-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mix_cpt.py
365 lines (327 loc) · 13.3 KB
/
train_mix_cpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import argparse
import torch
import random
import numpy as np
import os
import scipy.special as sp
from datasets import load_dataset, load_from_disk, DatasetDict
from datetime import timedelta
from torch.utils.data import DataLoader
from accelerate import Accelerator
from accelerate.utils import InitProcessGroupKwargs, set_seed
from tqdm import tqdm
from transformers import set_seed, default_data_collator
from transformers import AutoModelForCausalLM, AutoTokenizer
import transformers
from flash_attn.losses.cross_entropy import CrossEntropyLoss
from typing import Dict, Optional, Sequence
import math
from dataclasses import dataclass
from torch import nn as nn
from torch.nn import functional as F
from torch.nn import KLDivLoss, MSELoss
from accelerate.utils import (
InitProcessGroupKwargs,
set_seed,
DummyOptim,
DummyScheduler,
)
from easy_context import (
prepare_seq_parallel_inputs,
apply_seq_parallel_monkey_patch,
prepare_dataloader,
apply_unsloth_offloaded_gradient_checkpoint_monkey_patch
)
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "input_ids"))
input_ids = torch.nn.utils.rnn.pad_sequence(torch.tensor(input_ids), batch_first=True, padding_value=self.tokenizer.pad_token_id)
labels = torch.nn.utils.rnn.pad_sequence(torch.tensor(labels), batch_first=True, padding_value=-100)
return dict(
input_ids=input_ids,
labels=labels,
)
def main(args):
if args.output_dir:
os.makedirs(args.output_dir, exist_ok=True)
if args.wandb:
import wandb
wandb.login()
set_seed(args.seed)
timeout = InitProcessGroupKwargs(timeout=timedelta(seconds=1_000_000))
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulate_every,
mixed_precision="bf16",
log_with="wandb" if args.wandb else None,
kwargs_handlers=[timeout],
# fsdp_plugin=fsdp_plugin,
)
accelerator.init_trackers(project_name=args.wandb, init_kwargs={"wandb":{"name":args.output_dir.split("/")[-1]}})
accelerator.print(f"Total GPUS: {accelerator.num_processes}")
try:
train_dataset = load_dataset(args.dataset)
auxiliary_dataset = load_dataset(args.dataset2)
s2l_dataset = load_dataset(args.dataset3)
except:
train_dataset = load_from_disk(args.dataset)
auxiliary_dataset = load_from_disk(args.dataset2)
s2l_dataset = load_from_disk(args.dataset3)
if isinstance(train_dataset, DatasetDict):
train_dataset = train_dataset["train"]
model = AutoModelForCausalLM.from_pretrained(
args.model,
device_map=accelerator.device,
torch_dtype=torch.bfloat16,
rope_theta=args.rope_theta,
_attn_implementation="flash_attention_2",
max_position_embeddings = args.seq_length,
use_cache=False
)
model_type = (
"llama"
)
apply_seq_parallel_monkey_patch(args.parallel_mode, model_type)
if "input_ids" not in train_dataset.column_names:
raise RuntimeError("Dataset must include an `input_ids` feature")
to_remove = [col for col in train_dataset.column_names if col != "input_ids"]
train_dataset = train_dataset.remove_columns(to_remove)
train_dataset = train_dataset.shuffle(seed=args.seed)
auxiliary_dataset = auxiliary_dataset.remove_columns(to_remove)
auxiliary_dataset = auxiliary_dataset.shuffle(seed=args.seed)
s2l_dataset = s2l_dataset.remove_columns(to_remove)
s2l_dataset = s2l_dataset.shuffle(seed=args.seed)
print("Dataset Size:", len(train_dataset))
tokenizer = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
if tokenizer.pad_token is None:
