBnUYpNjrsWrZrqVCyobowN8HNHvqbP3x6x+a8+sc+fr7Wtvf2/ReDVXaj3Zb8M0CnTtzTo1bNbbBESIzCOUAAAAAcl3JsiVTLbt47qKSkpJUpFjq4O3l43VXgdrZ2VllK5XNdn9bS0hI0OhnRsvBwUHfrPxGVWpUkSQ9NfIp9WzeU5PHTFbrzq1VvGTxO25r9NOjdf3adX36w6dq2a6ldflXk7/Sh69/qI/HfqzRn4y2Lq93Xz3Vu69equ1cPHdRX3zwhXz9fNWyQ8tU65EzuKccAAAAyOcWLFigZs2aqWjRonJzc1Px4sV1//33a8GCBdY2YWFhslgs6t+/v/bt26d27drJ19dXnp6eat26tXbu3Jnmtq9FXdP/3v6fOtbtqNoBtdUguIGe6PSEdm5Kv/2U8VPUpX4X1SlSR/WL11e3Rt30ybhPFB8fb213+z3l/dv21wNVbn6/eM5ihXqGprgHPKN7yk8dP6XRT49W69DWquVXS01LN1X/tv1TtE3rnvJQz1Bt/2O79etb93niyAlV86qmIV2HpHucdQPrqv097dNcfydbf9+qU8dOqd3D7ayBXLr54cMTLz6h+Lh4/TTnpztu5+Sxkzr8z2FVq1MtRSCXpP7P9pevn6+Wfr9UMddi7ritxd8tVkJCgjr06iAXF5csHxOyh1AOAAAA5GNTp05V9+7ddfjwYXXp0kXDhw9X27ZtdfbsWS1alDrAHjt2TI0bN9b169f11FNPqWPHjvrtt9903333aevWrSnaXr18Vb1b9tbUd6fKu7C3Hh70sB7o9ID+2fWPBj40UGuWrknR/tL5S+rZrKc+G/+ZHBwd9Mjjj6jLo10UEBigLz/6UtevXU/3ODr17aS+Q/tKkipVr6Sho4Zq6KihatW+VYbHv3PTTnVv3F0LvlmgMhXLqN8z/XR/x/t148YNzZ4yO8O+Q0cNtV6JTt5f8j5LlS+levfV08ZfN+rf0/+m6vvzvJ91/dp1devfTdLN+7RDPUP12TufZbjPZNs33PwwoFHLRqnWNb7/5tDxHX/suON2Lp67KEkqUapEqnUODg4qFlJM12Ou6+9tf99xWwtnLZQkde/X/Y5tYTsMXwcAAADysRkzZsjFxUW7d+9W0aJFU6y7dOlSqvYbNmzQU089pSlT/n+ir379+qlt27Z64oknNHf+XOvy8S+O15H9RzT2f2PVvf//B7Xnxzyvh+97WGOeGaMmDzSxTsT21gtv6dihYxr84mA9N+a5FPu9eO6i3D3d0z2OLn27KPxEuGZPma3KNSpr2GvD7njscbFxeqn/S4qJjtHUhVPV9IGmKdafDT+bYf9hrw3T9g3bdebkmTT39/DAh7X1961aNGuRhr6a8h7s+d/Ml7OLszr17nTHOtNy4sgJSVKp8qVSrSsSWETunu46cfTEHbdT2L+wJOn0idOp1iUlJenfUzc/UAg7EqYGLRqku52dG3cq7HCYatarqfJVy2fqGGAbXCkHAAAA8jlnZ+c0Z1T39/dPtczLy0uPPvpoimVt2rRRq1attGfPHu3be3MW8isXr2jFghWq36x+ikAuSf5F/TXwuYG6fPGyNv+2WdLNR5n9uuRXhZQN0dDXUk8iFhAYICcn214TXLtsrc6dOaf2PdunCuSSFBQcdFfbb9WxlfyL+mvR7EVKSkqyLj+496D2/blPLdu1lF8RP0lS7yd7a+nOper9ZO9MbTs6MlqS5OntmeZ6Ty9Pa5uMlK5QWiFlQrR35179vuL3FOtmfTZLVy9flSRFRURluJ0Fs27e6tCtX7c77hO2xZVyAAAAIB/r2bOnXn75ZVWrVk29e/dWixYt1KRJE3l7e6fZvlKlSnJ3T33FumnTplqzZo3279+vam2qae+fe5WYmKi4uLg0h2QnX8U9fui4mj/YXPv+3CfDMFTvvnq59si1PTv3SFKOzRTu7OysLo920YwPZ2jjmo3W4D//6/mSpO4D/v/DisIBhVU4oHCO1JERi8Wi1z96XcN6DNPTDz+tlu1vzr5+cM9BbVqzSRVDK+rQvkOyOFjS3UZ0ZLRWLVold0/3LD+KDXePUA4AAADkYy+++KL8/f01depUffjhh5o4caKcnJzUrl07ffTRRypTpkyK9n5+fmluJzAwUJIUHXXz6mzElQhJ0q7Nu7Rr86509598n3jyVd3AYoF3d0BZEBV58+pv0WJF79Ay+3oM6KEvJ32pBTMXqOkDTRV7I1bL5i1TidIl1LBFw2xvN/kKeXpXw6OjouXtm/YHK7drcn8TfbvqW33+3ufatn6b1q9crwpVK+iTuZ9oy7otOrTvkPyLpB41keyX+b/oesx1devXTR6eHlk/GNwVQjkAAACQj1ksFg0cOFADBw7UpUuXtGHDBs2dO1fz5s3T4cOH9ffff8vR0dHa/vLly2lu59y5c5JuDpuWJA+vm+Gs/7P99dL4l+5YR/Ljys79e+6ujicrvH1uhtbz/57PsX2UKF1CjVo10m+//KZL5y9p82+bFXklUv2f6S+LJf2rz3eSfC/5iSMnFHpPaIp1F85dUEx0jKrXqZ7p7dW4t4amzJ+Savm3n30rSan2casF3zB03UzcUw4AAAAUEP7+/urcubN++OEHtWzZUv/884+OHDmSos3BgwcVE5P68VgbNmyQJFWpcvPxXNXqVJPFYtHubbszte/Qe0Ll4OCgbeu3pXj0WU5KDq0b12zM9jYcHG9GosTExHTbPDzwYSXEJ2jxd4s1f+Z8OTo6qsujXbK9T0mq26SuJGnT2k2p1m38dWOKNtl15uQZ/bn5T5WrXE4Vq1VMs82hvYe0d+dela9SXjXr1byr/SF7COUAAABAPrZu3ToZhpFiWXx8vPWKuJubW4p1UVFRmjFjRoplK1eu1Jo1a1StWjWFVrt5RbVIYBG17dpWu7fs1leTv0q1D0n6e/vfuh5zc/h6QGCAHuj0gE4dO6Up41Nfsb10/pISEhKyf6BpaNGuhYKCg7Ts+2X649c/Uq0/d+bOV+19CvtIks6eTn+m9uYPNVfRYkU163+ztOOPHbqv7X2phsxfuXhFxw4e05WLVzJVe4PmDRRSJkQ/z/tZ+//eb10eFRGl6ROnpzmz+4WzF3Ts4LFUk7Zdi76W6ucTFRGlkY+PVGJiop4f+3y6dSRP8Na1X9dM1Q3bY/g6AAAAkI917txZ3t7eatCggUqVKqX4+HitXr1a//zzj7p3765SpVI+cuuee+7RvHnzdPz4cTVo0EBhYWH68ccfVahQoVRh/fWPXtfxw8f14esfauncpapZr6a8fL109vRZ7du1TyeOnNC6o+tUyL2QJOmNj97Q4X8O64sPvtCGVRtUv1l9GYahsCNh2rRmk9YfW5/p+6Qzw8XVRR/O+lBPdnlSQ7oMUZMHmqhS9UqKjozWgT0HdCPmhhZsWpDhNuo3q69VP63S832etz7erVL1SmrxUAtrGycnJ3V9rKs+f+9zSUo1G70kfTftO02ZMEVDRw3N1OPcnJycNPZ/YzW482D1a9NPD3Z7UB5eHlq9eLXOnDyjl8a/pOBSwSn6fDT6Iy2es1hvf/62uvT9/yv1a5et1eQxk1W/WX0VLVZUly9c1m8//6bLFy/rmTeeUct2LdOsIS4uTsu+X3bzA4Be2Xu0G+4eoRwATHYqPFz1v5hjdhkFRvwtj6wBYB+OnzipDo3Tf/5yQRAdc13nL1xS2LGjclTKK6IvPPecNvyxQZs2btSSJUtUqFAhlSwZorGj31T3bt10+MDNq7Cnw8MlScWLF9fIkSM15bPP9OmnnyopKVH17r1XL44YLj8fb924EStHuUiSfP18NWfNHH037TutWLBCy+Ytk5FkKCAwQJWqVdKQV4ZYn5Mt3ZyBfO5vc/X1x19r1aJV+m7ad3J1c1VwqWA9PvxxFfIoZPNzU6t+Lf34x483Z0j/daM2/7ZZPr4+Klu5rB555pE79u8+oLvCT4Zr+fzl+uqjr5SQkKBOfTqlCOWS1KlPJ33+3ucKLB6opq1TP34tO+o3q69vV3+rz975TCsWrlBCfIIqhFbQ8HHD9WD3BzO9nQqhFVSpeiVtWrNJVy5dkZe3l2rUq6F+T/dT/Wb10+23dulaXb18VW27tpWvv68NjgjZYTHSGodSwERGRsrHx0cRERHpPhoCBVPHeyppSZFDZpdRoHS8UFFLdh00u4wChdepbdXeF6itg/uYXUaBUn/GXG19vJfZZRQYnE/bs4dzeuDCZfVfuV7ffjlDlcuXz9Y2wk6dUrkGjdWuXTu9M26cqgcVSbPd/ouXZSmXO480y09WLlqp4Y8O15BXhuiZN57JUt/Y47FyLeOaQ5WZ49jBY3qy/5PyHe0rtzJud+5gQwkjE/TXqr9ydZ/Zkdkcyj3lAAAAgB1xc3KSn3vuhqj8zjAMffPpN3JyckrxbHLAFhi+DgAAANgRDxdnBXt7mV1GvnBo7yH9vuJ37dq6S39t+0sPD3xYxUoUM7ssFDCEcgAAAABIw77d+zR5zGR5+XipY6+OenH8i2aXhAKIUA4AAADYgdIhIUoMP2l2GflKl75dUsxyDuQE7ikHAAAAAMAkXCkHAAAA7MQ/5y8qLjFJLo4Oqlo0wOxyAIgr5QAAAIDdSEwylGQYSkwq8E9FBvINQjkAAAAAACYhlAMAAAAAYBJCOQAAAAAAJiGUAwAAAABgEkI5AAAAAAAmIZQDAAAAAGCSLD2nfNasWXe1s8cee+yu+gMAAAAAUJBkKZT3799fFosl2zsjlAMAAAAA8P+yFMpbtmyZ5VC+efNmxcTE3FWYBwAAAHD3Svp6K8kw5MDf5kCekaVQ/uuvv2a67YYNG/Tyyy/r+vXrkqTq1atnrTIAAAAANuXj5mp2CQBuY/OJ3vbu3asOHTqoefPm2rp1q0JCQjRz5kzt2rXL1rsCAAAAACBfy9KV8oycOnVKb7zxhubMmaPExET5+/vr1Vdf1bBhw+Ti4mKr3QAAAAAAUGDcdSi/cuWK3nnnHU2ZMkU3btyQu7u7nnvuOb3yyivy9va2RY0AAAAAbCAmPl6GIVkskruzs9nlANBdhPIbN27oo48+0vvvv6/IyEg5Ojpq8ODBGjNmjIKCgmxZIwAAAAAbOHrpquKTkuTs4KDqQUXMLgeAshHKk5KSNGPGDI0bN07//vuvDMNQ165dNX78eFWsWDEnagQAAAAAoEDKUihfuHChXnvtNR06dEiGYahZs2Z67733VK9evZyqDwAAAACAAitLobx79+6yWCzW+8YfeughJSQkaNOmTZnq36hRo2wVCQAAAABAQZSte8pjYmI0YcIETZgwIdN9LBaLEhISsrM7AAAAAAAKpCyF8pIlS8piseRULQAAAAAA2JUshfKwsLAcKgMAAAAAAPvjYHYBAAAAAADYK0I5AAAAAAAmydZEbwAAAADM5xhcMkvtd+/cqTNnzqhTp04pljs7OyswIEBN6tdTjz59VLlc6F3Vtf/v/Vq5cKX27dqn/bv368qlK7q3yb2auWJmprcxpOsQbVi1QS6uLtp1addd1QPkZYRyAAAAIJ96c/jzqZZ9POMrRURGprkutGiAPGKvS5LKlS6lPl27SJKir8Vo659/6vufFmvhL8v15c9fqnbD2tmua+3StZo+cbqcXZxVunxpXbl0JUv9f/z6R238daNc3VxlGEa26wDyA0I5AAAAkE+NHjE81bJv5s1XRGRkmuskycHh5tOUypUunarNG+99oPGffKpPxn6Spavat2vTpY1atGuhCqEVdPXyVTUv1zzTfcNPhOuDVz9Qv2f6aeWilbp47mK26wDyA+4pBwAAACBJenpgf0nS3j/33tV2ylctr6q1qsrZ2TlL/QzD0OtPva4iQUX09OtP31UNQH5BKAcAAACQkuX/vww/Ea5Qz1A9UPWBHN/tnKlztOOPHXpryltyK+SW4/sD8gJCOQAAAGAnzkfH6Hx0TLrrp34zS5JUvU713CrJ6sSRE5o8ZrL6PNXnru5nB/Ib7ikHAAAA7MS56Gs6f+1mKD8aFqaxH06SJF2Lua5tu3Zpw9ZtcnV11XOjn7P2KVq8qJbuXCon55yLDklJSXr1yVcVEBSQYt+APSCUAwAAAHboaNgJjZs0WdL/PxKtV5fO6tGnjyrVr2pt5+zsrLKVyuZoLV9N/kp/bftLX//ytQq5F8rRfQF5DaEcAAAAsEOtmzfT8jnfplq+/+LlXK0j7HCYPnvnM/V8oqfubXpvru4byAsI5QAAAABMc/TAUcXFxmnuF3M194u5abYJ9QyVJG0+vVnevt65WR6Q4wjlAAAAAExTvFRxdevXLc11yxcsV+z1WHXu21mS5OLqkouVAbmDUA4AAAAgXfHx8Tp17JScnJ1UsmxJm2+/So0qGvfZuDTXbf5tsy6eu5jueqAgIJQDAAAASNf5M+fVoU4HFS9ZXKv/WZ2pPscOHtOMSTMkSbHXY28uO3RMrz75qrXN+GnjbV8skA8RygEAAADY1MVzF7V4zuIUyy6dv5RiGaEcuIlQDgAAABQgx7ZuynB98eLFtXvnTlUPKpKp7QWXCta+6H1ZqqHeffWy3Cctmb0yD+RnhHIAAADATri7OCshKUlODg5mlwLgP4RyAAAAwE6U8/M1uwQAt+EjMgAAAAAATEIoBwAAAADAJIRyAAAAAABMwj3lAAAAgJ04evmqdaI37i8H8gZCOQAAAGAnYuLiFZ+UJGdmXwfyDEI5AAAAkI+FnTqlcg0aZ9jm0j975OvjI0nq2LGj/v33X+s6BwcHFfbx0T3Vq2lo/36qWKfuXdVz6fwlLZy1UPt27dM/u/9R+IlwSbLJc8uBgohQDgAAABQA5UqXUp+uXdJc5+bqmuJ7R0dHvfbcM5KkuLh4HTh6VEtXrdav6zfoxeHDNWDcoGzXcfTAUU0eM1kWi0WlypdSIfdCuh5zPdvbAwo6QjkAAABQAJQrXVqjRwzPVFtHR8dUbVf9vl4P9XlUn02Zop4je6uQe6Fs1VG2Ull9s+IbValZRR5eHmp/T3sdP3w8W9sC7AE3kwAAAABQ62b3qVK5crp+44aO7D+S7e0EBAaobpO68vDysGF1QMFFKAcAAACQgsVisX79QNUHFOoZar03HIBtMXwdAAAAKACOhoVp7IeTUi1v07y5GtSpfcf+azb8oYNHj6pQoUIqX6V8TpQIIA35JpS/9957GjlypCRp8+bNatCggckVAQAAAHnH0bATGjdpcqrlvt7eqUJ5YmKiNcDHxyfo4NGjWrJqtQzD0DPDhsqtkJu17ZfLvlRCfIKKFi+ao/UD9ipfhPK9e/dq9OjR8vDw0LVr18wuBwAAAMhzWjdvpuVzvs1U28TERGuAT34kWovGjTS0/2OqUDvlI9FKli1p61IB3CLPh/L4+Hj169dPtWrVUoUKFTR79myzSwIAAADypUBPDzlaLHJ1cVHM8bQnc9t/8XIuVwXYtzw/0ds777yjffv26auvvpKjo6PZ5QAAAAD5VlFPdzk6OEi3TOQGwFx5+kr5n3/+qXfeeUfjxo1T1apVzS4HAAAAAACbyrOhPDY2Vo899phq1aqll19+Oct9Y2Njrd9HRkbaujwAAADALpw8dlIJ8QkKKRsiZ2dns8sBCpw8G8rffPNNHT58WDt37szysPUJEyZo7NixOVQZACAvi4iJUf0v5phdRoFyOeY659SG4pOSzC4Bdiwpychyn0HtB+nMyTNatW+VgksFZ6rPq0++av36wrkLqZY9Pvxxla1UNsu1AAVRngzlmzdv1sSJEzVmzBhVq1Yty/1HjRql4cOHW7+PjIxUSEiILUsEAORRvpYb2hkaZXYZBUqdHc7aGcqoM1upvS/Q7BJgx/adv6i4xEQZRtbDeVYsnrM4w2Wd+3QmlAP/yXOhPCEhQf369VONGjWszyXPKldXV7m6utq4MgAAACDvKR0SosTwk5luv2TJEjk7ZH6+59X/rM5yTfui92W5D2Cv8lwoj46O1uHDhyVJLi4uabZp2LChJGnRokXq3LlzbpUGAAAAAIBN5blQ7urqqkGDBqW5bv369Tp8+LA6duyoIkWKqHTp0rlbHAAAAAAANpTnQnmhQoU0Y8aMNNf1799fhw8f1qhRo9SgQYNcrgwAAAAAANvK/M0kAAAAAADApgjlAAAAAACYJF+F8pkzZ8owDIauAwAAAAAKhHwVygEAAAAAKEjy3ERvAAAAADLHMbhkltrv3rlTZ86cUadOnSRJDzS7Tyu+m52q3V/b/lLvlr3VqU8njZ82Ptv1xVyL0Zqla/Tbz7/pwJ4DOnv6rFxcXVSpWiU9POhhtXu4XZr9zoaf1efvfq4Nqzfo4rmLKuxfWI3vb6ynX39axUoUy3Y9QF5EKAcAAADyqTeHP59q2cczvlJEZGSa68r5+8oxJtr6/erf12vtHxvVsknjHKlv56adGvn4SPn6+apB8wZ6oNMDunzhsn5d8qteHviydm3ZpdcnvZ6iz8ljJ9W3VV9dunBJjVo10oPdHtSJoye0eM5ibVi5QbPXzFbJsln7MALIywjlAAAAQD41esTwVMu+mTdfEZGRaa6TJHfnmxGgdEiIToaHa9T4Cdry81JZLBab1xcQGKB3Z7yrNl3byMXFxbr8udHPqVeLXpr7xVx17N1RNerWsK579+V3denCJY16f5T6Du1rXb5y4UoNf2y43h7+tr746Qub1wqYhXvKAQAAADtUsVxZ9e3WVTv++lvzlizNkX1UqVFFHXp2SBHIpZth/eGBD0uSdm7caV0eeyNWG3/dKP+i/urzVJ8Ufdp0baPKNSpr468bder4qRypFzADoRwAAACwU2NfGiFXV1e9+f5ExcfH37H9tvXbFOoZqv5t+9/1vp3+u2Lv6ORoXXb18lUlJCSoeMniaV65L1GqhLUOoKAglAMAAAB2IuJGrCJuxFq/LxkcrKcH9NeRsDB9MXtOrtWRmJioJd8tkcViUcPmDa3LvX295ejoqDMnz8gwjFT9Tp84LUkKOxKWW6UCOY5QDgAAANiJk1cjdSoiKsWyUc8Mk6+Pt96e/Imir13LsH/1utW1dOdSjZ+e/RnZJenTtz7VoX2H1OXRLqoQWsG6vJB7IdVpXEeXzl/S3C/mpuizevFqHfj7gCQp6mrKYwDyM0I5AAAAYMcK+/rqlWFDdf7iRX34+bQM2xZyL6SylcqqeEjxbO/vhxk/aPrE6apSs4pGvj8y1fpX3ntF7p7uemfEOxrcebAmvj5Rz/V6TsMfHa6K1SpKkhwciDEoOHg1AwAAAHbumYEDVaJYMU2aNl2XLl3Osf3Mnzlfb73wliqGVtSMJTPk4emRqk3l6pX1w+8/qG3Xttq/e79mT5mt44ePa/Qno9WxV0dJkl8RvxyrEchthHIAAADAzhUq5KbRLw5X9LVrmjrt8xzZx49f/6gxz4xRucrl9OWyL+Xr75tu27KVyurDWR9qQ9gG7b68W0t2LFH3/t11+J/DkqTQ2qE5UiNgBkI5AAAAAPXr0V2hlSpq/oKFOnnspE23/ePXP2rss2NVtlJZffXzV9m60n0t6prWLV8nXz9fNWrZyKb1AWYilAMAAACQo6Oj3h75shISEvTZ+M/SbHM95rqOHTymM6fOZHq782fO19hnx6pMxTL66uev5F/UP8P2N67fUEJCQoplcbFxemPoG4q4HKGnRj4lVzfXTO8fyOuczC4AAAAAQN7QsXVr1b7nHv25a1ea6/fs2KMBDw3QvU3u1cwVM++4vS3rtmjMM2NkGIbqNq6rH2b8kKpN5RqV1apDK+v3+3bt0/O9n1fDlg0VVCJI0ZHRWr9yvf499a+69++uPk/1yfbxAXkRoRwAAACA1QvPP6dH+/W3ybb+Pf2v9Xnj876al2abTn06pQjlxUKK6d6m92rnpp26dP6SCrkXUpWaVfTyhJfVunNrm9QF5CWEcgAAAKAAObZ1U4brixcvrt07d6p6UJE0199Tq5b2Re9Lc129++qluy4tXfp2UZe+XTLdXpKKhxTXpG8nZakPkJ9xTzkAAABgJxwdLHKwWOToYDG7FAD/4Uo5AAAAYCeqFg0wuwQAt+FKOQAAAAAAJiGUAwAAAABgEkI5AAAAAAAm4Z5yAAAAwE6ER0YpMcmQo4NFwd5eZpcDQIRyAAAAwG5cjrmh+KQkOTs4EMqBPIJQDgAAAORjYadOqVyDxhm2ufTPHvn6+EiSOnbsqH///VcBfn46svkPeXl6pmp/j/89CggM0Op/Vt9VbSePndTSuUv1z1//6J9d/+j8v+dVvGTxO243KSlJP83+SQu/Xagj/xxRfFy8AoMDdU+De/TqB6/Kw8vjruoC8hJCOQAAAFAAlCtdSn26dklznZura6plFy9f1gdTPte4l1/MsZp2btqpKROmyNHRUWUrldXFcxfv2CcuNk7P931evy//XRWrVVSnPp3k4uqif0/9qw0rNyjqjShCOQoUQjkAAABQAJQrXVqjRwzPVFsnJycVDwzU5OkzNLT/YwoqWjRHaqrbuK6+W/udKlWvJLdCbrrH/5479pn05iT9vvx3vTDuBT0+/PEU65KSknKkTsBMzL4OAAAA2BkHBweNHjFc12JiNG7S5BzbT0iZENWsV1Nuhdwy1f7cmXOaO22u6jSqkyqQSzfrdnAgwqBg4RUNAAAA2KHHenRTtcqV9OXc73Xo6LFM9Qn1DFWoZ2iO1bRq0SolJCSoTZc2uhZ1Tct+WKbpE6dr4ayFOnfmXI7tFzATw9cBAACAAuBoWJjGfjgp1fI2zZurQZ3aqZY7ODho/KiR6thvgF579z39OH1abpSZoX92/yNJioyIVLt72unC2QvWdc4uznph3Avq93Q/s8oDcgShHAAAACgAjoadSHMouq+3d5qhXJLa3d9K9zWor4W/LNe2XbtV755aGe5j6c6lNqg0fZcuXJIkTZ0wVQ1bNtSMpTNUrEQx7di4Q2OeGaP3R76vshXLqmnrpjlaB5CbGL4OAAAAFACtmzdTYvjJVP+eeyL1vdm3eve1VyVJo96ZcMd9lK1UVmUrlbVJvWkxkgxJkl8RP02eM1nlq5SXh5eHmrVtpnGfjZMkzfxkZo7tHzADoRwAAACwEz5urnKwWFIsq1/7HnV56EGt27xZv6xZa1JlN3l633xmesMWDVXIvVCKdY3vbywXVxft27XPjNKAHEMoBwAAAOxESV9vOTk4yHJbMH/nlZfl5OSkVye8a+pjx0pXKC1J8vLxSrXOwcFBHp4eunH9Ri5XBeQsQjkAAABg5yqVL6eBPR/Rnv0HtHTZMtPqqN+sviTp6IGjqdZdvnBZVy5dUXCp4NwuC8hRhHIAAAAAGj3iBbkXKqT/TZma7tXyYweP6djBzD0+LTvubXqvylYqqy3rtmjT2k3W5YZhaPLYyZKkNl3a5Nj+ATMw+zoAAAAABRUtquefeFzjP/k03TYd6nSQJO2Lztx93VcuXtEHr31g/T4hPkFXLl3Rq0++al320jsvqXBAYUmSo6Oj3vn8HQ1sN1BPdX1K93e8X4HBgfpz85/as2OPqtaqqsdHZDxxHZDfEMoBAAAAO3HgwmXFJSbKMIw01780dIimfjtbV65cscn+Yq7FaPGcxSmWXb92PcWyYa8Os4ZySapxbw19v+57/e+d/2nLui2KjopWsZBieuLFJ/TEi0/I3cPdJrUBeQWhHAAAAMjHSoeEKDH8ZKbaxicmasmSJXJ2SPsuVm8vL21Y95ss5ZzTXJ/ZK+TJgksFZ7mPJJWvWl6T50zOcj8gP+KecgAAAAAATEIoBwAAAADAJIRyAAAAAABMQigHAAAAAMAkhHIAAAAAAExCKAcAAAAAwCSEcgAAAAAATMJzygEAAIB84vjJU3fX/8JlJRiGnCwWOUdHpNnm2JUIWRKICbYUdzpOLnEuZpdhU+Enws0uocDg3QYAAADkcb5urnIzDL05duxdbScmLl6GYchiscjdxTnNNv9GX5OliONd7QcpJVxMkFNAwYte8c7xcvTitXK3Ct4rAwAAAChggrw89H3n1rp6IzbH99VtwTI5j/bP8f3YkxMvn1Cp0aXMLsPmHL0c5RyQ9oc7yDxCOQAAAJAPBHl5KMjLI8f34+rsJJcybjm+H3vi6OooN84p0sFEbwAAAAAAmIQr5QAAAICdOHjxshKSkuTk4KBKAX5mlwNAhHIAAADAbrT9Zr7Co6IV7OWp4yMGm10OADF8HQAAAAAA0xDKAQAAAAAwCaEcAAAAAACTEMoBAAAAADAJE70BAADkooiYGNX/Yo7ZZRQo8UlJZpcAANlGKAcAAMhFvpYb2hkaZXYZBUrtfYFmlwAA2cbwdQAAAAAATEIoBwAAAADAJIRyAAAAAABMwj3lAAAAgJ3YNLi3EpMMOTpYzC4FwH8I5QAAAICdKOblaXYJAG7D8HUAAAAAAExCKAcAAAAAwCQMXwcAAADsxIwdfys6Ll6eLs56vG4Ns8sBIEI5AAAAYDfe+X2LwqOiFezlSSgH8giGrwMAAAAAYBJCOQAAAAAAJiGUAwAAAABgEkI5AAAAAAAmIZQDAAAAAGASQjkAAAAAACYhlAMAAAAAYBJCOQAAAAAAJnEyuwAAAAAAuaOCf2F5u7kq0MPd7FIA/IdQDgAAANiJVf17mF0CgNswfB0AAAAAAJMQygEAAAAAMAmhHAAAAAAAk3BPOQAAAGAnHlvwiy7FXJe/eyHN6vaQ2eUAEKEcAAAAsBsbwk4rPCpawV6eZpcC4D8MXwcAAAAAwCSEcgAAAAAATEIoBwAAAADAJIRyAAAAAABMQigHAAAAAMAkhHIAAAAAAExCKAcAAAAAwCSEcgAAAAAATOJkdgEAAAAAcsfAOtUVeSNW3m6uZpcC4D+EcgAAAMBOvNG8odklALgNw9cBAAAAADAJoRwAAAAAAJMQygEAAAAAMAn3lAMAAAB2osyHXyg8KlrBXp46PmKw2eUAEFfKAQAAAAAwDaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJMQygEAAAAAMAmhHAAAAAAAkxDKAQAAAAAwCaEcAAAAAACTEMoBAAAAADCJk9kFAAAAAMgdM7s+qNjERLk6OppdCoD/EMoBAAAAO9GsTIjZJQC4DcPXAQAAAAAwCaEcAAAAAACTMHwdAAAAsBO/Hz9lvaecoexA3kAoBwAAAOxE/4XLFR4VrWAvTx0fMdjscgCI4esAAAAAAJiGUA4AAAAAgEkI5QAAAAAAmIRQDgAAAACASfJkKA8PD9fkyZPVunVrlSxZUi4uLgoKClK3bt20detWs8sDAAAAAMAm8mQo//TTT/XCCy/o2LFjat26tUaMGKEmTZpo8eLFatSokX744QezSwQAAAAA4K7lyUei1atXT+vWrVOzZs1SLN+wYYNatWqlp556Sp07d5arq6tJFQIAAAAAcPfy5JXyrl27pgrkktS0aVO1aNFCV65c0Z49e0yoDAAAAAAA28mToTwjzs7OkiQnpzx5kR8AAAAAgEzLV8n25MmT+vXXX1WsWDFVr1493XaxsbGKjY21fh8ZGZkb5QEAAAB52vERg80uAcBt8k0oj4+P16OPPqrY2Fi99957cnR0TLfthAkTNHbs2Fysznaa3FNdR44dN7uMAsPdiJeKmF0FAAAAAKQtX4TypKQk9e/fX+vXr9cTTzyhRx99NMP2o0aN0vDhw63fR0ZGKiQkJKfLtAk/xels/Wtml1Fg1NnhbHYJAAAAAJCuPB/Kk5KSNHDgQH333Xfq27evPv/88zv2cXV1ZWZ2AAAAAECel6dDeVJSkgYMGKBZs2apV69emjlzphwc8t3cdAAAAECe8Na6zYq8EStvN1e90byh2eUAUB4O5bcG8kceeUTffvtthveRAwAAAMjYVzv3KDwqWsFenoRyII/Ik5edk4esz5o1Sz169NDs2bMJ5AAAAACAAidPXikfN26cvvnmG3l6eqpixYp6++23U7Xp3LmzatWqlfvFAQAAAABgI3kylIeFhUmSoqOj9c4776TZpnTp0oRyAAAAAEC+lidD+cyZMzVz5kyzywAAAAAAIEflyXvKAQAAAACwB4RyAAAAAABMQigHAAAAAMAkhHIAAAAAAEySJyd6AwAAAGB7TUuX0KWY6/J3L2R2KQD+QygHAAAA7MSsbg+ZXQKA2zB8HQAAAAAAkxDKAQAAAAAwCaEcAAAAAACTcE85AAAAYCdaz/xR567FKNDDXav69zC7HAAilAMAAAB24/ClKwqPilbkjVizSwHwH4avAwAAAABgEkI5AAAAAAAmIZQDAAAAAGASQjkAAAAAACYhlAMAAAAAYBJCOQAAAAAAJiGUAwAAAABgEkI5AAAAAAAmcTK7AAAAAAC547VmDRQdFy9PF2ezSwHwH0I5AAAAYCcer1vD7BIA3Ibh6wAAAAAAmIRQDgAAAACASRi+DgAAANiJf6OilZhkyNHBomJenmaXA0CEcgAAAMBuNPriO4VHRSvYy1PHRww2uxwAYvg6AAAAAACmIZQDAAAAAGASQjkAAAAAACYhlAMAAAAAYBJCOQAAAAAAJiGUAwAAAABgEkI5AAAAAAAmIZQDAAAAAGASQjkAAAAAACZxMrsAAAAAALljRb/uSkhKkpMD1+aAvIJQDgAAANiJSgF+ZpcA4DZ8RAYAAAAAgEkI5QAAAAAAmITh6wAAAICdmPv3fl2PT1AhZyf1qlHF7HIAiFAOAAAA2I1XV29QeFS0gr08CeVAHsHwdQAAAAAATEIoBwAAAADAJIRyAAAAAABMQigHAAAAAMAkhHIAAAAAAExCKAcAAAAAwCSEcgAAAAAATEIoBwAAAADAJE5mFwAAAAAgdwR6eqT4LwDzEcoBAAAAO7HlyT5mlwDgNgxfBwAAAADAJIRyAAAAAABMQigHAAAAAMAk3FMOAAAA2ImhS1fr8vUb8ivkpikdHjC7HAAilAMAAAB2Y/mh4wqPilawl6fZpQD4D8PXAQAAAAAwCaEcAAAAAACTMHwdQJbsOhKmIB+GvNmSuxEvFTG7CgDIvyJiYlT/izlml5EvnL8WY/1veucs6kaM/HOzKMDOEcoBZElRZ0M7614zu4wCpc4OZ7NLAIB8zddyQztDo8wuI18ocUkKj5WKOifpz9Bzabapscsll6sC7BvD1wEAAAAAMAmhHAAAAAAAkxDKAQAAAAAwCaEcAAAAAACTMNEbAAAAYCd6BUlX4qXCzDEK5BmEcgAAAMBOfFDR7AoA3I7h6wAAAAAAmIRQDgAAAACASQjlAAAAAACYhHvKAQAAADtReaN0JlYq7iodaGx2NQAkrpQDAAAAdiM6UYpKvPlfAHkDoRwAAAAAAJMQygEAAAAAMAmhHAAAAAAAkxDKAQAAAAAwCaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJMQygEAAAAAMImT2QUAAAAAyB2fV5GuJ0mFuDQH5BmEcgAAAMBOtC9idgUAbsdnZAAAAAAAmIRQDgAAAACASRi+DgAAANiJnZFSXJLk4iDV8Ta7GgASoRwAAACwG512S+GxUrCrdPo+s6sBIDF8HQAAAAAA0xDKAQAAAAAwCaEcAAAAAACTEMoBAAAAADAJoRwAAAAAAJMQygEAAAAAMAmhHAAAAAAAkxDKAQAAAAAwCaEcAAAAAACTOJldAAAAAIDcsb+RZEiymF0IACtCOQAAAGAnvPjrH8hzGL4OAAAAAIBJCOUAAAAAAJiEASwAAACAnZh0QopMkLydpOGlzK4GgEQoBwAAAOzGpBNSeKwU7EooB/IKhq8DAAAAAGASQjkAAAAAACYhlAMAAAAAYBJCOQAAAAAAJiGUAwAAAABgEkI5AAAAAAAmIZQDAAAAAGASQjkAAAAAACZxMrsAAAAAALmjtpcU4iYVcTa7EgDJCOUAAACAnVhyj9kVALgdw9cBAAAAADAJoRwAAAAAAJMQygEAAAAAMAn3lAMAAAB2ouMu6UL8zYneuL8cyBsI5QAAAICd+DNKCo+Vgl3NrgRAMoavAwAAAABgEkI5AAAAAAAmydOhfPv27XrooYfk6+srDw8PNWjQQPPmzTO7LAAAAAAAbCLP3lP+22+/qU2bNnJzc1PPnj3l5eWlBQsW6JFHHtGpU6c0YsQIs0sEAAAAAOCu5Mkr5QkJCXriiSfk4OCg9evX64svvtCHH36ov/76SxUrVtSrr76qEydOmF0mAAAAAAB3JU+G8rVr1+ro0aPq3bu3atWqZV3u4+OjV199VXFxcfrmm2/MKxAAAAAAABvIk6F83bp1kqTWrVunWtemTRtJ0u+//56bJQEAAAAAYHN58p7yw4cPS5IqVKiQal1QUJA8PT2tbdISGxur2NhY6/cRERGSpMjISBtXanvxiYmKTDC7ioIj0TA4nzbGObU9zqltcT5tj3NqW5xP2+OcZl6S8f//Te+cJSYZcohOzL2i7ICRaCiRc2oziQmJ+SLbJddoGEaG7SzGnVqYoHXr1lq9erUOHz6s8uXLp1ofHBys6Ohoa9i+3ZgxYzR27NicLhMAAAAAgAydOnVKJUqUSHd9nrxSfrdGjRql4cOHW79PSkrS5cuX5e/vL4vFYmJlGYuMjFRISIhOnTolb29vs8vJ9ziftsc5tT3OqW1xPm2Pc2pbnE/b45zaFufT9jintpWfzqdhGIqKilLx4sUzbJcnQ7mPj48kpXslPDIyUoULF063v6urq1xdXVMs8/X1tVl9Oc3b2zvPv8DyE86n7XFObY9zalucT9vjnNoW59P2OKe2xfm0Pc6pbeWX85mcbTOSJyd6S76XPK37xs+ePavo6Og07zcHAAAAACA/yZOhvFmzZpKkVatWpVq3cuXKFG0AAAAAAMiv8mQob9WqlcqWLavvvvtOu3fvti6PiIjQ+PHj5eLioscee8y8AnOIq6urRo8enWroPbKH82l7nFPb45zaFufT9jintsX5tD3OqW1xPm2Pc2pbBfF85snZ1yXpt99+U5s2beTm5qaePXvKy8tLCxYs0IkTJzRx4kSNGDHC7BIBAAAAALgreTaUS9K2bds0evRobdq0SfHx8apevbqGDx+uRx55xOzSAAAAAAC4a3k6lAMAAAAAUJDlyXvKAQAAAACwB4RyAAAAAABMQii3ke3bt+uhhx6Sr6+vPDw81KBBA82bNy9L24iNjdW4ceNUoUIFubm5qXjx4ho8eLDOnz+fbp85c+aoXr168vDwUOHChdW+fXv9+eefd3s4prvb83n06FGNGTNGHTt2VHBwsCwWi0qXLn3HfitXrlSzZs3k5eUlb29vtWjRQmvWrLmLI8k77uacGoah5cuX66mnnlKNGjXk4+Mjd3d31axZU+PHj9eNGzfS7VtQz+ndvkaXL1+unj17qnLlyvL19ZW7u7sqV66sQYMG6dChQ+n2K6jnU7LN79FbXblyxfr+b9u2bbrtCuo5vdvzOXPmTFkslnT/rVu3Lkf2m5fZ6tjOnz+vF154wfr/e39/fzVs2FBTp05Nsz2v0bSVLl06w9eoxWLRhg0bUvUrqOdTss1r9MyZM3ruuedUtWpVeXh4KDAwUE2aNNG3336rxMTENPtwTjO2f/9+9enTR0FBQXJ1dVWpUqX03HPP6fLly+n2KYjndPbs2XryySdVt25dubq6ymKxaObMmVneTlJSkj799FNVr15dhQoVUpEiRdSrVy8dO3Ys3T55/nwauGtr1641nJ2dDS8vL+OJJ54whg8fbpQqVcqQZEycODFT20hMTDTatGljSDIaNGhgvPLKK0bXrl0Ni8VilC1b1jh//nyqPm+//bYhyfi/9u49KKrrjgP4d3mtsCivBTGoiAaEYPCFWiuKSAStqInEOtgYtCqJCWYSJWpmWvE1aeLYqCGtGic+M1YTa4xaBB+AVaAqijatFh8B4lsUUUQUhV//yOzWdZeXXFh2+/3M7Iw559z7u+ebC+zZvXvX19dXZs2aJdOnT5e2bduKWq2WI0eOKD3NFqNEnuvXrxcAYmtrKz169BAbGxvx9fWtc5vNmzcLAPH09JTExERJTEwUT09PUalU8u233yowM/NpaqaVlZUCQNRqtURHR0tSUpIkJiaKv7+/AJB+/fpJRUWF0XbWmqkS52hiYqL4+vrKr3/9a3n//fflww8/lJiYGLG1tRW1Wi0HDx402sZa8xRRJtNnTZw4UTQajQCQ6Ohok2OsNVMlf4+OHTtWkpOTjR6FhYXNUre1Umpu+fn54unpKXZ2djJ27FiZN2+eJCYmSmRkpIwcOdJoPM/R2i1fvtzkufnuu+8KAHFzc5PKykqDbaw1TxFlMr148aJotVpRqVQyYsQImTNnjrz99tvi7e0tAGTy5MlG2zDTuuXm5opGoxEbGxt57bXXJCkpSV555RUBIAEBAXLr1i2jbaw1U112Wq1W/+/169c3ej/Tpk0TABIcHCxz5syRN954QxwcHMTd3V3OnTtnNN4S8uSivIkeP34s3bp1E7VaLfn5+fr2srIyCQgIEAcHBykqKqp3P+vWrRMAEhcXJzU1Nfr2VatWCQBJSEgwGH/u3Dmxs7OTgIAAKSsr07fn5+eLWq2WoKAgqa6ubvoEW5hSeV68eFFyc3PlwYMHIiKiVqvrXJSXlpaKq6uraLVauXTpkr790qVLotVqRavVyr179557XuakRKZVVVWyZMkSKS0tNWofPXq0AJClS5ca9Flrpkqdo88+UdQ5cOCAAJDQ0FCDdmvNU0S5TJ+2fft2ASBffPFFrYtya81UqTx1i/KGPmFqjv+PrYVSc7t796507txZPD095fTp0ybrPI3n6PNZtmyZAJCZM2catFtrniLKZTpjxgwBICtWrDBov3PnjnTu3FkAGOyHmdafaY8ePQSAfP/99wbtS5cuFQDy1ltvGbRbc6b79+/XZ/aHP/zhuRblGRkZAkCGDBkijx490renpqYKAImKijIYbyl5clHeROnp6QJApkyZYtS3YcMGASALFy6sdz8DBw40+kUnIlJTUyNdu3YVjUajX2CKiHz00UcCQDZu3Gi0r8mTJwsAOXTo0HPMyLyUyvNZ9S3K16xZU+u+FyxYUGvWlqC5MtXJyckRADJq1CiDdmvNtLnzFBFxc3MTV1dXgzZrzVNE+Uxv3rwpnp6eMmnSJCksLKx1UW6tmSqVZ2MX5S3xs2EuSs1N9yT0q6++alBdnqPPJygoSADIqVOnDNqtNU8R5TLVXbVp6t3GiRMnCgDJy8vTtzHTujO9cOGC/orCZ1VXV4uHh4c4OTnJ/fv39e3WnOnTnndRHhcXV+s6Z+jQoQJAiouL9W2Wkic/U95Eus/URUVFGfVFR0cDAA4dOlTnPh4+fIijR4+ie/fu8PX1NehTqVQYPnw4KioqkJeXp2jd1shc87LWPIHmn5u9vT0AwM7OrkXrmktzzys3Nxd37txBjx49WrSuOSk9t7fffhu2trZYuXJli9ZtLZSeV35+Pv74xz/i008/xbZt23D79u0WqduaKDW3bdu2QaVSITY2FgUFBUhJScHSpUuxa9cuVFVVNVvd1qY555WTk4OzZ88iNDQUPXv2bLG65qbU3HR/e1JTUw3ay8rKkJ2dDW9vb7z00kuK122NlJjb9evXAQB+fn5GfTY2NujcuTMePHiAf/zjH4rWtWZZWVnQaDQYNGiQUZ+pfCwlT7v6h1Bdzp8/DwDw9/c36vP29oazs7N+TG0uXryImpoak/t4et/nz5/H4MGD9f92dnaGt7d3neMtjRJ5Kl3XkvMEmj/TdevWATD+ZWetmSqd5759+5CTk4NHjx7h/Pnz2LNnD7RaLZYvX97gupacJ6Bspl9//TV27NiBnTt3ws3NDXfv3n2uupacqdLn6Oeff27w346OjkhOTsbcuXObtW5rosTcqqqq8MMPP8DT0xMpKSlITk5GTU2Nvr9r167YuXMnXn755QbV5Tlq2ldffQUAmDZtWqPqWnKegHKZfvjhh9i9ezc++OADpKWlISQkBPfu3cPOnTvh5OSE7777Do6Ojg2qy0wBrVYLACgsLDTqq6mpwU8//QQAOHfuHCIjI+uta+mZNlVFRQWuXbuGHj16wNbW1qjfVD6WkiffKW8i3RM+FxcXk/3t2rWr80lhQ/fx9Djdvxsz3lIokafSdS05T6B5M927dy/WrFmDoKAgTJ06tcF1LTlTpfPct28fFi5ciE8++QR//etf0alTJ6SlpSE0NLTBdS05T0C5TK9evYr33nsPcXFxGDt2bJPqWnKmSuXp5+eHlJQUnDt3Dg8ePMDly5exadMmuLu7Y968eUhJSWmWuq2REnMrLS1FdXU1bt++jUWLFmHp0qW4ceMGLl++jN///vcoLCzE6NGjDb7Ngudo49y/fx/ffPMNnJycEBcX16i6lpwnoFym7du3R25uLkaMGIG0tDQsXboUq1evxt27d/Hmm28aXX3ATOueW0BAALp27Yrjx4/jb3/7m0HfihUr9FcelZWVNaiupWfaVM+7Zqptm9aUJxflRPRcjh8/jgkTJsDFxQXffvst1Gq1uQ/JIi1btgwigvLycv3HWAYNGoQtW7aY+9AszrRp02Bvb2/0zi49n/DwcCQmJsLf3x+Ojo7w8fHBpEmTkJ6ejjZt2mDBggV48uSJuQ/TYujeFa+ursY777yD2bNnw8vLCz4+Pli0aBHGjx+P4uJibN++3cxHarm2bduG+/fvY/z48fon29Q4Fy5cwKBBg1BSUoLDhw+jvLwcly5dwvz587F48WJERkbW+rVoZEylUuHPf/4z7O3tMWbMGMTGxmLOnDmIjo7G7Nmz9VfG2NhwSfb/jmdAE+ledantFZZ79+7V+mpOY/bx9Djdvxsz3lIokafSdS05T6B5Ms3Ly0NUVBRsbGyQnp6O4ODgRtW15Eyb6xx1dnZG//79sXPnTgQGBiIhIQElJSUNqmvJeQLKZLpx40bs3bsXf/rTn/SXCzalriVn2ty/R4ODgxEWFobS0lKcPXu2xeqak5J/6wFgzJgxRv26tqfvH8NztHHqunS9vrqWnCegXKaTJ09GcXExdu/ejbCwMDg7O6Njx46YN28eZs6cidzcXGzdurVBdZnpz6Kjo3H48GGMHDkSGRkZ+Pzzz3H79m189913CA8PBwB4eXk1qK6lZ9pUz7tmqm2b1pQnF+VNVNdnEa5fv4779+/X+llxna5du8LGxqbWzzOY+iyEv78/7t+/r7+BRH3jLYUSeSpd15LzBJTPNC8vD8OHD0dNTQ3S09PRr1+/Rte15Eyb+xy1s7NDRESE0c0drTVPQJlM8/PzAQDjx4+HSqXSP3Q310lPT4dKpUKvXr0aVNeSM22J36O6Fz4qKipatK65KDE3jUYDHx8fAICrq6tRv66tsrKyQXV5jho6c+YMcnNzERgYiLCwsEbXteQ8AWUyLS8vR3Z2NoKCgkzesygiIgLA/37f1leXmf7PgAEDsGfPHty5cwcPHz5EXl4eXn31Vfzwww8AYPCRNWvOtKk0Gg06dOiAwsJCk1ds1LZmerqvvvHmwkV5E+le4dq3b59RX3p6usGY2jg6OqJ///4oKChAcXGxQZ+IYP/+/dBoNAY/sErUbY3MNS9rzRNQdm66BXl1dTXS0tIwYMCAFqnbmrTEvK5evQrgf3e2b6m65qLE3AYOHIipU6caPSZMmAAA6NixI6ZOnYpx48YpWrc1au55VVdX618wevobQ6w1T0C5uQ0bNgzAzwvIZ+naunTponjd1qY55qV7l/zZ+5s0d93WQom56b4B4NatWyb7dVdvPf1xNWb6/HMrLi7GkSNH8NJLLxnc4NGaM1VCeHg4KioqkJ2dbdSny2fIkCEG4wELyNPc38lm6R4/fixdu3YVtVot+fn5+vaysjIJCAgQBwcHKSws1LdfvXpVzp49K2VlZQb7WbdunQCQuLg4qamp0bevWrVKAEhCQoLB+IKCArGzs5OAgACDfeXn54tarZagoCCprq5WdrItQKk8n1Xf95SXlpaKi4uLaLVauXTpkr790qVLotVqRavVyr179553WmalVKZ5eXni6uoqzs7OcuTIkXrrWmumSuV5/Phxk/tPS0sTe3t7cXV1NfjeUmvNU6T5fu5FpM7vKbfWTJX8mX/WkydPJCkpSQBIREREk+paEqUyzc7OFgASHBwsd+7c0bdfu3ZNfHx8xMbGRgoKCvTtPEd/Vt/PfFVVlXh6eoq9vb3cuHGj1rrWmqeIcpl2795dAMjatWsN2u/cuSOBgYECQPbv369vZ6aF+vbaMi0vLzd4bq/bx+DBgwWAfP/99wZ91pzp0+r7nvKSkhI5e/aslJSUGLRnZGQIABkyZIg8evRI356amioAJCoqymC8peTJRbkCMjIyxN7eXtq2bSvTp0+XWbNmia+vrwCQZcuWGYyNj483eQJWV1dLdHS0AJBf/OIXMnfuXImNjRWVSiV+fn5y8+ZNo7pLliwRAOLr6yuzZs2S6dOnS9u2bUWtVjdo0dRaKZFnSUmJxMfH6x82Njai0WgM2p79Id+8ebMAEE9PT0lMTJTExETx9PQUlUol33zzTXNPu1k1NdPbt2+Lm5ubAJARI0ZIcnKy0WP58uVGda01UyXOUQDSo0cPmThxosyZM0feffdd/R9oe3t72bFjh1Fda81TRJlMTalrUS5ivZkqdY6GhITIG2+8IXPnzpXp06dLQECAAJCOHTvKxYsXm1TX0ih1js6aNUsASKdOneSdd96R6dOni5eXlwCQjz/+2Gg8z9H6f+a3b98uAGTcuHH11rXWPEWUyTQ1NVXs7OwEgERGRkpSUpJMnTpVPD09BYDExsYa1WWmP6st082bN0unTp0kPj5ePvroI4M8Fy9ebLKutWa6du1a/fPwPn36CAAZNGiQvu3pF4OSk5MFgCQnJxvtZ9q0afoXOOfMmSOTJk0SBwcHcXd3N3hhU8cS8uSiXCFHjx6VESNGSLt27cTR0VH69+8vW7duNRpX1x+Whw8fyoIFC6Rbt27i4OAg3t7eMm3aNLl+/Xqtdb/++msJDQ0VR0dHcXFxkV/96ldy4sQJJadmFk3NU/dEvK6HqXds9u7dK4MHDxaNRiPOzs4SHh5u8IqwJWtKpg3Js7YrEaw106aeox9//LEMHz5cfHx8xMHBQdq0aSMBAQGSkJAgZ86cqbWuteYposzv0WfVtygXsd5Mm5rn7NmzZdCgQdK+fXuxt7cXjUYjPXv2lN/97ndSWlra5LqWSKlzdP369RIaGipOTk6i0WgkLCzM5AtxOjxH685z5MiRAkBSU1MbVNda8xRRJtNjx47J+PHjpUOHDmJnZyfOzs7Sr18/SUlJkSdPnpisy0xrz/TUqVMSExMjHTp0EHt7e9FqtRITEyMZGRl11rXGTHUZ1faIj4/Xj61rUV5dXS0rV66U4OBgUavV4uHhIRMmTJALFy7UWru156kSEWnIZe5EREREREREpCze6I2IiIiIiIjITLgoJyIiIiIiIjITLsqJiIiIiIiIzISLciIiIiIiIiIz4aKciIiIiIiIyEy4KCciIiIiIiIyEy7KiYiIiIiIiMyEi3IiIiIiIiIiM+GinIiIiIiIiMhMuCgnIiJ6Tvv378eUKVMQEBCAdu3aQa1Wo0OHDhg+fDiWL1+OkpISsx7fmTNn8Oqrr8LLywu2trZQqVRYsGABAGDo0KFQqVTIyspq1D4XLFhgsB8iIiJqGjtzHwAREZGluXXrFuLi4nDgwAEAQJcuXRAREQGNRoPr168jJycHBw4cwPz583HgwAEMGDCgxY+xoqICo0aNQlFREUJDQxEdHQ1bW1v06tWrxY+FiIiIasdFORERUSPcvXsXYWFhKCgoQGBgIL788ksMHjzYYMyjR4+wceNGJCcn49q1a2Y5zuPHj6OoqAi//OUvkZ2dbdS/adMmPHjwAJ07dzbD0REREZEOF+VERESNMHPmTBQUFKBLly7Izs6Gu7u70Ri1Wo2EhASMHTsWZWVlLX+QAH766ScAgL+/v8l+LsaJiIhaB36mnIiIqIF+/PFHbNmyBQDw2WefmVyQP619+/bo3r27QdvWrVsRGRkJd3d3qNVq+Pr64re//S3OnTtnch9dunSBSqVCUVERMjMzERUVBTc3Nzg6OqJPnz7YtGmTwfisrCyoVCrEx8cDADZu3AiVSqV/6NT1mfLKykosWLAA/v7++s/Jx8fH6xf6dTlx4gR+85vfoHPnzlCr1XB3d0d0dDRSU1MVmd/TRAQ7duxATEwMvL294eDgAG9vb4SFheHTTz9FZWVlk4+PiIiouXFRTkRE1EB79uxBdXU1XF1dMWbMmEZtKyKIj49HXFwc/v73v6N3794YN24c2rRpg/Xr16N3795IS0urdft169YhMjISpaWlGDFiBHr16oX8/HzEx8djxYoV+nHe3t6Ij4/HoEGDAADdunVDfHy8/lGfBw8eYNiwYVi4cCGuXbuGqKgoDB48GOnp6ejTpw8KCwtr3XblypXo378/tmzZAg8PD4wZMwbBwcHIysrCqFGjsGjRoibPT+fx48d4/fXXERsbi71798LPzw+vv/46QkJCUFRUhHnz5uHGjRuKHR8REVGzESIiImqQSZMmCQAZNmxYo7ddtWqVABCtViv5+fn69pqaGklOThYA4urqKjdv3jTYztfXVwCIvb297N6926Bv/fr1AkBcXFzkwYMHJvvi4+NNHk94eLgAkMzMTIP2pKQkASCBgYFy5coVfXtFRYWMHTtWAAgASU5ONtguLS1NVCqVaLVaOXTokEHfP//5T+nYsaMAkKysLEXmN2vWLAEgXbp0kVOnThn01dTUyIEDB6SsrKzJx0dERNTc+E45ERFRA+m+4szLy6vR2y5btgwAMH/+fIM7oKtUKiQnJyMkJARlZWVYu3atye1nzpyJmJgYg7bJkycjMDAQd+/eRV5eXqOP6VmVlZVYs2YNAGD58uV44YUX9H1OTk5YvXo12rRpY3Lb5ORkiAhWr16NIUOGGPS9/PLL+OyzzwAAKSkpJrdvzPxu3ryJL774AgCwfft29OzZ02A7lUqFyMhIuLi4KHZ8REREzYWLciIiomZ2+fJlXLx4EQBMXkKuUqkwZcoUAEBmZqbJfYwePdpke1BQEADgypUrTT7OkydPory8HFqtFiNGjDDq9/b2RlRUlFH7rVu3cOzYMTg6OtZ6nEOHDgUA5OTkmOxvzPwyMzNRVVWFvn37om/fvnXOSanjIyIiai68+zoREVEDeXp6Avj5ndrG0C0oPTw80K5dO5NjunXrZjD2WbXdLV23v4cPHzbqmEy5fPkygJ9vvlYbPz8/o7bCwkKICCorK6FWq+usobva4FmNmV9xcTEAIDAwsM5aSh4fERFRc+GinIiIqIH69u2LzZs34+TJk6iuroatrW2L1baxab0Xt9XU1AAAnJ2dERsb+1z7aM75KXF8REREzYWLciIiogaKiYnBrFmzUFZWhl27duG1115r0HY+Pj4AgNu3b+PevXsm3y3/8ccfDcaag652UVFRrWNM9XXq1AnAz5fhr1u3rtlfQNC9q/6f//ynQeNb+viIiIgag3+ViIiIGqhbt26Ii4sDAMyePRulpaV1jr958yYKCgrQsWNH/eXpGzZsMBonIvr2iIgIRY+5Mfr27QtnZ2fcunUL+/btM+q/ceOGyfYXXngBISEhKC8vr/Nr3ZQybNgwODg44MSJEzh58mS941v6+IiIiBqDi3IiIqJGSElJwYsvvojCwkKEhYXhyJEjRmOqqqqwbt069O7dG2fPngUAJCUlAQAWL16M06dP68eKCJYsWYJTp07B1dUV06dPb5mJmODo6IiEhAQAwAcffIBr167p+yorKzFjxgxUVlaa3HbJkiUAgClTpmD37t1G/SKCo0ePmlzUN5aXlxdmzJgBABg/fjz+9a9/GdXKyMjA3bt3zXJ8REREjcHL14mIiBrBzc0N2dnZmDBhArKysjB48GD4+fkhJCQETk5OuHHjBo4dO4b79++jXbt2+q8Ve+utt5CTk4PNmzcjNDQU4eHh8PLywsmTJ1FQUABHR0ds2bJFfzM5c1m0aBGOHDmCY8eOISAgABEREWjTpg0OHz6Mx48f480338SmTZuMths9ejRWrlyJ2bNnY8yYMXjxxRfRvXt3uLi4oKSkBKdPn8bNmzcxd+5ck3dwb6ylS5eisLAQu3btQs+ePTFgwAD4+fnh1q1b+Pe//40rV66gsLBQ/7VoLX18REREDcVFORERUSN5eXkhMzMTaWlp+Mtf/oKcnBwcPHgQjx49goeHBwYOHIhRo0Zh0qRJcHd3B/Dz55k3bdqEkSNH4ssvv8SJEydQUVEBb29vTJ48GfPmzUP37t3NPDNAo9EgMzMTn3zyCbZs2YL09HS4ubnhlVdewZIlS0xefq/z3nvvYdiwYUhJSUFmZiYOHjwIGxsbeHt7o3fv3hg1apRiN1pzcHDAzp07sXXrVmzYsAEnTpxAXl4ePDw84O/vj/fffx/e3t5mOz4iIqKGUomImPsgiIiIiIiIiP4f8TPlRERERERERGbCRTkRERERERGRmXBRTkRERERERGQmXJQTERERERERmQkX5URERERERERmwkU5ERERERERkZlwUU5ERERERERkJlyUExEREREREZkJF+VEREREREREZsJFOREREREREZGZcFFOREREREREZCZclBMRERERERGZyX8BRkh2PJxDZHgAAAAASUVORK5CYII=\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "###5.5 Show ROC Curve"
