diff --git a/Heart_Disease_prediction_ML.ipynb b/Heart_Disease_prediction_ML.ipynb
new file mode 100644
index 0000000..c5d2f4d
--- /dev/null
+++ b/Heart_Disease_prediction_ML.ipynb
@@ -0,0 +1,2435 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "provenance": [],
+ "authorship_tag": "ABX9TyOY+pW7XK/9Gs6Ee1ONmlOL",
+ "include_colab_link": true
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Importing Libraries"
+ ],
+ "metadata": {
+ "id": "cQ1pK1s1HZsX"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# New Section"
+ ],
+ "metadata": {
+ "id": "N-OX6i3B0A5T"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "!pip install -U kaleido"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "LMbsMd626uuo",
+ "outputId": "27b197ee-b46e-4372-88e7-383e106f7687"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Requirement already satisfied: kaleido in /usr/local/lib/python3.10/dist-packages (0.2.1)\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Importing all the libraries/ dependencies"
+ ],
+ "metadata": {
+ "id": "jpPguw-wtDGZ"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.linear_model import LogisticRegression\n",
+ "from sklearn.metrics import accuracy_score\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns"
+ ],
+ "metadata": {
+ "id": "rE9s2GdHtKk_"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Data Collection and Processing"
+ ],
+ "metadata": {
+ "id": "ZowV2DZbtjoO"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#loading the csv data to Pandas DataFrame\n",
+ "heart_data=pd.read_csv('/content/data.csv')"
+ ],
+ "metadata": {
+ "id": "LJZ93W1otqyG"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#print first 5 rows of the dataset\n",
+ "heart_data.head()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
+ },
+ "id": "kA5PFeJKt4J9",
+ "outputId": "ed314523-ac63-42fe-8633-0732c7a70d4c"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " age sex cp trestbps chol fbs restecg thalach exang oldpeak slope \\\n",
+ "0 63 1 3 145 233 1 0 150 0 2.3 0 \n",
+ "1 37 1 2 130 250 0 1 187 0 3.5 0 \n",
+ "2 41 0 1 130 204 0 0 172 0 1.4 2 \n",
+ "3 56 1 1 120 236 0 1 178 0 0.8 2 \n",
+ "4 57 0 0 120 354 0 1 163 1 0.6 2 \n",
+ "\n",
+ " ca thal target \n",
+ "0 0 1 1 \n",
+ "1 0 2 1 \n",
+ "2 0 2 1 \n",
+ "3 0 2 1 \n",
+ "4 0 2 1 "
+ ],
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " age \n",
+ " sex \n",
+ " cp \n",
+ " trestbps \n",
+ " chol \n",
+ " fbs \n",
+ " restecg \n",
+ " thalach \n",
+ " exang \n",
+ " oldpeak \n",
+ " slope \n",
+ " ca \n",
+ " thal \n",
+ " target \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 63 \n",
+ " 1 \n",
+ " 3 \n",
+ " 145 \n",
+ " 233 \n",
+ " 1 \n",
+ " 0 \n",
+ " 150 \n",
+ " 0 \n",
+ " 2.3 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 37 \n",
+ " 1 \n",
+ " 2 \n",
+ " 130 \n",
+ " 250 \n",
+ " 0 \n",
+ " 1 \n",
+ " 187 \n",
+ " 0 \n",
+ " 3.5 \n",
+ " 0 \n",
+ " 0 \n",
+ " 2 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 41 \n",
+ " 0 \n",
+ " 1 \n",
+ " 130 \n",
+ " 204 \n",
+ " 0 \n",
+ " 0 \n",
+ " 172 \n",
+ " 0 \n",
+ " 1.4 \n",
+ " 2 \n",
+ " 0 \n",
+ " 2 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 56 \n",
+ " 1 \n",
+ " 1 \n",
+ " 120 \n",
+ " 236 \n",
+ " 0 \n",
+ " 1 \n",
+ " 178 \n",
+ " 0 \n",
+ " 0.8 \n",
+ " 2 \n",
+ " 0 \n",
+ " 2 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 57 \n",
+ " 0 \n",
+ " 0 \n",
+ " 120 \n",
+ " 354 \n",
+ " 0 \n",
+ " 1 \n",
+ " 163 \n",
+ " 1 \n",
+ " 0.6 \n",
+ " 2 \n",
+ " 0 \n",
+ " 2 \n",
+ " 1 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "heart_data",
+ "summary": "{\n \"name\": \"heart_data\",\n \"rows\": 303,\n \"fields\": [\n {\n \"column\": \"age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9,\n \"min\": 29,\n \"max\": 77,\n \"num_unique_values\": 41,\n \"samples\": [\n 46,\n 66,\n 48\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"sex\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"cp\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 3,\n \"num_unique_values\": 4,\n \"samples\": [\n 2,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"trestbps\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 17,\n \"min\": 94,\n \"max\": 200,\n \"num_unique_values\": 49,\n \"samples\": [\n 104,\n 123\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"chol\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 51,\n \"min\": 126,\n \"max\": 564,\n \"num_unique_values\": 152,\n \"samples\": [\n 277,\n 169\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"fbs\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"restecg\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 2,\n \"num_unique_values\": 3,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"thalach\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 22,\n \"min\": 71,\n \"max\": 202,\n \"num_unique_values\": 91,\n \"samples\": [\n 159,\n 152\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"exang\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"oldpeak\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.1610750220686348,\n \"min\": 0.0,\n \"max\": 6.2,\n \"num_unique_values\": 40,\n \"samples\": [\n 1.9,\n 3.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"slope\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 2,\n \"num_unique_values\": 3,\n \"samples\": [\n 0,\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ca\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 4,\n \"num_unique_values\": 5,\n \"samples\": [\n 2,\n 4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"thal\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 3,\n \"num_unique_values\": 4,\n \"samples\": [\n 2,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"target\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 4
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#print last 5 rows of dataset\n",
+ "heart_data.tail()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
+ },
+ "id": "tFkqNjSluBQi",
+ "outputId": "3c5b7f6a-debe-4b2b-8229-5ffe1caa9917"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " age sex cp trestbps chol fbs restecg thalach exang oldpeak \\\n",
+ "298 57 0 0 140 241 0 1 123 1 0.2 \n",
+ "299 45 1 3 110 264 0 1 132 0 1.2 \n",
+ "300 68 1 0 144 193 1 1 141 0 3.4 \n",
+ "301 57 1 0 130 131 0 1 115 1 1.2 \n",
+ "302 57 0 1 130 236 0 0 174 0 0.0 \n",
+ "\n",
+ " slope ca thal target \n",
+ "298 1 0 3 0 \n",
+ "299 1 0 3 0 \n",
+ "300 1 2 3 0 \n",
+ "301 1 1 3 0 \n",
+ "302 1 1 2 0 "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " age \n",
+ " sex \n",
+ " cp \n",
+ " trestbps \n",
+ " chol \n",
+ " fbs \n",
+ " restecg \n",
+ " thalach \n",
+ " exang \n",
+ " oldpeak \n",
+ " slope \n",
+ " ca \n",
+ " thal \n",
+ " target \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 298 \n",
+ " 57 \n",
+ " 0 \n",
+ " 0 \n",
+ " 140 \n",
+ " 241 \n",
+ " 0 \n",
+ " 1 \n",
+ " 123 \n",
+ " 1 \n",
+ " 0.2 \n",
+ " 1 \n",
+ " 0 \n",
+ " 3 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 299 \n",
+ " 45 \n",
+ " 1 \n",
+ " 3 \n",
+ " 110 \n",
+ " 264 \n",
+ " 0 \n",
+ " 1 \n",
+ " 132 \n",
+ " 0 \n",
+ " 1.2 \n",
+ " 1 \n",
+ " 0 \n",
+ " 3 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 300 \n",
+ " 68 \n",
+ " 1 \n",
+ " 0 \n",
+ " 144 \n",
+ " 193 \n",
+ " 1 \n",
+ " 1 \n",
+ " 141 \n",
+ " 0 \n",
+ " 3.4 \n",
+ " 1 \n",
+ " 2 \n",
+ " 3 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 301 \n",
+ " 57 \n",
+ " 1 \n",
+ " 0 \n",
+ " 130 \n",
+ " 131 \n",
+ " 0 \n",
+ " 1 \n",
+ " 115 \n",
+ " 1 \n",
+ " 1.2 \n",
+ " 1 \n",
+ " 1 \n",
+ " 3 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 302 \n",
+ " 57 \n",
+ " 0 \n",
+ " 1 \n",
+ " 130 \n",
+ " 236 \n",
+ " 0 \n",
+ " 0 \n",
+ " 174 \n",
+ " 0 \n",
+ " 0.0 \n",
+ " 1 \n",
+ " 1 \n",
+ " 2 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "summary": "{\n \"name\": \"heart_data\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 8,\n \"min\": 45,\n \"max\": 68,\n \"num_unique_values\": 3,\n \"samples\": [\n 57,\n 45,\n 68\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"sex\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"cp\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 3,\n \"num_unique_values\": 3,\n \"samples\": [\n 0,\n 3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"trestbps\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 13,\n \"min\": 110,\n \"max\": 144,\n \"num_unique_values\": 4,\n \"samples\": [\n 110,\n 130\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"chol\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 52,\n \"min\": 131,\n \"max\": 264,\n \"num_unique_values\": 5,\n \"samples\": [\n 264,\n 236\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"fbs\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"restecg\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"thalach\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 22,\n \"min\": 115,\n \"max\": 174,\n \"num_unique_values\": 5,\n \"samples\": [\n 132,\n 174\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"exang\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"oldpeak\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3490737563232043,\n \"min\": 0.0,\n \"max\": 3.4,\n \"num_unique_values\": 4,\n \"samples\": [\n 1.2,\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"slope\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ca\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 2,\n \"num_unique_values\": 3,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"thal\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 2,\n \"max\": 3,\n \"num_unique_values\": 2,\n \"samples\": [\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"target\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 5
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#number of rows and columns in the dataset\n",
+ "heart_data.shape"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "hOgxiCbauInC",
+ "outputId": "648c6b73-b853-471d-e038-51c0ba15fe59"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "(303, 14)"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 6
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#Getting some information about data\n",
+ "heart_data.info()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Y0H9WwZxuPSg",
+ "outputId": "2ed02127-97e7-49e0-c411-d89e9e6d975b"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "\n",
+ "RangeIndex: 303 entries, 0 to 302\n",
+ "Data columns (total 14 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 age 303 non-null int64 \n",
+ " 1 sex 303 non-null int64 \n",
+ " 2 cp 303 non-null int64 \n",
+ " 3 trestbps 303 non-null int64 \n",
+ " 4 chol 303 non-null int64 \n",
+ " 5 fbs 303 non-null int64 \n",
+ " 6 restecg 303 non-null int64 \n",
+ " 7 thalach 303 non-null int64 \n",
+ " 8 exang 303 non-null int64 \n",
+ " 9 oldpeak 303 non-null float64\n",
+ " 10 slope 303 non-null int64 \n",
+ " 11 ca 303 non-null int64 \n",
+ " 12 thal 303 non-null int64 \n",
+ " 13 target 303 non-null int64 \n",
+ "dtypes: float64(1), int64(13)\n",
+ "memory usage: 33.3 KB\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#Checking for missing values\n",
+ "heart_data.isnull().sum()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 523
+ },
+ "id": "7sZLpe59ua2x",
+ "outputId": "2e276b95-ebfd-4acf-e960-fe61137b7bc4"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "age 0\n",
+ "sex 0\n",
+ "cp 0\n",
+ "trestbps 0\n",
+ "chol 0\n",
+ "fbs 0\n",
+ "restecg 0\n",
+ "thalach 0\n",
+ "exang 0\n",
+ "oldpeak 0\n",
+ "slope 0\n",
+ "ca 0\n",
+ "thal 0\n",
+ "target 0\n",
+ "dtype: int64"
+ ],
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " age \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " sex \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " cp \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " trestbps \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " chol \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " fbs \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " restecg \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " thalach \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " exang \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " oldpeak \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " slope \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " ca \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " thal \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " target \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
dtype: int64 "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 8
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#Statistical measure of data\n",
+ "heart_data.describe()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 320
+ },
+ "id": "EfjX_497ulh-",
+ "outputId": "14a21a7f-15b3-4a76-ae25-4b75a7e075af"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " age sex cp trestbps chol fbs \\\n",
+ "count 303.000000 303.000000 303.000000 303.000000 303.000000 303.000000 \n",
+ "mean 54.366337 0.683168 0.966997 131.623762 246.264026 0.148515 \n",
+ "std 9.082101 0.466011 1.032052 17.538143 51.830751 0.356198 \n",