if tokenizer.unk_token is None:
tokenizer.pad_token = tokenizer.bos_token # e.x. falcon
else:
tokenizer.pad_token = tokenizer.unk_token # e.x. llama
train_loader = DataLoader(
train_dataset,
collate_fn=default_data_collator,
shuffle=True,
batch_size=args.batch_size,
)
auxiliary_loader = DataLoader(
auxiliary_dataset,
collate_fn=default_data_collator,
shuffle=True,
batch_size=args.batch_size2,
)
s2l_loader = DataLoader(
s2l_dataset,
collate_fn=default_data_collator,
shuffle=True,
batch_size=args.batch_size3,
)
if args.learning_rate != 2e-5:
accelerator.print(f"Warning: You also need to modify accelerate_configs/zero3_offload.json to change the learning rate")
optim = DummyOptim(model.parameters(), lr=args.learning_rate)
scheduler = DummyScheduler(
optim,
num_training_steps=args.max_train_steps,
total_num_steps=args.max_train_steps,
)
model, optim, scheduler = accelerator.prepare(model, optim, scheduler)
train_loader = prepare_dataloader(args.parallel_mode, train_loader, accelerator)
model.gradient_checkpointing_enable()
accelerator.register_for_checkpointing(scheduler)
accelerator.print(f"Max train steps: {args.max_train_steps}")
progress_bar = tqdm(
range(args.max_train_steps), disable=not accelerator.is_local_main_process
)
completed_steps = 0
iter3 = iter(s2l_loader)
iter2 = iter(auxiliary_loader)
iter1 = iter(train_loader)
model.train()
loss_func = CrossEntropyLoss(inplace_backward=True)
flag=False
# for step, batch in enumerate(train_loader):
select_step = [0,2,4,6,8,10,12,14]
pose_step = [1,3]
for step in range(20000):
if step%args.gradient_accumulate_every in select_step:
batch = next(iter1)
input_ids = batch["input_ids"][..., : args.seq_length + 1][..., :-1]
target_ids = batch["input_ids"][..., : args.seq_length + 1][..., 1:]
position_ids = (
torch.arange(args.seq_length).unsqueeze(0).expand(input_ids.shape[0], -1)
)
# shard the input_ids according to the world size and rank according to zig zag attention
prepared = prepare_seq_parallel_inputs(
args.parallel_mode,
input_ids,
position_ids,
target_ids,
accelerator.process_index,
accelerator.num_processes,
accelerator.device,
)
local_input_ids = prepared["local_input_ids"]
local_target_ids = prepared['local_target_ids']
local_position_ids = prepared["local_position_ids"]
elif step%args.gradient_accumulate_every in pose_step:
# else:
batch3 = next(iter3)
input_ids4 = batch3["input_ids"][..., : 8192]
target_ids4 = batch3["input_ids"][..., : 8193][..., 1:]
random.seed(step)
np.random.seed(step)
# position_ids4 =CREAM(8192, 32768, input_ids4)
# position_ids4 = torch.tensor(position_ids4)
# position_ids4= torch.stack(position_ids4,dim=0)
position_ids5 = []
for id_idx in range(batch3["input_ids"].shape[0]):
position_id = torch.arange(8192)
position_ids5.append(position_id)
position_ids5= torch.stack(position_ids5,dim=0)
# position_ids2 = position_ids3
# shard the input_ids according to the world size and rank according to zig zag attention
prepared4 = prepare_seq_parallel_inputs(
'zigzag_ring_attn2',
input_ids4,
position_ids5,
target_ids4,
accelerator.process_index,
accelerator.num_processes,
accelerator.device,
position_ids5
)
local_input_ids4 = prepared4["local_input_ids"]
local_target_ids4 = prepared4['local_target_ids']
local_position_ids4 = prepared4["local_position_ids"]
local_position_ids5 = prepared4["local_position_ids2"]
loss_log = None
else:
batch2 = next(iter2)
input_ids2 = batch2["input_ids"][..., : 1024]
target_ids2 = batch2["input_ids"][..., : 1025][..., 1:]