+ ],
+ "metadata": {
+ "id": "Xhu5PpnNp4OP"
+ }
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "iAeJMRDNyy9h",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 472
+ },
+ "outputId": "af8d2e35-50e9-454e-aada-24d21359c461"
+ },
+ "source": [
+ "def create_auc_curve(classifications):\n",
+ " squares = {}\n",
+ " for x in classifications:\n",
+ " conf = x[4]\n",
+ " TP, FP, TN, FN = 0, 0, 0, 0\n",
+ " for row in classifications:\n",
+ " assert (row[2] == \"neg\" or row[2] == \"pos\")\n",
+ " if row[2] == \"neg\":\n",
+ " if float(row[4]) < conf: TN += 1\n",
+ " else: FP += 1\n",
+ " else:\n",
+ " if float(row[4]) > conf: TP += 1\n",
+ " else: FN += 1\n",
+ " squares[conf] = [TP, FP, TN, FN]\n",
+ " # now we have a list of stuff: convert to\n",
+ " sens_spec = {}\n",
+ " for entry in squares:\n",
+ " sens = squares[entry][0] / float(squares[entry][0] + squares[entry][3])\n",
+ " spec = squares[entry][2] / float(squares[entry][2] + squares[entry][1])\n",
+ " sens_spec[entry] = (1-spec, sens)\n",
+ " return squares, sens_spec\n",
+ "\n",
+ "squares, sens_spec = create_auc_curve(sorted_results)\n",
+ "\n",
+ "x = []\n",
+ "y = []\n",
+ "for point in sens_spec.keys():\n",
+ " x.append(sens_spec[point][0])\n",
+ " y.append(sens_spec[point][1])\n",
+ "\n",
+ "auc = sklearn.metrics.auc(x, y)\n",
+ "\n",
+ "plt.figure()\n",
+ "lw = 2\n",
+ "plt.plot(x, y, color='darkorange', lw=lw, label='ROC curve (area = %0.3f)' % auc)\n",
+ "plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')\n",
+ "plt.xlim([0.0, 1.0])\n",
+ "plt.ylim([0.0, 1.0])\n",
+ "plt.ylabel('Sensitivity')\n",
+ "plt.xlabel('1-specificity')\n",
+ "plt.title('Receiver operating characteristic')\n",
+ "plt.legend(loc=\"lower right\", fontsize=20)\n",
+ "plt.show()"
+ ],
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFsUlEQVR4nO3dd3xN5x8H8M/NutlLlkQIagsh9gqaUtQm9h7lR5WgqBalRUtRRRW1akTsvfeesWoTW0Jk7+Te5/dHmpPcZkjiJifj83697uuV+5znnPu999zc+73POgohhAARERFREaQjdwBEREREcmEiREREREUWEyEiIiIqspgIERERUZHFRIiIiIiKLCZCREREVGQxESIiIqIii4kQERERFVlMhIiIiKjIYiJEpGUuLi7o37+/3GEUCf3794eLi4vcYWSoadOmqFq1qtxh5DsnTpyAQqHAiRMntHK81atXQ6FQ4OnTp1o5HhUtTISoQEn+wEu+6enpwcnJCf3798erV6/kDo9ywevXrzFt2jRcv35d7lCKlJkzZ2LHjh1yh6EhP8ZEBZ+C1xqjgmT16tUYMGAApk+fjtKlSyM2NhYXLlzA6tWr4eLigtu3b8PQ0FDWGOPi4qCjowN9fX1Z4ygsrly5gtq1a2PVqlVpWtoSEhKgVquhVCrlCe4DmjZtiqCgINy+fVvuULLN1NQUXbp0werVq7V+bLVajfj4eBgYGEBHJ+u/xzOKSaVSISEhAUqlEgqFQsvRUmGnJ3cARDnRqlUr1KpVCwAwePBg2NjY4Oeff8auXbvg5eUla2xyfCnHxsZm+0tFLtqMlckmkJiYCLVaDQMDA7lD+aDU516bP1h0dXWhq6urteNR0ZL/PzWJsqBx48YAgMePH2uU37t3D126dIG1tTUMDQ1Rq1Yt7Nq1K83+oaGhGDNmDFxcXKBUKlGiRAn07dsXQUFBUp24uDhMnToVn3zyCZRKJZydnfHNN98gLi5O41ipxwhduXIFCoUCa9asSfOYBw8ehEKhwJ49e6SyV69eYeDAgbC3t4dSqUSVKlWwcuVKjf2Sx1f4+Pjgu+++g5OTE4yNjREeHp7h6xMVFYWxY8fC2dkZSqUSFSpUwNy5c/HfBmGFQoGRI0di/fr1qFChAgwNDeHu7o5Tp06lOebHxhocHIxx48bB1dUVpqamMDc3R6tWrXDjxg2N/WvXrg0AGDBggNQlmtwi8N8xQk+fPoVCocDcuXOxbNkylC1bFkqlErVr18bly5fTPIfNmzejcuXKMDQ0RNWqVbF9+/ZsjTvav38/PDw8YGZmBnNzc9SuXRsbNmxIU+/OnTto1qwZjI2N4eTkhF9++UVje3x8PKZMmQJ3d3dYWFjAxMQEjRs3xvHjxzXqpX5+CxYskJ7fnTt3snwMIKlF5rfffoOrqysMDQ1ha2uLzz//HFeuXAGQ9D6IiorCmjVrpNc8dWvcx5779MYIPXz4EJ07d4aDgwMMDQ1RokQJdO/eHWFhYR+MKaMxQlk9P1S0sUWICoXkD0ArKyup7J9//kHDhg3h5OSEiRMnwsTEBL6+vujQoQO2bt2Kjh07AgAiIyPRuHFj3L17FwMHDkTNmjURFBSEXbt24eXLl7CxsYFarUa7du1w5swZDB06FJUqVcKtW7cwf/58PHjwIMNxC7Vq1UKZMmXg6+uLfv36aWzbtGkTrKys0LJlSwBAYGAg6tWrJyUjtra22L9/PwYNGoTw8HCMHj1aY/8ZM2bAwMAA48aNQ1xcXIYtAkIItGvXDsePH8egQYPg5uaGgwcPYvz48Xj16hXmz5+vUf/kyZPYtGkTRo0aBaVSiSVLluDzzz/HpUuXpIG/2oj1zp072LFjB7p27YrSpUsjMDAQf/75Jzw8PHDnzh04OjqiUqVKmD59OqZMmYKhQ4dKCW+DBg3SfyP8a8OGDYiIiMCXX34JhUKBX375BZ06dcKTJ0+kVqS9e/eiW7ducHV1xaxZsxASEoJBgwbByckp02MnW716NQYOHIgqVapg0qRJsLS0hJ+fHw4cOICePXtK9UJCQvD555+jU6dO8PLywpYtWzBhwgS4urqiVatWAIDw8HCsWLECPXr0wJAhQxAREYG//voLLVu2xKVLl+Dm5qbx2KtWrUJsbCyGDh0KpVIJa2vrbB1j0KBBWL16NVq1aoXBgwcjMTERp0+fxoULF1CrVi38/fffGDx4MOrUqYOhQ4cCAMqWLau1c/9f8fHxaNmyJeLi4vDVV1/BwcEBr169wp49exAaGgoLC4tMY/qY80MEQVSArFq1SgAQR44cEe/evRMvXrwQW7ZsEba2tkKpVIoXL15IdT/99FPh6uoqYmNjpTK1Wi0aNGggypUrJ5VNmTJFABDbtm1L83hqtVoIIcTff/8tdHR0xOnTpzW2L126VAAQZ8+elcpKlSol+vXrJ92fNGmS0NfXF8HBwVJZXFycsLS0FAMHDpTKBg0aJIoXLy6CgoI0HqN79+7CwsJCREdHCyGEOH78uAAgypQpI5VlZseOHQKA+PHHHzXKu3TpIhQKhXj06JFUBkAAEFeuXJHKnj17JgwNDUXHjh21GmtsbKxQqVQaZf7+/kKpVIrp06dLZZcvXxYAxKpVq9I8t379+olSpUpp7A9AFCtWTOP13rlzpwAgdu/eLZW5urqKEiVKiIiICKnsxIkTAoDGMdMTGhoqzMzMRN26dUVMTIzGtuT3jBBCeHh4CABi7dq1UllcXJxwcHAQnTt3lsoSExNFXFycxnFCQkKEvb29xnsk+fmZm5uLt2/fatTP6jGOHTsmAIhRo0aleV6pYzcxMdF4HyfTxrlP3nb8+HEhhBB+fn4CgNi8eXOax0sto5iSPxf8/f2FEFk/P0RCCMGuMSqQPD09YWtrC2dnZ3Tp0gUmJibYtWsXSpQoAQAIDg7GsWPH4OXlhYiICAQFBSEoKAjv379Hy5Yt8fDhQ2mW2datW1G9enWphSi15IGXmzdvRqVKlVCxYkXpWEFBQWjevDkApNv9kKxbt25ISEjAtm3bpLJDhw4hNDQU3bp1A5DUarN161a0bdsWQgiNx2jZsiXCwsJw7do1jeP269cPRkZGH3yt9u3bB11dXYwaNUqjfOzYsRBCYP/+/Rrl9evXh7u7u3S/ZMmSaN++PQ4ePAiVSqW1WJVKpTROSKVS4f379zA1NUWFChXS7J9d3bp102gdTG5JevLkCYCkmWi3bt1C3759YWpqKtXz8PCAq6vrB49/+PBhREREYOLEiWnGuvx3sK6pqSl69+4t3TcwMECdOnWkWICkMS7JLSVqtRrBwcFITExErVq10n0tOnfuDFtbW42yrB5j69atUCgUmDp1aprjfmigcW69Ty0sLAAkdRdHR0dnWjcrsnN+iNg1RgXS4sWLUb58eYSFhWHlypU4deqUxiDlR48eQQiB77//Ht9//326x3j79i2cnJzw+PFjdO7cOdPHe/jwIe7evZvmyyf1sTJSvXp1VKxYEZs2bcKgQYMAJHWL2djYSInUu3fvEBoaimXLlmHZsmVZeozSpUtnGnOyZ8+ewdHREWZmZhrllSpVkranVq5cuTTHKF++PKKjo/Hu3Tvo6OhoJdbkcSpLliyBv78/VCqVtK1YsWJZem4ZKVmypMb95KQoJCQEQMpz/uSTT9Ls+8knn3wwEUsei5aVNYJKlCiR5svXysoKN2/e1Chbs2YNfv31V9y7dw8JCQlSeXqvXUbnPivHePz4MRwdHWFtbf3B2P8rt96npUuXhre3N+bNm4f169ejcePGaNeuHXr37i0lSdmRnfNDxESICqQ6depIs8Y6dOiARo0aoWfPnrh//z5MTU2hVqsBAOPGjZPG4PxXel+CGVGr1XB1dcW8efPS3e7s7Jzp/t26dcNPP/2EoKAgmJmZYdeuXejRowf09PSk4wNA796904wlSlatWjWN+1lpDcoN2op15syZ+P777zFw4EDMmDED1tbW0NHRwejRo6XHyKmMZhAJGVYLyUos69atQ//+/dGhQweMHz8ednZ20NXVxaxZs9JMAADSfz2ze4ycyM336a+//or+/ftj586dOHToEEaNGoVZs2bhwoULUksvUW5gIkQFXvKHfbNmzbBo0SJMnDgRZcqUAZA0vdrT0zPT/cuWLfvBdV7Kli2LGzdu4NNPP81R03q3bt3www8/YOvWrbC3t0d4eDi6d+8ubbe1tYWZmRlUKtUH482uUqVK4ciRI4iIiNBoFbp37560PbWHDx+mOcaDBw9gbGwstYhpI9YtW7agWbNm+OuvvzTKQ0NDYWNjI93Pja6M5Of86NGjNNvSK/uv5EG6t2/fzlZCnZEtW7agTJky2LZtm8bzTa/76mOPUbZsWRw8eBDBwcGZtgql97rn5vsUAFxdXeHq6orvvvsO586dQ8OGDbF06VL8+OOPGcaUHm2fHyrcOEaICoWmTZuiTp06WLBgAWJjY2FnZ4emTZvizz//xJs3b9LUf/funfR3586dcePGDWzfvj1NveRf7V5eXnj16hWWL1+epk5MTAyioqIyja9SpUpwdXXFpk2bsGnTJhQvXhxNmjSRtuvq6qJz587YunVruklZ6nizq3Xr1lCpVFi0aJFG+fz586FQKKSZS8nOnz+v0TX04sUL7Ny5Ey1atJDWa9FGrLq6umlaaDZv3pxmhXATExMASQmStjg6OqJq1apYu3YtIiMjpfKTJ0/i1q1bH9y/RYsWMDMzw6xZsxAbG6uxLSetTsmtRqn3vXjxIs6fP6/1Y3Tu3BlCCPzwww9pjpF6XxMTkzSveW69T8PDw5GYmKhR5urqCh0dHY3lKdKLKT3aPj9UuLFFiAqN8ePHo2vXrli9ejWGDRuGxYsXo1GjRnB1dcWQIUNQpkwZBAYG4vz583j58qW0Xs348eOxZcsWdO3aFQMHDoS7uzuCg4Oxa9cuLF26FNWrV0efPn3g6+uLYcOG4fjx42jYsCFUKhXu3bsHX19fHDx4UOqqy0i3bt0wZcoUGBoaYtCgQWkWFJw9ezaOHz+OunXrYsiQIahcuTKCg4Nx7do1HDlyBMHBwTl6Xdq2bYtmzZph8uTJePr0KapXr45Dhw5h586dGD16dJopyFWrVkXLli01ps8D0Pji1EasX3zxBaZPn44BAwagQYMGuHXrFtavXy+15iUrW7YsLC0tsXTpUpiZmcHExAR169bN8hipjMycORPt27dHw4YNMWDAAISEhGDRokWoWrWqRnKUHnNzc8yfPx+DBw9G7dq10bNnT1hZWeHGjRuIjo5Od92ozHzxxRfYtm0bOnbsiDZt2sDf3x9Lly5F5cqVPxhLdo/RrFkz9OnTBwsXLsTDhw/x+eefQ61W4/Tp02jWrBlGjhwJAHB3d8eRI0cwb948ODo6onTp0qhbt26uvE+PHTuGkSNHomvXrihfvjwSExPx999/S4lXsoxi+i9tnx8q5PJ6mhrRx0ieJnv58uU021QqlShbtqwoW7asSExMFEII8fjxY9G3b1/h4OAg9PX1hZOTk/jiiy/Eli1bNPZ9//69GDlypHBychIGBgaiRIkSol+/fhpThOPj48XPP/8sqlSpIpRKpbCyshLu7u7ihx9+EGFhYVK9/06fT/bw4UNpevqZM2fSfX6BgYFixIgRwtnZWejr6wsHBwfx6aefimXLlkl1kqcef2iqcWoRERFizJgxwtHRUejr64ty5cqJOXPmpJlKDECMGDFCrFu3TpQrV04olUpRo0YNaZqzNmONjY0VY8eOFcWLFxdGRkaiYcOG4vz588LDw0N4eHho1N25c6eoXLmy0NPT05hKn9H0+Tlz5qR5PABi6tSpGmU+Pj6iYsWKQqlUiqpVq4pdu3aJzp07i4oVK2b+gv5r165dokGDBsLIyEiYm5uLOnXqiI0bN0rbPTw8RJUqVdLs99+41Wq1mDlzpihVqpT0mu/Zsydbzy+rxxAiaar9nDlzRMWKFYWBgYGwtbUVrVq1ElevXpXq3Lt3TzRp0kQYGRkJABrv6Y899/+dPv/kyRMxcOBAUbZsWWFoaCisra1Fs2bNxJEjRzT2yyim/06fT/ah80MkhBC81hgRSRQKBUaMGJGmG60ocXNzg62tLQ4fPix3KESUBzhGiIiKpISEhDTjUk6cOIEbN26gadOm8gRFRHmOY4SIqEh69eoVPD090bt3bzg6OuLevXtYunQpHBwcMGzYMLnDI6I8wkSIiIokKysruLu7Y8WKFXj37h1MTEzQpk0bzJ49+6MXdCSigkPWrrFTp06hbdu2cHR0hEKhyPDClamdOHECNWvWhFKpxCeffCJdhZqIPp4QosiMD7KwsMCmTZvw8uVLxMXFITg4GJs3b870Qp5EVPjImghFRUWhevXqWLx4cZbq+/v7o02bNmjWrBmuX7+O0aNHY/DgwTh48GAuR0pERESFUb6ZNaZQKLB9+3Z06NAhwzoTJkzA3r17NRby6t69O0JDQ3HgwIE8iJKIiIgKkwI1Ruj8+fNplnVv2bIlRo8eneE+cXFxGiuTJl+VuVixYrwKMRERUQEhhEBERAQcHR3TLEj7MQpUIhQQEAB7e3uNsuTrNsXExKR7cb9Zs2alu5Q8ERERFTwvXrzQ6oV4C1QilBOTJk2Ct7e3dD8sLAwlS5bEixcvYG5uLmNkRCQ7IYDbq4DTEwBVfFKZvglQdSCgZyhvbERFXFQMYJKqfSM8Kg7OnRZqXDxaGwpUIuTg4IDAwECNssDAQJibm6fbGgQASqUSSqUyTbm5uTkTIaKiLC4cOPwlcH8ToI+km10N4ItNgFU5uaMjKtJ27LiHIUN2Y9s2LzRuXCqpMDwcwEKtD2spUCtL169fH0ePHtUoO3z4MOrXry9TRERUIAVeA9a5JyVBydxGAD3OMQkiklFcXCK+/no/OnbchKCgaPTosRVBQdG5+piytghFRkbi0aNH0n1/f39cv34d1tbWKFmyJCZNmoRXr15h7dq1AIBhw4Zh0aJF+OabbzBw4EAcO3YMvr6+2Lt3r1xPgYgKEiGA64uBk2NTusKUFkCLv4DynTPfl4hy1ePHwejWbQuuXn0jldWv7wx9/dxts5E1Ebpy5QqaNWsm3U8ey9OvXz+sXr0ab968wfPnz6XtpUuXxt69ezFmzBj89ttvKFGiBFasWIGWLVvmeexEVMDEhgKHBgMPt6aUOdQG2vgAlmVkC4uIgM2b/8HgwbsRHp40y1up1MX8+S0xbFitXJ/hnW/WEcor4eHhsLCwQFhYGMcIERUVAZeBPd2AMP+UspqjgSY/A7oGsoVFVNTFxibC2/sg/vjjilRWrpw1fH27ws3NQaNubn1/F6jB0kRE2SIEcO034NQ3gDohqczQCmi5GviknayhERV1Dx++h5fXFly/HiCV9ezpiqVL28DMLO0kp9zCRIiICqeYYODgAODxrpSy4vWAL3wA81LyxUVEAID4eBXu3w8CABga6uH331th0KAaeb7YcYGaNUZElCWvzwN/u2kmQbW/AbqdYhJElE9UqWKHRYtao2JFG1y6NBiDB9eU5YoPHCNERIWHUAOX5wJnvgWEKqnMsBjQai1QprW8sREVcQ8fvkfJkhZQKlM6o4QQiItTwdDwwx1UufX9zRYhIiocooOA7W2TVolOToKcGgF9rzMJIpLZ2rU34Ob2J7755rBGuUKhyFISlJuYCBFRwffydFJXmP++fwsUQN3JgNdxwEx71yQiouyJiorHgAE70a/fDkRHJ2DhwkvYv/+h3GFp4GBpIiq4hBq4OAs4NyXpbwAwsgVarwNcWsgbG1ERd/v2W3h5bcbdu0FS2eDBNeDh4SJfUOlgIkREBVNUILC/D/AsVVO7czOg9XrAtLh8cREVcUIIrFzph5Ej9yM2NhEAYGpqgD///AI9e7rKHF1aTISIqOB5fgzY1wuISl5/RAHUnwrU+w7Q0ZU1NKKiLCIiDsOH78X69beksurV7eHr2xXlyxeTMbKMMREiooJDrQIuzADOTwfw74RXEweg9QagZLNMdyWi3PXiRRg8Pf/GgwfvpbJhw9wxf/7nsg+Izkz+jYyIKLXIN0mtQC+Op5SV+gxo9TdgYi9fXEQEAHBwMIWNjTEePHgPMzMDrFjRDl5eVeQO64M4a4yI8r+nh5NmhSUnQQodoNFPQOcDTIKI8gl9fV34+HRGixZl4ef3ZYFIggC2CBFRfqZOBM5NAy7OhNQVZuoEtNkIlGgsZ2RERd7Vq6+hq6ujcXFUZ2cLHDzYW8aoso+JEBHlTxEvgb09gVenU8pKtwI+XwsY28gXF1ERJ4TAokWXMG7cYTg7m+PatS9hbp53F0nVNnaNEVH+82QfsNYtJQlS6AJNfgE67mESRCSjkJAYdO7si1GjDiA+XoXHj0MwZ85ZucP6KGwRIqL8Q5UAnJkMXJmTUmZWMumK8Y715YuLiHDp0it067YFT5+GSmXe3vXw/fce8gWlBUyEiCh/CH8O7OkOvDmfUla2HdByFWBkLV9cREWcEALz51/AhAlHkJiYtIK7lZUh1qzpgLZtK8gc3cdjIkRE8nu0CzjYH4gNSbqvo5/UFVbza0ChkDU0oqLs/fto9O+/E3v2PJDKGjRwxsaNnVGypIWMkWkPEyEiko8qHjg1Abi2IKXM3AVo6ws41JYrKiICEBeXiLp1V+Dx4xCpbMKEhpgxoxn09QvPCu4cLE1E8gjzB3waaSZB5ToBffyYBBHlA0qlHkaOrAMAsLExxv79vTB7tmehSoIAtggRkRwebAUODQLiwpLu6xoAHvMAt/+xK4woH/n667oIDY3FkCE14eRkLnc4uYKJEBHlncRY4OQ44PrilDLLssAXvoB9TfniIiKcOvUMV668hrd3ygxNhUKBadOayhdUHmAiRER5I+QRsMcLeOuXUlahG/DZMkBZOH9pEhUEKpUas2adwdSpJyCEgKurHT77rKzcYeUZJkJElPvu+QCHhwLxEUn3dZVA84WA6xB2hRHJKDAwEr17b8eRI0+ksr/+8mMiRESkFQkxwInRwM1lKWVWFZJmhdlWky0sIgKOHfNHz55bERgYBQDQ0VFg6lQPTJ5ctK7jx0SIiHLH+3tJXWFBt1LKKvUGPP8ADEzli4uoiFOp1Jg+/SRmzDgF8e+1jIsXN8WGDZ3RtKmLrLHJgYkQEWnfnb+BI8OBhKRfmtAzAj5dDFTpz64wIhm9fh2BXr224cSJp1JZixZl8fffHWFnZyJfYDJiIkRE2pMQBRz9CvhnVUpZscpJs8JsqsgXFxEBAAYO3CklQbq6CsyY0QwTJjSCjk7R/YHCRIhIbupE4NWZlDV1CipVPHB+GvD+TkpZ1YFA898BfWPZwiKiFL//3go1ay6DhYUSPj5d0KhRSblDkh0TISI5hTwC9nQD3l6TOxLt0jdJGgtUuY/ckRAVaUIIKFJ1R5crVwy7d/dA1ap2sLHhDxSAl9ggks99X2BdzcKXBNm4Ar2uMAkiktm+fQ/RvPlaREcnaJQ3berCJCgVtggR5bWEGOCkN3BjaUqZVXmgSj8ABbyf3tQRKO8F6BvJHQlRkZWQoMLkyccwZ845AMDXX+/H8uXtZI4q/2IiRJSXgu8nTSl/dzOlrFKvf6eUm8kXFxEVCs+ehaJ79624cOGlVPbuXTTi41UwMChcF0vVFiZCRHnl7nrg8JeaU8qb/540oJhTyonoI+3ceQ8DBuxESEgsAEBfXwdz5nyGUaPqaowTIk1MhIhyW0I0cGwUcPuvlDLrSkmrK9tUlS8uIioU4uNV+Oabw/jtt4tSWenSlti0qQtq13aSMbKCgYkQUW56fwfY7QW8/yelrEp/4NNFSTOriIg+wpMnIejWbQuuXHktlXXuXAkrVrSDpaWhjJEVHEyEiHLL7dXA0RFAYnTSfT3jpLFAVfrKGhYRFR6+vv9ISZCBgS7mz2+J4cNrsSssG5gIEWlbfGRSAnRnbUqZjWvS6srFKsoXFxEVOuPHN8CRI0/w7FkYfH27oEaN4nKHVOAwESLSpne3kmaFBd9LKXMdAjT7jVPKieijRUTEwcxMKd3X1dXBxo2doVTqwdxcmcmelBEuqEikDUIAN5cDG+qkJEH6pkDrDUCLZUyCiOij+fjcRqlSC3Du3AuNcltbEyZBH4GJENHHigsH9vYEDg8FEpOmrcLWDehzDajUQ9bQiKjgi4lJwJdf7kaPHlsREhKL7t234P37aLnDKjTYNUb0MWJDgY31NbvC3EYAHnMBPc7YIKKPc+9eELy8NuPWrbdSWdOmLlAq+fWtLXwliT7GqzMpSZCBOdDyL6B8F3ljIqJC4e+/b2D48L2Iikq6VpiRkR4WL26N/v3dOCtMi5gIEX0MdWLK33UmMgkioo8WFRWPr77aj1WrrktllSvbYvPmrqhc2Va+wAopJkJE2qLgkDsi+jh37rxD166bcefOO6ls4EA3/P57axgb68sYWeHFRIiIiCifUKnUePIkBABgYqKPpUu/QO/e1WSOqnDjT1giIqJ8wtXVHgsXfo5q1exx9epQJkF5gIkQERGRTO7ceYf4eJVG2eDBNXHp0mBUqGAjU1RFCxMhIiKiPCaEwJ9/XkHNmn9i0qQjGtsUCgWnx+chJkJERER5KDw8Dt27b8WwYXsRF6fCvHkXcOTIE7nDKrKYchIREeWRa9fewMtrMx4/DpHKvvqqDho3LiljVEUbEyEiIqJcJoTA4sWXMXbsIWlMkIWFEitXtkenTpVkjq5oYyJERESUi0JDYzFo0C5s23ZXKqtd2xGbNnVB6dJWMkZGABMhIiKiXOPvH4JPP10Lf/9QqWzMmHqYPdsTBga68gVGEiZCREREuaRECXPY25vC3z8UVlaGWL26A9q1qyB3WJQKZ40RERHlEn19Xfj4dEbr1uXg5/clk6B8iC1CREREWnLu3AuYmOijenUHqaxUKUvs3dtTxqgoM2wRIiIi+khqtcAvv5xFkyar0LXrZkRExMkdEmUREyEiIqKP8O5dFL74YgMmTDgClUrg4cNg/PbbRbnDoixi1xgREVEOnT79DN27b8Xr1xEAAIUCmDy5MSZObCRzZJRVTISIiIiySa0WmDXrNKZMOQG1WgAA7OxMsG5dR3z2WVmZo6PsYCJERESUDYGBkejTZzsOH065PlizZi5Yv74Tihc3kzEyygkmQkRERFkUE5OAOnVW4PnzMACAjo4CU6d6YPLkxtDV5bDbgkj2s7Z48WK4uLjA0NAQdevWxaVLlzKtv2DBAlSoUAFGRkZwdnbGmDFjEBsbm0fREhFRUWZkpI9Ro+oAABwcTHH0aF9MmeLBJKgAk7VFaNOmTfD29sbSpUtRt25dLFiwAC1btsT9+/dhZ2eXpv6GDRswceJErFy5Eg0aNMCDBw/Qv39/KBQKzJs3T4ZnQERERc2YMfURFZWAYcNqwc7ORO5w6CPJmsLOmzcPQ4YMwYABA1C5cmUsXboUxsbGWLlyZbr1z507h4YNG6Jnz55wcXFBixYt0KNHjw+2IhEREeXE4cOPMX/+eY0yHR0FpkzxYBJUSMiWCMXHx+Pq1avw9PRMCUZHB56enjh//ny6+zRo0ABXr16VEp8nT55g3759aN26dYaPExcXh/DwcI0bERFRZhIT1Zg8+ShatlyHsWMP4dgxf7lDolwiW9dYUFAQVCoV7O3tNcrt7e1x7969dPfp2bMngoKC0KhRIwghkJiYiGHDhuHbb7/N8HFmzZqFH374QauxExFR4fXyZTh69tyK06efS2Xr1t1E8+alZYyKckuBGt114sQJzJw5E0uWLMG1a9ewbds27N27FzNmzMhwn0mTJiEsLEy6vXjxIg8jJiKigmTfvodwc1sqJUG6ugr88osnVqxoJ3NklFtkaxGysbGBrq4uAgMDNcoDAwPh4OCQ7j7ff/89+vTpg8GDBwMAXF1dERUVhaFDh2Ly5MnQ0Umb1ymVSiiVSu0/ASIiKjQSElSYPPkY5sw5J5WVLGkBH5/OqF/fWcbIKLfJ1iJkYGAAd3d3HD16VCpTq9U4evQo6tevn+4+0dHRaZIdXV1dAIAQIveCJSKiQuvZs1A0abJaIwlq164C/Py+ZBJUBMg6fd7b2xv9+vVDrVq1UKdOHSxYsABRUVEYMGAAAKBv375wcnLCrFmzAABt27bFvHnzUKNGDdStWxePHj3C999/j7Zt20oJERERUXb0778TFy68BADo6+vgl18+w9df14VCoZA5MsoLsiZC3bp1w7t37zBlyhQEBATAzc0NBw4ckAZQP3/+XKMF6LvvvoNCocB3332HV69ewdbWFm3btsVPP/0k11MgIqICbunSNnB3XwY7OxNs2tQFtWs7yR0S5SGFKGJ9SuHh4bCwsEBYWBjMzc3lDocKuoc7gF0dk/5uPBuoM0HWcIjow4QQaVp7Tpx4Cjc3B1haGsoUFX1Ibn1/F6hZY0RERB9j69Y7aNp0DWJiEjTKmzZ1YRJURDERIiKiQi82NhEjR+5Dly6bcerUM3h7H5Q7JMonePV5IiIq1B49CoaX12b4+QVIZaGhcUhMVENPj+0BRR0TISIiKrR8fG5j6NDdiIiIBwAolbpYuLAVhgypyVlhBICJEBERFUIxMQkYPfoAli27JpVVqFAMvr5dUa2afSZ7UlHDRIiIiAqVe/eC4OW1GbduvZXKeveuhj/+aANTUwMZI6P8iIkQEREVKps3/yMlQUZGeli8uDX693djVxili4kQEREVKt9+2xjHjj3F27dR8PXtgipV7OQOifIxJkJERFSghYXFwsIiZQ0gXV0d+Pp2gbGxPkxM2BVGmeO8QSIiKpCEEFi1yg+lSi3AxYsvNbbZ2powCaIsYSJEREQFTmRkPPr124GBA3chLCwO3bptQUhIjNxhUQHErjEiIipQbt4MhJfXZty//14qa9myLAwN+ZVG2cd3DRERFQhCCCxffg2jRu1HXJwKAGBqaoDly9uie/eqMkdHBRUTISIiyvfCw+Pw5Zd74ONzWyqrUcMBmzZ1QblyxWSMjAo6JkJERJSv3bgRgC5dNuPRo2CpbMSI2pg7twW7w+ij8R1ERET5mhDAixdhAAALCyX++qsdOneuLHNUVFgwEaKi7dlR4OYyICEyZ/tHBXy4DhF9FDc3B8yf3xKrVl2Hj08XlCljJXdIVIgwEaKiSZUAnJsCXJqtvWPq6GvvWERF2M2bgahUyQb6+rpS2bBhtTB4cE2NMiJt4DpCVPSEvwB8m2o3CTJzBj7poL3jERVBQggsWHABtWotw+TJxzS2KRQKJkGUK9giREXL4z3AgX5A7L+DLnX0gMY/A1X6f9xxlRaADj+kiXIqODgGAwbsxK5d9wEAc+acQ5s25eDh4SJvYFToMRGiokEVD5yeBFydl1JmXgr4YhNQvK58cRERzp9/ge7dt+L58zCpbPz4BmjQwFnGqKioYCJEhV/YU2BPNyDgUkrZJx2Bln8Bhhx0SSQXtVrg11/P4dtvjyExUQ0AKFbMCGvWdECbNuVljo6KCiZCVLg93A4cHAjEhSbd1zUAmswFaowEFApZQyMqyoKCotGv3w7s2/dQKmvUqCQ2buyMEiXMZYyMihomQlQ4JcYBp8YDfr+nlFmUAdr6Avbu8sVFRHjw4D2aN1+DV68iACT9Jpk0qRF++KEZ9PQ4h4fyFhMhKnxCHyd1hQVeTSkr7wW0WJY0qJmIZOXiYglHRzO8ehUBW1tjrFvXCS1alJU7LCqimHpT4XLfF/i7RkoSpKsEPP8AvvBhEkSUTxgY6GLTpi7o0KEibtwYxiSIZMUWISocEmOBE2OAG0tTyqzKAV/4AnZusoVFRMCJE09RrJgRXF3tpbLSpa2wfXs3GaMiSsIWISr4gh8AG+ppJkEVewK9rzIJIpKRSqXGDz+cwKefrkXXrpsRGRkvd0hEabBFiHJGCODVGSDkgbxxxAQBF35MuVaYniHQfBFQdSBnhRHJ6M2bCPTuvR3HjvkDAO7ff48//riM8eMbyhwZkSYmQpR9ceHAoSHAA1+5I9FkXSlpVphNVbkjISrSDh9+jN69t+Pt2ygAgI6OAtOnN4W3d32ZIyNKi4kQZU/g1aQZWaGP5Y5EU5V+wKeLAX0TuSMhKrISE9WYNu0EZs48DSGSyhwdzbBxY2c0aVJK3uCIMsBEiLJGCMBvEXBqXNLlKoCkWVh1vwOUlrKGhmKVAacG8sZAVMS9ehWOHj224vTp51LZ559/grVrO8DWlj9QKP9iIkQfFhsKHBoEPNyWUuZQO+k6XRalZQuLiPKHyMh41Kq1HAEBSWP1dHUVmDnzU4wb1wA6OhyrR/kbZ41R5t5cSlqXJ3US5D4G6H6GSRARAQBMTQ0wenTSxYudnc1x6tQAfPNNQyZBVCCwRYjSJwRwdT5wegKgTkwqM7QCWq4GPmkna2hElP+MH98QiYlqDB9eG9bWRnKHQ5RlTIQorZhg4EB/4MnulLLi9YEvNgLmHPBIVNTt3n0fjx4FY8yYlFlgOjoKTJ7cRMaoiHKGiRBpenUO2NsdiHiRUlb7G6Dhj4CuvnxxEZHs4uNVmDTpCObNuwAdHQVq1iwODw8XucMi+ihMhCiJUAOX5wJnvgWEKqnMsBjQai1QprW8sRGR7Pz9Q9C9+1ZcuvQKAKBWC2za9A8TISrwmAgREP0OONAP8N+fUubUGGizATArIV9cRJQvbNt2FwMH7kRYWByApIum/vprC4wYUVvmyIg+HhOhou7lKWBvDyDy9b8FCqDut0CDaYAO3x5ERVlcXCLGjTuERYsuS2Vly1ph06YucHd3lDEyIu3hN11RJdTAxVnAuSlJfwOAsR3Qah3g8pm8sRGR7B49Cka3bltw7dobqczLqwqWLfsCFhaGMkZGpF1MhIqqAwOAO2tT7js3A1qvB0yLyxcTEeULQgj0779DSoKUSl389tvnGDrUHQpezJgKGS6oWFRJF0xVAPWnAV0OMwkiIgCAQqHA8uVtYWysj/Lli+HixcH48staTIKoUGKLUFGl/ndmmJ0b0GCqrKEQkfyEEBqJTqVKtti/vxdq1HCAmZlSxsiIchdbhIo8/sIjKurWr78JD4/ViI1N1Chv0qQUkyAq9JgIEREVUdHRCRg8eBd6996O06efY9y4Q3KHRJTn2DVGRFQE3bnzDl5em/HPP++ksujoBKjVghdLpSKFiRARURGzevV1jBixD9HRCQAAY2N9LF3aBn36VJc5MqK8x0SIiKiIiIyMx4gR+7B27Q2pzNXVDr6+XVGxoo2MkRHJh4kQEVERcOtWILy8tuDevSCpbMiQmvjtt89hZMQLKlPRxUSIiKgI2LLljpQEmZoaYNmyL9Cjh6vMURHJj4kQEVER8P33Hjh+/CkiIuLh69sF5coVkzskonyBiRARUSEUEhIDKysj6b6eng62bvWCmZkShob86CdKxnWEiIgKESEEliy5jFKlFuDKldca22xtTZgEEf0HEyEiokIiLCwWXl5bMGLEPkRExMPLazPCwmLlDosoX+NPAyKiQuDKldfw8toMf/9Qqax9+wpsASL6AP6HEBEVYEIILFx4EePHH0ZCghoAYGlpiNWr26N9+4oyR0eU/zERIiIqoEJCYjBw4C7s2HFPKqtXrwR8fDqjVClL+QIjKkCYCBERFUCXL79C166b8exZmFQ2blx9zJz5KfT1dWWMjKhgYSJERFQA6erq4M2bSACAtbUR1q7tgDZtysscFVHBw1ljREQFUM2axfHrry3QsKEzrl//kkkQUQ4xESIiKgCuXn2NxES1RtmIEbVx4kR/ODtbyBQVUcHHRIiIKB9TqwVmzTqNunVXYMqU4xrbFAoF9PT4MU70MWT/D1q8eDFcXFxgaGiIunXr4tKlS5nWDw0NxYgRI1C8eHEolUqUL18e+/bty6NoiYjyztu3UWjVaj2+/fYYVCqBWbPO4Ny5F3KHRVSoyDpYetOmTfD29sbSpUtRt25dLFiwAC1btsT9+/dhZ2eXpn58fDw+++wz2NnZYcuWLXBycsKzZ89gaWmZ98ETEeWiEyeeomfPrdKAaIUC+P77Jqhb10nmyIgKF1kToXnz5mHIkCEYMGAAAGDp0qXYu3cvVq5ciYkTJ6apv3LlSgQHB+PcuXPQ19cHALi4uORlyPmDWgX47wPCnub8GEKltXCISHtUKjV++uk0fvjhJNRqAQCwtzfBhg2d0bx5aZmjIyp8ZEuE4uPjcfXqVUyaNEkq09HRgaenJ86fP5/uPrt27UL9+vUxYsQI7Ny5E7a2tujZsycmTJgAXd30182Ii4tDXFycdD88PFy7TySvRQUA+3oBz4/JHQkRaVlAQCR69dqGY8f8pTJPzzJYt64j7O1NZYyMqPCSbYxQUFAQVCoV7O3tNcrt7e0REBCQ7j5PnjzBli1boFKpsG/fPnz//ff49ddf8eOPP2b4OLNmzYKFhYV0c3Z21urzyFPPjgBrq2s3CXJsoL1jEVGO3bnzDm5uS6UkSEdHgRkzmuHAgV5MgohyUYFaUFGtVsPOzg7Lli2Drq4u3N3d8erVK8yZMwdTp05Nd59JkybB29tbuh8eHl7wkiF1InBuGnBxJoCkpnKYOgL1pwH6Jjk/rqE1UMpTCwES0ccqW9YKJUqYIzAwCo6OZtiwoRM8PFzkDouo0JMtEbKxsYGuri4CAwM1ygMDA+Hg4JDuPsWLF4e+vr5GN1ilSpUQEBCA+Ph4GBgYpNlHqVRCqVRqN/i8FPEK2NcTeHkqpczlc6DVWsDYVr64iEirlEo9bNrUBZMmHcXixa1ha/sRP3KIKMty1DXWr18/nDp16sMVM2FgYAB3d3ccPXpUKlOr1Th69Cjq16+f7j4NGzbEo0ePoFanLCr24MEDFC9ePN0kqMDzPwD87ZaSBCl0gcazgU57mQQRFXAHDjzCP/+81SgrW9Yavr5dmQQR5aEcJUJhYWHw9PREuXLlMHPmTLx69SpHD+7t7Y3ly5djzZo1uHv3LoYPH46oqChpFlnfvn01BlMPHz4cwcHB+Prrr/HgwQPs3bsXM2fOxIgRI3L0+PmWKgE4NRHY1gqICUoqMy0BdDsJ1JkAKGRf/omIcighQYWJE4+gVav18PLagqioeLlDIirScvSNumPHDrx69QrDhw/Hpk2b4OLiglatWmHLli1ISEjI8nG6deuGuXPnYsqUKXBzc8P169dx4MABaQD18+fP8ebNG6m+s7MzDh48iMuXL6NatWoYNWoUvv7663Sn2hdY4c8B36bA5Z9Tysp8AfS9Djg1lCsqItKCFy/C0LTpGvz881kASQOk//rLT+aoiIo2hRBCfOxBrl27hlWrVmHFihUwNTVF79698b///Q/lypXTRoxaFR4eDgsLC4SFhcHc3FzucDQ93g0c6A/EBifd19EDGv8MuI9JWk2NiAqs3bvvo3//nQgOjgEA6Onp4OefPTFmTD0o+P9N9EG59f390X0sb968weHDh3H48GHo6uqidevWuHXrFipXroz58+drI8bCTxUPnBgL7GiXkgSZlwK6nwFqeTMJIirA4uNVGDv2INq185GSoFKlLHDmzAB4e9dnEkQksxzNGktISMCuXbuwatUqHDp0CNWqVcPo0aPRs2dPKUvbvn07Bg4ciDFjxmg14EInzB/Y0x0ISHWNtU86AC1XAoZWsoVFRB/P3z8E3btvxaVLKeMoO3asiL/+agcrKyMZIyOiZDlKhIoXLw61Wo0ePXrg0qVLcHNzS1OnWbNmvAbYhzzcDhwcAMSFJd3XNQCazAVqjGQrEFEBFxYWi9q1l+P9+6RWIAMDXcyd+xlGjqzDViCifCRHidD8+fPRtWtXGBoaZljH0tIS/v7+GW4v0hLjgFPjAb/fU8osygBtfQF7d/niIiKtsbAwxJgx9fDdd8dRpowVfH27wN3dUe6wiOg/cjRG6Pjx4+nODouKisLAgQM/OqhCb0c7zSSofFegzzUmQUSFzKRJjTFzZnNcuzaUSRBRPpWjWWO6urp48+YN7OzsNMqDgoLg4OCAxMRErQWobbLPGkuIARYaJ/2tqwSaLQCqfcmuMKICztf3H7x+HYHRo+vJHQpRoZRb39/Z6hoLDw+HEAJCCERERGh0jSVfCPW/yRH9V8qq2HBqBFQfJl8oRPTRYmISMGbMQfz551Xo6ipQq5YjGjUqKXdYRJRF2UqELC0toVAooFAoUL58+TTbFQoFfvjhB60FR0SUn92/HwQvry24eTPpmokqlcD27XeZCBEVINlKhI4fPw4hBJo3b46tW7fC2tpa2mZgYIBSpUrB0ZH94ERU+K1ffxNffrkHUVFJ4yUNDfWwaFErDBxYQ+bIiCg7spUIeXh4AAD8/f1RsmRJTgEloiInOjoBo0bt17g0RqVKNvD17YqqVTk0gKigyXIidPPmTVStWhU6OjoICwvDrVu3MqxbrVo1rQRHRJSf3LnzDl5em/HPP++ksn79qmPx4tYwMTGQMTIiyqksJ0Jubm4ICAiAnZ0d3NzcoFAokN6EM4VCAZVKpdUgiYjkJoRAv347pCTI2FgfS5a0Rr9+bvIGRkQfJcuJkL+/P2xtbaW/iYiKEoVCgVWr2qNOneUoW9Yavr5dUKmSrdxhEdFHynIiVKpUKelve3v7TFeVJiIqDNRqAR2dlLGQVava4eDB3nB3d4Sxsb6MkRGRtuRoZWk7Ozv069cPhw8fhlqt/vAOREQFiBACy5dfRdOmqxEXp7lAbOPGpZgEERUiOUqE1qxZg+joaLRv3x5OTk4YPXo0rly5ou3YiIjyXEREHHr12oahQ/fg9OnnmDDhiNwhEVEuylEi1LFjR2zevBmBgYGYOXMm7ty5g3r16qF8+fKYPn26tmMkIsoTfn5vULPmMmzceFsqS0hQpTsxhIgKhxwlQsnMzMwwYMAAHDp0CDdv3oSJiQlXliaiAkcIgSVLLqN+/b/w6FEwAMDcXIlNm7pg8eI2XDONqBDL1oKK/xUbG4tdu3Zhw4YNOHDgAOzt7TF+/HhtxUZElOvCwmIxePBubNlyRypzdy+OTZu6oGxZ60z2JKLCIEeJ0MGDB7Fhwwbs2LEDenp66NKlCw4dOoQmTZpoOz4iolxz5cprdOu2BU+ehEhlo0bVwS+/fAal8qN+JxJRAZGj//SOHTviiy++wNq1a9G6dWvo63MGBREVPNu23ZWSIEtLQ6xa1R4dOlSUOSoiyks5SoQCAwNhZmam7ViIiPLUDz80xcmTz6BSqeHj0wUuLpZyh0REeSzLiVB4eDjMzc0BJA0sDA8Pz7Bucj0iovzk/ftoFCtmLN3X19fFjh3dYGFhCAMDXRkjIyK5ZHnWmJWVFd6+fQsAsLS0hJWVVZpbcjkRUX6iVgvMnXsOpUotwLVrbzS22dqaMAkiKsKy3CJ07NgxWFsnzaA4fvx4rgVERKRN799Ho1+/Hdi79yEAwMtrM65d+xLm5kqZIyOi/CDLiZCHh4f0d+nSpeHs7JxmbQ0hBF68eKG96IiIPsKZM8/Ro8dWvHyZ0pXftWtlGBlxRhgRJcnRp0Hp0qXx5s0b2NnZaZQHBwejdOnSUKlUWgmOiCgn1GqBX345i+++OwaVKmlVaBsbY/z9d0d8/vknMkdHRPlJjhIhIUS6K61GRkbyqvREJKu3b6PQt+92HDz4WCpr0qQUNmzoBCcnTuQgIk3ZSoS8vb0BAAqFAt9//z2MjVNmX6hUKly8eBFubm5aDZCIKKvOnn2Orl03482bSACAQgF8910TTJniAT29j7qiEBEVUtlKhPz8/AAktQjdunULBgYG0jYDAwNUr14d48aN026EhYkQwI0/5Y6CqNAyMNBFUFA0AMDe3gTr1nWCp2cZmaMiovwsW4lQ8myxAQMG4LfffuN6QdkREwwcHAA83pVSZu8uXzxEhVDt2k74+WdP7N37EOvWdYKDg6ncIRFRPqcQQgi5g8hL4eHhsLCwQFhYWN4lcq/PA3u6AxHPU8pqfwM0/BHQ5eVJiHLqwoWXqFXLUaPbSwgBtVpAV5ddYUSFSW59f2e5RahTp05YvXo1zM3N0alTp0zrbtu27aMDKxSEGrjyK3DmW0CdmFRmWAxotRYo01re2IgKsMRENaZPP4kffzyFyZMbY8aM5tI2hUIBXd20kzmIiNKT5UTIwsJCmilmYWGRawEVGtFBwIF+gP++lDKnRkCbjYBZCfniIirgXr+OQI8eW3Hq1DMAwE8/nUa7dhVQu7aTzJERUUHErrHc8PI0sLcHEPnq3wIFUPdboME0QIcLuRHl1IEDj9Cnz3ZpQLSurgI//tgc33zTEDo6bAUiKsxk7xpLLSYmBkIIafr8s2fPsH37dlSuXBktWrTQWnAFjlADl2YDZ6cA4t9FJY3tgFbrAJfP5I2NqABLTFTj+++PYfbss1JZiRLm2LixMxo1KiljZERU0OUoEWrfvj06deqEYcOGITQ0FHXq1IGBgQGCgoIwb948DB8+XNtx5n9RgcD+PsCzwyllzs2A1usB0+LyxUVUwL14EYYePbbi7NmUy/e0aVMOa9Z00LiSPBFRTuRoWsW1a9fQuHFjAMCWLVvg4OCAZ8+eYe3atVi4cKFWAywQnh8H/nZLlQQpgPrTgC6HmQQRfYQbNwLg5vanlATp6elg7tzPsGtXDyZBRKQVOWoRio6OhpmZGQDg0KFD6NSpE3R0dFCvXj08e/ZMqwHma2oVcOFH4ML0pG4xADBxAFpvAEo2kzc2okKgQgUblCxpgeDgGJQqZQEfny6oV4+TDYhIe3LUIvTJJ59gx44dePHiBQ4ePCiNC3r79m3RWWQx8g2w5TPg/LSUJKjUZ0Cf60yCiLTE0FAPvr5d0KuXK/z8vmQSRERal6NEaMqUKRg3bhxcXFxQt25d1K9fH0BS61CNGjW0GmC+9PRwUlfYi6SVtqHQARr9BHQ+AJjYyxoaUUG2Y8c93LnzTqOsXLliWLeuE6ysjGSKiogKsxxPnw8ICMCbN29QvXp16Ogk5VOXLl2Cubk5KlasqNUgtemjp9892Qtsbwvg35fN1ClpbaASjbUaJ1FREheXiG++OYyFCy+halU7XLw4GMbGXHWdiFLkq+nzAODg4AAHBweNsjp16nx0QPme/wFISVDpVsDnawFjG1lDIirIHj8ORrduW3D16hsAwO3bb/H33zfw5Ze1ZI6MiIqCHCVCUVFRmD17No4ePYq3b99CrVZrbH/y5IlWgsufUjWgNZzBJIjoI2ze/A8GD96N8PA4AIBSqYv581ti6FBekJiI8kaOEqHBgwfj5MmT6NOnD4oXLy5deoOIKCtiYxPh7X0Qf/xxRSorV84avr5d4ebmkMmeRETalaNEaP/+/di7dy8aNmyo7XiIqJB78OA9vLw248aNQKmsR4+q+PPPL2BmppQxMiIqinKUCFlZWcHa2lrbsRBRIRccHIM6dZYjLCypK8zQUA+//94KgwbVYMsyEckiR9PnZ8yYgSlTpiA6Olrb8RBRIWZtbYSxY5OW26hY0QaXLg3G4ME1mQQRkWxy1CL066+/4vHjx7C3t4eLiwv09