-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreating_manifests.py
123 lines (109 loc) · 4.26 KB
/
creating_manifests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import shutil
import subprocess
import sys
import pandas as pd
from pathlib import Path
import os
import glob
import numpy as np
import tqdm
from tqdm import tqdm
import hashlib
import boto3
import pydicom
import math
def ask_user(directory_path):
user_date = int(input("Enter the intended date for the manifest (ex: 20220101): "))
user_select = int(input("Does the inputted directory have images or submission TSVs? Enter 0 for images, "
"1 for submission TSVs: "))
try:
if user_select == 0:
s_url = 's3://storage.ir.rsna.ai/replicated-data-rsna/RSNA_' + str(user_date) + '/data/'
file_type = 'dcm'
create_data_manifest(s_url, directory_path, file_type, 'imaging', str(user_date), user_select)
elif user_select == 1:
s_url = 's3://storage.ir.rsna.ai/replicated-data-rsna/RSNA_' + str(user_date) + '/'
# file_type = 'tsv'
create_clinical_manifest(s_url, directory_path, 'clinical', str(user_date))
else:
return ask_user(directory_path)
except Exception as error:
print("Unexpected error")
print(error)
return ask_user(directory_path)
def create_clinical_manifest(s_url, directory_path, title, date):
text_files = glob.glob(directory_path)
images_path = os.listdir(str(directory_path))
numpy_array = np.array(images_path)
df = pd.DataFrame(numpy_array, columns=['file_name'])
hashes = []
file_size = []
acl = []
url = []
for i in tqdm(range(len(images_path))):
# upload_to_bucket(s3, text_files[i], date, user_select) # upload to s3 bucket
md5_hash = hashlib.md5()
a_file = open(text_files[i], "rb")
content = a_file.read()
md5_hash.update(content)
digest = md5_hash.hexdigest()
hashes.append(digest)
acl.append('Open-R1')
file_size.append(os.path.getsize(text_files[i]))
url.append(s_url + images_path[i])
df['md5sum'] = np.array(hashes)
df['acl'] = np.array(acl)
df['storage_urls'] = np.array(url)
df['file_size'] = np.array(file_size)
new_manifest = 'clinical_manifest_RSNA_' + date + '.tsv'
df.to_csv(new_manifest, sep='\t', index=False)
def create_data_manifest(s_url, directory_path, file_type, title, date, user_select):
images_path = glob.glob(str(directory_path) + "/**/*.dcm", recursive=True)
df = pd.DataFrame()
hashes = []
file_size = []
acl = []
url = []
case_ids = []
study_uids = []
series_uids = []
instance_uids = []
modality = []
file_names = []
for i in tqdm(range(len(images_path))):
md5_hash = hashlib.md5()
a_file = open(images_path[i], "rb")
content = a_file.read()
md5_hash.update(content)
digest = md5_hash.hexdigest()
hashes.append(digest)
acl.append('Open-R1')
file_size.append(os.path.getsize(images_path[i]))
instance_uids.append(str(os.path.basename(images_path[i])).replace('.dcm', ''))
# Get relevant DICOM tags:
tag = pydicom.read_file(images_path[i])
case_ids.append(str(tag[0x0010, 0x0020].value))
study_uids.append(str(tag[0x0020, 0x000D].value))
series_uids.append(str(tag[0x0020, 0x000E].value))
modality.append(str(tag[0x0008, 0x0060].value))
file_name = str(tag[0x0010, 0x0020].value) + '/' + str(tag[0x0020, 0x000D].value) + '/' + str(
tag[0x0020, 0x000E].value) + '/' + str(os.path.basename(images_path[i]))
file_names.append(file_name)
url.append(s_url + file_name)
df['md5sum'] = np.array(hashes)
df['acl'] = np.array(acl)
df['storage_urls'] = np.array(url)
df['file_size'] = np.array(file_size)
df['case_ids'] = np.array(case_ids)
df['study_uid'] = np.array(study_uids)
df['series_uid'] = np.array(series_uids)
df['modality'] = np.array(modality)
df['file_name'] = np.array(file_names)
new_manifest = 'image_manifest_RSNA_' + date + '.tsv'
df.to_csv(new_manifest, sep='\t', index=False)
def chunks(lst: list, n: int) -> list:
for i in range(0, len(lst), n):
yield lst[i:i + n]
if __name__ == "__main__":
data_root_path = Path(sys.argv[1]) # path to folder holding the batch/submission TSVs
ask_user(data_root_path)