position_ids2 = []
random.seed(step)
for id_idx in range(batch2["input_ids"].shape[0]):
position_id = torch.arange(1024)
position_ids2.append(position_id)
position_ids2= torch.stack(position_ids2,dim=0)
position_ids3 = []
for id_idx in range(batch2["input_ids"].shape[0]):
position_id = torch.arange(1024)
position_ids3.append(position_id)
position_ids3= torch.stack(position_ids3,dim=0)
prepared2 = prepare_seq_parallel_inputs(
'zigzag_ring_attn2',
input_ids2,
position_ids2,
target_ids2,
accelerator.process_index,
accelerator.num_processes,
accelerator.device,
position_ids3
)
local_input_ids2 = prepared2["local_input_ids"]
local_target_ids2 = prepared2['local_target_ids']
local_position_ids2 = prepared2["local_position_ids"]
local_position_ids3 = prepared2["local_position_ids2"]
# loss_log = None
with accelerator.accumulate(model):
if step%args.gradient_accumulate_every in select_step:
output = model(
local_input_ids,
position_ids=local_position_ids,
output_hidden_states=False
)
logits = output.logits
loss = loss_func(
logits.reshape(-1, logits.shape[-1]), local_target_ids.reshape(-1)
)
accelerator.backward(loss)
del logits
del output
elif step%args.gradient_accumulate_every in pose_step:
output2 = model(
local_input_ids4,
position_ids=local_position_ids4,
output_hidden_states=True
)
logits2 = output2.logits
loss3 = loss_func(
logits2.reshape(-1, logits2.shape[-1]), local_target_ids4.reshape(-1)
)
accelerator.backward(loss3)
del logits2
del output2
else:
output2 = model(
local_input_ids2,
position_ids=local_position_ids2,
output_hidden_states=True
)
logits2 = output2.logits
loss2 = loss_func(
logits2.reshape(-1, logits2.shape[-1]), local_target_ids2.reshape(-1)
)
accelerator.backward(loss2)
del logits2
del output2
optim.step()
scheduler.step()
optim.zero_grad()
if accelerator.sync_gradients:
progress_bar.update(1)
if loss_log is not None:
progress_bar.set_postfix(loss_log)
completed_steps += 1
if completed_steps >= args.max_train_steps:
break
accelerator.print(f"Training Finished")
accelerator.end_training()
try:
if args.output_dir is not None:
accelerator.print(f"Saving model to {args.output_dir}")
accelerator.wait_for_everyone()
state_dict = accelerator.get_state_dict(model)
accelerator.unwrap_model(model).save_pretrained(
f"{args.output_dir}",
is_main_process=accelerator.is_main_process,
save_function=accelerator.save,
state_dict=state_dict,
)
accelerator.print(f"Saving Finished")
except Exception as e:
print(e)
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument("--batch-size", type=int, default=1)
args.add_argument("--batch-size2", type=int, default=1)
args.add_argument("--batch-size3", type=int, default=1)
args.add_argument("--gradient-accumulate-every", type=int, default=8)
args.add_argument("--output-dir", type=str, required=True)
args.add_argument("--wandb", type=str)
args.add_argument("--seed", type=int, default=42)
args.add_argument("--max-train-steps", type=int, default=400)
args.add_argument("--learning-rate", type=float, default=2e-5)
args.add_argument("--rope-theta", type=float, default=5000000)
args.add_argument("--model", type=str)
args.add_argument(
"--dataset",
type=str,
)
args.add_argument(
"--dataset2",
type=str,
)
args.add_argument(
"--dataset3",
type=str,
)
args.add_argument("--seq-length", type=int, default=32768)
args.add_argument(
"--parallel_mode",
type=str,
choices=["zigzag_ring_attn", "dist_flash_attn", "ulysses_attn", "data_parallel"],
)
main(args.parse_args())