TWnuV67dk0rwRFR4fPtt41haKiH4cNrw9TUQO5wiKiIy1Ei1KFDBy2HQUSF0Zo11xEaGouvv64nlenq6mD8eI4vJKL8IUeJ0NSpU7UdBxEVIlFR8RgxYh/WrLkBXV0Fatd2QoMGznKHRUSURo7GCAFAaGgoVqxYgUmTJiE4OBhAUpfYq1evtBYcERU8t2+/Ra1ay7FmzQ0AgEolsG/fQ5mjIiJKX45ahG7evAlPT09YWFjg6dOnGDJkCKytrbFt2zY8f/4ca9eu1XacRJTPCSHw119++Oqr/YiNTQQAmJoa4M8/v0DPnq4yR0dElL4ctQh5e3ujf//+ePjwIQwNDaXy1q1b49SpU1oLjogKhoiIOPTuvR1DhuyWkqDq1e1x9epQJkFElK/lqEXo8uXL+PPPP9OUOzk5ISAg4KODIqKC4/r1AHh5bcbDh8FS2bBh7pg//3MYGub4coZERHkiR59SSqUS4eHhacofPHgAW1vbjw6KiAoGIQQGDNgpJUFmZgZYsaIdvLyqyBwZEVHW5KhrrF27dpg+fToSEhIAAAqFAs+fP8eECRPQuXNnrQZIRPmXQqHAmjUdYGioh5o1i8PP70smQURUoOQoEfr1118RGRkJOzs7xMTEwMPDA2XLloWpqSl++uknbcdIRPmIWi007lerZo8jR/rg3LmBKFuWl94hooIlR11jFhYWOHz4MM6cOYObN28iMjIS7u7u+PTTT7UdHxHlE0II/P77JWzZcgdHjvSFgYGutK1hw5IyRkZElHPZahE6f/489uzZI91v1KgRTExMsGTJEvTo0QNDhw5FXFyc1oMkInmFhMSgUydffP31AZw+/RyTJh2ROyQiIq3IViI0ffp0/PPPP9L9W7duYciQIfjss88wceJE7N69G7NmzdJ6kEQkn4sXX6JGjT+xY8c9qUxHRwEhRCZ7EREVDNlKhK5fv67R/eXj44M6depg+fLl8Pb2xsKFC+Hr66v1IIko7wkh8Ouv59Co0So8exYGIOnq8bt398CcOS14xXgiKhSyNUYoJCQE9vb20v2TJ0+iVatW0v3atWvjxYsX2ouOiGTx/n00+vffiT17HkhlDRo4w8enM5ydLWSMjIhIu7LVImRvbw9/f38AQHx8PK5du4Z69VKuKh0REQF9ff1sB7F48WK4uLjA0NAQdevWxaVLl7K0n4+PDxQKBTp06JDtxySi9J09+xxubn9qJEETJjTEiRP9mAQRUaGTrUSodevWmDhxIk6fPo1JkybB2NgYjRs3lrbfvHkTZcuWzVYAmzZtgre3N6ZOnYpr166hevXqaNmyJd6+fZvpfk+fPsW4ceM0Hp+IPt6uXffx8mXSgqk2NsbYv78XZs/2hL6+7gf2JCIqeLKVCM2YMQN6enrw8PDA8uXLsXz5chgYGEjbV65ciRYtWmQrgHnz5mHIkCEYMGAAKleujKVLl8LY2BgrV67McB+VSoVevXrhhx9+QJkyZbL1eESUuR9/bI569UqgSZNSuH79S3z++Sdyh0RElGuyNUbIxsYGp06dQlhYGExNTaGrq/kLcfPmzTA1Nc3y8eLj43H16lVMmjRJKtPR0YGnpyfOnz+f4X7Tp0+HnZ0dBg0ahNOnT2f6GHFxcRpT+tO7NEiWBd0Gnh7I+f5E+dDbt1GwszOR7uvr62L37h6wtDSEnl6O1lwlIiowcvQpZ2FhkSYJAgBra2uNFqIPCQoKgkql0hiADSSNRcro4q1nzpzBX3/9heXLl2fpMWbNmgULCwvp5uzsnOX4JEIAN1cA62sDoY+TygyLAZb8pUwFl0qlxowZJ1G69G+4fl3z/83GxphJEBEVCQXqky4iIgJ9+vTB8uXLYWNjk6V9Jk2ahLCwMOmW7Vlt8RHAvt7A4SFAYmxSmW11oMc5QMmBo1QwBQREomXLdZgy5QSioxPg5bUZkZHxcodFRJTncnSJDW2xsbGBrq4uAgMDNcoDAwPh4OCQpv7jx4/x9OlTtG3bVipTq9UAAD09Pdy/fz/NYG2lUgmlUpmzAN9eB/Z0A0JSZs+g+jDAYx6gb5SzYxLJ7OjRJ+jVaxsCA6MAJC2O2KdPNRgZyfpxQEQkC1k/+QwMDODu7o6jR49KU+DVajWOHj2KkSNHpqlfsWJF3Lp1S6Psu+++Q0REBH777becdXulRwjgxlLgxBhA9e/4IgMzoMUKoIKXdh6DKI+pVGpMn34SM2acQvKi0MWLm2Ljxs7w8HCRNTYiIrnI/hPQ29sb/fr1Q61atVCnTh0sWLAAUVFRGDBgAACgb9++cHJywqxZs2BoaIiqVatq7G9paQkAacpzLC4MODQUeJBqhWy7msAXmwArjgmigun16wj07LkVJ08+k8patCiLv//uqDFQmoioqJE9EerWrRvevXuHKVOmICAgAG5ubjhw4IA0gPr58+fQ0cmjoUyBV4HdXkDYk5SyGl8BTeYAejnsXiOS2fHj/ujWbQvevYsGAOjqKvDjj83xzTcNoaPDy2QQUdGmEEXsyonh4eGwsLBAWFgYzM3NkwqFAPwWAafGAap/B4wqLYCWK4FyneQLlkgLLlx4icaNVyExUY0SJcyxcWNnNGpUUu6wiIiyJd3vby2QvUVIdrEhwMFBwKPtKWUOdYAvfACL0vLFRaQl9eqVwKxZn+LEiadYvboDbGyM5Q6JiCjfKNotQlF3gT3dgfCnKRXcvYHGswDdrK+HRJSfnD79DA0aOENXN6VLWa1O+jdnVxgRFVS51SJUoNYR0qpriwCfRilJkKEV0GEX0PRXJkFUIMXHqzBu3CE0abIaM2ac0timo6NgEkRElI6i2yL0I2Bu+G+hYwOgzUbAnOMmqGB6+jQU3btvwcWLrwAACgVw7dqXcHNLux4XEVFBxDFCuaX2BKDhDEBXX+5IiHJkx457GDBgJ0JDk1Y+19fXwdy5LVC9uv0H9iQioqKbCCmtgE7rgdKt5I6EKEfi4hLxzTeHsXDhJamsTBkrbNrUBbVqOcoYGRFRwVF0EyHnJkyCqMB6/DgY3bptwdWrb6SyLl0qY8WKtrCwMMxkTyIiSq3oJkJEBdTly6/g6fk3wsOTLv+iVOpi/vyWGDasFhQKDogmIsqOojtrjKiAqlrVDi4ulgCAcuWsceHCYAwfXptJEBFRDjARIipgjIz04evbBQMGuOHq1aGcGUZE9BGYCBHlcxs33sL9+0EaZRUq2GDlyvYwM+M18IiIPgYTIaJ8KiYmAUOG7ELPntvg5bUFMTEJcodERFToMBEiyofu3n2HOnVWYMUKPwDAzZuB8PX9R+aoiIgKHyZCRPnMmjXXUavWcty+/RYAYGysj1Wr2qNfPzd5AyMiKoQ4fZ4on4iKiseIEfuwZs0NqaxKFVv4+nZF5cq2MkZGRFR4MREiygdu334LL6/NuHs3ZVD0oEE1sHBhKxgb8/IvRES5hYkQkczevo1CvXorEBWVNBjaxEQff/75BXr1qiZzZEREhR/HCBHJzM7OBGPH1gcAVKtmj6tXhzIJIiLKI2wRIsoHpkzxgIWFIYYPrwUjI3aFERHlFSZCRHlICIE//7yK+HgVRo2qK5Xr6urA27u+jJERERVNTISI8khYWCyGDt0DX99/oKeng7p1nVC3bgm5wyIiKtI4RogoD1y9+hru7sukRRETE9U4cuSJzFERERFbhIhykRACixZdwrhxhxEfrwIAWFgosXJle3TqVEnm6IiIiIkQUS4JCYnBoEG7sH37PamsTh0n+Ph0RunSVjJGRkREyZgIEeWCixdfonv3rXj6NFQqGzu2PmbO/BQGBrryBUZERBqYCBFpmVotMGjQLikJsrY2wurV7dG2bQV5AyMiojQ4WJpIy3R0FFi3rhOUSl00aOAMP78vmQQREeVTbBEi0gKVSg1d3ZTfFW5uDjh+vB9q1XKEvj67woiI8iu2CBF9BLVa4Oefz6BZszVISFBpbKtf35lJEBFRPsdEiCiH3r2LwhdfbMDEiUdx+vRzTJ58TO6QiIgom9g1RpQDp049Q48eW/H6dQQAQKEADA31IISAQqGQOToiIsoqJkJE2aBSqTFr1hlMnXoCarUAkHT1+HXrOuKzz8rKHB0REWUXEyGiLAoMjETv3ts1Lo3RvHlprFvXEcWLm8kYGRER5RQTIaIsOHbMHz17bkVgYBSApCnyU6d6YPLkxhqzxYiIqGBhIkSUBXv2PJCSoOLFTbFhQ2c0beoib1BERPTRmAgRZcHs2Z44c+Y5rKyM8PffHWFnZyJ3SEREpAVMhIjSERAQCQcHU+m+gYEu9u/vBSsrI+jocFYYEVFhwcENRKkkJqrx7bdHUbbsQty8GaixrVgxYyZBRESFDBMhon+9fBmOZs3WYNasM4iOToCX12ZERcXLHRYREeUido0RAdi37yH69t2O9+9jAAB6ejoYPLgmjIz0ZY6MiIhyExMhKtISElSYPPkY5sw5J5WVLGkBH5/OqF/fWcbIiIgoLzARoiLr2bNQdO++FRcuvJTK2rWrgFWr2sPa2kjGyIiIKK8wEaIiaf/+h+jZcxtCQ2MBAPr6Opgz5zOMGlWX1wojIipCmAhRkWRhYYiIiDgAQOnSlti0qQtq13aSOSoiIsprTISoSGrQwBk//dQcly+/xooV7WBpaSh3SEREJAMmQlQkHD/ujyZNSmlcF2z8+IZQKMCuMCKiIozrCFGhFhubiJEj96F587WYNeuMxjYdHQWTICKiIo6JEBVaDx++R4MGf2Hx4ssAgKlTT+Cff97KHBUREeUn7BqjQsnH5zaGDNmNyMiklaENDfWwcOHnqFzZVubIiIgoP2EiRIVKTEwCRo8+gGXLrkllFSoUg69vV1SrZi9jZERElB8xEaJC4969IHh5bcatWyndX336VMOSJW1gamogY2RERJRfMRGiQuHcuRdo0eJvREUlAACMjPSwZEkb9O/vJm9gRESUr3GwNBUKbm4OKF3aCgBQpYotrlwZyiSIiIg+iIkQFQrGxvrw9e2C4cNr4dKlIRwUTUREWcJEiAocIQRWrfLDw4fvNcorVbLFkiVtYGysL1NkRERU0DARogIlMjIeffpsx8CBu9Ct2xbExibKHRIRERVgTISowLhxIwDu7suwfv0tAICfXwB27rwnc1RERFSQMRGifE8IgT//vIK6dVfgwYOk7jAzMwP4+HRGt25VZY6OiIgKMk6fp3wtPDwOQ4fuxqZN/0hlNWsWx6ZNXfDJJ9YyRkZERIUBEyHKt65dewMvr814/DhEKvvqqzqYM+czKJV86xIR0cfjtwnlS2/eRKBhw5XSYGgLCyVWrmyPTp0qyRwZEREVJhwjRPlS8eJmGDu2PgCgdm1H+Pl9ySSIiIi0ji1ClG9Nm9YU9vYm+PLLWjAw0JU7HCIiKoTyRYvQ4sWL4eLiAkNDQ9StWxeXLl3KsO7y5cvRuHFjWFlZwcrKCp6enpnWp/xPCIH5889j8WLN86inp4OvvqrLJIiIiHKN7InQpk2b4O3tjalTp+LatWuoXr06WrZsibdv36Zb/8SJE+jRoweOHz+O8+fPw9nZGS1atMCrV6/yOHLShuDgGLRv7wNv70MYM+Ygrlx5LXdIRERUhMieCM2bNw9DhgzBgAEDULlyZSxduhTGxsZYuXJluvXXr1+P//3vf3Bzc0PFihWxYsUKqNVqHD16NI8jp4917twLuLktxe7dDwAACQlqnDr1TOaoiIioKJE1EYqPj8fVq1fh6ekpleno6MDT0xPnz5/P0jGio6ORkJAAa+v015SJi4tDeHi4xo3kpVYL/PLLWTRpsgovXiSdDxsbY+zb1xPe3vVljo6IiIoSWROhoKAgqFQq2Nvba5Tb29sjICAgS8eYMGECHB0dNZKp1GbNmgULCwvp5uzs/NFxU869exeFL77YgAkTjkClEgCAxo1L4vr1L9GqVTmZoyMioqJG9q6xjzF79mz4+Phg+/btMDQ0TLfOpEmTEBYWJt1evHiRx1FSstOnn8HN7U/s3/8IAKBQAN991xjHjvWDk5O5zNEREVFRJOv0eRsbG+jq6iIwMFCjPDAwEA4ODpnuO3fuXMyePRtHjhxBtWrVMqynVCqhVCq1Ei/lXGKiGkOG7Mbr1xEAADs7E6xb1xGffVZW5siIiKgok7VFyMDAAO7u7hoDnZMHPtevn/FYkV9++QUzZszAgQMHUKtWrbwIlT6Snp4O1q/vBAMDXTRr5oLr179kEkRERLKTfUFFb29v9OvXD7Vq1UKdOnWwYMECREVFYcCAAQCAvn37wsnJCbNmzQIA/Pzzz5gyZQo2bNgAFxcXaSyRqakpTE1NZXselFZiohp6eim5tru7I06d6o9atRyhq1uge2WJiKiQkD0R6tatG969e4cpU6YgICAAbm5uOHDggDSA+vnz59DRSfnS/OOPPxAfH48uXbpoHGfq1KmYNm1aXoZOGVCp1Jgx4xROnHiKI0f6aiRDdeuWkDEyIiIiTQohhJA7iLwUHh4OCwsLhPm0h3m3HXKHU+i8eROBnj234cSJpwCASZMaYebMT+UNioiICjzp+zssDObm2ptgI3uLEBUehw49Ru/e2/DuXTQAQEdHATMzA5mjIiIiyhgTIfpoiYlqTJ16HLNmnUFy+6KTkxk2buyMxo1LyRscERFRJpgI5SIhBBISEqBWq+UOJdcEBERi7NhDuHr1NUqWNAEANGlSCj//7AkrKyPExsbKHCEREclNR0cH+vr6UCgUcoeSBhOhXKBSqRAUFISIiAgkJCTIHU6uiYlJQFBQNIYMKY0hQ0oDACwtjWBurkRoaABCQ+WNj4iI8g99fX2YmZlJawjmF0yEtEylUuHFixeIi4uDhYUFTE1Noaurmy+z4I/1+nUE1OoYAIC+vg5KlDCHiQnHBBERUQohBFQqFSIjIxEaGoqYmBg4Ozvnm2SIiZCWBQUFIS4uDiVLloSRkZHc4eQqFxclYmODYGCgCxcXS41p8kRERKmZmprCwsICz58/R1BQUJrrjMqFiZAWCSEQEREBCwuLQpkExcerYGCQksHr6ChQvnwx6OoqCmWLFxERaZeRkRHMzc0REREBOzu7fPHdwZ/wWpSQkICEhIRCt8K1Wi3w4kUYbt9+i5gYzTFPeno6+eKNTEREBYOZmZn0fZkfMBHSouTZYfml31Mb4uIScf9+EAIDo6BWCzx+HFKoZ8EREVHuSv6OzC/fJewaywWFpYUkJCQGT5+GQqVKWhxIoUi6anxheX5ERJT38tt3CBMhSkOtFnj5Mhxv30ZJZUqlLsqUseKsMCIiKlSYCJGG2NhEPHkSgujolL5bKytDuLhY8orxRERU6DARIklISAz8/UOhVqd0hZUsaQEbG+N815RJRESkDUyESKKnpyMlQYaGeihTxgrGxvoyR0VERJR72NdBEjMzJZyczFCsmBEqVbJhEkSUjvfv38Pa2hoKhQKXL1+WOxyiPDFnzhwoFAo0bdpU7lC0jolQERYWFguRfLn4fzk4mBaI8UAnTpyAQqFI92ZsbAxnZ2d88cUXWLlyJeLi4rJ1bJVKhc2bN6N3794oX768tECmi4sLWrVqhUWLFiE0BxdSi4+Px8aNG9G3b19UrFgRxYoVg76+PmxsbODu7o7hw4fjyJEj+WZKKaVvypQpCAkJQevWrVG7dm25w6Ec2r9/Pzp27IgSJUpAqVSiRIkS6NixI/bv36/Vxzlw4AC6d++OMmXKwNjYGIaGhnB2dkb79u2xadOmbP2/3717F+PHj0e1atVgZWUlfS55enpi5syZePr0aZp9MvuszOiWXrIzfPhwFCtWDCdPnsS2bds+4hXJh0QRExYWJgCIMJ/2Wj92TEyMuHPnjoiJidH6sbUpMVEl/P1DxOXLr8Tr1+Fyh5Mjx48fFwCydKtSpYrw9/fP0nFPnz4tKleu/MFjFitWTCxbtizL8W7dulW4uLhkKd7y5cuLPXv25PCVodz09OlToa+vLwCICxcuyB0O5YBKpRKDBg3K9H9w8ODBQqVSfdTjxMbGis6dO3/w/71x48YiJCQk02Op1Wrx7bffCj09vUyPNX/+/DT7ZuezMvk2dOjQdOP46aefpM/Uj3l9cvpdKX1/h4Xl+LHTw0RIiwpCIhQdHS9u3QoUly+/km4xMQlyh5Vtqf+5hw8fLm7duiXdjh49Kn777TdRokQJqY6rq6tITEzM9JibN28WSqVS2qdp06Zi+fLl4vTp0+LSpUti8+bNok+fPhofRmPHjv1grNOnT9f4kPnss8/E77//Lo4ePSquXr0qDh8+LBYtWiRatmwpdHR0BABRvXp1Lb1SpE3Dhw8XAETDhg3lDoVyaOLEidL/Yo0aNcTGjRvFpUuXxMaNG0WNGjWkbZMmTfqoxxk6dKh0LDs7OzF37lxx7Ngxcfr0abFkyRJRqlQpaXvLli0zPdbgwYOluu7u7mLx4sXi1KlT4tq1a+LAgQNi+vTponr16mLBggVp9o2MjNT4fMzo5uHhIT3G2bNn040jNDRUGBoaCgBi69atOX5tmAjJrKgmQmq1Wrx7FyWuXn0tJUBXr74WQUFRcoeWI6kToalTp6ZbJzw8XKMVZvPmzRke79q1a8LAwEAAEAYGBmL9+vUZ1vXz89NIspYsWZJh3ZUrV2p8GJ44cSLT53Xr1i3h6enJRCgfCgkJESYmJgKA+OOPP+QOh3Lg/v370g+ZWrVqiejoaI3tUVFRolatWgKA0NPTEw8fPszR4wQEBEg/aqysrMSLFy/S1AkLC9P4fLp8+XK6x/rrr7+kOt9++61Qq9UZPm5cXFyO4g0JCZF+BH7yySeZ1u3UqZMAIDw8PHL0WELkv0Qofw8EIa1QqdTw9w/F06cpU+ONjPRQqZINihUzljm63GNmZobvvvtOun/kyJF066nVavTp0wfx8fEAgJUrV6Jnz54ZHtfNzQ1Hjx6FiYkJAGDs2LF4/vx5mnqvXr3CyJEjAQAmJiY4efIkPDw8Mo25atWqOHjwIMaNG5f5k6M85+Pjg6ioKOjr66Nr165yh0M5sGDBAiQmJgIAfv/99zQXxzY2Nsbvv/8OAEhMTMT8+fNz9DgXL16Uxv4MGDAAJUqUSFPH3NwcY8aMke6fP38+TZ2IiAjps6BNmzb46aefMl3KxMAgZwvebtq0SRpL2adPn0zr9urVCwBw8uRJPH78OEePl98wESrkoqMTcPduEIKDY6QyW1tjVKpkAyOjwj8rzNXVVfr7xYsX6dbZvXs3/vnnHwBAq1atpH/0zJQvXx7ff/89ACAmJga//fZbmjrz589HdHQ0AGD69OmoWLFilmLW0dFB7969s1Q3I0+fPsWECRPg7u6uMSi7cePGmDZtGp48eZKmfvJAydWrV2d6bBcXFygUCvTv3z/NttWrV0vHefr0KeLi4rBgwQLUq1cPNjY2UCgUmDZtGtauXSvVO3z48Aefz5dffgmFQgGlUomQkJB06xw/fhz9+vWTBqWam5vD1dUV48ePx+vXrz/4GB/i6+sLAGjatCmKFSuWYb34+Hjs3r0bI0eORO3atWFlZQV9fX0UK1YMdevWxbRp0xAUFJTpY/33Nb569Sr69++P0qVLQ6lUpvtlGBYWhlmzZqFhw4awtbWFgYEBihcvjrZt22LLli1pJkakFhUVhU2bNmHw4MFwc3ODhYUF9PX1YWtrCw8PD8ydOxeRkZFZeJXyLyEEdu7cCQCoWLEi6tWrl269evXqoUKFCgCAnTt3Zvq6ZST5RxUAlClTJsN6ZcuWTXefZOvXr5fe75MnT852HFm1du1aAEmXvujbt2+mddu0aQNDQ0MAwMaNG3Mtpjyl1falAqAodY2Fh8eKK1c0u8Lev4/+8I4FQFa6xoRI6sZKrte+fft063Ts2FGqc/DgwSzHEBISIvWXFytWTKPJWq1WCxsbGwFAmJiYiPDwvBuUPmfOHGlAb0a3/zZr+/v7S9tWrVqV6fGTxzb069cvzbZVq1ZpNPW7ubmleeypU6eK8PBwYWRkJACI/v37Z/p48fHxwtraWgAQHTp0SLM9JiZGdO/ePdPna2JiInbt2vWhly5DsbGxUtfB999/n2ndfv36fXAwarFixcSZM2cyPEbq1/iPP/5Id5BsakeOHBHFihXL9DFbt24tIiIi0n281ONDMrqVLl1a3L17N/svXj7x+PFj6bl8+eWXmdZNPb7nyZMn2X6smzdvSvt7e3tnWO+3336T6u3evTvN9ubNmwsAwsbGRqM8MDBQPHz4UCtdRI8ePZJiaNKkSZb2qVevngAgGjRokKPHZNcY5RljY30olbrS35Ur28La2ugDexUud+/elf52cXFJt87p06cBJDWLf/rpp1k+tqWlJZo0aQIgaW2ZO3fuSNv++ecf6Vd/48aNYWZmlt3Qc2TGjBkYP348EhISYGlpiW+//RaHDx/GtWvXcOzYMcydOxcNGjTIk5XCBw0ahBs3bqBv377Yu3cvrl69iu3bt6Nu3bowMzNDu3btAADbtm1DbGxshsfZv38/goODASBNa50QAl26dIGPjw8AoG3btvj7779x9uxZnD9/Hr/99htKliyJqKgodOnSBVeuXMnRc7l8+bLUdfChKfOJiYkoU6YMxo4di02bNuH8+fO4fPkytmzZgmHDhsHAwADv379Hx44d8fbt2w8+7siRI1GiRAksWrQIFy5cwJkzZzBr1iypztmzZ9GqVSu8f/8e9vb2+PHHH7F7925cvXoVu3fvlloX9+3bh379+mUYs6urKyZPnozt27fj4sWLuHDhAjZt2oTu3btDR0cH/v7+6NChQ6bnKj9L/f/5odbZ1NtTf4ZklaurKxo0aAAgqZU0vRbJiIgILFiwAEBSq1GLFi00tqvVammdKldXVwgh8Pvvv6NMmTKwt7dHuXLlYGFhATc3N/z11185XnYjuTUIQIbvj/+qU6cOAODSpUsF9v2gQatpVQFQlFqEhEiaJfb8eahQqTIeYFcQZaVFKDExUWMWyOnTp9PUefnypbS9Xr162Y4j9QyU1AOs161bJ5VPnjw528fNiWvXrkkDNMuXL5/uAM1kz58/17ifGy1CAMSKFSsyPM6uXbuyNJC9W7duAoAwNzdP87+1bNkyAUDo6+uL/fv3p7t/cHCwqFKligByPtvr559/lmLN7HUVIukXdmYDWm/evClMTU0FAPHdd9+lWyf1jCJXV9cMp1fHx8dLA24///xzERWV/uSH5NcJgDh06FCa7Q8ePMj0OR0+fFh6b2V2Tj8kK61lH7rldJDuH3/8kaX3mxBJM0iT6y5dujRHj3f//n1RunRpAUDY29uLX3/9VRw/flycPn1a/PHHH9I2Gxsbcf78+TT7P336VIqhc+fOGi3X6d3at2+f7cHSarValClTRgAQRkZGWW65XrNmjfS4OVlGgi1ClCuEEHj7NgqxsYka5UZG+nB2toCOTtG5Vti7d+9w7NgxeHh4wM/PDwDQpUsXNGrUKE3d1GM1HBwcsv1Y9vb20t/v379P9287O7tsHzcn5syZA7VaDYVCAR8fn3QHaCZzdnbO9XiaN2+OQYMGZbj9888/l8barF+/Pt06kZGR2LVrFwCgc+fO0tgEIOk9//PPPwMARo0ahc8//zzdY1hZWWHOnDkAklpPHj58mO3n8vLlS+nvD53PsmXLZtri5urqisGDBwMAduzY8cHHXrx4MSwtLdPd5uPjg6dPn8LQ0BBr166FsXH6kx+GDBki/YpPbwxYuXLlMo3B09NTasHLSsz5UUREhPS3qalppnWTJ0IAyPHYqPLly+Py5cuYMWMGoqKiMHbsWDRr1gyNGzfG8OHD8fLlS4wbNw5+fn7pjldKbgUFgL1792L79u0oX748du3ahfDwcERERGDPnj1S69XOnTsxceLEbMV45swZabxgx44ds9xynfp/4L/jDQsiXmtMLutqAVEBWjmUAKBKVMNSLaBQKCD0dZAv0h4TB6B3zroisuOHH37ADz/8kO42Y2NjDBs2DLNnz053e3Y+HNOTep/w8PB0j5v6QzW3qNVqaUXcpk2bokaNGrn+mB/yoUHnybOvli5div379yM0NDTNF/727dsRExOT7vHu3LkjzVrp0qVLpo+V3IUJJM3O+dAX/3+9e/cOQNL7Kbszc0JCQhAcHIzY2JSV3JOf5507d5CQkAB9/fQnLjg7O6Nx48YZHjs5SfTw8ICtrW2mcTRp0gSXLl1Kd3bSf7179w6hoaEaq7InH//GjRsf3D8jP/3000fPiMzp/1PqLpwPnUOlUin9nfz+y4ndu3dj/fr16SZTCQkJ8PX1ha2tLcaPH58meY6KipL+jo2NhYODA86cOaNxntu0aYO6deuievXqeP36NRYtWgRvb+9MfwSl9vfff0t/f2iQdGrW1tbS3wEB2vkekxMTIblEBQCRr7RyKAX+cyKzd0WJQs3NzQ2jRo3K8Ism9S+gnPzyS72Publ5usdN/YGWW/z9/aXLfmT2xZmXqlWr9sE6vXr1wtKlSxEXF4ctW7ZILSXJNmzYAABwdHREs2bNNLalHu9Tv379LMeVkw/u5F/nVlZWWap/69YtzJ8/H/v378/08dRqNUJCQjJsZfrQa5j8Ghw8eDDL474yiufs2bNYuHAhjhw5otEa8V8fmvGWGScnJzg5OeV4/4+RujUxvRlaqaVOAP87xT6rxo4di3nz5gEAOnTogPHjx6N69erQ1dXF3bt38fvvv2PVqlWYMGECLl68CF9fX+jq6qYbLwB888036Sa7NjY2+PbbbzFy5EgkJCRg27ZtGDVq1Afji42NxebNmwEk/X95enpm+bml/j/Ii8+33MZESC4m2e+GSU0AUKsFVImpBsgpFNDTVeSfbrCPfI5ZNXz4cPzvf/8DkDTo8+XLl9iyZQv+/vtvnDt3Dk2bNsWlS5cy/BBJlpMvyMDAQOnv1FOqU/+duk5uSf3lVLx48Vx/vKzIStLQsGFDlCpVCs+ePcP69es1EqG3b99Kaz8lD9hN7UMDjTOSvKRBdiR/KWWldeCvv/7CsGHDpPVqPiSzY37oNczJa5De402bNi3DVtWs7F8QZOdHT+ov95y0FO/du1dKgvr3749Vq1ZpbK9RowZWrlyJEiVKYMaMGdi2bRuWLFmCr776Kt14AaQZTJ1ay5Ytpb+zeiHgXbt2ST+eevXqpZGEfUjq90BGPzILEiZCcvmILqPERDWePg1FaGhKU6+JiT7KlLGCjrLonVI7OztUrVpVuu/m5oYvvvgCzZo1Q//+/fH06VMMHjxYWkMkNUdHR9jY2CAoKAg3b96ESqXK1gfCtWvXpL+rV6+e7t+p6xQlWXkdFQoFevbsiVmzZuHUqVN49eqV1GLg6+srJRPpdbOpVCrp7927d2c4K/C/cjJmKzmJDg0NhRAiw9aXe/fuSUmQnZ0dxo8fj+bNm8PFxQVmZmbSl8bKlSul8VMik3VqPvQaJr8GrVq1wi+//JLt5wUAR48elZKgMmXKYNy4cWjUqBFKliwJExMT6OklfaZMmTIFM2bMyNFjJHv16lWG60BllYmJCUqXLp3t/VJ3F6Ue85We1GuO5WQ83YoVKwAkvb9//PHHDOt9++23mD9/PiIjI7Fy5UqNRKhEiRJJQx3+fX9kFkfqbcnduB+SerZYdrrFAM3xSxmNXytIit63ZgEXGRmPJ09CEB+f8iXg4GAKR0ez/NMSlE/069cPu3fvxtatW7Fr1y4cO3YMzZs316ijUCjQqFEj7NixA9HR0Th69Gimv7xSCwsLk6beFytWDJUrV5a2ValSRUqwTp8+jfDwcI2uM21L3bL15s2bbO+furXlQ9Nwtd0U3qtXL8yaNQtqtRobN26UxpAkd4tVrFgRNWvWTLNf6lY3S0tLjWRY25ITIbVajbCwsAw//FevXo3ExETo6uri5MmTGU7TzqzrKTuKFSuG169fIz4+PsfPf/ny5QCSWp8uXLiQ4VgjbcQ8efJkrFmz5qOO4eHhgRMnTmR7v9T/n/fu3cu0burtlSpVyvZjJU+5t7Ozy7Qr0NDQEFWqVMHFixfTxGRiYoJSpUpJV5RPnfj/V+ptyYlrZt6+fYuDBw8CAGrWrJnt907qZLZkyZLZ2jc/4qyxAiQuLhH37wdJSZCeng4++cQaJUqYMwnKwMyZM6Vf1d9++226dVKvkLxw4cIsH3vZsmVSE3G/fv00WgkUCoW0JkdUVJT0CzG3lC5dWvpyPnXqVLb3T90Mn9kv9uDgYI0ZcdpQpUoVqQUtOfnx9/eXBvVmNOg69YDws2fPajWm/0q9QvmDBw8yrJe8Qnn16tUzXasmp+sZ/Vfya3DlypUPjnvJSHLMzZo1y3TAtbZilkvp0qXh6OgIIOnyEJlJ/h9ycnLKcktjasnJSFa6RxMSEjT2SS31IP/MZmelvtRFVsZgbdiwQYotu61BgOb/QJUqVbK9f37DRKgAUSr1YG+f1F9tamqAypVtYWlp+IG9irby5cvDy8sLQNL1f9K7nEPbtm2lX3179+6VFufLzKNHjzB9+nQASYMpv/766zR1xowZI01nnjJlygd/hSZTq9UZTifPiI6ODtq0aQMg6UM+edmArLKyspISqcy+8Hx8fHJ0yYEPSU52/Pz8cPfuXSkhApDhdd9q1qwpdXcsW7YsVxd2Sz0APbMxGMlfLpm1mr1580aa7fWxkqe0h4WFpRmHklVZidnPzw8XL17M0fFTW716NUTSxb5zfMtJaxCQ9OOkffv2AJJafC5cuJBuvQsXLkj/q+3bt8/R4qPJXXfv37/PdEHG4OBg3L59W2Of1Dp37iz9vX379gyPs23bNunvrEyWSO4W09fXz/S6ihlJ/h8oXrx4oWgR4oKKWpQXCyqqVGoRGBiZ6YJtRUFWL7EhRNIV3RUKRaZLyF+5ckW6LIVSqRQ+Pj4ZHu/GjRuiZMmS0uNr8+rz//zzj/jss89ydPV5Pz+/LC+omN62du3aSQurPXr0KM32e/fuSZe6QBYWVPT3989y7C9evJDO0eTJk6UFEOvXr5/pfkuWLJEer2vXriI2NjbDumFhYeL333/Pckz/lbzIYd++fTOs89VXXwkAQkdHR5w9ezbN9qioKNG0aVONhfDSe50yW7QytdjYWOHs7CwACFNTU3Hy5MlM658+fTrNe7Bt27YCSLoMSXpXW3/79q10PpJvBdX9+/eFrq6uANK/+nx0dLTG1eczWmgy9cKQx48fT7P9zz//lLa3aNEi3YUOVSqV6NWrl1Rv0qRJ6dapWrWqdH5u376dps6dO3ekBTptbW0zXFQz2e3bt6XHbNu2baZ1M5L8nsvsfyEz+W1BxYL7js6hgpIIqdVq8fp1uAgMjNRCZIVPdhIhIYRo3769VD+9FaaFEMLHx0cYGBhI9Zo1ayZWrFghzpw5Iy5duiS2bNki+vbtq3Hdp7Fjx37wsadPn67xJdKiRQuxePFicezYMXHt2jVx5MgRsWTJEtGmTRvpQzoniZAQQsyYMUN6HEtLSzF58mRx5MgR4efnJ44fPy7mz58vGjduLJo2bZpm3wMHDkj7lihRQqxYsUJcvXpVnDx5UkyZMkVYWFiITz75RNja2mo9ERJCSAmCpaWldIxFixZluo9ardZYcbds2bLil19+ESdOnBB+fn7i5MmT4s8//xQ9evQQJiYmolixYtmKKbVRo0YJAMLZ2TnDHyKXLl3SeP1/+ukncfLkSXHx4kWxZMkSUa5cOYF/V7jWRiIkhBDnz5+XroOmq6srevXqJTZv3iyuXLkiLl26JHbu3CmmTJkiXF1dBYA0yWDqVZQdHR3FwoULxdmzZ8XZs2fFnDlzRPHixYVCoRD169cv8ImQEJqrwdeoUUP4+PiIy5cvCx8fH42V6NNLTJJ9KBGKi4sTlSpVkuq4urqKZcuWiYsXL4orV66ItWvXarye9vb24t27d+k+1unTp6XPJUtLSzFz5kxx/vx5cf78efHzzz8LKysr6TiZ/YBLNn78eKn+li1bsvy6JXvw4IG0//bt27O9vxBMhGRXEBKh+PhEcf9+kLh8+ZW4cuWViIzM3rLpRUF2E6HUX1AtWrTIsN7Jkyc1PsAyullbW4s///wzy/Fu3bpVuhTCh25VqlTJ1sVf/+unn35K9yKdqW8ZXaYg+cs+vVvJkiXFnTt3snyJjewmQsuXL9d4PD09PfH27dsP7hcfHy+GDx8utShlditdunS2Ykrt1q1b0nEya3n54YcfMo1h7NixH3ydspMICZGUDCX/Sv/Qbc2aNWn2HzBgQIb1dXV1xYIFC8TUqVMLRSKkUqnEwIEDM32NBg0aJFQqVYbH+FAiJETSJTKqV6+epfekn59fpjFv2bJFmJmZZXgMfX198ccff2TpuTs6OgoAwsrKKtuX5BBCiGnTpkmfgTnZXwgmQrLL74lQeHisuH79jXTF+MuXX7FVKB3ZTYSEEOKzzz6T9rl06VKG9RITE4WPj4/o0aOH+OSTT4SZmZkwNDQUzs7OomXLlmLhwoUZXvspM3FxcWL9+vWid+/eokKFCsLKykro6ekJa2trUbNmTfG///1PHDt2TCvdng8ePBCjR48WVatWFebm5kJPT0/Y2toKDw8P8eOPP6a51lhqGzZsEE2aNBHm5ubCyMhIVKhQQUycOFEEBQUJIbJ+rbHsJkIhISFSywaQdLX07Lh586b46quvhKurq7CwsBC6urrCwsJCuLm5iUGDBoktW7Zk2nWWFcm/4j909fK9e/eKFi1aCCsrK2FgYCBKlCghOnXqJF3nS9uJkBBJ3WRLly4Vbdq0EY6OjsLAwEB637Zo0UL89NNP4t69exnu//fff4vGjRsLMzMzoVQqRalSpUSfPn3ExYsXhRCi0CRCyfbu3Svat28vvVaOjo6iffv2Yt++fR/cNyuJkBBJSfratWtFu3btRIkSJYRSqRQGBgbCwcFBtGjRQixZskRERmbt8/3Zs2di3LhxolKlSsLU1FQYGxuLChUqiBEjRqTbpZmeQ4cOSXEPGzYsS/v8V/ny5QUAMX78+BztL0T+S4QUQuTCyMd8LDw8HBYWFgjzaQ/zbju0euzY2Fj4+/ujdOnSaVYF/RAhBN68icTr1ymXZtDX10Hp0lYwN1dmsicR5RVfX19069YNVlZWeP78eY4W2yMqqM6cOYPGjRvDwMAADx8+zPFA6Zx+V0rf32FhWl2OhLPG8oH4eBUePHivkQSZmytRubItkyCifKRr165wd3dHSEgIFi1aJHc4RHkqeUHNgQMHFo7ZYv9iIiSz8PBY3LnzDhERKWuAODmZoVw5a+jrZ32FYyLKfQqFQrri/bx58wrFdZaIsuLixYs4dOgQzMzMMHXqVLnD0SquLC0jtVrg2bMwJP57vTB9fR2UKWMFMzO2AhHlV59++ikWLlyI9+/f49mzZxorFhMVVu/fv8fUqVNRs2ZNODjkzXUk8woTIRnp6ChQpowV7t0LgpmZEqVLW7IViKgASH1NKKKioHXr1mjdurXcYeQKJkJ5TK0WGpfDMDExQMWKNjA21s/RCqZERESUcxwjlEfUaoGXL8Px8OH7NJcoMDExYBJEREQkA7YI5YG4uET4+4ciMjJpQPTr1xFwcsq9K5ETERFR1jARymWhobHw9w+BSpXUCqRQJF01noiIiOTHRCiXqNUCr16FIzAwZXqtgYEuypa1gomJgYyRERERUTImQrkgPj4R/v4RiIpKkMosLQ3h4mLJ1iAiIqJ8hImQlkVHJ+DRo2Co1UkvrUIBODtbwNbWmAOiiYioyMtvV/ZiIqRFOjo6iI5OgJFR0gKJSqUuypRhVxgREVEytTrpO1JHJ3/0kDAR0iI9PT3Y2JggIUHAxCSpK0xXN3+caCIiovwgNjYWOjo60NPLHykIv6U/0osXYdLfOjo6MDU1gZlZ0orRTIKIiIg0RUZGwtjYON+0COWPKAqgmJgEDB++B5UqLca9e0FSubm5OWJjYxAaGipfcERERPlQSEgIoqOjYW6ef9bSyx/tUgXM/ftB8PLagps3AwEAXbtuxpUrQ6BU6sHCwgIxMTEICAhAVFQULCwsoKenx4HSRERUJAkhkJiYiLCwMERERMDKygoWFhZyhyVhIpRN69ffxJdf7pGmxhsZ6WHMmHowMEi5WKq9vT0MDAwQGhqKly9fyhUqERFRvqFUKmFvbw8rKyu5Q9HARCiLoqMTMGrUfvz1l59UVqmSDTZv7ooqVew06ioUClhbW8PKygqJiYlQqVR5HS4REVG+oaurm297R5gIZcGdO+/g5bUZ//zzTiobMMANv//eKtOp8QqFAvr6+tDX18+LMImIiCibmAh9gK/vPxgwYCeio5O6woyN9bF0aRv06VNd5siIiIjoYzER+gA7OxPExiYCAFxd7eDr2xUVK9rIHBURERFpAxOhD2ja1AVTp3rg5ctw/Pbb5zAyYjcXERFRYcFEKBUhBPbte4hWrcpBRydlQNf33zfJlwO8iIiI6ONwQcV/hYfHoWfPbfjii4349ddzGtuYBBERERVOTIQA+Pm9gbv7Mvj43AYAfPvtMfj7h8gcFREREeW2fJEILV68GC4uLjA0NETdunVx6dKlTOtv3rwZFStWhKGhIVxdXbFv374cPa4QAkuWXEa9en/h0aNgAIC5uRIbN3ZG6dL5a8EnIiIi0j7ZE6FNmzbB29sbU6dOxbVr11C9enW0bNkSb9++Tbf+uXPn0KNHDwwaNAh+fn7o0KEDOnTogNu3b2frcUMjdeDltQUjRuxDfHzSgoe1ajnCz+9LdOlS+aOfFxEREeV/CiGEkDOAunXronbt2li0aBEAQK1Ww9nZGV999RUmTpyYpn63bt0QFRWFPXv2SGX16tWDm5sbli5d+sHHCw8Ph4WFBUrZjsWzd2ZS+ejRdTF7tieUSo4fJyIiym+Sv7/DwsK0etFWWVuE4uPjcfXqVXh6ekplOjo68PT0xPnz59Pd5/z58xr1AaBly5YZ1s/Is3dJ0+AtLQ2xY0c3zJ//OZMgIiKiIkbWb/6goCCoVCrY29trlNvb2+PevXvp7hMQEJBu/YCAgHTrx8XFIS4uTrofFhaWvAXu7o5Yvbo9Spa0RHh4eM6fCBEREeWq5O9pbXdkFfomkFmzZuGHH35IZ8t8XL0KuLqOyvOYiIiIKGfev38PCwsLrR1P1kTIxsYGurq6CAwM1CgPDAyEg4NDuvs4ODhkq/6kSZPg7e0t3Q8NDUWpUqXw/Plzrb6QlH3h4eFwdnbGixcvtNrfSznD85F/8FzkHzwX+UdYWBhKliwJa2trrR5X1kTIwMAA7u7uOHr0KDp06AAgabD00aNHMXLkyHT3qV+/Po4ePYrRo0dLZYcPH0b9+vXTra9UKqFUKtOUW1hY8E2dT5ibm/Nc5CM8H/kHz0X+wXORf+joaHd4s+xdY97e3ujXrx9q1aqFOnXqYMGCBYiKisKAAQMAAH379oWTkxNmzZoFAPj666/h4eGBX3/9FW3atIGPjw+uXLmCZcuWyfk0iIiIqACSPRHq1q0b3r17hylTpiAgIABubm44cOCANCD6+fPnGtlfgwYNsGHDBnz33Xf49ttvUa5cOezYsQNVq1aV6ykQERFRASV7IgQAI0eOzLAr7MSJE2nKunbtiq5du+bosZRKJaZOnZpudxnlLZ6L/IXnI//gucg/eC7yj9w6F7IvqEhEREQkF9kvsUFEREQkFyZCREREVGQxESIiIqIii4kQERERFVmFMhFavHgxXFxcYGhoiLp16+LSpUuZ1t+8eTMqVqwIQ0NDuLq6Yt++fXkUaeGXnXOxfPlyNG7cGFZWVrCysoKnp+cHzx1lT3b/N5L5+PhAoVBIC5/Sx8vuuQgNDcWIESNQvHhxKJVKlC9fnp9VWpLdc7FgwQJUqFABRkZGcHZ2xpgxYxAbG5tH0RZep06dQtu2beHo6AiFQoEdO3Z8cJ8TJ06gZs2aUCqV+OSTT7B69ersP7AoZHx8fISBgYFYuXKl+Oeff8SQIUOEpaWlCAwMTLf+2bNnha6urvjll1/EnTt3xHfffSf09fXFrVu38jjywie756Jnz55i8eLFws/PT9y9e1f0799fWFhYiJcvX+Zx5IVTds9HMn9/f+Hk5CQaN24s2rdvnzfBFnLZPRdxcXGiVq1aonXr1uLMmTPC399fnDhxQly/fj2PIy98snsu1q9fL5RKpVi/fr3w9/cXBw8eFMWLFxdjxozJ48gLn3379onJkyeLbdu2CQBi+/btmdZ/8uSJMDY2Ft7e3uLOnTvi999/F7q6uuLAgQPZetxClwjVqVNHjBgxQrqvUqmEo6OjmDVrVrr1vby8RJs2bTTK6tatK7788stcjbMoyO65+K/ExERhZmYm1qxZk1shFik5OR+JiYmiQYMGYsWKFaJfv35MhLQku+fijz/+EGXKlBHx8fF5FWKRkd1zMWLECNG8eXONMm9vb9GwYcNcjbOoyUoi9M0334gqVapolHXr1k20bNkyW49VqLrG4uPjcfXqVXh6ekplOjo68PT0xPnz59Pd5/z58xr1AaBly5YZ1qesycm5+K/o6GgkJCRo/QJ7RVFOz8f06dNhZ2eHQYMG5UWYRUJOzsWuXbtQv359jBgxAvb29qhatSpmzpwJlUqVV2EXSjk5Fw0aNMDVq1el7rMnT55g3759aN26dZ7ETCm09f2dL1aW1pagoCCoVCrp8hzJ7O3tce/evXT3CQgISLd+QEBArsVZFOTkXPzXhAkT4OjomOaNTtmXk/Nx5swZ/PXXX7h+/XoeRFh05ORcPHnyBMeOHUOvXr2wb98+PHr0CP/73/+QkJCAqVOn5kXYhVJOzkXPnj0RFBSERo0aQQiBxMREDBs2DN9++21ehEypZPT9HR4ejpiYGBgZGWXpOIWqRYgKj9mzZ8PHxwfbt2+HoaGh3OEUOREREejTpw+WL18OGxsbucMp8tRqNezs7LBs2TK4u7ujW7dumDx5MpYuXSp3aEXOiRMnMHPmTCxZsgTXrl3Dtm3bsHfvXsyYMUPu0CiHClWLkI2NDXR1dREYGKhRHhgYCAcHh3T3cXBwyFZ9ypqcnItkc+fOxezZs3HkyBFUq1YtN8MsMrJ7Ph4/foynT5+ibdu2UplarQYA6Onp4f79+yhbtmzuBl1I5eR/o3jx4tDX14eurq5UVqlSJQQEBCA+Ph4GBga5GnNhlZNz8f3336NPnz4YPHgwAMDV1RVRUVEYOnQoJk+erHGRcMpdGX1/m5ubZ7k1CChkLUIGBgZwd3fH0aNHpTK1Wo2jR4+ifv366e5Tv359jfoAcPjw4QzrU9bk5FwAwC+//IIZM2bgwIEDqFWrVl6EWiRk93xUrFgRt27dwvXr16Vbu3bt0KxZM1y/fh3Ozs55GX6hkpP/jYYNG+LRo0dSMgoADx48QPHixZkEfYScnIvo6Og0yU5ygip46c48pbXv7+yN487/fHx8hFKpFKtXrxZ37twRQ4cOFZaWliIgIEAIIUSfPn3ExIkTpfpnz54Venp6Yu7cueLu3bti6tSpnD6vJdk9F7NnzxYGBgZiy5Yt4s2bN9ItIiJCrqdQqGT3fPwXZ41pT3bPxfPnz4WZmZkYOXKkuH//vtizZ4+ws7MTP/74o1xPodDI7rmYOnWqMDMzExs3bhRPnjwRhw4dEmXLlhVeXl5yPYVCIyIiQvj5+Qk/Pz8BQMybN0/4+fmJZ8+eCSGEmDhxoujTp49UP3n6/Pjx48Xdu3fF4sWLOX0+2e+//y5KliwpDAwMRJ06dcSFCxekbR4eHqJfv34a9X19fUX58uWFgYGBqFKliti7d28eR1x4ZedclCpVSgBIc5s6dWreB15IZfd/IzUmQtqV3XNx7tw5UbduXaFUKkWZMmXETz/9JBITE/M46sIpO+ciISFBTJs2TZQtW1YYGhoKZ2dn8b///U+EhITkfeCFzPHjx9P9Dkh+/fv16yc8PDzS7OPm5iYMDAxEmTJlxKpVq7L9uAoh2JZHRERERVOhGiNERERElB1MhIiIiKjIYiJERERERRYTISIiIiqymAgRERFRkcVEiIiIiIosJkJERERUZDERIqJCz8XFBQsWLJDuBwQE4LPPPoOJiQksLS0BAAqFAjt27MjS8aZNmwY3Nzetx0lEeY8LKhJRtpw6dQpz5szB1atX8ebNG2zfvh0dOnSQO6xMvXv3DiYmJjA2NgYATJgwAXv37sX27dthYWEBOzs7BAQEwMrKCkql8oPHi4yMRFxcHIoVKwYA6N+/P0JDQ7OcSBFR/sEWISLKlqioKFSvXh2LFy+WO5Qss7W1lZIgAHj8+DHc3d1Rrlw52NnZAUi6knVWkiAAMDU1lZIgIirYmAgRUba0atUKP/74Izp27Jil+kIITJs2DSVLloRSqYSjoyNGjRolbXdxccGMGTPQo0cPmJiYwMnJKU2SFRoaisGDB8PW1hbm5uZo3rw5bty4oVFn9+7dqF27NgwNDWFjY6MRX+quMRcXF2zduhVr166FQqFA//79AaTtGnv58iV69OgBa2trmJiYoFatWrh48SIAza6xadOmYc2aNdi5cycUCgUUCgVOnDiB5s2bY+TIkRoxvnv3DgYGBmmumE1E8mEiRES5auvWrZg/fz7+/PNPPHz4EDt27ICrq6tGnTlz5qB69erw8/PDxIkT8fXXX+Pw4cPS9q5du+Lt27fYv38/rl69ipo1a+LTTz9FcHAwAGDv3r3o2LEjWrduDT8/Pxw9ehR16tRJN57Lly/j888/h5eXF968eYPffvstTZ3IyEh4eHjg1atX2LVrF27cuIFvvvkGarU6Td1x48bBy8sLn3/+Od68eYM3b96gQYMGGDx4MDZs2IC4uDip7rp16+Dk5ITmzZvn6LUkIu3TkzsAIircnj9/DgcHB3h6ekJfXx8lS5ZMk6Q0bNgQEydOBACUL18eZ8+exfz58/HZZ5/hzJkzuHTpEt6+fSt1Xc2dOxc7duzAli1bMHToUPz000/o3r07fvjhB+mY1atXTzceW1tbKJVKGBkZwcHBId06GzZswLt373D58mVYW1sDAD755JN065qamsLIyAhxcXEax+vUqRNGjhyJnTt3wsvLCwCwevVq9O/fHwqFIisvHRHlAbYIEZHWzJw5E6amptLt+fPn6Nq1K2JiYlCmTBkMGTIE27dvR2JiosZ+9evXT3P/7t27AIAbN24gMjISxYoV0zi2v78/Hj9+DAC4fv06Pv30U609j+vXr6NGjRpSEpQThoaG6NOnD1auXAkAuHbtGm7fvi11xRFR/sAWISLSmmHDhkmtHwDg6OgIPT093L9/H0eOHMHhw4fxv//9D3PmzMHJkyehr6//wWNGRkaiePHiOHHiRJptyVPfjYyMtPUUtHq8wYMHw83NDS9fvsSqVavQvHlzlCpVSivHJiLtYCJERFpjbW2dbiuKkZER2rZti7Zt22LEiBGoWLEibt26hZo1awIALly4oFH/woULqFSpEgCgZs2aCAgIgJ6eHlxcXNJ93GrVquHo0aMYMGCAVp5HtWrVsGLFCgQHB2epVcjAwAAqlSpNuaurK2rVqoXly5djw4YNWLRokVbiIyLtYdcYEWVLZGQkrl+/juvXrwMA/P39cf36dTx//jzd+qtXr8Zff/2F27dv48mTJ1i3bh2MjIw0WkbOnj2LX375BQ8ePMDixYuxefNmfP311wAAT09P1K9fHx06dMChQ4fw9OlTnDt3DpMnT8aVK1cAAFOnTsXGjRsxdepU3L17F7du3cLPP/+c4+fYo0cPODg4oEOHDjh79iyePHmCrVu34vz58+nWd3Fxwc2bN3H//n0EBQUhISFB2jZ48GDMnj0bQogsz7QjorzDRIiIsuXKlSuoUaMGatSoAQDw9vZGjRo1MGXKlHTrW1paYvny5WjYsCGqVauGI0eOYPfu3Rrr8IwdO1Y67o8//oh58+ahZcuWAJKmte/btw9NmjTBgAEDUL58eXTv3h3Pnj2Dvb09AKBp06bYvHkzdu3aBTc3NzRv3hyXLl3K8XM0MDDAoUOHYGdnh9atW8PV1RWzZ8+Grq5uuvWHDBmCChUqoFatWrC1tcXZs2elbT169ICenh569OgBQ0PDHMdERLmDK0sTkaxcXFwwevRojB49Wu5QcsXTp09RtmxZXL58WeoKJKL8g2OEiIhyQUJCAt6/f4/vvvsO9erVYxJElE+xa4yIKBecPXsWxYsXx+XLl7F06VK5wyGiDLBrjIiIiIostggRERFRkcVEiIiIiIosJkJERERUZDERIiIioiKLiRAREREVWUyEiIiIqMhiIkRERERFFhMhIiIiKrKYCBEREVGR9X8iXyjHV8G89wAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "###5.6 Save Model\n",
+ "\n",
+ "(this part is optional)"
+ ],
+ "metadata": {
+ "id": "USNMoeMX5YaR"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "model.export('/content/export/'+finding)\n",
+ "!zip -r /content/{finding}.zip /content/export/{finding}"
+ ],
+ "metadata": {
+ "id": "k2TMpIm35JiT",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "972a10f4-20c0-415b-b21d-f2260cee4f66"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Saved artifact at '/content/export/Cardiomegaly'. The following endpoints are available:\n",
+ "\n",
+ "* Endpoint 'serve'\n",