+ "min 29.000000 0.000000 0.000000 94.000000 126.000000 0.000000 \n",
+ "25% 47.500000 0.000000 0.000000 120.000000 211.000000 0.000000 \n",
+ "50% 55.000000 1.000000 1.000000 130.000000 240.000000 0.000000 \n",
+ "75% 61.000000 1.000000 2.000000 140.000000 274.500000 0.000000 \n",
+ "max 77.000000 1.000000 3.000000 200.000000 564.000000 1.000000 \n",
+ "\n",
+ " restecg thalach exang oldpeak slope ca \\\n",
+ "count 303.000000 303.000000 303.000000 303.000000 303.000000 303.000000 \n",
+ "mean 0.528053 149.646865 0.326733 1.039604 1.399340 0.729373 \n",
+ "std 0.525860 22.905161 0.469794 1.161075 0.616226 1.022606 \n",
+ "min 0.000000 71.000000 0.000000 0.000000 0.000000 0.000000 \n",
+ "25% 0.000000 133.500000 0.000000 0.000000 1.000000 0.000000 \n",
+ "50% 1.000000 153.000000 0.000000 0.800000 1.000000 0.000000 \n",
+ "75% 1.000000 166.000000 1.000000 1.600000 2.000000 1.000000 \n",
+ "max 2.000000 202.000000 1.000000 6.200000 2.000000 4.000000 \n",
+ "\n",
+ " thal target \n",
+ "count 303.000000 303.000000 \n",
+ "mean 2.313531 0.544554 \n",
+ "std 0.612277 0.498835 \n",
+ "min 0.000000 0.000000 \n",
+ "25% 2.000000 0.000000 \n",
+ "50% 2.000000 1.000000 \n",
+ "75% 3.000000 1.000000 \n",
+ "max 3.000000 1.000000 "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " age \n",
+ " sex \n",
+ " cp \n",
+ " trestbps \n",
+ " chol \n",
+ " fbs \n",
+ " restecg \n",
+ " thalach \n",
+ " exang \n",
+ " oldpeak \n",
+ " slope \n",
+ " ca \n",
+ " thal \n",
+ " target \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " count \n",
+ " 303.000000 \n",
+ " 303.000000 \n",
+ " 303.000000 \n",
+ " 303.000000 \n",
+ " 303.000000 \n",
+ " 303.000000 \n",
+ " 303.000000 \n",
+ " 303.000000 \n",
+ " 303.000000 \n",
+ " 303.000000 \n",
+ " 303.000000 \n",
+ " 303.000000 \n",
+ " 303.000000 \n",
+ " 303.000000 \n",
+ " \n",
+ " \n",
+ " mean \n",
+ " 54.366337 \n",
+ " 0.683168 \n",
+ " 0.966997 \n",
+ " 131.623762 \n",
+ " 246.264026 \n",
+ " 0.148515 \n",
+ " 0.528053 \n",
+ " 149.646865 \n",
+ " 0.326733 \n",
+ " 1.039604 \n",
+ " 1.399340 \n",
+ " 0.729373 \n",
+ " 2.313531 \n",
+ " 0.544554 \n",
+ " \n",
+ " \n",
+ " std \n",
+ " 9.082101 \n",
+ " 0.466011 \n",
+ " 1.032052 \n",
+ " 17.538143 \n",
+ " 51.830751 \n",
+ " 0.356198 \n",
+ " 0.525860 \n",
+ " 22.905161 \n",
+ " 0.469794 \n",
+ " 1.161075 \n",
+ " 0.616226 \n",
+ " 1.022606 \n",
+ " 0.612277 \n",
+ " 0.498835 \n",
+ " \n",
+ " \n",
+ " min \n",
+ " 29.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 94.000000 \n",
+ " 126.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 71.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 25% \n",
+ " 47.500000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 120.000000 \n",
+ " 211.000000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 133.500000 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 1.000000 \n",
+ " 0.000000 \n",
+ " 2.000000 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 50% \n",
+ " 55.000000 \n",
+ " 1.000000 \n",
+ " 1.000000 \n",
+ " 130.000000 \n",
+ " 240.000000 \n",
+ " 0.000000 \n",
+ " 1.000000 \n",
+ " 153.000000 \n",
+ " 0.000000 \n",
+ " 0.800000 \n",
+ " 1.000000 \n",
+ " 0.000000 \n",
+ " 2.000000 \n",
+ " 1.000000 \n",
+ " \n",
+ " \n",
+ " 75% \n",
+ " 61.000000 \n",
+ " 1.000000 \n",
+ " 2.000000 \n",
+ " 140.000000 \n",
+ " 274.500000 \n",
+ " 0.000000 \n",
+ " 1.000000 \n",
+ " 166.000000 \n",
+ " 1.000000 \n",
+ " 1.600000 \n",
+ " 2.000000 \n",
+ " 1.000000 \n",
+ " 3.000000 \n",
+ " 1.000000 \n",
+ " \n",
+ " \n",
+ " max \n",
+ " 77.000000 \n",
+ " 1.000000 \n",
+ " 3.000000 \n",
+ " 200.000000 \n",
+ " 564.000000 \n",
+ " 1.000000 \n",
+ " 2.000000 \n",
+ " 202.000000 \n",
+ " 1.000000 \n",
+ " 6.200000 \n",
+ " 2.000000 \n",
+ " 4.000000 \n",
+ " 3.000000 \n",
+ " 1.000000 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "summary": "{\n \"name\": \"heart_data\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 92.63263171018461,\n \"min\": 9.082100989837857,\n \"max\": 303.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 54.366336633663366,\n 55.0,\n 303.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"sex\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 106.91793021099774,\n \"min\": 0.0,\n \"max\": 303.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.6831683168316832,\n 1.0,\n 0.46601082333962385\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"cp\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 106.72725528212327,\n \"min\": 0.0,\n \"max\": 303.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 303.0,\n 0.966996699669967,\n 2.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"trestbps\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 82.65195263865039,\n \"min\": 17.5381428135171,\n \"max\": 303.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 131.62376237623764,\n 130.0,\n 303.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"chol\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 150.35806568851743,\n \"min\": 51.83075098793003,\n \"max\": 564.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 246.26402640264027,\n 240.0,\n 303.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"fbs\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 107.0512286741478,\n \"min\": 0.0,\n \"max\": 303.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.1485148514851485,\n 1.0,\n 0.35619787492797644\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"restecg\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 106.8733588009897,\n \"min\": 0.0,\n \"max\": 303.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 303.0,\n 0.528052805280528,\n 2.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"thalach\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 83.70384393886218,\n \"min\": 22.905161114914094,\n \"max\": 303.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 149.64686468646866,\n 153.0,\n 303.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"exang\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 106.9862394088184,\n \"min\": 0.0,\n \"max\": 303.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.32673267326732675,\n 1.0,\n 0.4697944645223165\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"oldpeak\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 106.59952466080658,\n \"min\": 0.0,\n \"max\": 303.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 303.0,\n 1.0396039603960396,\n 1.6\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"slope\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 106.72394469173834,\n \"min\": 0.0,\n \"max\": 303.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 303.0,\n 1.3993399339933994,\n 2.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ca\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 106.79372080487734,\n \"min\": 0.0,\n \"max\": 303.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 303.0,\n 0.7293729372937293,\n 4.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"thal\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 106.47909774814387,\n \"min\": 0.0,\n \"max\": 303.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 303.0,\n 2.3135313531353137,\n 3.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"target\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 106.92326354929804,\n \"min\": 0.0,\n \"max\": 303.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.5445544554455446,\n 1.0,\n 0.4988347841643913\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 9
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#checking the distribution of target variable\n",
+ "heart_data['target'].value_counts()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 178
+ },
+ "id": "UWMIYY3Nu9EL",
+ "outputId": "72e39170-030b-4666-e58e-269b85bdf0be"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "target\n",
+ "1 165\n",
+ "0 138\n",
+ "Name: count, dtype: int64"
+ ],
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count \n",
+ " \n",
+ " \n",
+ " target \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 165 \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 138 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
dtype: int64 "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 10
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Data Visualization"
+ ],
+ "metadata": {
+ "id": "sW7yhu3v1rMM"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "plt.figure(figsize=(10,6))\n",
+ "sns.countplot(x='target',data=heart_data)\n",
+ "plt.title(\"Distribution of Target Variable\")\n",
+ "plt.show()\n",
+ "\n",
+ "plt.figure(figsize=(12,8))\n",
+ "sns.heatmap(heart_data.corr(),annot=True,cmap='coolwarm')\n",
+ "plt.title(\"Correlation Heatmap\")\n",
+ "plt.show()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "id": "5hQGjKEo1xT3",
+ "outputId": "d1553dbd-6f08-4330-ad81-72f9e3682860"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAIjCAYAAAAJLyrXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8DUlEQVR4nO3df5RVdb3/8dcgMBDIIAgMkwikpvgLDJVIUkS+If5O0ywyJIN7VfQiXjMq8cdNSTNFDaX8lqbJzR8Vpt1QA4UyNMWr3Uzxx8UfX21ARUBQAZnz/cPlWY6AsnFgBng81jpreT57n33e50ANz3XO3lNRKpVKAQAAYJ01a+wBAAAANjVCCgAAoCAhBQAAUJCQAgAAKEhIAQAAFCSkAAAAChJSAAAABQkpAACAgoQUAABAQUIKYAM577zzUlFRsVGea+DAgRk4cGD5/n333ZeKiorcdtttG+X5TzzxxPTo0WOjPNf6Wrp0ab75zW+muro6FRUVGTNmTGOPtMWoqKjIeeedV/hx119/fSoqKvLwww9/5L4f/N8AwIYmpADWwXv/oHvv1qpVq9TU1GTIkCG58sor88YbbzTI87z88ss577zz8uijjzbI8RpSU55tXVx00UW5/vrrc/LJJ+fGG2/MCSecsNo+78XvR92a4j/YL7rookydOvUj97vssstSUVGRP/7xj2vd59prr01FRUV+97vfNeCEAJuX5o09AMCm5IILLkjPnj2zcuXK1NbW5r777suYMWNy2WWX5Xe/+1323HPP8r7f+9738u1vf7vQ8V9++eWcf/756dGjR/r06bPOj7v77rsLPc/6+LDZrr322tTV1W3wGT6OGTNm5LOf/WzOPffcte5z9NFHZ8cddyzfX7p0aU4++eR88YtfzNFHH11e79KlywaddX1cdNFF+dKXvpSjjjrqQ/c7/vjjc9ZZZ2XKlCkZPHjwGveZMmVKOnbsmKFDhzbIbG+99VaaN/dPDmDz4v/VAAoYOnRo9t577/L9cePGZcaMGTnssMNyxBFH5Iknnkjr1q2TJM2bN9/g/3h8880384lPfCItW7bcoM/zUVq0aNGoz78uFixYkF133fVD99lzzz3rxfCrr76ak08+OXvuuWe+9rWvfewZli1bljZt2nzs43wcNTU1OfDAA/Ob3/wm11xzTSorK+ttf+mllzJr1qyMGjXqY/251tXVZcWKFWnVqlVatWr1cccGaHJ8tQ/gYxo0aFDOOeecPP/88/nlL39ZXl/TOVL33HNPBgwYkPbt26dt27bZeeed853vfCfJu+c17bPPPkmSESNGlL9Gdv311yd59xyQ3XffPXPmzMn++++fT3ziE+XHru38kFWrVuU73/lOqqur06ZNmxxxxBF58cUX6+3To0ePnHjiias99v3H/KjZ1nSO1LJly3LmmWemW7duqayszM4775xLL700pVKp3n4VFRUZPXp0pk6dmt133z2VlZXZbbfdMm3atDW/4R+wYMGCnHTSSenSpUtatWqV3r175xe/+EV5+3vni82bNy+///3vy7M/99xz63T8D3r++edzyimnZOedd07r1q3TsWPHHHvssasd772vg86cOTOnnHJKOnfunO222668fdKkSfnUpz6V1q1bZ999982f/vSnNf45Ll++POeee2523HHHVFZWplu3bvnWt76V5cuXl/epqKjIsmXL8otf/KL8+tb0Z/qer33ta1m8eHF+//vfr7btV7/6Verq6jJs2LAkyaWXXprPfe5z6dixY1q3bp2+ffuu8dy79/4cb7rppuy2226prKws/xl+8BypdX0P3/Pmm2/mX/7lX9KxY8e0a9cuX//61/P666+v9fUVee8A1pdPpAAawAknnJDvfOc7ufvuuzNy5Mg17vP444/nsMMOy5577pkLLrgglZWVeeaZZ3L//fcnSXr16pULLrgg48ePz6hRo/L5z38+SfK5z32ufIzXXnstQ4cOzfHHH5+vfe1rH/kVswsvvDAVFRU5++yzs2DBgkycODGDBw/Oo48+Wv7kbF2sy2zvVyqVcsQRR+Tee+/NSSedlD59+uSuu+7KWWedlZdeeimXX355vf3//Oc/5ze/+U1OOeWUbL311rnyyitzzDHH5IUXXkjHjh3XOtdbb72VgQMH5plnnsno0aPTs2fP3HrrrTnxxBOzaNGi/Nu//Vt69eqVG2+8MWeccUa22267nHnmmUmSTp06rfPrf7+HHnoof/nLX3L88cdnu+22y3PPPZdrrrkmAwcOzD/+8Y984hOfqLf/Kaeckk6dOmX8+PFZtmxZkuSaa67J6NGj8/nPfz5nnHFGnnvuuRx11FHZZptt6sVWXV1djjjiiPz5z3/OqFGj0qtXr/zP//xPLr/88jz11FPlc6JuvPHGfPOb38y+++6bUaNGJUl22GGHtb6Go48+OieffHKmTJlS7yuLybtf6+vevXv222+/JMkVV1yRI444IsOGDcuKFSvyq1/9Kscee2zuvPPOHHroofUeO2PGjNxyyy0ZPXp0tt1227VegKToezh69Oi0b98+5513XubOnZtrrrkmzz//fDmS12Rd3zuA9VYC4CNdd911pSSlhx56aK37VFVVlfbaa6/y/XPPPbf0/v+bvfzyy0tJSq+88spaj/HQQw+VkpSuu+661bYdcMABpSSlyZMnr3HbAQccUL5/7733lpKUPvnJT5aWLFlSXr/llltKSUpXXHFFea179+6l4cOHf+QxP2y24cOHl7p3716+P3Xq1FKS0ve///16+33pS18qVVRUlJ555pnyWpJSy5Yt66099thjpSSlq666arXner+JEyeWkpR++ctfltdWrFhR6t+/f6lt27b1Xnv37t1Lhx566Ice74NeeeWVUpLSueeeW1578803V9tv9uzZpSSlG264obz23t+ZAQMGlN55553y+vLly0sdO3Ys7bPPPqWVK1eW16+//vpSknrv+Y033lhq1qxZ6U9/+lO955s8eXIpSen+++8vr7Vp02aNf45rc+yxx5ZatWpVWrx4cXntySefLCUpjRs3bq2vd8WKFaXdd9+9NGjQoHrrSUrNmjUrPf7446s918d9D/v27VtasWJFef2SSy4pJSndfvvt5bUP/n0t8t4BrA9f7QNoIG3btv3Qq/e1b98+SXL77bev94UZKisrM2LEiHXe/+tf/3q23nrr8v0vfelL6dq1a/7rv/5rvZ5/Xf3Xf/1Xttpqq5x++un11s8888yUSqX84Q9/qLc+ePDgep+g7LnnnmnXrl3+93//9yOfp7q6Ol/5ylfKay1atMjpp5+epUuXZubMmQ3waup7/yd5K1euzGuvvZYdd9wx7du3zyOPPLLa/iNHjsxWW21Vvv/www/ntddey8iRI+udQzds2LBss8029R576623plevXtlll13y6quvlm+DBg1Kktx7773r/Tq+9rWv5e23385vfvOb8tqUKVPKs6zp9b7++utZvHhxPv/5z6/xtR5wwAEfeR7aB4+5Lu/hB8/XOvnkk9O8efMP/Xu8Id87gMQ5UgANZunSpfWi5YO+/OUvZ7/99ss3v/nNdOnSJccff3xuueWWQlH1yU9+stCFJXbaaad69ysqKrLjjjuu9/lB6+r5559PTU3Nau9Hr169ytvfb/vtt1/tGNtss81Hngfz/PPPZ6eddkqzZvV/nK3teRrCW2+9lfHjx5fP/dp2223TqVOnLFq0KIsXL15t/549e642c5J6VwdM3r04yQe/Cvf000/n8ccfT6dOnerdPv3pTyd59/yw9TV06NB06NChHE9J8p//+Z/p3bt3dtttt/LanXfemc9+9rNp1apVOnTokE6dOuWaa65Zp9e6NkXfww/+PW7btm26du36oX+PN+R7B5A4RwqgQfy///f/snjx4tX+cfx+rVu3zqxZs3Lvvffm97//faZNm5abb745gwYNyt13313vU4sPO0ZDW9s5JqtWrVqnmRrC2p6n9IELUzQFp512Wq677rqMGTMm/fv3T1VVVSoqKnL88cevMYo/zp9ZXV1d9thjj1x22WVr3N6tW7f1PnaLFi1y3HHH5dprr838+fPzwgsv5Omnn84ll1xS3udPf/pTjjjiiOy///65+uqr07Vr17Ro0SLXXXddvQB7z7q+1qLv4frYkO8dQCKkABrEjTfemCQZMmTIh+7XrFmzHHTQQTnooINy2WWX5aKLLsp3v/vd3HvvvRk8ePBao2Z9Pf300/Xul0qlPPPMM/Uu8b3NNttk0aJFqz32+eefz6c+9any/SKzde/ePX/84x/zxhtv1PtU6sknnyxvbwjdu3