+ " args_0 (POSITIONAL_ONLY): TensorSpec(shape=(None, 299, 299, 3), dtype=tf.float32, name='keras_tensor_311')\n",
+ "Output Type:\n",
+ " TensorSpec(shape=(None, 1), dtype=tf.float32, name=None)\n",
+ "Captures:\n",
+ " 132334668546640: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485262352: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503342704: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334383891552: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334383893136: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334713509264: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661694064: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661696176: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661692128: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334657228816: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334660755248: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334660751200: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334660752784: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661075008: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661971888: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661975232: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661691072: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661687904: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334660762640: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334660762288: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334660762992: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334660751024: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661047872: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661043824: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661045408: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658840432: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658840608: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658840784: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658838144: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658844304: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661054032: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658732096: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658836208: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658846416: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658900864: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658896816: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658898400: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658741600: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658843424: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658907728: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661056144: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658741776: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658740896: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658739312: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661693360: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661967664: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661693184: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658908080: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658910720: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658898576: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661056320: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661056496: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661053856: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658648576: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658525792: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658521744: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658523328: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658532656: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658642416: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658532832: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658533008: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658530368: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658642592: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658638544: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658640128: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658447392: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658530544: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658649456: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658746704: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658375344: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658376048: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658373056: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658441760: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658437712: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658439296: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658645408: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658649632: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658647344: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658635904: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658734736: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658745824: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658303632: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658207808: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658295536: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658305744: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658302752: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658387664: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658910192: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658910544: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658902800: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658293248: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658293600: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658290256: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658221536: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658907024: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658299760: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658383792: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658060352: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658211856: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658223824: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658216432: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658216608: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658213440: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658299936: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658295888: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658297472: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658383968: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658384144: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658381504: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658076016: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334657962752: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658076368: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658074432: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658075664: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334657969440: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334657972080: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658534416: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334657973136: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658223120: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509677328: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509678032: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509673456: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658069680: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658065632: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658067216: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658446160: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509837472: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509840288: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509837296: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509845040: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509845216: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509841168: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509842752: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509848912: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509685952: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509967488: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509840816: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509848032: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509759952: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509755904: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509757488: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509974000: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509766816: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509974176: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509970128: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509971712: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509766992: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509767168: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509764528: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509980160: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509981040: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509764704: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509683840: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510071776: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510067728: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510069312: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509976992: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509981216: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509978928: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334657962224: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334657968384: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509766112: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509753616: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509685776: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334509686304: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510225920: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334657972256: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334657972608: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334657974368: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661076240: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510313312: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658213792: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334658211152: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510319824: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510193680: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510320000: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510315952: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510317536: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510213952: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510214128: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510214304: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510323696: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510220464: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510425888: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510315600: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510325280: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510220640: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510216592: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510218176: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510437680: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510432400: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510224336: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510076880: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510539344: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510439616: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510440144: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510432576: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510428528: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510430112: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510310496: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510226272: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510226800: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510185936: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510188048: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510183648: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502753408: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502753584: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502753760: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502751120: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502751296: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502826352: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502822304: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502823888: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502833216: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510554832: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502833392: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502833568: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502830928: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502674496: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510554656: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510552720: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502837088: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510553952: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502906512: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502904048: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502906688: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502681536: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510223280: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502679072: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661694240: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502913024: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502690160: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510439792: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502913552: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502906864: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502909680: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502682416: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334661690368: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502681184: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502746544: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502741440: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502745136: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510547968: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510543920: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510545504: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503146448: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503146624: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503146800: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503144160: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503144336: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503252160: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503248112: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503249696: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503259024: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503043216: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503259200: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503255152: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503256736: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503043392: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503039344: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503040928: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503262896: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503050256: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503332144: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503334784: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502678192: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503050080: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503048672: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503047440: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503344640: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503343056: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503049552: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502918128: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503372656: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503368608: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503370192: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503363328: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503363152: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503345344: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503139584: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503135536: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503137120: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503036704: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502909152: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502919712: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503525744: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503592704: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503526096: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503524160: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503525392: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503599216: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503595168: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503596752: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503606080: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503377760: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503606256: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503606432: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503603792: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503512720: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503510256: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503512896: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503603968: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503519232: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484444208: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484440160: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484441744: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503519408: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503515360: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334503516944: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484562768: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484688736: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484686448: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484685744: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484695248: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502681360: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484695424: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484691376: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484692960: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484452480: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484447376: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484450016: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484775056: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484699120: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484564880: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484450192: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484781744: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484775232: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484771184: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484772768: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484768544: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484691024: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484700704: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484565056: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484561008: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484562592: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484558016: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484553968: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484555552: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334657964160: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484867552: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484770832: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484865088: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502688576: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334510188400: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334502677664: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484961616: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485069440: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485065392: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485066976: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485076304: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484879344: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485076480: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485076656: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485074016: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484948768: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484871248: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484880928: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485156112: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485074192: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484962320: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484955280: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485154000: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485156288: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485156464: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485153824: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485149248: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485145200: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485146784: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484962144: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484960736: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484959504: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484955456: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484951408: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484952992: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484875472: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485264640: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485260592: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334485262176: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484875648: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484871600: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334484873184: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334668551392: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " 132334383904752: TensorSpec(shape=(), dtype=tf.resource, name=None)\n",
+ " adding: content/export/Cardiomegaly/ (stored 0%)\n",
+ " adding: content/export/Cardiomegaly/variables/ (stored 0%)\n",
+ " adding: content/export/Cardiomegaly/variables/variables.data-00000-of-00001 (deflated 7%)\n",
+ " adding: content/export/Cardiomegaly/variables/variables.index (deflated 78%)\n",
+ " adding: content/export/Cardiomegaly/saved_model.pb (deflated 91%)\n",
+ " adding: content/export/Cardiomegaly/assets/ (stored 0%)\n",
+ " adding: content/export/Cardiomegaly/fingerprint.pb (stored 0%)\n"
+ ]
+ }
+ ]
+ }
+ ]
+}
\ No newline at end of file