fP3/72t9TV1dX7VKqhn+f9brvttgwfPjw/+tGPymtvv/32Gt/DNXlvpmeeeSYHHnhgef2dd97Jc889V+/PZocddshjjz2Wgw466CPf//X5uzNs2LBMnjw5N998c+bNm5eKiop6X5P89a9/nVatWuWuu+6qd5n06667rvBzvV/R9/Dpp5+u914tXbo0//znP3PIIYes9TmKvHcA68NX+wA+phkzZuQ//uM/0rNnz3rnlnzQwoULV1t77xfbvnc55vd+x9C6/qP8o9xwww31ztu67bbb8s9//rPeL1rdYYcd8sADD2TFihXltTvvvHO1y6QXme2QQw7JqlWr8uMf/7je+uWXX56KiooG+0WvhxxySGpra3PzzTeX1955551cddVVadu2bQ444IAGeZ7322qrrVb7pOyqq67KqlWr1unxe++9dzp27Jhrr70277zzTnn9pptuWu2rjMcdd1xeeumlXHvttasd56233ipfBTB598+n6N+b/fbbLz169Mgvf/nL3HzzzTnggAPqXTVwq622SkVFRb3X9txzz33sK94VfQ9/+tOfZuXKleX711xzTd55550P/XtU5L0DWB8+kQIo4A9/+EOefPLJvPPOO5k/f35mzJiRe+65J927d8/vfve7D/3FoxdccEFmzZqVQw89NN27d8+CBQty9dVXZ7vttsuAAQOSvBs17du3z+TJk7P11lunTZs26dev3zqfe/JBHTp0yIABAzJixIjMnz8/EydOzI477ljvEu3f/OY3c9ttt+Xggw/Occcdl2effTa//OUvV7t8dpHZDj/88Bx44IH57ne/m+eeey69e/fO3Xffndtvvz1jxoz50EtzFzFq1Kj85Cc/yYknnpg5c+akR48eue2223L//fdn4sSJH3rO2vo67LDDcuONN6aqqiq77rprZs+enT/+8Y8fepn292vZsmXOO++8nHbaaRk0aFCOO+64PPfcc7n++uuzww471Pv05IQTTsgtt9ySf/3Xf829996b/fbbL6tWrcqTTz6ZW265JXfddVf5F0T37ds3f/zjH3PZZZelpqYmPXv2TL9+/T50loqKinz1q1/NRRddlOTdv6Pvd+ihh+ayyy7LwQcfnK9+9atZsGBBJk2alB133DF/+9vfirxt9RR9D1esWJGDDjooxx13XObOnZurr746AwYMyBFHHLHW5yjy3gGsl0a9ZiDAJuK9yzC/d2vZsmWpurq69H/+z/8pXXHFFfUus/2eD17+fPr06aUjjzyyVFNTU2rZsmWppqam9JWvfKX01FNP1Xvc7bffXtp1111LzZs3r3e58QMOOKC02267rXG+tV3+/D//8z9L48aNK3Xu3LnUunXr0qGHHlp6/vnnV3v8j370o9InP/nJUmVlZWm//fYrPfzww6sd88Nm++Dlz0ulUumNN94onXHGGaWamppSixYtSjvttFPphz/8Yamurq7efklKp5566mozre2y7B80f/780ogRI0rbbrttqWXLlqU99thjjZdob6jLn7/++uvl52vbtm1pyJAhpSeffHK1eT/qkvlXXnllqXv37qXKysrSvvvuW7r//vtLffv2LR188MH19luxYkXp4osvLu22226lysrK0jbbbFPq27dv6fzzz1/t0uX7779/qXXr1qUk63wp9Mcff7yUpFRZWVl6/fXXV9v+s5/9rLTTTjuVKisrS7vsskvpuuuuW+3vdqm09j/H97Z9nPdw5syZpVGjRpW22WabUtu2bUvDhg0rvfbaa/WeY01/X9f1vQNYHxWlUhM8kxcAtjB1dXXp1KlTjj766DV+HQ2ApsU5UgCwkb399turnSN0ww03ZOHChRk4cGDjDAVAIT6RAoCN7L777ssZZ5yRY489Nh07dswjjzySn/3sZ+nVq1fmzJlT6HeFAdA4XGwCADayHj16pFu3brnyyiuzcOHCdOjQIV//+tfzgx/8QEQBbCJ8IgUAAFCQc6QAAAAKElIAAAAFOUcq715y9uWXX87WW29d7xchAgAAW5ZSqZQ33ngjNTU1adZs7Z87CakkL7/8crp169bYYwAAAE3Eiy++mO22226t24VUkq233jrJu29Wu3btGnkaAACgsSxZsiTdunUrN8LaCKmk/HW+du3aCSkAAOAjT/lxsQkAAICChBQAAEBBQgoAAKAgIQUAAFCQkAIAAChISAEAABQkpAAAAAoSUgAAAAUJKQAAgIKEFAAAQEFCCgAAoCAhBQAAUJCQAgAAKEhIAQAAFCSkAAAAChJSAAAABQkpAACAgoQUAABAQUIKAACgoOaNPQAA8NH6nnVDY48A0KDm/PDrjT3Cx+ITKQAAgIKEFAAAQEFCCgAAoCAhBQAAUJCQAgAAKEhIAQAAFCSkAAAAChJSAAAABTVqSM2aNSuHH354ampqUlFRkalTp662zxNPPJEjjjgiVVVVadOmTfbZZ5+88MIL5e1vv/12Tj311HTs2DFt27bNMccck/nz52/EVwEAAGxpGjWkli1blt69e2fSpElr3P7ss89mwIAB2WWXXXLfffflb3/7W84555y0atWqvM8ZZ5yRO+64I7feemtmzpyZl19+OUcfffTGegkAAMAWqHljPvnQoUMzdOjQtW7/7ne/m0MOOSSXXHJJeW2HHXYo//fixYvzs5/9LFOmTMmgQYOSJNddd1169eqVBx54IJ/97Gc33PAAAMAWq8meI1VXV5ff//73+fSnP50hQ4akc+fO6devX72v/82ZMycrV67M4MGDy2u77LJLtt9++8yePXutx16+fHmWLFlS7wYAALCummxILViwIEuXLs0PfvCDHHzwwbn77rvzxS9+MUcffXRmzpyZJKmtrU3Lli3Tvn37eo/t0qVLamtr13rsCRMmpKqqqnzr1q3bhnwpAADAZqbJhlRdXV2S5Mgjj8wZZ5yRPn365Nvf/nYOO+ywTJ48+WMde9y4cVm8eHH59uKLLzbEyAAAwBaiUc+R+jDbbrttmjdvnl133bXeeq9evfLnP/85SVJdXZ0VK1Zk0aJF9T6Vmj9/fqqrq9d67MrKylRWVm6QuQEAgM1fk/1EqmXLltlnn30yd+7ceutPPfVUunfvniTp27dvWrRokenTp5e3z507Ny+88EL69++/UecFAAC2HI36idTSpUvzzDPPlO/Pmzcvjz76aDp06JDtt98+Z511Vr785S9n//33z4EHHphp06bljjvuyH333ZckqaqqykknnZSxY8emQ4cOadeuXU477bT079/fFfsAAIANplFD6uGHH86BBx5Yvj927NgkyfDhw3P99dfni1/8YiZPnpwJEybk9NNPz84775xf//rXGTBgQPkxl19+eZo1a5Zjjjkmy5cvz5AhQ3L11Vdv9NcCAABsOSpKpVKpsYdobEuWLElVVVUWL16cdu3aNfY4ALCavmfd0NgjADSoOT/8emOPsEbr2gZN9hwpAACApkpIAQAAFCSkAAAAChJSAAAABQkpAACAgoQUAABAQUIKAACgICEFAABQkJACAAAoSEgBAAAUJKQAAAAKElIAAAAFCSkAAICChBQAAEBBQgoAAKAgIQUAAFCQkAIAAChISAEAABQkpAAAAAoSUgAAAAUJKQAAgIKEFAAAQEFCCgAAoCAhBQAAUJCQAgAAKEhIAQAAFCSkAAAAChJSAAAABQkpAACAgoQUAABAQUIKAACgICEFAABQkJACAAAoSEgBAAAUJKQAAAAKElIAAAAFCSkAAICChBQAAEBBQgoAAKAgIQUAAFCQkAIAAChISAEAABTUqCE1a9asHH744ampqUlFRUWmTp261n3/9V//NRUVFZk4cWK99YULF2bYsGFp165d2rdvn5NOOilLly7dsIMDAABbtEYNqWXLlqV3796ZNGnSh+7329/+Ng888EBqampW2zZs2LA8/vjjueeee3LnnXdm1qxZGTVq1IYaGQAAIM0b88mHDh2aoUOHfug+L730Uk477bTcddddOfTQQ+tte+KJJzJt2rQ89NBD2XvvvZMkV111VQ455JBceumlawwvAACAj6tJnyNVV1eXE044IWeddVZ222231bbPnj077du3L0dUkgwePDjNmjXLgw8+uNbjLl++PEuWLKl3AwAAWFdNOqQuvvjiNG/ePKeffvoat9fW1qZz58711po3b54OHTqktrZ2rcedMGFCqqqqyrdu3bo16NwAAMDmrcmG1Jw5c3LFFVfk+uuvT0VFRYMee9y4cVm8eHH59uKLLzbo8QEAgM1bkw2pP/3pT1mwYEG23377NG/ePM2bN8/zzz+fM888Mz169EiSVFdXZ8GCBfUe984772ThwoWprq5e67ErKyvTrl27ejcAAIB11agXm/gwJ5xwQgYPHlxvbciQITnhhBMyYsSIJEn//v2zaNGizJkzJ3379k2SzJgxI3V1denXr99GnxkAANgyNGpILV26NM8880z5/rx58/Loo4+mQ4cO2X777dOxY8d6+7do0SLV1dXZeeedkyS9evXKwQcfnJEjR2by5MlZuXJlRo8eneOPP94V+wAAgA2mUb/a9/DDD2evvfbKXnvtlSQZO3Zs9tprr4wfP36dj3HTTTdll112yUEHHZRDDjkkAwYMyE9/+tMNNTIAAEDjfiI1cODAlEqldd7/ueeeW22tQ4cOmTJlSgNO1fT0PeuGxh4BoEHN+eHXG3sEAPhYmuzFJgAAAJoqIQUAAFCQkAIAAChISAEAABQkpAAAAAoSUgAAAAUJKQAAgIKEFAAAQEFCCgAAoCAhBQAAUJCQAgAAKEhIAQAAFCSkAAAAChJSAAAABQkpAACAgoQUAABAQUIKAACgICEFAABQkJACAAAoSEgBAAAUJKQAAAAKElIAAAAFCSkAAICChBQAAEBBQgoAAKAgIQUAAFCQkAIAAChISAEAABQkpAAAAAoSUgAAAAUJKQAAgIKEFAAAQEFCCgAAoCAhBQAAUJCQAgAAKEhIAQAAFCSkAAAAChJSAAAABQkpAACAgoQUAABAQUIKAACgICEFAABQkJACAAAoqFFDatasWTn88MNTU1OTioqKTJ06tbxt5cqVOfvss7PHHnukTZs2qampyde//vW8/PLL9Y6xcOHCDBs2LO3atUv79u1z0kknZenSpRv5lQAAAFuSRg2pZcuWpXfv3pk0adJq295888088sgjOeecc/LII4/kN7/5TebOnZsjjjii3n7Dhg3L448/nnvuuSd33nlnZs2alVGjRm2slwAAAGyBmjfmkw8dOjRDhw5d47aqqqrcc8899dZ+/OMfZ999980LL7yQ7bffPk888USmTZuWhx56KHvvvXeS5KqrrsohhxySSy+9NDU1NRv8NQAAAFueTeocqcWLF6eioiLt27dPksyePTvt27cvR1SSDB48OM2aNcuDDz641uMsX748S5YsqXcDAABYV5tMSL399ts5++yz85WvfCXt2rVLktTW1qZz58719mvevHk6dOiQ2tratR5rwoQJqaqqKt+6deu2QWcHAAA2L5tESK1cuTLHHXdcSqVSrrnmmo99vHHjxmXx4sXl24svvtgAUwIAAFuKRj1Hal28F1HPP/98ZsyYUf40Kkmqq6uzYMGCevu/8847WbhwYaqrq9d6zMrKylRWVm6wmQEAgM1bk/5E6r2Ievrpp/PHP/4xHTt2rLe9f//+WbRoUebMmVNemzFjRurq6tKvX7+NPS4AALCFaNRPpJYuXZpnnnmmfH/evHl59NFH06FDh3Tt2jVf+tKX8sgjj+TOO+/MqlWryuc9dejQIS1btkyvXr1y8MEHZ+TIkZk8eXJWrlyZ0aNH5/jjj3fFPgAAYINp1JB6+OGHc+CBB5bvjx07NkkyfPjwnHfeefnd736XJOnTp0+9x917770ZOHBgkuSmm27K6NGjc9BBB6VZs2Y55phjcuWVV26U+QEAgC1To4bUwIEDUyqV1rr9w7a9p0OHDpkyZUpDjgUAAPChmvQ5UgAAAE2RkAIAAChISAEAABQkpAAAAAoSUgAAAAUJKQAAgIKEFAAAQEFCCgAAoCAhBQAAUJCQAgAAKEhIAQAAFCSkAAAAChJSAAAABQkpAACAgoQUAABAQUIKAACgICEFAABQkJACAAAoSEgBAAAUJKQAAAAKElIAAAAFCSkAAICChBQAAEBBQgoAAKAgIQUAAFCQkAIAAChISAEAABQkpAAAAAoSUgAAAAUJKQAAgIKEFAAAQEFCCgAAoCAhBQAAUJCQAgAAKEhIAQAAFCSkAAAAChJSAAAABQkpAACAgoQUAABAQUIKAACgICEFAABQkJACAAAoqFFDatasWTn88MNTU1OTioqKTJ06td72UqmU8ePHp2vXrmndunUGDx6cp59+ut4+CxcuzLBhw9KuXbu0b98+J510UpYuXboRXwUAALCladSQWrZsWXr37p1Jkyatcfsll1ySK6+8MpMnT86DDz6YNm3aZMiQIXn77bfL+wwbNiyPP/547rnnntx5552ZNWtWRo0atbFeAgAAsAVq3phPPnTo0AwdOnSN20qlUiZOnJjvfe97OfLII5MkN9xwQ7p06ZKpU6fm+OOPzxNPPJFp06bloYceyt57750kueqqq3LIIYfk0ksvTU1NzUZ7LQAAwJajyZ4jNW/evNTW1mbw4MHltaqqqvTr1y+zZ89OksyePTvt27cvR1SSDB48OM2aNcuDDz641mMvX748S5YsqXcDAABYV002pGpra5MkXbp0qbfepUuX8rba2tp07ty53vbmzZunQ4cO5X3WZMKECamqqirfunXr1sDTAwAAm7MmG1Ib0rhx47J48eLy7cUXX2zskQAAgE1Ikw2p6urqJMn8+fPrrc+fP7+8rbq6OgsWLKi3/Z133snChQvL+6xJZWVl2rVrV+8GAACwrppsSPXs2TPV1dWZPn16eW3JkiV58MEH079//yRJ//79s2jRosyZM6e8z4wZM1JXV5d+/fpt9JkBAIAtQ6NetW/p0qV55plnyvfnzZuXRx99NB06dMj222+fMWPG5Pvf/3522mmn9OzZM+ecc05qampy1FFHJUl69eqVgw8+OCNHjszkyZOzcuXKjB49Oscff7wr9gEAABtMo4bUww8/nAMPPLB8f+zYsUmS4cOH5/rrr8+3vvWtLFu2LKNGjcqiRYsyYMCATJs2La1atSo/5qabbsro0aNz0EEHpVmzZjnmmGNy5ZVXbvTXAgAAbDkaNaQGDhyYUqm01u0VFRW54IILcsEFF6x1nw4dOmTKlCkbYjwAAIA1arLnSAEAADRVQgoAAKAgIQUAAFCQkAIAAChISAEAABQkpAAAAAoSUgAAAAUJKQAAgIKEFAAAQEFCCgAAoCAhBQAAUJCQAgAAKGi9QmrQoEFZtGjRautLlizJoEGDPu5MAAAATdp6hdR9992XFStWrLb+9ttv509/+tPHHgoAAKApa15k57/97W/l//7HP/6R2tra8v1Vq1Zl2rRp+eQnP9lw0wEAADRBhUKqT58+qaioSEVFxRq/wte6detcddVVDTYcAABAU1QopObNm5dSqZRPfepT+etf/5pOnTqVt7Vs2TKdO3fOVltt1eBDAgAANCWFQqp79+5Jkrq6ug0yDAAAwKagUEi939NPP5177703CxYsWC2sxo8f/7EHAwAAaKrWK6SuvfbanHzyydl2221TXV2dioqK8raKigohBQAAbNbWK6S+//3v58ILL8zZZ5/d0PMAAAA0eev1e6Ref/31HHvssQ09CwAAwCZhvULq2GOPzd13393QswAAAGwS1uurfTvuuGPOOeecPPDAA9ljjz3SokWLettPP/30BhkOAACgKVqvkPrpT3+atm3bZubMmZk5c2a9bRUVFUIKAADYrK1XSM2bN6+h5wAAANhkrNc5UgAAAFuy9fpE6hvf+MaHbv/5z3++XsMAAABsCtYrpF5//fV691euXJm///3vWbRoUQYNGtQggwEAADRV6xVSv/3tb1dbq6ury8knn5wddtjhYw8FAADQlDXYOVLNmjXL2LFjc/nllzfUIQEAAJqkBr3YxLPPPpt33nmnIQ8JAADQ5KzXV/vGjh1b736pVMo///nP/P73v8/w4cMbZDAAAICmar1C6r//+7/r3W/WrFk6deqUH/3oRx95RT8AAIBN3XqF1L333tvQcwAAAGwy1iuk3vPKK69k7ty5SZKdd945nTp1apChAAAAmrL1utjEsmXL8o1vfCNdu3bN/vvvn/333z81NTU56aST8uabbzb0jAAAAE3KeoXU2LFjM3PmzNxxxx1ZtGhRFi1alNtvvz0zZ87MmWee2dAzAgAANCnr9dW+X//617ntttsycODA8tohhxyS1q1b57jjjss111zTUPMBAAA0Oev1idSbb76ZLl26rLbeuXNnX+0DAAA2e+sVUv3798+5556bt99+u7z21ltv5fzzz0///v0bbDgAAICmaL2+2jdx4sQcfPDB2W677dK7d+8kyWOPPZbKysrcfffdDTogAABAU7Nen0jtscceefrppzNhwoT06dMnffr0yQ9+8IM888wz2W233RpsuFWrVuWcc85Jz54907p16+ywww75j//4j5RKpfI+pVIp48ePT9euXdO6desMHjw4Tz/9dIPNAAAA8EHr9YnUhAkT0qVLl4wcObLe+s9//vO88sorOfvssxtkuIsvvjjXXHNNfvGLX2S33XbLww8/nBEjRqSqqiqnn356kuSSSy7JlVdemV/84hfp2bNnzjnnnAwZMiT/+Mc/0qpVqwaZAwAA4P3W6xOpn/zkJ9lll11WW99tt90yefLkjz3Ue/7yl7/kyCOPzKGHHpoePXrkS1/6Ur7whS/kr3/9a5J3P42aOHFivve97+XII4/MnnvumRtuuCEvv/xypk6d2mBzAAAAvN96hVRtbW26du262nqnTp3yz3/+82MP9Z7Pfe5zmT59ep566qkk756H9ec//zlDhw5NksybNy+1tbUZPHhw+TFVVVXp169fZs+evdbjLl++PEuWLKl3AwAAWFfr9dW+bt265f7770/Pnj3rrd9///2pqalpkMGS5Nvf/naWLFmSXXbZJVtttVVWrVqVCy+8MMOGDUvybtAlWe1S7F26dClvW5MJEybk/PPPb7A5AQCALct6hdTIkSMzZsyYrFy5MoMGDUqSTJ8+Pd/61rdy5plnNthwt9xyS2666aZMmTIlu+22Wx599NGMGTMmNTU1GT58+Hofd9y4cRk7dmz5/pIlS9KtW7eGGBkAANgCrFdInXXWWXnttddyyimnZMWKFUmSVq1a5eyzz864ceMabLizzjor3/72t3P88ccnefdqgc8//3wmTJiQ4cOHp7q6Okkyf/78el81nD9/fvr06bPW41ZWVqaysrLB5gQAALYs63WOVEVFRS6++OK88soreeCBB/LYY49l4cKFGT9+fIMO9+abb6ZZs/ojbrXVVqmrq0uS9OzZM9XV1Zk+fXp5+5IlS/Lggw/6xcAAAMAGs16fSL2nbdu22WeffRpqltUcfvjhufDCC7P99ttnt912y3//93/nsssuyze+8Y0k7wbdmDFj8v3vfz877bRT+fLnNTU1OeqoozbYXAAAwJbtY4XUhnbVVVflnHPOySmnnJIFCxakpqYm//Iv/1Lvk69vfetbWbZsWUaNGpVFixZlwIABmTZtmt8hBQAAbDAVpVKp1NhDNLYlS5akqqoqixcvTrt27Rp7nNX0PeuGxh4BoEHN+eHXG3uETY6fBcDmpqn+LFjXNlivc6QAAAC2ZEIKAACgICEFAABQkJACAAAoSEgBAAAUJKQAAAAKElIAAAAFCSkAAICChBQAAEBBQgoAAKAgIQUAAFCQkAIAAChISAEAABQkpAAAAAoSUgAAAAUJKQAAgIKEFAAAQEFCCgAAoCAhBQAAUJCQAgAAKEhIAQAAFCSkAAAAChJSAAAABQkpAACAgoQUAABAQUIKAACgICEFAABQkJACAAAoSEgBAAAUJKQAAAAKElIAAAAFCSkAAICChBQAAEBBQgoAAKAgIQUAAFCQkAIAAChISAEAABQkpAAAAAoSUgAAAAUJKQAAgIKEFAAAQEFCCgAAoCAhBQAAUFCTD6mXXnopX/va19KxY8e0bt06e+yxRx5++OHy9lKplPHjx6dr165p3bp1Bg8enKeffroRJwYAADZ3TTqkXn/99ey3335p0aJF/vCHP+Qf//hHfvSjH2WbbbYp73PJJZfkyiuvzOTJk/Pggw+mTZs2GTJkSN5+++1GnBwAANicNW/sAT7MxRdfnG7duuW6664rr/Xs2bP836VSKRMnTsz3vve9HHnkkUmSG264IV26dMnUqVNz/PHHb/SZAQCAzV+T/kTqd7/7Xfbee+8ce+yx6dy5c/baa69ce+215e3z5s1LbW1tBg8eXF6rqqpKv379Mnv27LUed/ny5VmyZEm9GwAAwLpq0iH1v//7v7nmmmuy00475a677srJJ5+c008/Pb/4xS+SJLW1tUmSLl261Htcly5dytvWZMKECamqqirfunXrtuFeBAAAsNlp0iFVV1eXz3zmM7nooouy1157ZdSoURk5cmQmT578sY47bty4LF68uHx78cUXG2hiAABgS9CkQ6pr167Zdddd66316tUrL7zwQpKkuro6STJ//vx6+8yfP7+8bU0qKyvTrl27ejcAAIB11aRDar/99svcuXPrrT311FPp3r17kncvPFFdXZ3p06eXty9ZsiQPPvhg+vfvv1FnBQAAthxN+qp9Z5xxRj73uc/loosuynHHHZe//vWv+elPf5qf/vSnSZKKioqMGTMm3//+97PTTjulZ8+eOeecc1JTU5OjjjqqcYcHAAA2W006pPbZZ5/89re/zbhx43LBBRekZ8+emThxYoYNG1be51vf+laWLVuWUaNGZdGiRRkwYECmTZuWVq1aNeLkAADA5qxJh1SSHHbYYTnssMPWur2ioiIXXHBBLrjggo04FQAAsCVr0udIAQAANEVCCgAAoCAhBQAAUJCQAgAAKEhIAQAAFCSkAAAAChJSAAAABQkpAACAgoQUAABAQUIKAACgICEFAABQkJACAAAoSEgBAAAUJKQAAAAKElIAAAAFCSkAAICChBQAAEBBQgoAAKAgIQUAAFCQkAIAAChISAEAABQkpAAAAAoSUgAAAAUJKQAAgIKEFAAAQEFCCgAAoCAhBQAAUJCQAgAAKEhIAQAAFCSkAAAAChJSAAAABQkpAACAgoQUAABAQUIKAACgICEFAABQkJACAAAoSEgBAAAUJKQAAAAKElIAAAAFCSkAAICChBQAAEBBQgoAAKCgTSqkfvCDH6SioiJjxowpr7399ts59dRT07Fjx7Rt2zbHHHNM5s+f33hDAgAAm71NJqQeeuih/OQnP8mee+5Zb/2MM87IHXfckVtvvTUzZ87Myy+/nKOPPrqRpgQAALYEm0RILV26NMOGDcu1116bbbbZpry+ePHi/OxnP8tll12WQYMGpW/fvrnuuuvyl7/8JQ888EAjTgwAAGzONomQOvXUU3PooYdm8ODB9dbnzJmTlStX1lvfZZddsv3222f27NlrPd7y5cuzZMmSejcAAIB11byxB/gov/rVr/LII4/koYceWm1bbW1tWrZsmfbt29db79KlS2pra9d6zAkTJuT8889v6FEBAIAtRJP+ROrFF1/Mv/3bv+Wmm25Kq1atGuy448aNy+LFi8u3F198scGODQAAbP6adEjNmTMnCxYsyGc+85k0b948zZs3z8yZM3PllVemefPm6dKlS1asWJFFixbVe9z8+fNTXV291uNWVlamXbt29W4AAADrqkl/te+ggw7K//zP/9RbGzFiRHbZZZecffbZ6datW1q0aJHp06fnmGOOSZLMnTs3L7zwQvr3798YIwMAAFuAJh1SW2+9dXbfffd6a23atEnHjh3L6yeddFLGjh2bDh06pF27djnttNPSv3//fPazn22MkQEAgC1Akw6pdXH55ZenWbNmOeaYY7J8+fIMGTIkV199dWOPBQAAbMY2uZC677776t1v1apVJk2alEmTJjXOQAAAwBanSV9sAgAAoCkSUgAAAAUJKQAAgIKEFAAAQEFCCgAAoCAhBQAAUJCQAgAAKEhIAQAAFCSkAAAAChJSAAAABQkpAACAgoQUAABAQUIKAACgICEFAABQkJACAAAoSEgBAAAUJKQAAAAKElIAAAAFCSkAAICChBQAAEBBQgoAAKAgIQUAAFCQkAIAAChISAEAABQkpAAAAAoSUgAAAAUJKQAAgIKEFAAAQEFCCgAAoCAhBQAAUJCQAgAAKEhIAQAAFCSkAAAAChJSAAAABQkpAACAgoQUAABAQUIKAACgICEFAABQkJACAAAoSEgBAAAUJKQAAAAKElIAAAAFNfmQmjBhQvbZZ59svfXW6dy5c4466qjMnTu33j5vv/12Tj311HTs2DFt27bNMccck/nz5zfSxAAAwOauyYfUzJkzc+qpp+aBBx7IPffck5UrV+YLX/hCli1bVt7njDPOyB133JFbb701M2fOzMsvv5yjjz66EacGAAA2Z80be4CPMm3atHr3r7/++nTu3Dlz5szJ/vvvn8WLF+dnP/tZpkyZkkGDBiVJrrvuuvTq1SsPPPBAPvvZzzbG2AAAwGasyX8i9UGLFy9OknTo0CFJMmfOnKxcuTKDBw8u77PLLrtk++23z+zZs9d4jOXLl2fJkiX1bgAAAOtqkwqpurq6jBkzJvvtt1923333JEltbW1atmyZ9u3b19u3S5cuqa2tXeNxJkyYkKqqqvKtW7duG3p0AABgM7JJhdSpp56av//97/nVr371sY4zbty4LF68uHx78cUXG2hCAABgS9Dkz5F6z+jRo3PnnXdm1qxZ2W677crr1dXVWbFiRRYtWlTvU6n58+enurp6jceqrKxMZWXlhh4ZAADYTDX5T6RKpVJGjx6d3/72t5kxY0Z69uxZb3vfvn3TokWLTJ8+vbw2d+7cvPDCC+nfv//GHhcAANgCNPlPpE499dRMmTIlt99+e7beeuvyeU9VVVVp3bp1qqqqctJJJ2Xs2LHp0KFD2rVrl9NOOy39+/d3xT4AAGCDaPIhdc011yRJBg4cWG/9uuuuy4knnpgkufzyy9OsWbMcc8wxWb58eYYMGZKrr756I08KAABsKZp8SJVKpY/cp1WrVpk0aVImTZq0ESYCAAC2dE3+HCkAAICmRkgBAAAUJKQAAAAKElIAAAAFCSkAAICChBQAAEBBQgoAAKAgIQUAAFCQkAIAAChISAEAABQkpAAAAAoSUgAAAAUJKQAAgIKEFAAAQEFCCgAAoCAhBQAAUJCQAgAAKEhIAQAAFCSkAAAAChJSAAAABQkpAACAgoQUAABAQUIKAACgICEFAABQkJACAAAoSEgBAAAUJKQAAAAKElIAAAAFCSkAAICChBQAAEBBQgoAAKAgIQUAAFCQkAIAAChISAEAABQkpAAAAAoSUgAAAAUJKQAAgIKEFAAAQEFCCgAAoCAhBQAAUJCQAgAAKEhIAQAAFCSkAAAACtpsQmrSpEnp0aNHWrVqlX79+uWvf/1rY48EAABspjaLkLr55pszduzYnHvuuXnkkUfSu3fvDBkyJAsWLGjs0QAAgM3QZhFSl112WUaOHJkRI0Zk1113zeTJk/OJT3wiP//5zxt7NAAAYDPUvLEH+LhWrFiROXPmZNy4ceW1Zs2aZfDgwZk9e/YaH7N8+fIsX768fH/x4sVJkiVLlmzYYdfTquVvNfYIAA2qqf7/bVPmZwGwuWmqPwvem6tUKn3ofpt8SL366qtZtWpVunTpUm+9S5cuefLJJ9f4mAkTJuT8889fbb1bt24bZEYA6qu66l8bewQAGllT/1nwxhtvpKqqaq3bN/mQWh/jxo3L2LFjy/fr6uqycOHCdOzYMRUVFY04GTSeJUuWpFu3bnnxxRfTrl27xh4HgEbgZwG8+0nUG2+8kZqamg/db5MPqW233TZbbbVV5s+fX299/vz5qa6uXuNjKisrU1lZWW+tffv2G2pE2KS0a9fOD0+ALZyfBWzpPuyTqPds8hebaNmyZfr27Zvp06eX1+rq6jJ9+vT079+/EScDAAA2V5v8J1JJMnbs2AwfPjx777139t1330ycODHLli3LiBEjGns0AABgM7RZhNSXv/zlvPLKKxk/fnxqa2vTp0+fTJs2bbULUABrV1lZmXPPPXe1r70CsOXwswDWXUXpo67rBwAAQD2b/DlSAAAAG5uQAgAAKEhIAQAAFCSkAAAAChJSQCZNmpQePXqkVatW6devX/7617829kgAbESzZs3K4YcfnpqamlRUVGTq1KmNPRI0eUIKtnA333xzxo4dm3PPPTePPPJIevfunSFDhmTBggWNPRoAG8myZcvSu3fvTJo0qbFHgU2Gy5/DFq5fv37ZZ5998uMf/zhJUldXl27duuW0007Lt7/97UaeDoCNraKiIr/97W9z1FFHNfYo0KT5RAq2YCtWrMicOXMyePDg8lqzZs0yePDgzJ49uxEnAwBo2oQUbMFeffXVrFq1Kl26dKm33qVLl9TW1jbSVAAATZ+QAgAAKEhIwRZs2223zVZbbZX58+fXW58/f36qq6sbaSoAgKZPSMEWrGXLlunbt2+mT59eXqurq8v06dPTv3//RpwMAKBpa97YAwCNa+zYsRk+fHj23nvv7Lvvvpk4cWKWLVuWESNGNPZoAGwkS5cuzTPPPFO+P2/evDz66KPp0KFDtt9++0acDJoulz8H8uMf/zg//OEPU1tbmz59+uTKK69Mv379GnssADaS++67LwceeOBq68OHD8/111+/8QeCTYCQAgAAKMg5UgAAAAUJKQAAgIKEFAAAQEFCCgAAoCAhBQAAUJCQAgAAKEhIAQAAFCSkAAAAChJSAAAABQkpADZZAwcOzJgxYxp7jLKmNg8AG46QAmCLtmLFisYeAYBNkJACYJN04oknZubMmbniiitSUVGRioqKPPvssznppJPSs2fPtG7dOjvvvHOuuOKK1R531FFH5cILL0xNTU123nnnJMlf/vKX9OnTJ61atcree++dqVOnpqKiIo8++mj5sX//+98zdOjQtG3bNl26dMkJJ5yQV199da3zPPfccxvr7QBgI2ve2AMAwPq44oor8tRTT2X33XfPBRdckCTZZpttst122+XWW29Nx44d85e//CWjRo1K165dc9xxx5UfO3369LRr1y733HNPkmTJkiU5/PDDc8ghh2TKlCl5/vnnV/uK3qJFizJo0KB885vfzOWXX5633norZ599do477rjMmDFjjfN06tRp47wZAGx0QgqATVJVVVVatmyZT3ziE6muri6vn3/++eX/7tmzZ2bPnp1bbrmlXki1adMm//f//t+0bNkySTJ58uRUVFTk2muvTatWrbLrrrvmpZdeysiRI8uP+fGPf5y99torF110UXnt5z//ebp165annnoqn/70p9c4DwCbJyEFwGZl0qRJ+fnPf54XXnghb731VlasWJE+ffrU22ePPfYoR1SSzJ07N3vuuWdatWpVXtt3333rPeaxxx7Lvffem7Zt2672nM8++2w+/elPN+wLAaBJE1IAbDZ+9atf5d///d/zox/9KP3798/WW2+dH/7wh3nwwQfr7demTZvCx166dGkOP/zwXHzxxatt69q163rPDMCmSUgBsMlq2bJlVq1aVb5///3353Of+1xOOeWU8tqzzz77kcfZeeed88tf/jLLly9PZWVlkuShhx6qt89nPvOZ/PrXv06PHj3SvPmaf3x+cB4ANl+u2gfAJqtHjx558MEH89xzz+XVV1/NTjvtlIcffjh33XVXnnrqqZxzzjmrBdGafPWrX01dXV1GjRqVJ554InfddVcuvfTSJElFRUWS5NRTT83ChQvzla98JQ899FCeffbZ3HXXXRkxYkQ5nj44T11d3YZ78QA0KiEFwCbr3//937PVVltl1113TadOnTJkyJAcffTR+fKXv5x+/frltddeq/fp1Nq0a9cud9xxRx599NH06dMn3/3udzN+/PgkKZ83VVNTk/vvvz+rVq3KF77wheyxxx4ZM2ZM2rdvn2bNmq1xnhdeeGHDvXgAGlVFqVQqNfYQANDU3HTTTRkxYkQWL16c1q1bN/Y4ADQxzpECgCQ33HBDPvWpT+WTn/xkHnvssfLviBJRAKyJkAKAJLW1tRk/fnxqa2vTtWvXHHvssbnwwgsbeywAmihf7QMAACjIxSYAAAAKElIAAAAFCSkAAICChBQAAEBBQgoAAKAgIQUAAFCQkAIAAChISAEAABT0/wEywLH2vfqYiwAAAABJRU5ErkJggg==\n"
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAAKqCAYAAADhW6nyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXgURx/A8e9d3N3dSELwYMEluFOhQAlupYWWUijFSylQtEApRYq7O8HdNUiwBJcQd797/zi45MglWEIa3vk8z7Vkb3Zvfrezszc7s7MSuVwuRxAEQRAEQRAEQRBKMGlxZ0AQBEEQBEEQBEEQPpRo3AqCIAiCIAiCIAglnmjcCoIgCIIgCIIgCCWeaNwKgiAIgiAIgiAIJZ5o3AqCIAiCIAiCIAglnmjcCoIgCIIgCIIgCCWeaNwKgiAIgiAIgiAIJZ5o3AqCIAiCIAiCIAglnmjcCoIgCIIgCIIgCCWeaNwKgiAIRWLJkiVIJBLu379faNu8f/8+EomEJUuWFNo2BUEQBEH4NIjGrSAIQgkSFhZG3759cXd3R1dXF2NjY2rWrMmff/5JampqcWev0KxatYqZM2cWdzZUdOvWDUNDw3zfl0gkfPvtt0Wah7lz54qGvSAIgiDkQ7O4MyAIgiC8nZ07d/LFF1+go6NDUFAQZcqUISMjg+PHj/PTTz9x/fp15s+fX9zZLBSrVq3i2rVrfP/99yrLXVxcSE1NRUtLq3gyVszmzp2LpaUl3bp1K+6sCIIgCMJ/jmjcCoIglAD37t3jq6++wsXFhYMHD2JnZ6d8b8CAAdy9e5edO3d+8OfI5XLS0tLQ09PL815aWhra2tpIpcU36EcikaCrq1tsny8IgiAIwn+XGJYsCIJQAvzxxx8kJSWxaNEilYbtK56engwaNEj5d1ZWFuPHj8fDwwMdHR1cXV355ZdfSE9PV1nP1dWVli1bEhwcTOXKldHT0+Off/7h8OHDSCQS1qxZw8iRI3FwcEBfX5+EhAQAzpw5Q9OmTTExMUFfX5+6dety4sSJN8axdetWWrRogb29PTo6Onh4eDB+/Hiys7OVaerVq8fOnTt58OABEokEiUSCq6srkP89twcPHqR27doYGBhgampKmzZtCA0NVUkzduxYJBIJd+/epVu3bpiammJiYkL37t1JSUl5Y97fR3p6OmPGjMHT0xMdHR2cnJwYOnRonv2wePFiGjRogLW1NTo6OpQuXZq///5bJY2rqyvXr1/nyJEjyu+lXr16QM79zcePH2fgwIFYWVlhampK3759ycjIIC4ujqCgIMzMzDAzM2Po0KHI5XKV7U+dOpUaNWpgYWGBnp4e/v7+bNiwIU9Mr4Zfr1y5Em9vb3R1dfH39+fo0aOF++UJgiAIwjsSPbeCIAglwPbt23F3d6dGjRpvlb5Xr14sXbqUzz//nB9//JEzZ84wceJEQkND2bx5s0raW7du0bFjR/r27Uvv3r3x9vZWvjd+/Hi0tbUZMmQI6enpaGtrc/DgQZo1a4a/vz9jxoxBKpUqG2fHjh2jatWq+eZryZIlGBoaMnjwYAwNDTl48CCjR48mISGBKVOmADBixAji4+N5/PgxM2bMACjwXtf9+/fTrFkz3N3dGTt2LKmpqcyePZuaNWty8eJFZcP4lS+//BI3NzcmTpzIxYsXWbhwIdbW1kyePPmtvtuoqKi3SieTyWjdujXHjx+nT58++Pr6cvXqVWbMmMHt27fZsmWLMu3ff/+Nn58frVu3RlNTk+3bt/PNN98gk8kYMGAAADNnzuS7777D0NCQESNGAGBjY6Pymd999x22traMGzeO06dPM3/+fExNTTl58iTOzs78/vvv7Nq1iylTplCmTBmCgoKU6/7555+0bt2azp07k5GRwZo1a/jiiy/YsWMHLVq0UPmcI0eOsHbtWgYOHIiOjg5z586ladOmnD17ljJlyrzV9yMIgiAIhU4uCIIg/KfFx8fLAXmbNm3eKv3ly5flgLxXr14qy4cMGSIH5AcPHlQuc3FxkQPyPXv2qKQ9dOiQHJC7u7vLU1JSlMtlMpncy8tL3qRJE7lMJlMuT0lJkbu5uckbNWqkXLZ48WI5IL93755Kutf17dtXrq+vL09LS1Mua9GihdzFxSVP2nv37skB+eLFi5XLKlSoILe2tpZHR0crl125ckUulUrlQUFBymVjxoyRA/IePXqobLNdu3ZyCwuLPJ/1uq5du8qBAl8DBgxQpl++fLlcKpXKjx07prKdefPmyQH5iRMnCvxemjRpInd3d1dZ5ufnJ69bt26etK++69f3S0BAgFwikcj79eunXJaVlSV3dHTMs53X85CRkSEvU6aMvEGDBirLX8V6/vx55bIHDx7IdXV15e3atcuTN0EQBEH4WMSwZEEQhP+4V0OBjYyM3ir9rl27ABg8eLDK8h9//BEgz725bm5uNGnSRO22unbtqnL/7eXLl7lz5w6dOnUiOjqaqKgooqKiSE5OpmHDhhw9ehSZTJZv3nJvKzExkaioKGrXrk1KSgo3b958q/hye/bsGZcvX6Zbt26Ym5srl5crV45GjRopv4vc+vXrp/J37dq1iY6OVn7PBdHV1WXfvn1qX69bv349vr6++Pj4KL+nqKgoGjRoAMChQ4eUaXN/L/Hx8URFRVG3bl3Cw8OJj49/8xfxUs+ePZFIJMq/q1Wrhlwup2fPnsplGhoaVK5cmfDwcJV1c+chNjaW+Ph4ateuzcWLF/N8TkBAAP7+/sq/nZ2dadOmDcHBwSpDzAVBEAThYxLDkgVBEP7jjI2NAUVj8G08ePAAqVSKp6enynJbW1tMTU158OCBynI3N7d8t/X6e3fu3AEUjd78xMfHY2Zmpva969evM3LkSA4ePJinMfkujbhXXsWSeyj1K76+vgQHB5OcnIyBgYFyubOzs0q6V3mNjY1Vftf50dDQIDAw8K3ydufOHUJDQ7GyslL7/osXL5T/PnHiBGPGjOHUqVN57v+Nj4/HxMTkrT7z9dherefk5JRneWxsrMqyHTt28Ntvv3H58mWVe4JzN5Zf8fLyyrOsVKlSpKSkEBkZia2t7VvlVxAEQRAKk2jcCoIg/McZGxtjb2/PtWvX3mk9dY0SddTNjJzfe696ZadMmUKFChXUrpPf/bFxcXHUrVsXY2Njfv31Vzw8PNDV1eXixYsMGzaswB7fwqShoaF2ufy1CZY+lEwmo2zZskyfPl3t+68anGFhYTRs2BAfHx+mT5+Ok5MT2tra7Nq1ixkzZrzT95JfbOqW54732LFjtG7dmjp16jB37lzs7OzQ0tJi8eLFrFq16q0/XxAEQRCKk2jcCoIglAAtW7Zk/vz5nDp1ioCAgALTuri4IJPJuHPnDr6+vsrlERERxMXF4eLi8t758PDwABQN7rftwXzl8OHDREdHs2nTJurUqaNcfu/evTxp37Zh/iqWW7du5Xnv5s2bWFpaqvTafkweHh5cuXKFhg0bFhjP9u3bSU9PZ9u2bSo9r7mHLb/ytt/Lu9q4cSO6uroEBwejo6OjXL548WK16V/14Od2+/Zt9PX18+2pFgRBEISiJu65FQRBKAGGDh2KgYEBvXr1IiIiIs/7YWFh/PnnnwA0b94cUMyum9urHsTXZ759F/7+/nh4eDB16lSSkpLyvB8ZGZnvuq96D3P3GGZkZDB37tw8aQ0MDN5qmLKdnR0VKlRg6dKlxMXFKZdfu3aNvXv3Kr+L4vDll1/y5MkTFixYkOe91NRUkpOTAfXfS3x8vNqGpYGBgUqchUVDQwOJRKJyv+z9+/dVZnTO7dSpUyr34j569IitW7fSuHHjfHuPBUEQBKGoiZ5bQRCEEsDDw4NVq1bRoUMHfH19CQoKokyZMmRkZHDy5EnWr19Pt27dAChfvjxdu3Zl/vz5yqHAZ8+eZenSpbRt25b69eu/dz6kUikLFy6kWbNm+Pn50b17dxwcHHjy5AmHDh3C2NiY7du3q123Ro0amJmZ0bVrVwYOHIhEImH58uVqhwP7+/uzdu1aBg8eTJUqVTA0NKRVq1ZqtztlyhSaNWtGQEAAPXv2VD4KyMTEhLFjx753rB+qS5curFu3jn79+nHo0CFq1qxJdnY2N2/eZN26dcpnCzdu3BhtbW1atWpF3759SUpKYsGCBVhbW/Ps2TOVbfr7+/P333/z22+/4enpibW1tXKCqg/RokULpk+fTtOmTenUqRMvXrzgr7/+wtPTk5CQkDzpy5QpQ5MmTVQeBQQwbty4D86LIAiCILy34pyqWRAEQXg3t2/flvfu3Vvu6uoq19bWlhsZGclr1qwpnz17tsqjdDIzM+Xjxo2Tu7m5ybW0tOROTk7y4cOHq6SRyxWPAmrRokWez3n1KKD169erzcelS5fk7du3l1tYWMh1dHTkLi4u8i+//FJ+4MABZRp1jwI6ceKEvHr16nI9PT25vb29fOjQofLg4GA5ID906JAyXVJSkrxTp05yU1NTOaB8LJC6RwHJ5XL5/v375TVr1pTr6enJjY2N5a1atZLfuHFDJc2rRwFFRkaqLFeXT3W6du0qNzAwyPd9XnsUkFyueJzO5MmT5X5+fnIdHR25mZmZ3N/fXz5u3Dh5fHy8Mt22bdvk5cqVk+vq6spdXV3lkydPlv/777958vX8+XN5ixYt5EZGRnJA+TifVzGcO3furWJWF8uiRYvkXl5ech0dHbmPj4988eLFyvXVxblixQpl+ooVK6rsP0EQBEEoDhK5vJBn0BAEQRAE4ZMlkUgYMGAAc+bMKe6sCIIgCIIKcc+tIAiCIAiCIAiCUOKJxq0gCIIgCIIgCIJQ4onGrSAIgiAIgiAIglDiicatIAiCIAhvTS6Xi/ttBUEQ/s8cPXqUVq1aYW9vj0QiyfdRcbkdPnyYSpUqoaOjg6enJ0uWLCnyfIrGrSAIgiAIgiAIgpCv5ORkypcvz19//fVW6e/du0eLFi2oX78+ly9f5vvvv6dXr14EBwcXaT7FbMmCIAiCIAiCIAjCW5FIJGzevJm2bdvmm2bYsGHs3LmTa9euKZd99dVXxMXFsWfPniLLm+i5FQRBEARBEARB+D+Tnp5OQkKCyis9Pb1Qtn3q1CkCAwNVljVp0oRTp04Vyvbzo1mkW/9E7dTyLu4sFLrIfbeKOwuFTkfr0xuU0MD8YnFnodAla5sWdxYKXVy2aXFnoUhcfGRR3FkodMeOPC/uLBS6AZ30ijsLhc5CO7q4s1Dodlx3K+4sFLoOXpeLOwuF7q6sVHFnoUgcCdEt7iwUuhFfaRR3Ft5LcbYrzo3oyLhx41SWjRkzhrFjx37wtp8/f46NjY3KMhsbGxISEkhNTUVPr2jOVaJxKwiCIAiCIAiC8H9m+PDhDB48WGWZjo5OMeWmcIjGrSAIgiAIgiAIwv8ZHR2dImvM2traEhERobIsIiICY2PjIuu1BdG4FQRBEARBEARBKBYSLUlxZ6FIBAQEsGvXLpVl+/btIyAgoEg/V0woJQiCIAiCIAiCIOQrKSmJy5cvc/nyZUDxqJ/Lly/z8OFDQDHEOSgoSJm+X79+hIeHM3ToUG7evMncuXNZt24dP/zwQ5HmU/TcCoIgCIIgCIIgFAOpZsnouT1//jz169dX/v3qXt2uXbuyZMkSnj17pmzoAri5ubFz505++OEH/vzzTxwdHVm4cCFNmjQp0nyKxq0gCIIgCIIgCIKQr3r16iGX5/8kkiVLlqhd59KlS0WYq7xE41YQBEEQBEEQBKEYSLTEXaKFSXybgiAIgiAIgiAIQoknGreCIAiCIAiCIAhCiSeGJQuCIAiCIAiCIBSDkjKhVEkhem4FQRAEQRAEQRCEEk/03AqCIAiCIAiCIBQDiZbouS1MoudWEARBEARBEARBKPFE41YQBEEQBEEQBEEo8cSwZEEQBEEQBEEQhGIgJpQqXKJx+x9jXqsy7j/2xKRSGXTtrTn/2TdEbDtQ3NlSksvlHNs+i8vH1pOemoCjRyWadBqLuY1rgetdOLSSM/sWkRQfibWjD42/GoW9Wznl+7GRDzm4YTKP7l4gOysDd7/aNP5qFAbGlso00RH3OLTxDx7fvUh2dibWDt7UaTMIF+/qHxzToS2zuXh0PWkpCTh5VqJl0Bgs3hDT2QMrObFnEUnxUdg6+dCs80gc3cuppHl09xIHNs3kSXgIEqkUW2dfugxeiJa2LgBPH1xn//ppPLl3FalUiq9/Y5p89TM6ugYfFNPrNu3ay5rNO4iJi8fD1ZlBvbtSupSn2rTb9x4k+NAxwh8+AsDbw43eX3dQSZ+SmsY/y1dz/MwF4hMTsbO25vOWTWjTNLBQ812Q7du3s2HjRmJjY3F3c6N///54e3urTbt7zx4OHDjAgwcPAPD09KRb164q6U+cOMHOXbu4e/cuiYmJzJk9Gw8Pj48SS257d25k+6aVxMfG4OzmSbe+g/EsVVpt2kcPwtmwciHhYTeJevGcLr0G0bxNB5U0W9Yv49zJwzx98hBtbW1K+ZSlY7dvsHd0+RjhAIpj7MSOWYScUNQb9u6VaNxxLGbWrvmu8+jOOc7tW8TzR9dIjo+kbZ+/8KqQU76yszM5vm0m4dePEh/1CG09Q1y8a1C37Y8Ymtp8hKjUa9fAkHr+eujrSrnzMIOl2xOIiMl+q3Vb1Dbgy0ZGBJ9KZtXuxCLOKezbuZ5dW1YQHxuNk6sXQX2G4FHKL9/0Z07sZ+PKf4h68Qwbeyc6BH1Lhco1le/Hx0WzZukcrl06Q0pyIt5+FQnqMwRbe2cAIiOeMrhPW7Xb/nbo71SrWfj1x/bt29m4YQOxsbG4ubsXWE/s2b07Tz3RtVu3PPXErp07lfXE7DlziqWekMvlnAuezY0zimPKzq0SddqPwdTKNd91noad49LhRUQ+uU5KQiRNu83BvYzqdz53iI/adQNa/ETF+j0LMwQVm3cGs2bLdmJiX56j+nTHN99z1AGCDx3l3oPHwMtzVJevVNKnpKYxf9kqjp85rzxHfdayKW2aNSqyGA7uWsueLcuIj4vGybUUnXoNxb1UmXzTnzuxjy2r/ybqxVNs7Jz5PGgg5fxrqaR5+iicDctncfv6RbKzs7B3cueboVOwsLIDID42inVLZ3LjyhnSUpOxdXClxec9qRzQsMjiBKhTRkJFDwk6WvA4CnaflxGblH/6Gr4SvB0lWBhDVrZinYNXZMTkquaaVZbgZivBUBcysuDJyzTRRV8VCp8YMSz5P0bDQJ+EkFtcGziuuLOi1ungBZw/uJymncfS9ed1aOnosXZWT7Iy0/Nd58a5XRzYMJFaLQbQY8RmbBx9WDurJ8kJ0QBkpKewZmYPQEKnwUvpMnQ12VmZrP+rH3KZTLmd9XP6IcvOptPgpXT/ZRPWjj6sn9OPpPjID4rpxO6FnNm/nJZBY+k1ch3aOnosn9aLzAJiunZ2F8FrJ1Gv9QD6jtmEjZM3K6b3IullTKBo2K6Y0RsPv5r0HrWOPqPWU7VBZyQSxWGXEBvBsqk9MLd2pvfItXw9eCGRT++yZdHwD4rndQeOn+Kvf1fQ7av2LJw+AU9XZ4aMm0RsXLza9Jeu3aBh7Rr8OX4kf08eh7WlBUPGTiIyOkaZ5q9/l3P2Yggjv/+G5bOn8kWrpsycv4TjZy8Uat7zc+TIEeYvWEDnTp2YPXs2bu7ujBw1iri4OLXpQ0JCqFe3LpMmTmT6tGlYWVoyYuRIoqKilGnS0tLw8/OjR/fuHyUGdU4d28/yhbP4rGMPfp+5GBc3TyaN/oH4uBi16TPS07C2tadj1/6YmlmoTRN67RKNW3zGr1Pm88v4P8nKzmLi6O9JS0stylBUnN23gIuHl9Oo41g6/6Q4xtbPLrjeyMxIwcrRm8AOY9S+n5WRRsSjGwQ060/Q8E207TOH2Bf32DSvf1GF8UbNaxnQqJo+S7Yn8Ov8aNIz5AwJMkPrLS4ju9lrUr+yHg+fZxZ9RoHTx/ax6t+ZtOvQi/HTl+Hs5sUfYwfmW9Zuh4Ywd+oo6ga2ZvyM5fhXq8vMiT/x6EEYoGhszfz9JyKfP+GHEVP5bcYKLK3tmDT6W2VZs7C0YfaSXSqv9h37oKurT/lKNQo9xiNHjrBg/nw6de7M7NmzcXdzY9TIkQXWE3Xr1WPipElMmz4dSysrRo4Yobae6N6jR6Hn911cOrSQkOPLqfvZWD4buA5NbT12LOj1hmMqFUt7H+q0G51vmm6jj6m86n85ASQS3Ms1LoowADh47CR//bucrh0+Z8H0iXi4uTBk7MR8z1GXr96gYe2azPxtFHP/+BUrSwuGjP39tXPUMs5evMKIHwawbM40Pm/djD/nL+bEmfNFEsPZ48GsXTyd1h36MGbaKpxcvZjx6wAS8jme7t68wvzpv1C7YRvGTFtFxWr1mDNpMI8f3FWmefHsEZN+6Ymdgys/jZ/PuBlrafVFb7S0dJRpFv45mognD/hu+Ax+nbmOStUbMG/qMB6E3yySOAECfCRUKSVh93kZS/bJyMyCjvWkaBTQonC2lnDhrpwl+2SsOixDQwqd6knR0shJ8zwWtp+R8c9uGWuOyECi2K7k/6BTU6IlKbbXp6hENW737NlDrVq1MDU1xcLCgpYtWxIWFqZ8/+TJk1SoUAFdXV0qV67Mli1bkEgkXL58WZnm2rVrNGvWDENDQ2xsbOjSpYvKiau4RQYf5faYmURs3V/cWclDLpdz7sAyajbvT6kKgVg7+tCy+x8kxr3g9uX883t2/2LK1/qScjU/w9Lek6adx6GprUvIyY0APA67SHz0E1p2m4S1gzfWDt607D6ZZw+ucf/WaQBSkmKIfXGfgKZ9sHb0wdzGlXrtfyQzI5XIp3c+KKbT+5ZRp1U/fCo2xNbJm3a9JpMY94KbF/OP6VTwEirV+YKKtT/D2sGTlkHj0NLW5dKxjco0e9ZMolrDLtRu0QdrBy8s7dwpU7UZmlraANy+chgNDU2afz0aSzt3HNzK0jJoLKEX9hId8eC9Y3rduq27aNm4Ps0b1sPVyZEf+/dEV0eHnQeOqE0/evC3tGveCC93V1wcHRg6oA8yuZwLIdeUaa7dukPT+rWpWLY0djZWtG7SEA9XZ0LvhKndZmHbvHkzzZo2pXHjxrg4O/Pdt9+io6PD3r171aYfNnQoLVu2xMPDAycnJwYNGoRMJuPylSvKNA0bNqRzp05UrFjxo8Sgzs4ta2jQpDX1Alvi6OxGz2+Goq2jw+F9O9Sm9yhVms49vqVGnUZoammpTTN83AzqBrbAycUdFzcv+n8/kqjICO7dLbofP7nJ5XIuHFxG9ab98SqvqDead/2DpPgX3LmS/zHm7leX2q1/oFQF9T0tOnpGfDlwMT7+zTG3ccferQINvxxFxMPrJMQ8LapwCtQkQJ/tR5O4dDOdRxFZzN8Uj6mRBpV8dAtcT0dbQr/PTfl3awLJqfKPktfdW1dRr3Fb6gS2wsHZne79f0ZHR5ej+7erTb93+xrKVapOi/ZdcHBy4/PO/XB192H/znUAPH/6kLu3rtGt/zDcvUpj5+hCt37DyMhI5/TRYACkGhqYmlmqvC6cPkzVWg3R1dMv9Bg3b95M02bNaNy4Mc4uLnz73XcF1hNDhw1TW09cyfUbomHDhnTq3LlY6wm5XE7IsWX4B/bDrUxDLO29afjVZJITXnDvWv7HlItvHao1+x73svn3XuobW6m87l8/iINHNUwsnIoiFADWbd1Jy8YNaB5YD1dnR37s3wtdHW127T+sNv2oH7+jXfPGOeeob/sik8m5cCXnHHX95m2aNKhDxbJ+2NlY07pJIB5uLkV2jtq7bSV1GrWjVsM22Du506XfCLR1dDl+YKva9Pt3rKJMxQCatuuKvZM77Tp9g4u7Dwd3rVWm2bTqL8r61+SLrt/j4u6DtZ0TFarWxdjUXJkm7NYVGrTogHupMljZOtLqi17o6xvxICy0SOIEqOot4fh1ObefwIt42HZGhpEeeDvm31Bac0RGyD05UQnwIk7RiDUxkGCbEwqXwuQ8ioT4ZEVD90iIIo1J4Q5kE/4PlKjGbXJyMoMHD+b8+fMcOHAAqVRKu3btkMlkJCQk0KpVK8qWLcvFixcZP348w4YNU1k/Li6OBg0aULFiRc6fP8+ePXuIiIjgyy+/LKaISpa4qMckJ0Ti6ptzhV1Xzwh7t/I8Cb+kdp3srAyeP7yOW651JFIprj41lOtkZ2aARIKGprYyjaamDhKJlMd3FT2BegZmmNu4cfX0FjLSU5BlZ3H56Fr0jSywdc5/GN2bxEY+Jik+EvfSuWLSN8LRvRyPwy6rXScrK4OnD66rrCOVSnEvHaBcJykhmifhVzAwNmfhhK+Y8n1NFk/6mge3c3o2s7My0NDQQirNOQw1tRQ/gh/eKZwe0MzMLG6H3aNyuZyhUVKpFP/yZbh+6+0uCqRnpJOVnYWxoaFyWRlvL06cu0hkdAxyuZyLV6/z6OlzqlQoWyj5LkhmZiZ37t6lQoUKymVSqZQKFSoQevPtGmzp6elkZ2djlCum4paVmcm9u7coU76ycplUKqVMhSrcuXWtgDXfTUpyMgCGRsaFts2CxEcr6g0Xn5zjRUfPCDvX8jzNp954X+lpSSCRoKP3cWLLzcpMA1MjDa6HZSiXpabLCX+SiaeT+gsPrwS1MObK7XRuhGcUmK6wZGVmcj/sJn7lqyiXSaVS/MpX4e6tq2rXuXvrKn7lq6osK1uxOndeps/KVPQ45+5VkkqlaGlqcSv0CurcuxvKg3u3qRvY5oPiUSczM5O7d+6orSduhr7dD/9X9YShkVGh5+9DJMQ8JiUxEicv1WPKxrkczx9cLrTPSUmM4kHoEXyrflZo23zdq3OUf/mcc4fiHFWW67duv9U20tNfnqOMclpBfj6lOHH2Qs45KuQ6j548o0rFcgVs6f1kZWbyICwU3/LVVGIoXa4aYbdC1K4TdusqpXOlB/CrEEDYbUV6mUxGyPnj2Nq7MH3cN3zftSG/DQ3i4plDKut4eJfn3PG9JCXGI5PJOHMsmMzMdLzL+BdylAqmBmCoJ+F+RM5FuPRMeBINDuoHD6ml87JKTMunytPSgHLuEmKT5CSkfECGhf9LJeqe288+U61g//33X6ysrLhx4wbHjx9HIpGwYMECdHV1KV26NE+ePKF3797K9HPmzKFixYr8/vvvKttwcnLi9u3blCpV6qPFUhIlJyiG/xoYq9ZgBsYWJMer7/1OSYpFLstG3yjvOtHPwwFwcK+AtrYehzZNoV67wcjlcg5vmoZclq0cciyRSOj4wxI2zv2GaYMqIZFIMTAyp8PAhegZmLx3TEkvYzLME5MlSfnFlKiISd06Uc/uARAbqbhf9fDWOTT+cii2zr5cObmVZVO78c347VjYuOLmW53gtZM5sXsR1Rp1ITM9lf0bpiny9YFDrV+JT0wkWybDzFT1OzI3MeHh47fr3Zq3dDWWZmb4l89pIA/q040pcxfyWc9v0dDQQCqR8NOAXlTw8y2UfBckISEBmUyGmZmZynIzU1MeP3r0Vtv4d/FizM3Ni7X35XUJCXHIZNmYmJmrLDcxNefp48LpyZfJZCxbMBNv33I4uXyc+wST4wuoNxIKb9RMVmY6RzdPxbdyC3T0Pv5FCxNDxUWq+CSZyvKEpGzle+pUK6OLi70m4/6JzjdNYUt8VdZMVcuacQFlLS4uOk96E1Nz4mMVwy7tHF2xsLJl3fK/6PHNcHR09NizbRUx0S+Ij1G/n4/s34a9oxulfAu/wZFfPWFqZsajx4/fahuL//33P1dPAKQkKo4pvdfOq3qGlqQkFt4xdev8FrR0DHAvW3RDkuMTEtSeo8xMTXj4+MlbbWPeslVYmpupNJAH9enO1L8W8HmPb5TnqCED+lC+CM5RiYmK48nYJO/x9OzJfbXrxMdFYWxq8Vp6CxJiFfVAYnwM6Wkp7Nq0mHadvuHzoEFcu3iSuZOH8NOv85WN1/4/TWbe1GEMCqqPhoYm2jq6DPh5GjZ2zoUeJ4DBy0EoyWmqy5PT5Bjqvf12GlWU8ihSTuRrI8/9PSU0KC9BW0tCVIKcVYdlyGTqt/EpERNKFa4S1bi9c+cOo0eP5syZM0RFRSF7WeIfPnzIrVu3KFeuHLq6OcO/qlZVvcp85coVDh06hKGa3pqwsDC1jdv09HTS01XvYcmUy9CSlKhO7/dy7cw29qzMud/ty2//KZLP0Tcyp23fPwleOZbzh5YjkUgpXaUFts5+SF7ebCGXy9m7ehz6xhZ0GbISTW1dLh9fz4a/+tHtlw0Ymli/1WeFnNrO9mU5MXX+fl6RxCSXK8qmf70OVKytuChj51Ka8NBTXDq2kcDPf8TawYu2PScSvGYy+zdORyqVUi2wCwbGlsr7covbio3bOHD8FLN+G4WOdk7P+sadwdy4dZeJv/yIrbUVl6+HMuOfJViam1G5fNH33n6IdevWceTIEf6YPBntXDH9P1g8bxqPHoYzdnLRlHuAG2e3sXd1zjH2Wf+iqTdyy87OZNvCQciR0+irjzNfQUA5Xbq1yukhnr4y9p23YW4spXNzI6YsjSUzqzBz9/Fpamoy6OfJLJzzG/06ByKVauBXvgrl/GuAPO9Q64z0NE4dDabNl0U3SdGHeFVPTP7jj2KvJ25f3M7hDTnHVIueRXf85hZ6diOlKrVEM1dv/H/Nyg1bOXjsJH9OGK1yjtq0Yw83bt3h9xE/YWttyZXrocz851/FOeojjDD6ULKXx0zFqvVo3PprAJzdvLl76wqHgzcoG7ebV80lJTmJH8f9jZGRGRfPHmLelGH8/PsiHF28Pjgffi4SmlfOaXitPfrhLc2m/hKsTGHZ/rzbuvZATvhzRUO5uo+U9jWkLN0vI/v/oIErFJ4S1bht1aoVLi4uLFiwAHt7e2QyGWXKlCEj4+2GciUlJdGqVSsmT56c5z07Ozu160ycOJFx41R/LHWUmNNZw1Jt+k+JV/kG2LuVV/6dnaX4npMTolUak8kJ0dg4qZ9hUd/QDIlUg5RE1V4JxTZyvkP30rXoP2E/KUkxSKWa6OobM+unmvhaNgfgwc3T3A05zA8zzil7ZZp28mNe6EmuntpCQNM+bxWTd4X6OOSa0fhVTEkJ0RiZ5o4pCltn9Vd49Y0UMeWePOrVOq9iMnr5/VjZq872aGXnQXzMM+Xf5aq3olz1ViTFR6Glo4dEIuFU8BLMrArn/iYTIyM0pNI8E3PExMdjbmZa4Lqrt+xg1cZtTP/1Fzxcc64Cp6dnsGDFWib8PJiAyooeDQ9XZ+7ee8CaLTuLvHFrbGyMVColNla1MREbF4eZuXk+ayls2LiRdevX8/uECbi5uRVlNt+ZsbEpUqmGsifslfi4GEzNCo7rbSyeN42L504wZuJcLCzf7mLQ+/As1wA717erN6wd1dcb70LRsP2ehJindBi09KP12l66mU7Y45w6QEtD8QPQxFCq0ntrbKjBw2fqJ4lytdfCxFCDcf1yenA0NCR4u2gRWFWfnr9GqGsXfjCjV2XttcluEuJi8p2YzNTUIk/6+LgYlZEGbp6+TJi5kpTkJLKyMjE2MWPMkO64eeatS8+ePEh6ehq16jcvhIjyyq+eiIuNxfy13tzXbdywgfXr1jHh99//E/WEa+n6dBic97yVmhiNgXHOMZWaFIWFfeH0TD4NP09c5D0ad5lRKNvLj4mxsdpzVGzcm89RazZvZ9WmrUwbNwIP15zZ3xXnqDX8NvxHAipXAsDD1YW74Q9Yu2VHoTdujYwUx1NCfN7jycRU/fFkYmpJQlz0a+mjMX55/BkZmaKhoYmdk7tKGjtHN+6GXgYUE04d3LWWX/9cj4OzYiSOk1sp7ty4xMFd6wjqP+KDY7vzRM7C6JxK6NWkUQa6kJSr99ZAV0JE7JsrqyaVJHg5SFh2QEaimjkN0zMVr9gkeBIt48f2UrwdJdx4+HHmIiguEg3Rc1uY/hvdQ28hOjqaW7duMXLkSBo2bIivr6/KScvb25urV6+q9LKeO3dOZRuVKlXi+vXruLq64unpqfIyMFB/x/rw4cOJj49XeX0p/fAfmiWBjq4h5tYuypelnScGxlbcv3lKmSY9NYmn967g4K5+2JaGpja2zn7cD81ZRy6T8eDmKbXr6Buao6tvzP2bp0hOjMarfANAMcsjoOzJfUUikajMqPzGmPQMsbBxUb6s7D0xNLHi3o2c/KWlJvE4PARHjwpqt6GpqY29ix/3csUkk8kIDz2tXMfU0gEjU2uiXw5TfiU64j4mFvZ5tmloYomOrgHXzu5GU0sHd7/CmTlUS0uTUh5uXAi5rpLXiyHX8fPO/6ruqk3bWbZuM1PGDMPHU/XkmpWdRVZWdp59IZVKkcmK/gSkpaWFl6enymRQMpmMy5cv4+uTf2Np/fr1rF69mvHjx/8nb0HQ1NLCzdObayE591vLZDKuXzmPl3f+j5N4E7lczuJ50zh36ggjJ8zG2jZv+StM2rqGmFm7KF8WL+uNh7dU641n969gn0+98bZeNWzjXjzgy4FL0DMsuNFSmNIy5LyIyVa+nkRmEZeYTWn3nN4jXR0J7g5a3H2kvnF7IzyDX+ZEMervaOUr/Ekmp0LSGPV3dJE0bEFR1lw9fLgRknOOlMlkXA85j6e3+h/+nt5luR6iek69dvkMXmrS6xsYYmxixvOnD7kXFop/tTp50hzZv41KVepgbFI0+0xLSwtPLy+VyaBe1RM+vvk3AP+L9YS2riEmli7Kl5mNJ/pGVjy+k3NMZaQlEfEwBFuXCoXymaFnN2Dl6Iel/YdfgCpIzjkqZ14BxTnqGn7e+X//qzZtY9m6TfwxZjg+Xqq3WOR7jtKQIpMXfhegppYWLh6+hIacVS6TyWSEXj2Lh7f6Ifce3mVV0gPcuHIGj1LllNt09SzN89eGNUc8fah8DFBGhqJ1qe5cLC+kODOyFA3NV6+oBEhKleNqk/OZ2pqK+22fvOHOiiaVFI8DWnFQRnzymz9b8vKlqfGmlIKgqsQ0bs3MzLCwsGD+/PncvXuXgwcPMnjwYOX7nTp1QiaT0adPH0JDQwkODmbq1KlAzoE/YMAAYmJi6NixI+fOnSMsLIzg4GC6d+9Odrb65xDq6OhgbGys8irKIckaBvoYl/fBuLzihKLv5ohxeR90ndT3LH9MEomEKg2DOLnrb+5cOcCLJ7fYvngoRqbWlMr1/MlV07ty/tAK5d9VA7tz+fg6Qk5tJupZGHtWjSUzI5VyNdor04Sc2MiT8MvERj7k2umtbJ7/PVUbdsPCVtGwcvCogK6+MTuW/EzEo5tER9zj4IbJxEU9waNsvQ+KqXqjII7umMfNSweJeHyLzQuHYWRqjU+lnJiWTunGmQM5MQU06caFI+u5fGIzkU/D2Ll8LJnpqVSs1V653RpNe3LmwHKun99DdMQDDm76k6hn4VSq/blyO2cOrODpg+tEPb/H2QMr2bVyPA0/+wE9/cKbEOfLNs3Zse8Quw8e5f6jJ0yb9y+paWk0b1gXgAkz5/LP8jXK9Cs3bWPRqvUM+7YvttZWRMfGER0bR0qq4kRqoK9PBT9f/l66iktXb/A04gW7Dxwh+PAx6lSvrDYPha1du3bs2bOHffv38/DhQ+b89Rfp6ek0aqSYBXTq1KksXrxYmX7d+vUsW76cH77/Hhtra2JiYoiJiSE1NefScWJiImFhYTx4+BCAx48fExYWRkyM+kc5FIUWbb/iUPA2jhzYxZNH9/l37hTS09KoG9gSgLnTf2X10r+V6bMyM7kffpv74bfJysoiNjqS++G3ef40557Cf/+eyvHDwXw7ZBx6evrExUYTFxtNRnr+jwwpTBKJBP8GQZza/Td3Qw4Q+eQWu5YOxdDEGq/yOcfY2j+7cvFwzjGWkZZMxKNQIh4pJv+Jj35MxKNQ5UzI2dmZbFswkIgH12jRfSqyl/foJ8VHKnu2PrbgUym0rmtIRW8dHK016dPehLjEbC7ezOniGNrNjMCqipmB0zLkPHmRpfJKz5CTlCrjyYuiHafcrE0nDu/dyrGDO3jy6B5L5k0mPS2VOi/L2rwZY1i77C9l+satvuLqxVPs2rKSp4/vs2n1fO6FhRLYImdCxjMn9hN69QIvnj/hwpkjTB7zHf7V6lK2ouqzyCOePeLW9UvUa1z4E0nl9qqe2L9vHw8fPuSvOXMKrCfWr1vH8mXL+P6HH7C2sSmwnnj48lm4xVFPSCQSytUO4sKBedy7fpDoZ7c4sHoYBsbWuOV6bu3Wed24ejznmMpMTybqSShRTxTHVGLMY6KehJIYqzr/QkZaEmFXgvGt+sVHiefLNi3Yufcgew4e4f6jJ0yft4jUtHSaBb48R834i/nLVivTr9q4lX9XrmPYd/3yP0eV8WXekpVcunqdZxEv2H3gMMGHjlK7ehW1efhQjVt35ui+zZw4uJ2nj8JZ8c/vpKelUrNhawAW/jmKjctnK9MHtuzEtUunCN66nGeP77F1zTzuh92gQfOc55Q3bRvEuRN7ObJ3ExHPHnJg1xqunDtK/aaK/WLr4Iq1nRPL5k0g/PY1Xjx7RPDW5dy4coaK1eoXSZwAZ2/JqeknwcserEygdXUpialw63HO1bhO9aVU9sppADf1l1DGVcKWUzIyshQ9vwa6OQ1XUwPFs3BtzcBYX9FYbl9TSmY23H36affaAkg1JMX2+hSVmGHJUqmUNWvWMHDgQMqUKYO3tzezZs2iXr16gGII0vbt2+nfvz8VKlSgbNmyjB49mk6dOinvw7W3t+fEiRMMGzaMxo0bk56ejouLC02bNlWZsbY4mfiXIeDAcuXfpaf+AsCjZZsI6Vm4zz99H9Wb9CYzI5XdK0aTlpKAk6c/Xw5cqHJPTlzUI1KTcnrVS1dpTkpSDMe2zSI5IRJrR1++HLgQA+OcYcnREfc4vGU6qcnxmFg4ULNZP6oEdlO+r2+omDzqyNaZrJrRFVl2JpZ2Xnz+zV/5Dol+WzWb9SIjPZXtSxUxOXv58/XgBSqzfsa8eEhKYk5MZao2JzkxhkNbZpMUH4mtky9f/7BAZah1QOOuZGWmE7x6EqnJ8dg4edPlx38xt84Z4vsk/CqHt8wmIz0FS1t3WgWNo3yNwv3B17BWAHHxCfy7egMxsXF4urkwdczPmL+cwCMiMlrlHt+tu/eTmZXF6D9mqmynW4f29OioaJiPGfId85evYfyMv0hISsLWypLenb+kTdNAPoa6desSn5DAiuXLiYmNxcPdnfG//qqcPOZFZCSSXMf0zp07ycrKYkKuyeQAOnfqxNdfK+5nOn36NNNn5AzBm/Ty9oXcaYpaQO1AEuLj2LByAXGxMbi4e/HzuOnKYclRkREq+yo2Jorhg7op/96xeRU7Nq/Ct0xFRk9UNEz2794MwPhfBqh8Vr9BI6gb2KKII1Ko2qg3mempBK8aTXpKAg4e/nz+7Wv1RqRqvfH84TXWzgxS/n1o40QA/Kq3o3nQJJLiIrgbchCApb+rHjMdvl+GcynVmUg/hl3Hk9HRltCttTH6ulLuPMxg6nLV+2mtzTQxNPg4z7ItSPXajUhMiGXjqvnEx0bj7FaKn8b8qRxGGR0VoXIMlfItR/8fx7NhxTzWL5+Ljb0T3w+fojIxWVxMNKsWzSQ+PgZTM0tq1W9OWzX31B7Zvx1zC2vKVCjafVS3bl0S4uNZvmIFsTExuHt48Ov48cp6IvLFC6S5er1e1RO/T5igsp1OnTur1BMzpk9Xvjd50qQ8aT6GivV7kZWRyuENo8lITcDOzZ+WvReoHFMJ0Q9JTc45pl48usbWeV2Vf5/Ypsi7d+W2NPxqknL5ncs7ATleFT9O/dCgdg3iEhL4d9V65TlqypifMTc1VeQ7KgqpNGc/bd2zT3GOmqw6ZLrbV5/RvaOi4Td6yCDmL1vNb9PnvDxHWdHr669o0zT/xyB9iKq1mpCYEMuWNX+TEBuNk5s3P4yeozyeYiKfq9Tdnj7l6f3DBDavmsumFXOwtnPm25+n4+iScytTpeoN6NL3F3ZtWszqRVOwtXfhm6FT8CqtGPGiqanF9yNns2H5LGb//j1paSlY2znRY+A4yvnXKpI4AU7dlKOlCc2rSNHVhkeRikf95L4v1swQ9HLdqu3vpYi9S0PVbtjtZxSPCMrKBicrCVW8JehpQXI6PHwhZ+l+OSkf5zqs8AmRyOVFNfCp+K1cuZLu3bsTHx+Pnt47TOP2Bju1vAttW/8VkftuFXcWCp2O1qdXtBuYXyzuLBS6ZG3T4s5CoYvLNi3uLBSJi4/e4VkPJcSxI8+LOwuFbkCnwjvf/VdYaH+82aQ/lh3Xi/9+3sLWwetycWeh0N2V/TeGpxe2IyEFP3+7JBrxVckcw3y8fKVi++xaVz6935Ulpuf2bSxbtgx3d3ccHBy4cuUKw4YN48svvyzUhq0gCIIgCIIgCEJhkEg/zeHBxeWTatw+f/6c0aNH8/z5c+zs7Pjiiy+Y8NrwIkEQBEEQBEEQBOHT80k1bocOHcrQoUOLOxuCIAiCIAiCIAhvJNH4b8z786kQ36YgCIIgCIIgCIJQ4onGrSAIgiAIgiAIglDifVLDkgVBEARBEARBEEqKT/V5s8VF9NwKgiAIgiAIgiAIJZ7ouRUEQRAEQRAEQSgG4lFAhUv03AqCIAiCIAiCIAglnui5FQRBEARBEARBKAbintvCJXpuBUEQBEEQBEEQhBJPNG4FQRAEQRAEQRCEEk8MSxYEQRAEQRAEQSgGEjEsuVCJnltBEARBEARBEAShxBM9t4IgCIIgCIIgCMVAIhV9jYVJfJuCIAiCIAiCIAhCiScat4IgCIIgCIIgCEKJJ4Ylv4fIfbeKOwuFzqqRd3FnodClHAst7iwUuiNxFYs7C4Xu/tPizkHhq+qdXtxZKBLG+rLizkKha9XCurizUOh0NaKKOwuFLjrDorizUOicbT694+mJ1KW4s1Do7LQjijsLRSIx0b64s1AENIo7A+9FIhUTShUm0XMrCIIgCIIgCIIglHii51YQBEEQBEEQBKEYSMWjgAqV6LkVBEEQBEEQBEEQSjzRcysIgiAIgiAIglAMxD23hUv03AqCIAiCIAiCIAglnmjcCoIgCIIgCIIgCCWeGJYsCIIgCIIgCIJQDCRS0ddYmMS3KQiCIAiCIAiCIJR4oudWEARBEARBEAShGIgJpQqX6LkVBEEQBEEQBEEQSjzRuBUEQRAEQRAEQRBKPDEsWRAEQRAEQRAEoRhINcSw5MIkem4FQRAEQRAEQRCEEk/03AqCIAiCIAiCIBQDMaFU4RI9t4IgCIIgCIIgCEKJJ3pui5BcLufY9llcPrae9NQEHD0q0aTTWMxtXAtc78KhlZzZt4ik+EisHX1o/NUo7N3KKd+PjXzIwQ2TeXT3AtlZGbj71abxV6MwMLZUpomOuMehjX/w+O5FsrMzsXbwpk6bQbh4Vy+qcAtkXqsy7j/2xKRSGXTtrTn/2TdEbDtQLHl5nVwu58Dm2Zw/vJ60lEScvSrSuusYLG1dC1zv9P6VHN/9L0nxUdg6+dDy6xE4epTLk04ul7NsWl/uXD1Gp4GzKe0fqHwv7Pop9m+aRcTj22jr6FOxZhsCP/8eDY0POzTlcjkHN8/m/JFcMQWNweINMZ3JHZOzDy2+HoGje05MiyYGcf/WOZV1qtTrQOtuYwG4eGwzmxf9onbbw2Ydx9DY4oPiehO5XM7F/bO5dX49GamJ2LhUpEabMZhYuua7zpXD87l/fR/xkeFoaOli7VyRKk1/xNTKrUjzCnBo9xr2bV1KfFw0jq6l+KrnMNy8yuab/sLJvWxdPZfoyKdY2znT/utBlPWvrTbtyn9+4+jeDXzRfQiBLb9WLv+lXzOiI5+ppG3XeSBN2/conKAovvIH8Dj8KvvWT+fp/esgkeDoXpbGXw7Bztnng2M6sGk2517WEy5eFWnd7e3qiWO7ctUTXUbglE89sXRaX+6EHKPzINV64pWUxFhmj2xHQmwEI/8+g56B8QfF9Lo9OzaxbdNq4mJjcHHzoEff7/HyLq027aMH91i7chHhd28R+eI53Xp/R4s2X+a77c3rV7Bq6T80b/0F3fsMLNR857Zv53p2bVlBfGw0Tq5eBPUZgkcpv3zTnzmxn40r/yHqxTNs7J3oEPQtFSrXVL4fHxfNmqVzuHbpDCnJiXj7VSSozxBs7Z1VtnPnZgjrV/xN2O3rSKUauLh5MXTsLLR1dD84Jrlczr5Nczh3aD2pKYm4lqpI226j31j2Tu1bxZGXZc/OyZvWQaplb9O/Y7h7/TQJsS/Q0dXH2asCzTr8iLW9uzLNtmUTeHDnEs8f38Ha3p1BEzZ/cDzq7N25gR2bVhIfG4Ozmydd+w7GM5/99vhBOOtXLuBe2E2iXjynS69BNGvzlUqareuXcu7kEZ4+eYC2tg5ePmXp2O0b7B1diiT/+dm+fTsbN2wgNjYWN3d3+vfvj7e3t9q0e3bv5sCBAzx48AAAT09PunbrppL+xIkT7Nq5k7t375KYmMjsOXPw8PD4KLHk1shfkyo+Guhpw/0IGVuOZxGdIM83fb3yGvi5aWBtIiEzGx5EyNh9Nouo+Jx1DPWgeTUtvByk6GhBZLycQ5eyuHZf9jFCKlYSqehrLEzi2yxCp4MXcP7gcpp2HkvXn9ehpaPH2lk9ycpMz3edG+d2cWDDRGq1GECPEZuxcfRh7ayeJCdEA5CRnsKamT0ACZ0GL6XL0NVkZ2Wy/q9+yGU5FcD6Of2QZWfTafBSuv+yCWtHH9bP6UdSfGRRh62WhoE+CSG3uDZwXLF8fkGO7VrI6X0raNNtLP1Gr0VbR5+lU3uTmZH/frp6Zhe7V0+mfpsBfDNuI7ZO3iyZ2pukl/spt5PBS5GoGXHy7OFNlk3vi1fZWgz4dRMdvpnGzUuH2LtueqHF1LrrWPq+imnaW8S0ZjL12w6g/8uYlqqJqXLdLxg686jy1bjDEOV7Zas1U3lv6MyjeJaphat3lSJv2AKEHF3IjVMrqNlmLK37r0VTW5/gxb0LPOae3TuHb/VOtOq/hqY9FiGTZbJncU8yM1KKNK/nTgSzYck0WnzZlxFTVuPoUopZ478hIT5Gbfqwm5dZOGM4NRu2ZeTUNVSoWp+///iBJw/v5kl76cxBwm+HYGpupXZbrb/6hj8W7le+6jfvWKixFVf5S09LZtm03phY2NFn9Fp6jViBtq4By6b2Jjsr88Ni2rmQUy/rif5j1qKlo8+SKQXHFHJ6F7tWTaZB2wEM+HUjts7eLJlSQD3xhjxsWjQKW6dSHxRHfk4cPcDShXP4omM3Jv+5EBc3TyaM/pH4uFi16dPT07C2taNz176YmpkXuO27t0PZt2cbLq5F+yP89LF9rPp3Ju069GL89GU4u3nxx9iBxMepP6Zuh4Ywd+oo6ga2ZvyM5fhXq8vMiT/x6EEYoGhUzvz9JyKfP+GHEVP5bcYKLK3tmDT6W9LSUpXbuXMzhCnjBlG2QnXGTV3Mr1OX0KjFF4X2g/XIzkWc3LuCtt3HMGDsGrR09Pj3jz4Flr0rp3ezY9VkAtt9w3fjN2Dn7MOiP/qQFJ9T9hxc/fi89wQGT95Bj6ELQA6L/uiFTJatsq3KddpTrlqzQolFnVPH9rNi4Szad+zJhJlLcHbzYtLoH/Ldb4qyZ89XXb/B1Ez9eSX02iUatfiMX6csYPj4P8nOzmLS6O9V9ltRO3LkCAvmz6dT587Mnj0bdzc3Ro0cSVxcnNr0ISEh1K1Xj4mTJjFt+nQsrawYOWIEUVFRyjRpaWn4+fnRvUfhXYx8V3XLa1DDT4MtxzP5a2sGmZnQo5kWmhr5r+NmJ+X09Wz+2pbBol0ZaEihZzNttHJdx/+ynhZWJhKW7s1g5sYMrt/PplNDLewtxJBd4d2UyMbthg0bKFu2LHp6elhYWBAYGEhycjIACxcuxNfXF11dXXx8fJg7d65yvR49elCuXDnS0xUnhIyMDCpWrEhQUFCh51Eul3PuwDJqNu9PqQqBWDv60LL7HyTGveD25f35rnd2/2LK1/qScjU/w9Lek6adx6GprUvIyY0APA67SHz0E1p2m4S1gzfWDt607D6ZZw+ucf/WaQBSkmKIfXGfgKZ9sHb0wdzGlXrtfyQzI5XIp3cKPda3ERl8lNtjZhKxNf/Yi4NcLudk8DLqteqHb6WG2Dp783mfSSTGvSD0Yv55PbFnKZXrfoF/nfZYO3jSuttYtLR1uXB0k0q6Zw9CObFnCe16TsizjatndmPr5E2DtgOwsHHBzacqTToM4cyBVaSnJn9QTKf2LqNu65cxOXnzWe9JJMYWHNPJYEVMlWorYmrVVRHTxddi0tLWxcjUSvnS1TPM9z2pVIN7oWfwr/PZe8fztuRyOddPLqNC/X64lG6IuZ03db+YREriCx7cyD/upt0XUMq/HWY2XljY+VDns4kkxz0j6sn1Is3v/u3LqRXYnpoN2mLv5EHnviPR1tHl5IEtatMf2LkKv4o1aNK2G3aO7rTpOABnN18O716jki42OoI1CyfRc9Dv+Y4A0NHTx8TMUvnS0dUrtLiKs/xFPbtHanI8Ddt9h5WdGzYOXtRvM4CkhCjiop9+UEwngpdRr3U/Svsr6okv+r5lPVEvp55o020sWjq6XDiiGtPTB6Ec372E9r3y1hOvnDmwmrSUBGo1L5oftTu2rKVhk1bUb9QCJ2c3+gwYgraOLgf37VSb3rOUL0E9BlCzbiBaWtr5bjc1NYVZU3+l33dDMTA0KpK8v7J76yrqNW5LncBWODi7073/z+jo6HJ0/3a16fduX0O5StVp0b4LDk5ufN65H67uPuzfuQ6A508fcvfWNbr1H4a7V2nsHF3o1m8YGRnpnD4arNzOykUzadyyA60+74qjswd2ji5Uq9WowO/lbcnlck7sWUaD1n3x82+InbM3HfpOIiHuBTcu5D/66fjuJVSt9wWV67THxsGTtt3HoK2jy/lcx1O1Bl/i7lMZcysHHFxL0/jzgcRHPyc28okyTeugEQQ06oS5teMHx5KfXVtWU79Ja+oFtsTR2Y2e3wxFR0eHI/t2qE3vUao0nXt8R406jdDU0lKb5udxM6kb2AJHF3dc3Lzo9/1IoiKfc+/uzSKL43WbN2+mabNmNG7cGGcXF7797jt0dHTYu3ev2vRDhw2jZcuWeHh44OTkxKBBg5DJZFy5fFmZpmHDhnTq3JmKFSt+pCjyqllGk4OXsrjxQMbzGDlrD2dirC+htEv+TYrFezK5cCebF7FynsXIWX8kEzMjCY6WOQ1XFxspJ69n8ThSTkyinIOXsknNAAfLEtlUEYpRiSsxz549o2PHjvTo0YPQ0FAOHz5M+/btkcvlrFy5ktGjRzNhwgRCQ0P5/fffGTVqFEuXLgVg1qxZJCcn8/PPPwMwYsQI4uLimDNnTqHnMy7qMckJkbj61lAu09Uzwt6tPE/CL6ldJzsrg+cPr+OWax2JVIqrTw3lOtmZGSCRoKGZc9LU1NRBIpHy+O4FAPQMzDC3cePq6S1kpKcgy87i8tG16BtZYOuc//Cs/0exkY9Jio/Cwy9AuUxX3whH93I8untF7TpZWRk8vX9dZR2pVIqHXwCP7l5WLstIT2XdvJ9oFTQKI9O8PWjZWRloaumoLNPU1iErM50n99+/YaWMqfRrMXmU41FYwTG5l1YTU9hllbRXTu9g4rcBzB7Rir3rp5ORnv+V8MsntqKlrYtflSbvHc/bSox9TGpiFPYeOTFo6xph5ViOFw/Vx61OZnoiADp6JoWex1eyMjN5GBaKb7lqymVSqRSfctUIvx2idp3w2yH45EoPULpCAOG3ctLLZDIWzxpJ4zZdsXf2zPfzgzcvZnDXuvw2pAPBW5aQnZ31gRHlKM7yZ2nrhr6hKReObiQrK4PMjDQuHt2Alb0HppYOHx6Tmnri4RvqCc/X6gnP0gE8fL2e+Dv/egLgxZO7HNwyl8/7TEIiKfzTdmZmJuF3b1Ougr9KXstVqMztmx92kWfR3zOoVCWAchUqf2g2C5SVmcn9sJv4la+iXCaVSvErX4W7t66qXefurav4la+qsqxsxerceZk+K1PR26+Vq56WSqVoaWpxK1Sx3+PjYgi7fQ1jEzPGDe3JgKCm/PZLX27duFwoccVEPiYxPgrPMqplz8m9HA9ylaPcsrIyeHL/Bp5+ObchSaVSPP0C8l0nIy2F80c3Y27liImFbaHk/W1kZWZy7+4tyry238pUqMKdW9cK7XNSkpMAMDQq3KH8+cnMzOTunTtUqFBBuUwqlVKhQgVuhoa+1TbS09PJzs7G0KhoLwq9C3MjCcb6Eu4+yRkpmJ4JjyLluNi8fd2kq61o1KbkGnzwIEJGOQ8N9HRAApRzl6KlAeHP/h+GJUuK7fUpKnH33D579oysrCzat2+Pi4vi3omyZRX3qI0ZM4Zp06bRvn17ANzc3Lhx4wb//PMPXbt2xdDQkBUrVlC3bl2MjIyYOXMmhw4dwti48Cu75ATF8F+D14ZiGhhbkBwfpW4VUpJikcuy0TfKu07083AAHNwroK2tx6FNU6jXbjByuZzDm6Yhl2UrhxxLJBI6/rCEjXO/YdqgSkgkUgyMzOkwcCF6BkX3g70kSnq5LwxNVL9zQ2NLEvMZwp2SGIdMlp13HRMLop7dU/69a9UknD0r4FupodrteJapxcngZVw5tZOy1ZqSFBfFoS2KkQaJce8/fDy/mAyMLfMdlp5vTMaqMZULaImphT1GptZEPLrF3vXTiHp+j07fzVa73QvHNlIuoAVa2h9+39mbpCYq4tYzVI1Bz9CS1KS3+z7lMhmnd0zExqUS5rZFM/wTICkxFpksGyNT1bwam1jw/Ml9teskxEVh/Nr+MTa1ID4upz4J3rIYqYYGDVp0yvez6zfvhLO7DwaGJoTdusKWlbOIj43iy+5D8l3nXRRn+dPRM6DHz0tZNes7Dm/7GwALGxe6DlnwQfexJ+ZXT5hYkpTPsaqMyThvPRH5ej3hVYHS/urriazMDNbOHUKzr37C1NKemMjH7x1HfhIT4pHJsjExVR1ebGJqxpPHD957uyeO7Cc87DaTZsz/0Cy+UWJCnNoYjE3NeZpPDHFx0WpiNic+VjEc1s7RFQsrW9Yt/4se3wxHR0ePPdtWERP9gvgYRZmIjFD0cm5es4CO3Qbh7F6K4wd3MmnUACbOXp3n3tx3lRT3quxZqiw3NLFQHmuvyzmeXlvH2ILIp+Eqy07tX83uNVPJSE/Fys6NnsMWoqn54T3Ob0u538zy7of89tu7kslkLF8wk1K+5XBy+Tj3pyYkJCCTyTAzM1NZbmpmxqPHb3cML/73X8zNzYu1l/Z1hi8H+SSlqt5fm5Qqx1Dv7RpKEqBlgCb3n8uIiM3ZzqoDmXRqqMWYIF2yZXIys2D5vswC7+UVBHVKXOO2fPnyNGzYkLJly9KkSRMaN27M559/jra2NmFhYfTs2ZPevXsr02dlZWFiktOgCwgIYMiQIYwfP55hw4ZRq1atAj8vPT1dOYz5lcwMHbS0VXvcrp3Zxp6VY5R/f/ntPx8SZr70jcxp2/dPgleO5fyh5UgkUkpXaYGtsx+Slzd2yuVy9q4eh76xBV2GrERTW5fLx9ez4a9+dPtlA4Ym1kWSt5Lg8sntbFsyVvl3l8F/F8nnhF48yL3Q03zz66Z803iVrUnTr35i29KxbJw/DA1Nbeq16c+D2xeQvsPVtCsnt7Nt6Vjl31//UDQxAVSplzNhjK1TKYxMrVj8R3diXjzE3Fr1R9zDu5eIfBrGZ30mF0le7l7ezoktY5V/Nw768LhPbvuV2Ig7tOy78oO39bE9CLvBwZ2rGDFltbIuUKdR6y7Kfzu6lkJTU4sV//xGu68Hvtcwyv9S+cvMSGPLv6Nw9qrIF/2mIpdlc3zPYpbP6Ee/Mevf+iLL5ZPb2bp4rPLvoB+Lrp4Iv3GaAePzryf2rpuOlb07FWq2LpI8FJWoyAgWL5jFqPHT0X7tfFlSaGpqMujnySyc8xv9OgcilWrgV74K5fxrgFzxg1smU/y/fpP21AlsBYCruzc3Qs5zZP92OgQNeKfPvHRiO5tzlb1uP84rnGDyUbFGS7zKBJAQF8WxXYtZNWcw/UatzPMbpyRbPG8qjx6GM2Zy0fwuKwrr1q3jyJEjTP7jD7S1P97FhtdV8JDSrnbO0O8lezI+eJttampiaybl7+2qv60bV9ZEV1vCgp0ZpKTJKe0qpVNDLeZtz1BpBH+KPtUe1OJS4hq3Ghoa7Nu3j5MnT7J3715mz57NiBEj2L5dcU/NggULqFatWp51XpHJZJw4cQINDQ3u3s07EcvrJk6cyLhxqpMgtek6hra5ZucE8CrfAHu38sq/s7MUFUByQrRKYzI5IRobJ/WzduobmiGRapCSqDrZiGIbOVdg3UvXov+E/aQkxSCVaqKrb8ysn2ria9kcgAc3T3M35DA/zDiHzsv70Zp28mNe6EmuntpCQNM+b4z7U+VbsYHKbJFZmYr9lBQfjZFpzn5KSojCztlX7Tb0jUyRSjVUJuZ4tY1X+yk89DQxLx4xob9qWVw9exAu3v70Gr4MgJpNu1GjSVcS4yLRMzAmNuoJ+9ZPx8zK6a1j8qnYQGWW5qws9TElJ0Rh+64xvVb2Xvfqc6Mj8jZuLxzZgK2zLw6uRTMU3tm3AdZOOXG/OuZSk6LRN86JOzUpCnM79XHndnLbeB7dOkKL3ssxMCnaYXmGRmZIpRokxql+3wnx0ZiYqv++jU0tSXht/yTE5aS/E3qRxPgYhvfNmfhFJstmw9LpHNyxkt/n7Va7XTevMsiys4h+8RRbB9d3juW/VP5CTu0gNuoJvUeuRvpyMp8v+k3h92+qE3rxAOWqt3irmAqqJ4xz1xPxUdi5vCGmhALqiRuKeuK3fqr1xKpZg3D19qfXL8sICz1DxKPbjDpXBlBcvAT4fUAN6rbuS2D7794qpoIYGZsglWrkmcAnPi423wl73iT87i3i42IZOqiXcplMlk3o9Svs2bGJVZsPqJybP5SRsanaGBLiYvKNwdTUQk3MMSq9iG6evkyYuZKU5CSysjIxNjFjzJDuuHkq9rupuWLbDk6qs6vbO7oSHfn8neMoXakBTp656jVl2YvCONew9aT4aOxc8vktoTyeVHt2kxKiMXytftHVN0JX3whLW1ecPcsxrm8A1y/sp0LA2x0rH0q532Lz7of3LXu5LZ43lUvnTjB64t9YWH68C/vGxsZIpVJiY1UnZIuLjcX8td7c123csIH169Yx4fffcXMr+ln7C3LjoYxHm3IatK8OWUM9CYmpuWc6lvAs+s3Dh1vX0MTHWYN/dmSQkGtqEXMjCTX8NJm+IZ0XLxuyz2KycbWVEuCnwZbjhXfrjPDpK3GNW1AMu61ZsyY1a9Zk9OjRuLi4cOLECezt7QkPD6dz5875rjtlyhRu3rzJkSNHaNKkCYsXL6Z79+75ph8+fDiDBw9WWbb2dN4rmjq6hujo5kxsIpfLMTC24v7NU9g4KU6C6alJPL13hUp11c9MqqGpja2zH/dDT1GqguIxEHKZjAc3T+Ff/+s86fUNFSfg+zdPkZwYjVf5BgBkZqQqv6fcJBKJyozK/4909AzQ0TNQ/i2XyzE0sSTsxmnlj9S01CQeh4dQtcFXarehqamNvasf4TdOKx/XIZPJCL9xmmqBirJXp0VvKtf9XGW92SPa0LzTz3hXrK+yXCKRYGymOOmGnN6Jibkd9q7qH7/xLjGFvx5TWAhV6r9HTA3zP56ePVRMzvH6vYLpaclcO7eHRp8PVrdaodDWMUBbRzVuPSNLnoadxsJeEXdGWhKRj0PwqaY+7lfrndr+Gw9u7Kd5r6UYmRfdxCmvaGpp4ezhS+jVs1SopjhuZTIZN0POUr+Z+ry6lyrHzZCzKo/1CQ05jbu34odw9bot8S2n+qivWeP7U61OS2o0aJNvXh7dv4VEKsXIpOAZb/PzXyp/mRlpSCQSlbpPIpEq6j7521/5Lygm+9fqiWoNC44p7LpqTGE3TlP9VT3RsjeV66nWE7N+aUPzzj/j87Ke6PTdn2Rlpinffxx+jU0LR9B7xHLMbT5syOsrWlpauHuW4uqVC1QNqKPM69UrF2jasv17bbNs+cpMm7NUZdncPydi7+hM2886F2rDFhTHlKuHDzdCzlG5ej1AEcP1kPM0av6F2nU8vctyPeQcTVvnnJOvXT6Dl3fex3HpGyjO78+fPuReWCifd+4LgJW1PWbmVjx7ojqE9vnTh4oe3nekruwZmVhy97pq2XsUHkL1Asqeg2tp7t44jV/lnLJ39/ppajTK/5YF5Ir/vLqY8zFoamnh5unN9ZDzVAmoC7zcb1fO07jF529YO39yuZwl/0zj/KkjjJw4F2tb+8LK8lvR0tLC08uLK5cvU6OGohzIZDIuX75Mq9b5j8JYv349a9es4bfffqNUqaK7NeZtZWRCdKZq3ZmQIsfTQcqzGMWs2jpa4GQl4fSNgn9ftq6hiZ+rBvN3ZBCbqLrNV7Mmv15Ny+W8cRZ5QXhdiWvcnjlzhgMHDtC4cWOsra05c+YMkZGR+Pr6Mm7cOAYOHIiJiQlNmzYlPT2d8+fPExsby+DBg7l06RKjR49mw4YN1KxZk+nTpzNo0CDq1q2Lu7u72s/T0dFBR0e1Mfs2I/ckEglVGgZxctffmFu7YGLpyNGtf2Jkaq1suAKsmt6VUhUbUfll47VqYHd2LBmGrWsZ7F3Lce7AUjIzUilXI+cHRsiJjVjYeaBvZM6TsEvsW/c7VRt2w8JWEYODRwV09Y3ZseRnarYYgKa2DleOrSMu6gkeZeu94zdeODQM9DHwzPkhpu/miHF5HzJi4kl79KyANYuWRCKhRpMgDm+bh4WNC2ZWjhzYNAsjU2t8K+Xsp38nd6d0pUCqN1L8KK3ZtCsbFwzH3q0Mju5lORm8jIz0VPxrtwNQzuT6OhMLO8ytchpPx3YtwqtsbSQSCTcu7OPYjoV0GDAdqfT9f/hJJBICGgdxePs8zG1dMLN8GZOZakyLJ3fH1z9Q+UO7RpOubFowHAe3Mji4l+XUXkVMlV7GFPPiIVdO7aBU+broG5jy/PEtdq+ahKt3ZWydVJ/bd+3MbmTZ2ZQPaPXecbxP3H41grh8aB7Gli4YmTlyYd8s9I2scSmdE/euhd1x9QukdIAi7pPbfiX8yk4Cv56Dlo4BKYmKeyi1dY3Q1Cq6e4UDW3VhyexRuHqUxtWrDAd2rCQjPVXZEF08aySm5ta0+1rxTNCGLToxdXQv9m1bRtlKtTl3Yg8Pwm7wdb/RABgamWJoZKryGRoamhibWSh7ZMNuXeHenat4l6mCrq4B4bevsH7xVKrVaY6BYeHMPVCc5c/DrwbBa6ewY/mvVAv8GrlcxrEdC5BKNXD3rZo3s+8QU80mQRzamlNP7N+Yt55YNKk7pf0DCXitnnB4VU+8jMm/TsH1hGmuesLitQZscmIcAFb2HoX6nNuWbTvw14zf8fDywbOULzu3ric9LZX6gYoRQbOn/Ya5hSWdu/UDFBPmPH50H4CsrEyioyO5F34HXV097Owd0dPXx9lV9byqo6OLkZFJnuWFpVmbTsz/cxxunr64e/kRvH0N6Wmp1AlsCcC8GWMws7BWDhVu3Oorfh/Rl11bVlKhck1OH9vLvbBQegzIeVb3mRP7MTY2w8LKlkcP7rJi4XT8q9WlbEXFhSSJRELzdl+zafV8nF29cHEvxbGDO3n65AHfDZv0wTFJJBJqNg3i4NZ/sLR1wdzKkb0bZmFsaq1yn/aCid3xqxxIjZdlr1azbqyfPxxHtzI4uZfleLBq2Yt+8YiQ07vxKlsTQyMz4mMiOLxjIVraOviUr6PcblTEAzLSUkiKjyIzI52nDxSTIVk7eBTavbnN23Zk3ozxuHv64FHKj91b15CWlkbdl/tt7vRxmFtY8VXXbwDFJFSPHynuW8/KyiImOpL74bfR1dXD1l4x6mnx31M5eXQvP46YjJ6ePnGxihEU+voGhfLs4bfRrl07pk+bhpeXF6W8vdm6ZQvp6ek0atQIgKlTp2JhYaHsYFm/bh3Lly9n6LBhWNvYEBOj6M3W09NDT09xs2tiYiIvXrwgJloRz+OX9++amZlhbv5+Fyjf1YlrWTSoqElUvGJW48aVNUlIkXPjQU7jtldzLa7fl3HqhqIB3KamJhU8NFi2N4P0TLny3t20DMjKhsg4OVHxMtrX0mLnmUxS0sDPVYqng5SlwR/2GLeSQAxLLlwlrnFrbGzM0aNHmTlzJgkJCbi4uDBt2jSaNVMMxdPX12fKlCn89NNPGBgYULZsWb7//nvS0tL4+uuv6datG61aKX5w9+nTh507d9KlSxeOHj1a6FeSqzfpTWZGKrtXjCYtJQEnT3++HLhQZYbcuKhHpCblDFspXaU5KUkxHNs2i+SESKwdffly4EIMjHOGEkVH3OPwlumkJsdjYuFAzWb9qBLYTfm+vqFi8qgjW2eyakZXZNmZWNp58fk3f+U7JLqomfiXIeDAcuXfpacqfjw8WraJkJ7DiyVPr9Ru3ouM9FS2LhlDWkoCzl6V6Dpkvso9RzEvHpKcaz+Vrdac5IRYDmyapRia6OxL1yHzCxxCqc7tkGMc2f4PWZkZ2Dp703nQHErl+mHxITFlpqeybfHLmEpVIujHvDGlJL4WU2IsBzbnxBT0Y05MGhpahN84xam9y8hMT8XYwha/yo2o27p/ns+/cGwjpf0bFeqP77dRrk4vsjJSObF5DBlpCdi4VKJJ9/kqx1xizEPSknPivnlG8SidXQu7qmyr9me/U8q/XZHltUrNJiTFx7Jtzd8kxEXh6ObNwJFzMX45yVRM1DOVHkgPnwr0+v53tq7+iy0rZ2Nt50z/oTNwKGBW5NdpaWlz/ngwO9bOIysrE0trBxq2+prAVl3evPI7KK7yZ2XvTufv53Jo61wWjO+IRCpVbif3EOn3iqmFop7Y8jImF69KdFNTT+SOqVz1lzFtmkXiy5i6/fTu9cTHULNOQxLi41i7YhFxsTG4unsy4tepymfYRkVGqPwAi42JYujAnMcSbd+0hu2b1lC6TAXGTVI/wVxRq167EYkJsWxcNZ/42Gic3Urx05g/MXl5TEVHRag8e7aUbzn6/zieDSvmsX75XGzsnfh++BSVSYfiYqJZtWgm8fExmJpZUqt+c9p+2VPlc5u27khmRgYrF80gKSkBZ1cvho2bjY1d4YwCqduiJxnpqWz6dwxpKYm4lqpE959Uy170i0ck5yp75as3Izkxhn0bZ5MYH4W9sw89fvoHo5dlT0tLh/u3LnAieDmpyfEYmlji5u1P/9GrVCZO27hwNPdunlP+PWuk4rFuQ6fvw9zq/Wcgzy2gdiAJ8bFsWLmQuNhoXNy9+HncDOXw8OjICKS5ZgmPjYnil0E59fXOzavYuXkVvmUqMmqiYlLG/bsV97GP/0X1nue+g0ZSN/DjDLmuW7cuCfHxLF+xgtiYGNw9PPh1/HjlJFORL14gzVXH79y5k6ysLH6foPpIsE6dO/P114oOkNOnTzNj+nTle5MnTcqTpqgduZKNtqaE9rW10NWG+xEyFu/JJCvX45EtjKUY6OZ0wwaUVjQ3+rZS7Sxaf1jxiCCZXPG4oGZVNenaWBsdLYhOkLP+cCa3Hv1/jzgU3p1E/i5jtQQAlhwu7hwUPqtG3m9OVMKkHHu76fZLkk/xaL3//o8f/c+q6p3+5kQl0IvET2eSmVekhf9knWJXylz9LLolWVr2p1f2niQYvjlRCeNsGl/cWSh0pppxxZ2FIrHgwMcdqv0xTOr9cXrlC9udzs2L7bO9Vu4qts8uKp/gaV0QBEEQBEEQBEH4f1PihiULgiAIgiAIgiB8CqQa4p7bwiR6bgVBEARBEARBEIQSTzRuBUEQBEEQBEEQhDf666+/cHV1RVdXl2rVqnH27NkC08+cORNvb2/09PRwcnLihx9+IC0trcB1PoQYliwIgiAIgiAIglAMStKjgNauXcvgwYOZN28e1apVY+bMmTRp0oRbt25hbZ33qQSrVq3i559/5t9//6VGjRrcvn2bbt26IZFImJ5r5u/CJHpuBUEQBEEQBEEQhAJNnz6d3r170717d0qXLs28efPQ19fn33//VZv+5MmT1KxZk06dOuHq6krjxo3p2LHjG3t7P4Ro3AqCIAiCIAiCIBQDiVRabK/09HQSEhJUXunp6h9nmJGRwYULFwgMDFQuk0qlBAYGcurUKbXr1KhRgwsXLigbs+Hh4ezatYvmzYvu8UeicSsIgiAIgiAIgvB/ZuLEiZiYmKi8Jk6cqDZtVFQU2dnZ2NjYqCy3sbHh+fPnatfp1KkTv/76K7Vq1UJLSwsPDw/q1avHL7/8UuixvCIat4IgCIIgCIIgCP9nhg8fTnx8vMpr+PDhhbb9w4cP8/vvvzN37lwuXrzIpk2b2LlzJ+PHjy+0z3idmFBKEARBEARBEAShGBTnhFI6Ojro6Oi8VVpLS0s0NDSIiIhQWR4REYGtra3adUaNGkWXLl3o1asXAGXLliU5OZk+ffowYsQIpNLC72cVPbeCIAiCIAiCIAhCvrS1tfH39+fAgQPKZTKZjAMHDhAQEKB2nZSUlDwNWA0NDQDkcnmR5FP03AqCIAiCIAiCIBSDkvQooMGDB9O1a1cqV65M1apVmTlzJsnJyXTv3h2AoKAgHBwclPfttmrViunTp1OxYkWqVavG3bt3GTVqFK1atVI2cgubaNwKgiAIgiAIgiAIBerQoQORkZGMHj2a58+fU6FCBfbs2aOcZOrhw4cqPbUjR45EIpEwcuRInjx5gpWVFa1atWLChAlFlkfRuBUEQRAEQRAEQSgGkiK477Qoffvtt3z77bdq3zt8+LDK35qamowZM4YxY8Z8hJwplKxvUxAEQRAEQRAEQRDUEI1bQRAEQRAEQRAEocQTw5IFQRAEQRAEQRCKQUmaUKokEI3b96CjVTRTVxenlGOhxZ2FQqdf27e4s1DoDC5dLu4sFLosG93izkKh09fMKO4sFAkrw+LOQeEro3G1uLNQ6IYsdy7uLBS6qgEmxZ2FQhfgEV3cWSh0h0PNizsLhU5L06y4s1AkxnitKe4sFIGOxZ0B4T9ANG4FQRAEQRAEQRCKQUmbUOq/TnybgiAIgiAIgiAIQoknGreCIAiCIAiCIAhCiSeGJQuCIAiCIAiCIBQHiZhQqjCJnltBEARBEARBEAShxBM9t4IgCIIgCIIgCMVAPAqocImeW0EQBEEQBEEQBKHEE41bQRAEQRAEQRAEocQTw5IFQRAEQRAEQRCKgXjObeES36YgCIIgCIIgCIJQ4omeW0EQBEEQBEEQhGIgJpQqXKLnVhAEQRAEQRAEQSjxRM+tIAiCIAiCIAhCMRD33BYu8W0KgiAIgiAIgiAIJZ5o3AqCIAiCIAiCIAglnhiWXITkcjmHtszm4tH1pKUk4ORZiZZBY7CwcS1wvbMHVnJizyKS4qOwdfKhWeeROLqXU0nz6O4lDmyayZPwECRSKbbOvnQZvBAtbV0Anj64zv7103hy7ypSqRRf/8Y0+epndHQNPjimA5tnc/7wetJSEnH2qkjrrmOwtC04ptP7V3J897/KmFp+PQJHj3J50snlcpZN68udq8foNHA2pf0Dle+FXT/F/k2ziHh8G20dfSrWbEPg59+joVE8xdi8VmXcf+yJSaUy6Npbc/6zb4jYdqBY8vK6Q7vXsG/rUuLjonF0LcVXPYfh5lU23/QXTu5l6+q5REc+xdrOmfZfD6Ksf221aVf+8xtH927gi+5DCGz5tXJ5xNMHbFw2g7s3L5OdlYmDixdtvhqAd9kqhRKTXC7n8FbV46lFl7c4ng6u5GTu46nTSBxeHk9xUY/5c1ig2vU+7zcTvypNuXx8E1sX/6I2zZAZJzAwtnjvmPbtXM+uLSuIj43GydWLoD5D8Cjll2/6Myf2s3HlP0S9eIaNvRMdgr6lQuWayvfj46JZs3QO1y6dISU5EW+/igT1GYKtvXOebcnlcqb++j0hF08xaPgfVK5e773jyO3w7jXs3baUhLhoHF1K0eEtyt62NTllr93XgyhbKf+yd2zfBr7oNoSGucreK5mZGUwe/jWP799mxJQ1OLn5FEpMb2Pjrn2s3rKLmLh4PFyd+KFXEKVLeahNe+TUOZZt3M6TZxFkZWfhaGfLV22a0bRerY+W3/y0a2BIPX899HWl3HmYwdLtCUTEZOebvkEVPRpU0cfSVAOAJ5FZbD2cRMidDGUaazMNvmpihJeLNloacPVuOst3JpKQLCvyeORyOWd2z+La6fWkpyZg71aJ+l+MxdTKNd91noSd48LBRUQ+ukZyQiQtevyFRznVemLfyp8JPbdZZZmzTy3a9ltUFGGo2LtzI9s3rSQ+NgZnN0+69R2MZ6nSatM+ehDOhpULCQ+7SdSL53TpNYjmbTqopNmyfhnnTh7m6ZOHaGtrU8qnLB27fYO9o0uRx5KbXC7n/N7Z3Dyr2Fe2rpWo3W4MJgXsq6fh57hyZBFRj6+TkhhJ46A5uJVR3VeZ6cmc2T2N+9cPkJYch5G5I2VrdqF0wFdFHJEiprN7ZnP9Zfmzc6tEvc/HvLH8XTq0iBePr5OSEEnz7nNwL5v3PBUTEcbJHVN5GnYOmSwbcxsPmnWbhZGZfRFGBGsOnWXpvhNExydRytGWYV81o6yb4xvX23PuKj8v3Ei98t7M/Kajcvnf2w8RfO4az2MT0NLUoLSzHd+2bfhW2/xUiAmlCpfouS1CJ3Yv5Mz+5bQMGkuvkevQ1tFj+bReZGam57vOtbO7CF47iXqtB9B3zCZsnLxZMb0XSQnRyjSP7l5ixYzeePjVpPeodfQZtZ6qDTojkSh2Z0JsBMum9sDc2pneI9fy9eCFRD69y5ZFwz84pmO7FnJ63wradBtLv9Fr0dbRZ+nU3mRm5B/T1TO72L16MvXbDOCbcRuxdfJmydTeKjG9cjJ4KRI1x/izhzdZNr0vXmVrMeDXTXT4Zho3Lx1i77rpHxzT+9Iw0Cch5BbXBo4rtjyoc+5EMBuWTKPFl30ZMWU1ji6lmDX+GxLiY9SmD7t5mYUzhlOzYVtGTl1Dhar1+fuPH3jy8G6etJfOHCT8dgim5lZ53pvz+3dkZ2cxeOx8fvljFY6upZgz8TviY6MKJa5Xx1OLLmPpNUJxPK2Y3ousNxxPe9dOom7u42lGL5Jflj1jczt+nH5M5VWvzXdo6+jjVVbRwPKr2jxPGo8ytXDxrvJBDdvTx/ax6t+ZtOvQi/HTl+Hs5sUfYwcSH6d+P90ODWHu1FHUDWzN+BnL8a9Wl5kTf+LRgzBA8SNq5u8/Efn8CT+MmMpvM1ZgaW3HpNHfkpaWmmd7e7atRu3B9gHOnwhmw9JptPyiL7/8sRpH11LM/q3gsrdopqLsjZiyhgpV6jOvgLJ3704IJmrK3iubls/AxCz/94vKgeOnmbN4Fd07tGPRtPF4ujoz+Nc/iI2LV5veyMiQoM9bM2/SaJbO+J3mDeowcfYCzlwK+cg5V9W8lgGNqumzZHsCv86PJj1DzpAgM7QKuH4YkyBj3b5ExsyLZsw/0dwIz2BQRzMcrBQraWtJ+KmrGXJg8uIYflsYg4aGhB86mxZ28VPrwoEFXD66nPpfjKXDD+vQ1NZjy7yeBdYbmekpWNl7U+/zMQVu28WnNj1/Pa58NQ0q+vPRqWP7Wb5wFp917MHvMxfj4ubJpNE/5FtvZKSnYW1rT8eu/TE1U19fhV67ROMWn/HrlPn8Mv5PsrKzmDj6e7X1RlG6cngh104sp3b7sbT7TrGvdi4quI7PykjFws6HWu1G55vm5PZJPLp1nAZf/UGHITspWyuI41vHc//6wSKIQtXFgwu5cmw59b4Yyxffr0NLW49t/7w5Jkt7H+q2zz+m+KiHbJzdCTNrd9p9s4yOQ7ZSpdE3aGjqFEUYSsHnrjFtQzB9W9Rj9Yi+lHK04ZtZK4hJSCpwvSdRsUzfsJdKnnkvtLrYWPBzx+ZsGN2fxT/1wN7ClP4zlxOTmFxUYQifuE+ucSuTyfjjjz/w9PRER0cHZ2dnJkyYwP3795FIJKxZs4YaNWqgq6tLmTJlOHLkSJHkQy6Xc3rfMuq06odPxYbYOnnTrtdkEuNecPPi/nzXOxW8hEp1vqBi7c+wdvCkZdA4tLR1uXRsozLNnjWTqNawC7Vb9MHawQtLO3fKVG2GppY2ALevHEZDQ5PmX4/G0s4dB7eytAwaS+iFvURHPPigmE4GL6Neq374VmqIrbM3n/eZRGLcC0ILiOnEnqVUrvsF/nXaY+3gSetuY9HS1uXC0U0q6Z49COXEniW06zkhzzauntmNrZM3DdoOwMLGBTefqjTpMIQzB1aRnlo8FWBk8FFuj5lJxNb8Yy8O+7cvp1Zge2o2aIu9kwed+45EW0eXkwe2qE1/YOcq/CrWoEnbbtg5utOm4wCc3Xw5vHuNSrrY6AjWLJxEz0G/5+ktT0qI5cWzhzRt1wNH11LY2LvQ/utBZKSn8VRNQ+VdyeVyzuxfRp2WiuPJxsmbtj3ffDyd3vvyeKr1GVb2nrTs8vJ4Oq44nqRSDQxNrFReNy/up3SVZmi/HOWgpa2r8r5EqsG90DNUrPX5B8W0e+sq6jVuS53AVjg4u9O9/8/o6OhydP92ten3bl9DuUrVadG+Cw5ObnzeuR+u7j7s37kOgOdPH3L31jW69R+Gu1dp7Bxd6NZvGBkZ6Zw+GqyyrQfht9m9dRW9vxv5QTG8bv/25dQMbE+Nl2WvU5+RaOnocvLgFrXpD+5ahV+FGjRuoyh7rQsoe2sXTaKHmrL3yrWLxwm9cprPggYXakxvY8223bRqVI8WDevg5uTAT/26o6ujw44DR9Wmr1TGl7rVK+Pq5ICDnQ1ftmqCh6sTIaG3P3LOVTUJ0Gf70SQu3UznUUQW8zfFY2qkQSUf3XzXuXwrnZA7GUTEZBMRnc3GA0mkZcjxcNICoJSzFpamGizYHM/jF1k8fpHFgk3xuNpr4eumXaTxyOVyLh9dRtXG/fEoG4ilvQ+NO/9BcvwLwq/mX2+4lq5LQIsf8CjXqMDta2hqY2BspXzp6psUdgh57NyyhgZNWlMvsCWOzm70/GYo2jo6HN63Q216j1Kl6dzjW2rUaYSmlpbaNMPHzaBuYAucXNxxcfOi//cjiYqM4N7dm0UZigq5XM7V48uo1LAfrn4NsbDzpn6HyaQkvOD+9fz3lbNPHao2/R63Mvnvq4gHlynl3xZ7j2oYmTtSunoHLOy8efGoaC8myeVyrhxdRuVG/XAv0xBLe28CO00mOeEF4dfyj8nFtw7Vm39fYPk7vWsmrr51qdnqJ6wcS2Ni6YxbmQboG73/Bde3sXz/KdrXqkTbmhXxsLdmZOeW6GprseXkpXzXyZbJ+OXfTfRvVR8HK7M87zevWo7qvh44WpnjaW/Nj180ISktnTuPI4oylP8UiVRSbK9P0SfXuB0+fDiTJk1i1KhR3Lhxg1WrVmFjY6N8/6effuLHH3/k0qVLBAQE0KpVK6Kj8/YgfqjYyMckxUfiXrqGcpmuvhGO7uV4HHZZ7TpZWRk8fXBdZR2pVIp76QDlOkkJ0TwJv4KBsTkLJ3zFlO9rsnjS1zy4fUG5TnZWBhoaWkhzzb6mqaX4cfLwTk6694spCg+/gDwxPbp7Jf+Y7l9XWUcqleLhF8Cju5eVyzLSU1k37ydaBY3CyDRvz0t2VgaaWqpXJDW1dcjKTOfJ/evvHdOnJiszk4dhofiWq6ZcJpVK8SlXjfDb6k/k4bdD8MmVHqB0hQDCb+Wkl8lkLJ41ksZtumLv7JlnGwZGptjYu3L6yHbS01LJzs7i6N4NGJmY4+yhfrjcu4iLyv94epTP8ZT96njyzVlH8trx9Lqn96/x/FEolWp/lm9erpzcgpa2LqUrN3mvWECxn+6H3cSvfM6QbalUil/5Kty9dVXtOndvXcWvfFWVZWUrVufOy/RZmZkAaOU6TqRSKVqaWtwKzTk+09PTmDttFF37/oSpmeV7x6Aupofhecueb9lqKmUpt3zL3m3Vsrdk9kgatemKvVPesgeQEBfNinm/0v2739DWyb8hVhQyM7O4HXafyuVzhpNLpVIql/Pj+q03X9iRy+WcD7nOwyfPqFDauyizWiArMw1MjTS4HpYznDg1XU74k0w8ndQ3il4nkUC1MrroaEu4+0ixHU1NCXI5ZGXJlekys+TI5VDKpWgbtwnRj0lJiMSpVE4doKNnhI1LeZ7dz//H+Nt6fPcsC0YGsGxCEw6tG0NqcuwHb7MgWZmZ3Lt7izLlKyuXSaVSylSowp1b1wrtc1KSFReMDY2MC22bb5IY85iUxEgcvFT3lbVTOSIeXP6gbdu4VODBjYMkx0cgl8t5cvc08ZH3cSxV880rf4CElzHlKX/O5Xh+//J7b1cuk3E/9DCmVq5s/acni0bXYP3MLwu8YFMYMrOyCH34lGq+7splUqmUaj7uhIQ/zne9f3YcwdzIgHa1Kr3VZ2w8dgFDPR1KOdm8Mb0gqPNJNW4TExP5888/+eOPP+jatSseHh7UqlWLXr16KdN8++23fPbZZ/j6+vL3339jYmLCokWFf49MUkIkAIavDVs0MLYkKV79MM2UxFjksuwC14mNfATA4a1z8K/zBV//sAA7Fz+WTe1GdMR9ANx8q5OUEMWJ3YvIysogNTme/RumKfIVH/n+Mb3Mg6GJav4MjS1JzGe7KYlxyGTZedcxsVD5HnatmoSzZwV8KzVUux3PMrV4eOcSV07tRCbLJiEmgkNb5gKQGPf+MX1qkhJjkcmyMTJV/b6NTSyIj1Nf7hLiojB+bf8Ym6qmD96yGKmGBg1adFK7DYlEwg9j/+HhvVsM+roG335Vjf3bVzBw5FwMDD/8B9Krcvv6MGADY0uSEwo+ntStk98xeOnYRiztPHDyzP8kfOnYRspWa6m8v/19JCYojgsTU3OV5cam5sTFqr/YFhcXnSe9iak58bGK4Yh2jq5YWNmybvlfJCclkJWZyY6NS4mJfkF8TE68KxfNwMunLP7V6r53/tV5VfZeL0tGphYkFFT2XiurRiaq6fduWYxUqkGD5urLnlwuZ+mc0dRp/AUunvnfr1xU4hMTyZbJMDdR7bUzNzUmOi4u3/WSklNo1LEX9b7oztDfpvF9ryCqVMj/3uSiZmKo+DkQn6R6H2xCUrbyvfw4WmvyzwhrFo22oWsrY2atjuVppOI+3bBHGaRnyvmysRHaWophyl81MUJDQ4LpG7b7oVISFfXG671Z+kYWpORTb7wtF9/aNP56Mu2+WULNVj/xOOwc2/7pjUyW//3JHyrhVb1hlrceiItVPyz5XclkMpYtmIm3bzmcXNTfM14UXu0rPUPVfaVnZElK4oftq1ptR2Fm48GKCXVZOLwsuxb1pla70di7F858EPlJSciv/H1YTClJ0WSmp3Dh4AJcfGrTuu8i3MsGsmvJdzy5e/aD8lyQ2KQUsmVyLIwMVZZbGBsQFa9+WPKluw/YcuIio7u0KnDbR0NuETBwAlW//Y0VB04z7/sgzAw/bI4Y4f/XJzWhVGhoKOnp6TRsqL6BBBAQkNODqKmpSeXKlQkNDc03fXp6OunpqvdGZGZoo6Wt2osYcmo725fl3J/T+ft575r9tyKXK354+NfrQMWXvUt2LqUJDz3FpWMbCfz8R6wdvGjbcyLBayazf+N0xZW1wC4YGFsq78t9G5dPbmfbkrHKv7sM/rtQY3kl9OJB7oWe5ptfN+WbxqtsTZp+9RPblo5l4/xhaGhqU69Nfx7cvoD0Ex1W8V/xIOwGB3euYsSU1UjyuUlOLpezesFEjI3NGPLbv2hr63J8/yb+mjiQX/5Y+c73QYac3s6OXMdTp0FFczzllpmRxtUzO6jTqn++aR7dvUTUszDa9Zpc5Pl5V5qamgz6eTIL5/xGv86BSKUa+JWvQjn/GiBX9JpdPHOUGyHn+W3G8mLO7dt5EHaDg7tW8csf+Ze9Q7tWk5aWTNN2PT5y7j6Mvp4ui6dPIDUtjfMh15mzeBX2ttZUKuP7UT4/oJwu3VrlXHiavvL9ex2fRWcx6u9o9HUkVPHTpXd7Uyb+G83TyGwSU+T8tTaOrq2MaVRNH7kcTl9N4/7TzFfFstDcPL+NQ+ty6o1Wff4p3A/IpVSlFsp/W9p7Y2nvzdLfAnly9yxOpQIKWPO/bfG8aTx6GM7YyUVb5965uJ2jm3L2VbPuRfd5104sJ+LBFZp0m4uRmQPPws9xfPOv6Btb45irp/hD3bqwncPrc2Jq2atofwe6+TWgQt1uAFg5+PLs/iWunVqDg2fVAtb+eJLT0hnx72ZGd2n9xoZqFW831o7sR1xSCpuOX2To/PWs+LkX5saGBa73yRDPuS1Un1TjVk9Pr9C3OXHiRMaNU50wqH330Xzec6zKMu8K9ZUzsIJiSCQohhEbmVorlycnRGHrrP7Hi76RGRKpRp6JlpITojA0UQwfNDJRbMvKXnV4npWdB/Exz5R/l6veinLVW5EUH4WWjh4SiYRTwUsws3J6m7AB8K3YAKdcMxpnZb6MKV41pqSEKOzyjckUqVSDpHjVmJLio5UxhYeeJubFIyb0Vx2euHr2IFy8/ek1fBkANZt2o0aTriTGRaJnYExs1BP2rZ/+TjF96gyNzJBKNUiMU/2+E+KjMTFVPwTV2NSShNf2T0JcTvo7oRdJjI9heN9myvdlsmw2LJ3OwR0r+X3ebm5ePUvIhaPMWHoUPX3FyahTnxGEXjnNqUPbadr+3Roe3uXr4zgmV9l7eTwlqzmebJwKPp6SCziecrtxPpjMjDTK12ibb74uHtuArZMv9q5l3iWcPIyMFcfF65PAJMTF5Dvpi6mpRZ708XExKr04bp6+TJi5kpTkJLKyMjE2MWPMkO64eSq+oxtXz/Pi+WP6dlK9ADhr8s94l67AiAnv/2PsVdl7vSwlxkVjXFDZe62sJsbnpL/7suz90u+1srdsOgd2ruT3v3dz69pZwm+H8G1H1R90E4d1pmrtZnT77rf3jultmBgZoSGVEhOvOnlUTFwCFqam+a4nlUpxtFMMu/Nyc+HB46es2Lj9ozVuL91MJ+xxznevpaG4eGBiKFXpvTU21ODhs8wCt5WdDS9ezqh8/1kSbg5aNK5uwJLtCQBcC8vgp5lRGOpLkMkgJU3Onz9Z8SI2q1Bjci/TAFuX8jn5ellvpCRGY2CSU2+kJEZj5VC4M2mbWDqha2BGXOSDImvcGr+qN2Lz1gOmr/Xmvo/F86Zx8dwJxkyci4Wl9ZtX+AAupevzuXPe30ypSdEYGOd8dmpiFBb2739MZGWmcXbPTBoHzcbFtx4AFnbeRD+9yZUj/xZq49bNrz42uWPKzlX+jHOXvygsHd4/Jj0DM6RSTcxtVX8Hmlt78PTe+9969iZmhvpoSCVEJ6r20kYnJGNpkrcR+igyhqfRcQz6a5VymezlFS3//uPY8ut3OFkpyq2ejjbO1hY4W1tQzt2JVqNmsfnEJXo2Uz9zviAU5JNq3Hp5eaGnp8eBAwdUhiLndvr0aerUqQNAVlYWFy5c4Ntvv813m8OHD2fwYNUJSrZcyHufkI6eITp6OQe3XC7H0MSKezdOKRt+aalJPA4PoXL9jnnWB9DU1MbexY97oafwraSY9l0mkxEeepqqDToDYGrpgJGpNdHP7qmsGx1xH8+yeSuBVz/iLx7biKaWDu5+b1+R6+gZoKOXc7VNEZMlYTdOY+eiGlPVBuqn1NfU1Mbe1Y/wG6eVj/WRyWSE3zhNtUBFTHVa9KZyXdXJeWaPaEPzTj/jXbG+ynKJRIKxmeIkEXJ6Jybmdti7fvg9nZ8KTS0tnD18Cb16lgrVGgCK7/tmyFnqN1O/j9xLleNmyFmVx/qEhpzG3Vtxkq5etyW+5aqrrDNrfH+q1WlJjQZtAMWMnECekQESqRSZ/N0f95Hf8RQeekp5cSj91fFUT/3xpPHyeAoPPYXPy+NJ/trxlNul4xvwrlAfAyP1PxIz0pK5cW43DT/78AmLNLW0cPXw4UbIOeUjeGQyGddDztOo+Rdq1/H0Lsv1kHM0bZ0T77XLZ/DyzjuUVd9A8d09f/qQe2GhfN65LwAtPwuibqM2Kml/GdiRzj1+oGLVD3sMjaaWFs7uvty8epYKVXOVvatnqVdQ2bt6VuWxPqFXTuNeSlH2qtVtic/rZe+3/lSv05KA+oo4OvQYRuuOOXV4fMwLZv32Db0GTy7wEUSFRUtLk1IerlwIuUGdaop7IWUyGReuXqd9s4InJMpNJpOTkVlwI7IwpWXISXvtET9xidmUdtfm4XNFo1NXR4K7gxYHz6a807YlEsW9tq9LSlH8sPV108bYQMqlm/nPGPs+tHUN0dZVrTf0ja14dOcUVo4v6420JCIeXKFcTfX1xvtKjHtOWkocBiZFN1u3ppYWbp7eXAu5QJUAxW0FMpmM61fO07hF/vMEvIlcLmfJP9M5d+oIoyb+hbVt0T5KBvLZV0ZWPLlzCsuXjdmMtCRePAqhdMD77ytZdhay7Ey15ybe49xUkPxienznFFYOOTFFPAyhzAeUPw1NbaydyxD3QvV3YFzk/SJ9DJCWpia+zvacDb1HgwqKeGQyGWdvhvNV/by9xW62lmwYrToSas7Wg6SkZTC0Q1NszfK/ZUkuk5ORVbgXv/7L8huZJLyfT6pxq6ury7Bhwxg6dCja2trUrFmTyMhIrl+/rhyq/Ndff+Hl5YWvry8zZswgNjaWHj3y71XS0dFBR0d1CLKW9pvHUkkkEqo3CuLojnmY27hiZuXAwc2zMDK1Vv7QBlg6pRs+lQKp1lDx4y6gSTc2L/wZe9cyOLiV4/S+pWSmp1KxVnvldms07cnhrbOxcfbG1smXKye2EPUsnC+/+VO53TMHVuDkWRFtHX3Cr59k7/opBH42GD3997//USKRUKNJEIe3zcPCxgUzK0cObFLE5Jsrpn8nd6d0pUCqN1I0IGo27crGBcOxdyuDo3tZTgYvIyM9Ff/a7QAwMrVSO4mUiYUd5lY5zzk7tmsRXmVrI5FIuHFhH8d2LKTDgOlIpRrvHdOH0DDQxyDXtPb6bo4Yl/chIyaetEfPClizaAW26sKS2aNw9SiNq1cZDuxYSUZ6qrIhunjWSEzNrWn39UAAGrboxNTRvdi3bRllK9Xm3Ik9PAi7wdf9FI8hMDQyxdDIVOUzNDQ0MTazwNbBFQAP73LoGxizZPYoWnzZB21tXY7t20jUiyf5Pi/3XUgkEqoFBnFsxzwsbFwxtXTgkJrjadnL46nqy+OpeuNubFmU63jarzieKtRsr7L9mIgHPLh9ns6D5uebh2vndiOTZVMuoPUHxwPQrE0n5v85DjdPX9y9/Ajevob0tFTqBLYEYN6MMZhZWNMhaAAAjVt9xe8j+rJry0oqVK7J6WN7uRcWSo8BOc/gPXNiP8bGZlhY2fLowV1WLJyOf7W6lK2oaCCamlmqnUTKwsoGaxuHD44psFUXlswZhYtHaVw9y3Bw58uyVz9X2bOwpl1nRdlr0LwT08a8LHv+tTl3fA8Pwm/Q+U1lzzSn7Jlb2am8r6OrGMFjZeOImcXHmZDkq9bNmDBrPj4ebvh6ubNuRzCpaem0aKi4kDr+z3lYmZvRr4vi+aLLN27Dx8MNe1sbMjMzOXXxCsFHTjCkb7ePkt/8BJ9KoXVdQyKis4mMzaZ9Q0PiErO5eDNNmWZoNzMu3khn/8sG7xeBhoTcSSc6XoautoSAcrr4uGozdXnOMOfaFfV4GplFYrIMTyctOjc3JvhUCs+ji+7+VFDUGxXqBHFu79+YWrlgbO7I6V1/YmBirfLc0E1/dcWjXCPK11bUGxnpycRHPlS+nxDzmMjHoegamGBkZk9GejJn98zBo3wTDIwsiY9+xPFtUzC1dMHZp2h7mlq0/Yq/Z/yGu6cPnqVKs3vrWtLT0qj7st6YO/1XzCys6NhV0ajIyszk8SNFIygrK4vY6Ejuh99GV1cfW3vF+fXfv6dy8ug+fhwxGT09feV9//r6hmjrFO2jZV6RSCSUrRXExYPzMLF0xcjcgfN7Z6FvbI2rX86+2j6/G25+gZSpqdhXmenJxEfn7KvEmMdEPQ1FR0+xr7R1DbFzr8LpnVPQ1NLB0MyBZ+FnuX1hKwGtfi7ymMrXCeL8vnmYvozpzJ5ZGBhb457rWbxb/u6Ge5lAyuUuf1Gvlb8noejqmygbrxXr9SR4+WDs3Svj4FmNhzePce/GIdp9s6xIY+oSGMCoJZsp7WpPGVcHVh44TWpGJm1qVARg5OJNWJsaM7BdIDpaWng6qNbBRvqKuSpeLU9Nz2DBrqPUK++NpYkRcUkprD18lhdxCTTy//hzKAifhk+qcQswatQoNDU1GT16NE+fPsXOzo5+/fop3580aRKTJk3i8uXLeHp6sm3bNiwtC2/G0NxqNutFRnoq25eOJi0lAWcvf74evEBlNtOYFw9JScz5EVCmanOSE2M4tGU2SfGR2Dr58vUPC1SGUQY07kpWZjrBqyeRmhyPjZM3XX78F3PrnIbWk/CrHN4ym4z0FCxt3WkVNI7yNVR7bN5H7eaKmLYuGfMypkp0HTJf5R7kmBcPSU7KialsteYkJ8RyYNMskuIVQ5i7DpmvdmhoQW6HHOPI9n/IyszA1tmbzoPmUKp8nQ+O6X2Z+Jch4EDOvYulpyoaGY+WbSKk54c/U/h9VanZhKT4WLat+ZuEuCgc3bwZOHKucuKemKhnKlcJPXwq0Ov739m6+i+2rJyNtZ0z/YfOwEHNrMj5MTQ2Y+DIv9i6ag4zxvQhOzsLOycPvhk2EyfXwpkBtmazXmRmvHY8/bBAZRbtmMiHpCSpHk8piTEc3jKbpATF8dT5teMJ4NLxjRib2eLhl//smZeObcC3UiN0P+ACUW7VazciMSGWjavmEx8bjbNbKX4a8ycmL/dTdFSEonfhpVK+5ej/43g2rJjH+uVzsbF34vvhU1QmfYmLiWbVopnEx8dgamZJrfrNaftlz0LJ79uoXLMJiQmxbH9V9ly9+W7Ea2VPqlr2eg76nW1r/mLrKkXZ6/eOZe+/oGGt6sQlJLJwzUZiYuPxdHNm2uifMDdVTDIVERmNNNcxl5qWzrT5S3kRHYOOtjYuDnaM/r4fDWtVz+8jPopdx5PR0ZbQrbUx+rpS7jzMYOryWDJzdaBYm2liaJDTw2xkIKV3e1NMjaSkpsl4FJHF1OWxKrMu21pq8HmgIYZ6UqListl2NIngk+/WG/y+/Bv2JisjlYNrR5OemoC9uz9t+i5UqTfiox6RmqveePHwGpv+ClL+fWzLRAB8q7SjUedJSCUaRD29Tei5LaSnJmJgbI2zT00Cmg9CU7NoZ4AOqB1IQnwcG1YuIC42Bhd3L34eN105LDkqMkKllzI2Jorhg7op/96xeRU7Nq/Ct0xFRk/8C4D9uzcDMP6XASqf1W/QCOoGtuBjKV9PUccf3TiajLQEbF39ad5TtY5PiH5IWq5ZqSMfX2P7P12Vf5/aMQmAUv5tqd9B8e/AztM5s3s6B1b/RHpKPEZm9lRt+j2lq6sfUVKYKjXoRVZGKofWK8qfnZs/rfoseK38PVSZafvFo2tsmZsT0/Gtijh8qrQlsKPi3x7lGlHv87FcODCfo5snYGbtRrNus7B39y/SeJpUKUNsUjJ/bztEVEIS3o62zB34NRYv7419FhP/Tr2QUqmE+8+j+PH0FeKSUjA10MPP1YF/f+qBp33RDo3/L5GIe24LlUQuL+wpHf6b7t+/j5ubG5cuXaJChQoftK3VJz69r0xT49OLSb/2x7l37WMyuHS5uLNQ6J7GfdxHt3wMnpYJxZ2FIpGcWbQ/3ItDGQ31j14qyYascf4fe3cdHsXxP3D8HTfi7i4kSHB3L15K+eKuxUtpocXbIsWtFHd3d3d3K8FCsbhA/PL74+DCkQS9NA2/z+t5jofcze59Zndmbndndvb9ifKYkmUccjsEjSvjrfnHEOa2gzc+/97f/xq9L64bSKmTycr3J8pjjLK5Tem/Lnzov3cR+m02IzX/xJjcJpcKhBBCCCGEEELkeV/o9SghhBBCCCGE+G/TkkdaatT/m5NbDw8P/p+MwBZCCCGEEEKI/3f+35zcCiGEEEIIIcR/ikwopVGyNYUQQgghhBBC5HlyciuEEEIIIYQQIs+TYclCCCGEEEIIkQtkQinNkp5bIYQQQgghhBB5nvTcCiGEEEIIIUQu0NKSvkZNkq0phBBCCCGEECLPk55bIYQQQgghhMgNcs+tRknPrRBCCCGEEEKIPE9OboUQQgghhBBC5HkyLFkIIYQQQgghcoGWtvQ1apJsTSGEEEIIIYQQeZ703AohhBBCCCFELtCSCaU0SnpuhRBCCCGEEELkedJz+wmqWp3P7RA07lB0kdwOQeNMLlzM7RA07kWR4NwOQeMCrh3P7RA0zlgnIbdDyBFXH7vkdggaF2FSPLdD0LjO//vyyp+9wYPcDkHjDt13z+0QNK5CQHRuh6BxCal6uR1CjlgY2jy3Q9C47rkdgPhPkJNbIYQQQgghhMgNWjKQVpNkawohhBBCCCGEyPOk51YIIYQQQgghcoFMKKVZ0nMrhBBCCCGEECLPk55bIYQQQgghhMgN2tLXqEmyNYUQQgghhBBC5HlyciuEEEIIIYQQIs+TYclCCCGEEEIIkQu0tGRCKU2SnlshhBBCCCGEEHme9NwKIYQQQgghRG6QCaU0SramEEIIIYQQQog8T05uhRBCCCGEEELkeTIsWQghhBBCCCFygZa2TCilSdJzK4QQQgghhBAiz8szPbft2rUjOjqajRs35nYoQgghhBBCCPH5tKSvUZM+6uS2cuXKBAcHM3ny5BwKB+7fv4+npycXLlwgODg4x74nN6zfvpuVG7YSGR2Dt4cbfTq3JdDPJ8u0W3bvZ9eBI9x9GAqAv7cnnVs1U0v/MiGRv5as4Oipc8TExeFoZ8c39WrRsHb1HMtDeno6+zdM4+yhNSS+jMPNtwgN2gzD2sHjncud2ruMozvmEx8TjoNbAHVb/YyLVyHV5/NGt+H+rTNqy5So3IwG7YYDcP7IBjbMG5zlun+cepR8ZtafnKcDO1ayZ9MiYqIjcPHw438df8TTt2C26c8d382mFTOJCHuMnaMbX7fqQ8FiFbJMu+yvXzm8ey1N2w+ger1WqvefPX7AusWTuHPzImmpKTi7+9Lwf9/hX7DEJ+dDE6zKF8fr+46YFy2AoZMdZ5v04NnmfbkaU3Z2b1vHlvXLiImKxM3Th3Zd++PjF5hl2tAHd1m7bC53Q24S/vwprTv14auGzdTSbFyzmDPHD/L4n4fo6+vjF1CQ5u164OTi/m9kB4BtWzaycd1qoqIi8fD0pkv3Xvj5B2SZ9uGD+yxfspCQO7d5/vwZHbv0oEGjJmpp0tLSWLlsMQcP7CU6KhIrK2uqVq/Ft81b/avP1UtPT+fo1qlcOrqGpIRYnL2KUrPFcKzsPLJdJvTvM5zaM49nD68SHxNG464z8AtWb9tuXdjNxSMrefrwGokvomk3eCP2rvlzLA/71k/jzEFl2+fuW4QG7YZh85627+TeZRzZ/qrtcw2gXuufcfUulCldeno6iyZ05e/LR2jZZxqBxZR5PX9kA+vmZN32DZr+6W3f/u2r2LlxMTHREbh6+NGi00C8/Apkm/7MsT1sXPEn4c8fY+/oxjdtelOoWHm1NI9D77J2yVRuXztPWloqTq5e9Bj4B9a2jgDERIWzetFkrl86RWLCCxycPaj7TUeKl6n2SXn4EFu3bGb9ujVERUXi6elF1+7f4Z9NnXrw4D7Llizmzp2/ef78GZ27dKNho6/V0rx8+ZKlSxZx4vgxYmKi8fL2oUvX7vj5+edYHrKSnp7Osa1TuXxMWaecvIpSs/lwLN9Tp87smcfT0Ku8iAmjUZcZ+L5Rp9LSUji6eTJ3rx0mJjwUfaN8uPuXpVKj78lnYf8v5Erdnm1r2LZhGTFREbh5+tKmy/d4+wVlmfbRw7usW/YX90JuEf78Ca069qV2w+b/arwHdqxi1xt1qnmngXj6Zl+nzh7fw6Y36lST1r0p+FadevLoLusWT+X2dWWdcnTxovurOvUiLoZNK2dx/dJJIsOfYmpmSXDJyjRs3h1jE9Mcy2d6ejond0zlyolXZc+zKFWbvrvsPbpzhnP75/E89CovYsOo13EGPoWyP1bdt2ooV46vomLjQRSt3E7zmRBfNI1eKkhPTyc1NVWTq/xi7Dt6ghnzl9Luf18zd+Jv+Hi4MWDEGKKiY7JMf+HqdapVKMuUUb/w59gR2NlYM2D4GMIiIlVpZsxfwunzl/mlbw+WTBtP0/q1mTx7IUdPn8uxfBzZPpeTe5bSoO1wug5dhb6BMYsmdCYlOSnbZa6c2s6OlWOp0ug7uo9Yh4OrP4vGdyY+NkItXfFKTRk4+bDqVbPZANVnBUvVUfts4OTD+BQoj4d/ic86sT1zbBdrF06g7rdd+fmPFbi4+zF1VA9iYyKzTB9y8yJzJw2iXLVG/DJ+JcElq/DnuH788/BOprQXTu3n7u3LWFjZZvps+u+9SEtLpf/w2QwetxwXDz+mj+5FTFT4J+dFE3RMjIm9fIurvUfkahzvc+LIXpbMnUqT5h34ffIC3D19GDO0HzHRWe+35KRE7BycaN62OxaWWZeXG1cvULNuE0b+MZvBo6aQmpbK6KF9SUxMyMmsqBw5dID5c2bRrEUbJk6bhaeXN8OH/Eh0dFSW6ZOSErF3dKR1+05YWlplmWb92pXs2L6Zrt17Mf2vBbTp0Jn161axdfOGnMxKJqd2z+HcgSXUajGc1gNXo2dgxOqpHUlNyb7dSE56iZ2zPzX+NyzbNCnJL3HxLkrlRgOyTaMpR7bN5cSepTRsN5zuw1ahZ2DMwj/e3fZdPrmd7cvHUrXRd3w3ch0Obv4s/CNz2wdwfNcisrrcULBUHX6aeljt5VuwPJ4Bn972nT66i1ULJtKgWReGTViOq4cvk0Z+R2w29efOzUvMnjiYCtUaMmzCcoqUqsz0Mf159CCj3Xv+JJQxgzvi6OzBD6NmM2LSKuo37YyenoEqzdwpQ3n2zwN6DZrEyMmrKVq6KrPG/8iDuzc/KR/vc/jQQebO+YvmLVoxZdpMPL28GDpk8DvqVBIOjg60bd8h2zo1bcokLl44z/cDBjJ95l8UKVKUXwb/SHj4v9t2n94zh/MHl1Cj+XBa/rAafQMj1kx7d51KSX6JrYs/1ZtlXadSkxN5FnqdMnW602bQehp1mU7U83usn9U9p7KRrZNH9rBs3hQa/68jv05ahJuHD2OH9cm2jU9KSsTWwZlmbXpgnk0bn5POHN3F6gUTqf9tF4aMX46Lhy+T31On5kwcTPlqDRk6YTnBJSszY2x//nmzTj0NZezgjji4eDBg5GyGTVpFvTfqVHRkGDFRYTRt25fhk1fTrtdwrl44zqIZI3M0r2f3zeHC4SVU+3Y4/+u3Gj19IzbM+oCy5+xPlW+yb89fu3NpD08eXMLE3E6TYf+3aWvl3usL9MEnt+3atePQoUNMmTIFLS0ttLS0WLhwIVpaWuzYsYNixYphYGDA0aNHUSgUjB49Gk9PT4yMjChcuDBr165VrSsqKoqWLVtia2uLkZERvr6+LFiwAABPT08AihQpgpaWFpUrV1aLY8SIEdja2mJmZka3bt1ITk5WfVa5cmV69uxJz549MTc3x8bGhiFDhpCenq5KM3PmTHx9fTE0NMTe3p5vvvnmkzbcx1q9aTv1albhq2qV8XB14fvuHTE0MGDbvkNZph/avyeNv6qBr5cH7i7ODPyuC4r0dM5dvqpKc/XW39SuUoEiBQNxtLelQa1qeHu4cePvkBzJQ3p6Oid2L6ZSg27kL1oNB1d/mnQeQ1zUc26c35vtcsd3LaJ4paYUrfA1ds4+1G87HD19Q84fXq+WTk/fEFMLW9XL0Chftp9pa+tw78YpilVs8vbXfZS9W5ZQvvrXlKvaCCdXb1p2/QV9A0OO79uYZfp925YTVKQstRq1w9HFi4bNv8PNMz8Hd6xUSxcV8YyVc8fQsc/v6OioD5CIj43i+ZOH1G7cARcPP+yd3Pm6VR+SkxJ5nMVJ8r8pbNdhbg+bzLNN2e/P/4JtG1dStVYDKlevh4ubJx17DETfwICDe7Zmmd7bL5CWHXpStmINdPX0skwzaMQkKlWvi6u7F+6evnTv+wvhYc+4dydnDrzftmnDWmrW/orqNWvj5uZB9559MTAwYO/unVmm9/ULoH3HrlSsVBW9bPJ08/o1SpUuS/GSpbG3d6Bc+UoUKVKcv2//O3kCZbtxdv9iytTpjm/h6ti5BFCv3TjiY55z+2L25cy7QCUqNuyHX3CNbNMUKNWIcnV74pG/TE6ErpKens6xXYup3KAbgcWq4eDmT9OuY4iLfnfbd2znIopXbkqxisq2r2G74egZGHLukHrb9/jBDY7uWMjXnX7LtI6s2r67109RrNKnt327Ny+jYo3GlK/WECdXL1p3+xl9A0OO7tuUZfq9W5dToEgZajdui5OrF41b9MDdK4D921ep0qxfPoOCxcrRtG1f3L0CsHN0JbhkJcwsMk4SQ25domrdZnj5FcDWwYX6TTthbGzKg5Abn5yXd9m4YR21atehRs1auLm5813PPhgYGLBn964s0/v5+dOhYxcqVaqSZZ1KSkri2LEjtO/QiQIFC+Hk5EzLVm1wdHJix7YtOZKHrKSnp3Nu/2JK186oU1+1Vdapvy9lXx69gipRoUH2dcrAyJRvey8goNhXWNl74eQZTLVvh/Ds4TViIx/nVHaytGPTCqrUbEil6vVxdvOifY+fMDAw5NDerLezt28gLdr3pkzFmujp6f+rsQLs2bKMCjUaU+5VnWrVVVmnju3Puk7t27qcoCJlqNWoLY4uXjRq0QM3zwD278ioUxuXKevUN2364uYVgJ2Dep1ydveh+8DxFC5RCTsHV/IXLEnjlt9x+exh0tJypqMpPT2dC4cWU6pmd7wLVsfWOYBarcbxIuY5IVeyL3uegZUoW7cfPoWzb88B4qOfcXDdKOq0Ho+2Tta/a0K8zwef3E6ZMoUyZcrQuXNnnjx5wpMnT3B1dQXgp59+YsyYMdy4cYNChQoxevRoFi9ezKxZs7h27Rr9+vWjVatWHDqkPJEbMmQI169fZ8eOHdy4cYM///wTGxsbAE6fPg3A3r17efLkCevXZxwE7Nu3jxs3bnDw4EFWrFjB+vXrGTFCvYdp0aJF6Orqcvr0aaZMmcLEiROZO3cuAGfPnqV3796MHDmSW7dusXPnTipWrPgZm+/DpKSkcjvkHsULZQxP0dbWpljhAly79fcHrSMpOYnUtFTM8mWc8BXw9+XYmfOERUSSnp7O+SvXCH38lBLB2Q+p/RxRYY+IjwnHOzDjQNLQ2BQX70KEhlzKcpnU1GQe37+G1xvLaGtr4x1UhtCQi2ppL53cyuieZZj2c312r5lIclL2PWYXj21CT9+QoBK1Pjk/qSkpPAy5Qf5CpdRiCyhUiru3L2e5zN3blwl4Iz1AYHAZ7t7KSK9QKFgw9RdqNmyLk1vmYecmphbYO3lw8tAWkhITSEtL5fDutZiaW+HmnfWwWpEhNSWFe3duUaBwcdV72traFAguwd+3rr5jyY/z8sULAPKZmmlsndlJSUkh5M5tCgcXVb2nra1N4eCi3Lp5/ZPXGxAYxOWLF/jnkfL2hnt3Q7h+/QpFi5f87Jg/VEz4I17EhuERUFb1noGRKU6ehXl878K/FsfnULV9QW+1fV6FeHjn3W2fT5B62+cTWIaHdy6q3ktOSmD1nz9Qv80QTC0yj/J424Vjm9AzMKTAJ7Z9qSkpPAi5Qf7C6u1eYKFShNzKut0LuXWFwMLq7V5QcBlCXrWTCoWCy2eP4uDkzsQRPejbthq/DmzD+VMH1Jbx9i/MmaO7iY+LQaFQcOrILlJSkvAvUOyT8vIuKSkp3LnzN8HBRVTvaWtrExxchJs3P+1kOi0tDYVCgZ6++smTgb4B165f+6x4P0ZMhLJOub9Vpxw9CvP4rmbrVFJiPGhpYWCU8+3ga8o2/iZBwRntlLa2NkGFS3Dn5pV/LY4PpapTbx1L5H9Hnbp7+wqBbx1LBBXJOJZQKBRcPncUe0d3Jo3sQf921fj9xzZceKtOvS3hRTyGxiaZLqprSmzEI17GhuHqp172HNwL8+Qz2/N0hYKdS3+gWNWOWDv6fm6o4v+xDy795ubm6OvrY2xsjIODAwA3byqv/o8cOZIaNZRXY5KSkvj999/Zu3cvZcoof9S9vLw4evQof/31F5UqVeLhw4cUKVKE4sWVB6ceHh6q77G1Vf64W1tbq77nNX19febPn4+xsTFBQUGMHDmSH374gVGjRqGtrTxPd3V1ZdKkSWhpaeHv78+VK1eYNGkSnTt35uHDh5iYmFCvXj1MTU1xd3enSJEi5LSYuDjSFAosLczV3rcyN+fhow+7Gjpr0QpsLC0pVjjjBLlPl3b8MXMuTTr2REdHB20tLX74rhPBQTlzz1l8jHLYVT5z9SE/JmY2xMeEZbnMy7hoFIq0TMvkM7Mm/Mk91d+FytTDwtoJUws7noXeYveaCYQ/vUeLXtOyXO+5I+soVKYuevqGn56fuCgUijRMLdRjMzO35uk/97NcJjY6HLO38mJmYU1MdMaQtF0bF6Cto0PVui2yXIeWlhb9hv/FzLH96NOqLFpa2piaW9H7l5mY5Pv3DiDyqthYZZkyf2vYoLmFFY8fPdDIdygUChbPmYx//kK4untrZJ3vEhurPNi3sLRUe9/CwpJHoaGfvN4mTZvz8uVLvuvaHm1tbRQKBa3adKBylZy7L/9t8bHKtsHkrSG0xqbWvIjN3WH4Hyoum7Yvn7kN8dHvafvM3l7GmrA32r7ty8fg5htMYLEPu+/07KF1FCr96W1f3Ku4zMzV64+ZhRVPsmn3YqLDMXu7nbSwJjZKObw6LiaSpMSXbF+/gMYtevBNmz5cPX+cmWMH8MPI2aqT1+4/jGXW+B/p06YKOjq66BsY8t1PE7B3dPukvLxLbGysxuuUsbExAfkDWbliGa6ublhYWHD40AFu3ryBo6OTJsL+IC9isq5TJmaarVOpKUkc3jCe/MXrYvDGSKqcFve6jbfI3MY/+Uczbbwmxb+uUxaZ61R2xxIx0eFZHnvERKvXqR0bFtCoRQ+atO7DtQvH+XPcAL4fORv/oMwXhOJio9i6Zg4Va3yd6TNNeRH3quyZZtGex31e2Tuzbw7a2roEV2rzWevJi7Ty2IRSM2bM4I8//uDp06cULlyYadOmUbJk9hfNo6Oj+fnnn1m/fj2RkZG4u7szefJkvvrqqxyJTyOXdl6fpALcuXOHly9fqk52X0tOTladSHbv3p0mTZpw/vx5atasSaNGjShbtizvU7hwYYyNjVV/lylThvj4eEJDQ3F3V076Urp0abWJUsqUKcOECRNIS0ujRo0auLu74+XlRe3atalduzaNGzdWW+fbkpKSSEpSv48gKTkZA/1/b9jL0nWb2Xf0BFN/HaL2veu27eL6rTuMHvw9Dna2XLx2g0l/LcTGypLihT+/9/bS8S1sXjRc9Xerfn9+9jqzU6Lyt6r/O7j6YWphy4Jx7Yl8/hArO/UDn4d3LhD2OIQmXcbmWDyf6kHIdfZvW87Pf6zIdsKe9PR0VswZjZmZJQN+nY++viFH965nxujeDB63DHPL9/feiJy1YNYEQh/eZfjYWbkdymc5euQghw7so//Awbi5eXDvbgjzZs/Aylo5sVROuHZ6M7uWZ9xX9U2Pv3Lke3LSxeNb2LRguOrvNt/nTNt34/x+7l4/yXej1r8/MfDwb2Xb17Trf6vtU7y69adIycrUbKCcOM/N0587ty5xcNda1cnthuUzefkinu9H/ImpqSXnTx9g1h8/8tPv83Bxzxs9Nd8PGMiUSRNo27q5chSSjy8VK1Xmzp0PG4X1Ka6f3szuFRl1qkn3nK9TaWkpbJ7bh3TSqfG///YcDF+i17fTBZesTI36GXUq5OYlDu1am+nkNuFlPNN+64OTqxf1m3XVWBw3z25m36qMstewa86UvWehV7l4aDEtflj/r052KD7eqlWr6N+/P7NmzaJUqVJMnjyZWrVqcevWLezsMt8nnZycTI0aNbCzs2Pt2rU4Ozvz4MEDLCwscixGjZzcmpiYqP4fHx8PwLZt23B2dlZLZ2CgvAm+Tp06PHjwgO3bt7Nnzx6qVavGd999x/jx4zURTrZMTU05f/48Bw8eZPfu3QwdOpThw4dz5syZbDfy6NGjMw19/r5HZ37o+eGNh7mpKTra2pkmj4qMicHKMuvvfW3Fxq0sX7eZiSMH4+2RcZKXlJTMnKWr+O2n/pQprrxo4O3hxp17D1i5cZtGTm4DilTF5Y1ZPVNTlfc3x8dEYGqRUYBfxIbj4JZ1b7GxqQXa2jrEx6hPoBIfG0E+c5tsv/v190Y8y3xye+7QWhzc8uPskfWsiR8qn6kl2to6xEWrxxYbE4G5RdaxmVnYEPtWXmKjM9L/feM8cTGRDOpaR/W5QpHG2kUT2b91Gb/P2sHNK6e5fO4wkxYdxshYeTW8RZefuXHpJCcObKH21x0+K19fOjMzZZmKiVKfqCMmOhKLbCaB+RgLZk3g/JljDBs9E2ubf2dCCzMzc7S1tYmOUp/oJjo6CkurT8/TwnmzadL0f1SsVBUAD08vwp4/Y+3qFTl2cutTqCpOHoVVf79uN17ERpDvjQlCXsZFYOeS9ay1uS1/kapqMxqnpmS0fWZvtH3xMeE4ur+n7Xtr8qj4mIy27+71k0Q+D+XXburDE5dP7YOHfzE6DV6s9v7ZQ2txdMuPs+ent32mr+J6e9K82OhIzC2ynojH3MKG2LfbyegIzF5N3GNqaoGOji6Orl5qaRxdPLlz4yKgnHBq//ZVjJyyBmc35WgIV08//r5+gf3bV9Om+8+fnKesmJmZ5UidcnR0Ysy4CSQmJvDy5UusrKwZO/o3HBwcPzfkbPkUqorjG3UqLZs69SJWM3VKeWLbl9jIxzTrs+hf7bUFMH3dxkdnbuPf7s39L8j3uk5FZ65Tb494eM3cwiabYw9r1Tp1dHRxdFGvUw5v1KnXEhNeMGVUTwyNjOnx4wR0dTV3r6pXgao4uGdR9uIi1CZ8ehkXga3zp5e9f0LO8jI+gnnDq6jeS1ekcWTjWC4cWkzHYfs/ed15Qh6a2GnixIl07tyZ9u3bAzBr1iy2bdvG/Pnz+emnnzKlnz9/PpGRkRw/flw1l8GbI3Zzwkf1g+vr65OWlvbONIGBgRgYGPDw4UN8fHzUXq/v0QXl8OO2bduydOlSJk+ezOzZs1XfAWT5PZcuXSIhIeM+zJMnT5IvXz619Z46dUptmZMnT+Lr64uOjg4Aurq6VK9enXHjxnH58mXu37/P/v3ZV5pBgwYRExOj9urdpf07t8Hb9PR08fP25NzljHtyFAoF5y9fI8g/+6vVy9dvYfHqDfwx7EcCfNQbuNS0VFJT0zJd4VIOPUxHEwyMTLC2d1e97Jx8yGduw93rJ1VpEhPieRRyGVfvwlmuQ1dXHyePILVlFAoFd6+fxNU7ONvvfvJQOeT97XvQkhJfcPXMzs+eSApAV08PN+/83LhyWi22m5dP4+WX+VEdAF5+hbh5+bTaezcun8TLX5m+dKV6DJm4hl8mrFK9LKxsqdmgLb2HKHt/kpMSgczDULS0tVGkKz47X186XT09PH38uXo5Y1ZwhULBtUtn8fXP/rEL75Oens6CWRM4c+IQv/w2DTuHf2+YoZ6eHt4+fly+lHHPkkKh4PLFC/gHfPp92MlJiapbNl7T1tYmXZFz5czAMB+Wdu6ql42jDyZmtjy4dUKVJikhnsf3LuHkmfO3hXyKTG2fczZt393LuPm8u+0Luabe9oVcP4mbTzAAFet1ptdvG+n563rVC+Crlj/xdeff1daXlPiCK6d3ftZEUqCsP+7e+blxWb3du3HlNN7+Wbd73v4F1dIDXL90Cu9X7aSunh4ePoGZhmA+e/xQ9Rig5OTX7V7m36z0HGj39PT08PHx5dKli6r3FAoFly5eJCDg82/dMTQ0wsrKmvi4OM6fP0vp0jk3qZn+W3XK+lWdevhWnXpy/xJOXp9Xp16f2EY/f8C3vRdilM/y/QtpmLKND+DapYzHAyoUCq5dPoNPQM7MKfI5sq1Tl7OvU15+BdWOPQBuXDqlOpZ4XaeePb6vlubZ44dY22VcSEl4Gc+kET3Q0dXju0GT0NM3QJP0DfNhYeuuelk5+GBsZkvo7TfKXmI8Tx9cwvEz2vP8JRrSauBmWv6wUfUyMbejWNWONO42VxNZEdlISkoiNjZW7fX2iNXXkpOTOXfuHNWrZ9zapK2tTfXq1Tlx4kSWy2zevJkyZcrw3XffYW9vT4ECBfj999/fez75OT6q59bDw4NTp05x//598uXLhyKLAyRTU1MGDBhAv379UCgUlC9fnpiYGI4dO4aZmRlt27Zl6NChFCtWjKCgIJKSkti6dSv58yt/bOzs7DAyMmLnzp24uLhgaGiIubnyXtXk5GQ6duzIL7/8wv379xk2bBg9e/ZUO3h7+PAh/fv3p2vXrpw/f55p06YxYcIEALZu3crdu3epWLEilpaWbN++HYVCgb9/9s+nMzAwUPU4v5bwCUOSv234FaOnzMLfx4v8vt6s2bKDhMREvqpWCYDfJs/ExtqKrq3/B8Cy9ZuZv3wtQ/r3xMHOloioaACMDA0xNjLExNiY4KD8/LloOQb6+tjb2XDp6g12HTxCz/atsgvjs2hpaVGmZhsObpmFlYM7ljYu7Fs/FVNLO/IXzSjoC8a2J3+x6pSu3hKAsrXasn7OIJw9C+DsVZATuxeTnJRA0QqNAYh8/pBLJ7biV7gSxiYWPH10ix3Lx+DhXxwHV/V9c/XUDhRpaRQuU18jeapevzULpw3BwzsQD98C7Nu6jOSkBMpWbajMy9RfsLCyo3Gr3gBUq9uC8UM7sWfzYgoWrcCZYzt5EHKdVt2GAsqrrflMLdS+Q0dHFzNLaxycPQDw9i+EsYkZC6cNoe63XdDXN+TInnWEP/8n2+fl/lt0TIwx8cnoKTf2dMGscADJkTEkhj7JxcjU1W30P/6c9CtePgH4+AWyY9MqkhITqVS9HgAzJ47E0tqW5m2Vj7BITUnhUajyPsfU1FSiIsK4f/c2hobGODi5ADD/z/EcP7yH738ei5GRMdGv7ic0Ns6HvoFmDxiy0rDxN0yZOBYfXz98/QLYsmkdiUmJVK+h7GGdNH4M1tY2tGnfCVBOmBP6UHn/WUpqKhER4dwNuYORkRGOTspRMyVKlWHNymXY2trh6u7B3ZA7bNqwluo1a+d4fl7T0tKieNU2HN/+J5a27ljYuHBkyxTymdupPbd25eS2+AbXoFhlZfuVnPiCqLCHqs9jIh7xLPQGRibmmFkpLzwkvIgmNvIJ8THPAYh8ptzHJmY25DPX3PB+LS0tytVqw4FNs7C2d8fS1oW966ZiaqHe9s0b057AYtUpU0PZ9pWr3ZZ1r9o+F6+CHH/V9hWrqGz7Xs+A/DYLa0esbF3U3rvyqu0LLvv5bV/NBi2ZN3UYHt6BePoGsXfrcpISEyhXrQEAc6cMwdLKjiatewFQvV4Lxv3SmV2bllCoWHlOH93F/ZDrtOn+i2qdtRu1YdaEn/ALLEpAweJcvXCcS2cOM3CU8sK1g7MHdo6uLJ71G9+27Uc+U3MunD7I9Uun6P3zlM/OU1YaNW7CpIl/4Ovri59fAJs2rVerUxPGj8Pa2pp27TsCr+uUssylpqa8qlMhGBoZ4vSqTp07dxbS03F2ceHJ48fMnz8HFxdX1Tr/DVpaWhSr2oYTO/7E0s4dc2sXjr6qU76FM8rjqilt8S1cg6IfWKfS0lLYPKc3zx5e5+sef6FQpKnm0zAyMUdH99+7HatOw+b8NXkknj758fYLZOfmlco2vpqyjZ81aTiWVrY0a/sdoGzj/1G18SlERobx4O5tDAyNcHByzfZ7NKVG/ZbMnzYMD59XdWrLcpKTEihXVVmn5k0ZgqW1HV+3UtapavVaMH5IZ3ZvWkLBYuU586pOte6WUadqNmzD7Ik/4RtYlIACyjp1+exhBryqU69PbJOTE+nY91cSX74g8aVyIkRTM0u0X3XqaJKWlhZFKrXh9O4/sbBVlr3j26dgYm6Hd8GMsrduelu8C9UguOKrspf0gug3yl5sxCOeP7qBobGy7BmZWGJkon4hRVtHD2MzG6zs1Tt3hGZlNUJ12LBhDB8+PFPa8PBw0tLSsLdXf+61vb29ah6mt929e5f9+/fTsmVLtm/fzp07d+jRowcpKSkMG/b+R0N9io86uR0wYABt27YlMDCQhIQE1eN73jZq1ChsbW0ZPXo0d+/excLCgqJFizJ4sPJB9Pr6+gwaNIj79+9jZGREhQoVWLlS+SgVXV1dpk6dysiRIxk6dCgVKlTg4MGDAFSrVg1fX18qVqxIUlISzZs3z7Tx27RpQ0JCAiVLlkRHR4c+ffrQpUsXACwsLFi/fj3Dhw8nMTERX19fVqxYQVDQ5w1v/RDVypchOiaW+SvWEhkVjY+nO+OH/YTVq0mmnoVFqPXkbdqxl5TUVIaOm6y2nnbNvqZDc+Xji4YN6MXsJSsZNWkGsfHxONja0LnltzSsnXOTxVT4qhMpSQlsXjCMxJexuPkVpc33s9WuFkY+f8jLuIyhYAVLfcWLuCj2bZiqHMbnlp82389WDc3T0dHj7vUTnNi9mJSkBMysHQgqXoNKDTI/W+/ckXUEFquBkYlmJl4qUa4W8TFRbF75J7HR4bh4+tP7l5mqoUSR4U/Uehq8A4Lp1Pd3Nq2YwcZl07BzdKP7wEk4ZzErcnbymVnS+5cZbFo+nUnDuigfzO7qTY8fJ+Pqkf2Fln+DebEClNm3RPV34HhlnQ1dvJ7LHQflVliZlKlQndiYaNYum0N0VCTuXr78NGKialhyeNgztfoUFRnOoD7tVH9v3bCcrRuWk79AEYaOngHA3h3KZ7+OGvyd2nd16/MzlarXzeEcQYVKVYiNjWH5koVERUXh6eXNsJFj3sjTc7TfGLoUGRlBv14Zt0dsXLeajetWU6BgYX4bOxGAzt16sXzJAmbNmEJMTDRWVtbUqlOPZi1a53h+3lSqZmdSkhPYtXwoiS9jcfEuxre95qL7xjNQo8JCSYjPaDeePrzKikkZE4vsXzsagAKlG1O37RgA7lzez/bFGeVy87x+AJSr25Py9XppNA8V6nYiOSmBja/aPnfforQb8O62r1DpV23f+qnEvWr72v0w+523ZGTn3KF1BBXXTNtXsnwt4mKj2LjyT2KjInD19Kff0OmqIZGRYU/V6o9PQGE69/uNDctnsn7pdOwc3ej500Rc3DPavaKlq9K662C2r1/Ainl/4ODkTo+Bf+AbqOzN0dXVo+8v01i7ZCrTfu9LYuJL7Bxd6dB7BIWKlf/sPGWlYqXKxMTGsHTJYqKiovDy8mLkyN+wfDXJVFgWdap3r4zfnfXr1rJ+3VoKFCzEmLHK26ZevnjBooXzCQ8Px9TUlLLlytOmbXt0dXNmdtrslKzRmZQkZZ1KehmLs3cxvumpXqeis6hTqyZn1KkD65R1Kqh0Y75qM4b46Gfcuawcybbo94Zq39es72Lc/NSHz+ek0hVqEBsTzbrls4mJisDdy4+BwyernmGbuY0P4+e+Ge3a9g3L2L5hGQEFivLL7zk3X8hrJV7VqU0r/iQ2Wlmn+gyZ/saxxFO0tNXrVKd+v7Fx+Uw2LFPWqe9+nIjzW3WqVdfB7Fi/gJXz/sDeyZ3uA//AN7+yTj28e5N7fyufEPBzD/X9NXrWVmzscmb0UfFqnUlNTmDfqqEkJcTi5FWMxt3eKnsRoSS8yCh7zx5eZd30jLJ3eKOy7OUv2ZhaLcfkSJx5iZZ27k0oNWjQIPr376/23tudep9DoVBgZ2fH7Nmz0dHRoVixYvzzzz/88ccfOXZyq5X+5kNg87jKlSsTHBzM5MmTc/R7nt049/5Eecyh6P/m8MDPYWea/QPF86oXRYJzOwSNc7x2PLdD0DhjnewfY5WXHX/g8v5EeYyZyZd3K4CD6ZdX/uwN8sbM2h/j0H333A5B4wq7ROd2CBqXkPplPm/1WqjJ+xPlMd3/vUFJGvVy3tBc+27jjiM/OG1ycjLGxsasXbuWRo0aqd5v27Yt0dHRbNqU+bnOlSpVQk9Pj717M56DvGPHDr766iuSkpJUt6NqUt6ae1oIIYQQQgghvhRaWrn3+gj6+voUK1aMffv2qd5TKBTs27dP9fjXt5UrV447d+6o3cp6+/ZtHB0dc+TEFuTkVgghhBBCCCHEe/Tv3585c+awaNEibty4Qffu3Xnx4oVq9uQ2bdowaFDG7ULdu3cnMjKSPn36cPv2bbZt28bvv//Od999l91XfLZ/9yaRHPb63lwhhBBCCCGE+M/LxXtuP1azZs0ICwtj6NChPH36lODgYHbu3KmaZOrhw4dqE/26urqya9cu+vXrR6FChXB2dqZPnz78+OOPORbjF3VyK4QQQgghhBAiZ/Ts2ZOePXtm+VlWHY1lypTh5MmTmRPnkLxzqUAIIYQQQgghhMiG9NwKIYQQQgghRG74yImdxLtJz60QQgghhBBCiDxPem6FEEIIIYQQIhdo5aEJpfIC2ZpCCCGEEEIIIfI8ObkVQgghhBBCCJHnybBkIYQQQgghhMgNWtLXqEmyNYUQQgghhBBC5HnScyuEEEIIIYQQuUFbHgWkSdJzK4QQQgghhBAiz5OTWyGEEEIIIYQQeZ4MSxZCCCGEEEKIXKAlE0pplGxNIYQQQgghhBB5nvTcfoIX+ha5HYLG3X+c2xFoXqq9YW6HoHEB147ndgga9ySobG6HoHE6Z67kdgg5IiEptyPQPDsLRW6HID7A40Tb3A5B45wsU3I7BI1LTvvyDisNdVJzO4Qckc84tyMQKjKhlEZJz60QQgghhBBCiDzvy7vEJoQQQgghhBB5gdxzq1GyNYUQQgghhBBC5HlyciuEEEIIIYQQIs+TYclCCCGEEEIIkRu0ZEIpTZKeWyGEEEIIIYQQeZ703AohhBBCCCFEbtCWvkZNkq0phBBCCCGEECLPk5NbIYQQQgghhBB5ngxLFkIIIYQQQojcIM+51SjZmkIIIYQQQggh8jzpuRVCCCGEEEKI3KAtjwLSJOm5FUIIIYQQQgiR50nPrRBCCCGEEELkBrnnVqPy7Na8f/8+WlpaXLx48bPW4+HhweTJkzUSkxBCCCGEEEKI3CE9t/+iLVu2sHbdOqKiovDy9KR79+74+/tnmXbHzp3s27ePBw8eAODj40O7tm3V0h87doxt27dz584d4uLimD5tGt7e3v9KXt4lPT2d83uncevsGpIT4rB3L0LZhsMwt/HIdplLB2dz/9oeYsLuoqNniJ1bEUrU/h4LW89/Jd6Dm6Zx/vAaEl/G4upTlLqth2Ftn328AKf3L+P4znnEx4Tj4BpAnRa/4OxVCIDo8EdM+bF6lst9020yQSVqc/HoejYtGJxlmgGTjmFiZv1Z+XrT7m3r2LJ+GTFRkbh5+tCua398/AKzTBv64C5rl83lbshNwp8/pXWnPnzVsJlamo1rFnPm+EEe//MQfX19/AIK0rxdD5xc3DUWs6ZYlS+O1/cdMS9aAEMnO8426cGzzftyOywAjuxawf4tC4mNDsfZ3Z8m7Qfh7lMw2/QXTuxi++rpRIY9xtbBjfot+xFUpKLq80un9nJs72pC717nZXwMP4xdg4tHgNo6Vs0ewa2rJ4mNDEPf0BhP/8I0aNEPe2evHMtneno6p3ZM5erJNSQlxOLkWZQqTYdjYeuR7TL/hJzh3P55hIVe5UVsGHU7zMC7kHqd2rPsJ26c2aD2nltAeRp1m/fZ8e5aO52T+9eS8CIOT/8iNOkwFFvHd5fvo7uXc3DLAuJiwnFy86dxu8G4+RRSfZ6SnMTmpeO4eGIHqSnJ+BcuR5P2QzC1sFGluX31JDtXT+Np6G30DYwoXrEhdZr1QUcn4+f64omd7Ns0m7AnD8hnZkm5mi2oUr/DR+dz//ZV7Ny4mJjoCFw9/GjRaSBefgWyTX/m2B42rviT8OePsXd045s2vSlUrLxamsehd1m7ZCq3r50nLS0VJ1cvegz8A2tbR8KfP+bHrvWyXHe3AWMpUa7GR+fhbQd2rGL3xkXEREfg4uFH804/4umbfZ7OHt/DphUziXj+GDtHN5q07k3BYhVUny+YNpQTB7aoLRMUXJY+Q2dkWldKSjKjf2zNo/u3GTJhJa6eWf++f6z09HR2rp3Bif1rSXwRh4d/EZp2GPIB5XEF+98oj1+3G6zWvqQkJ7Fp6R9ceFUeAwqX45v2v6iVx9dexEXzx09NiIl8xu9zj2NkYvZZedq3ffUbZc+Xlh9Q9jas+JPw50+wd3Sl6Vtlr0PjYlku17RNH+o0bgPAljXzuHzuKKH3bqGjq8eMZYc+Kw9v27NtDds3LiUmSpmnNl0G4O0XlG36U8f2sm7ZX8o8ObnSrE1PgouXU30eEx3BykXTuXrhFC9fxOEfVIQ2XQbg4OSmSvPsySNWLJjC7RuXSElJoVDR0rTpMgBzC80dP6Snp3No81QuHlEeI7n4FOWrlsOxes8x0tkDyzixax7xMWHYuwZQq/kQnD0z2sP4mDD2rh3HvevHSU58gbWDJ+W+6kb+YrVUaab9VJWYiH/U1lvl6+8pV6eLxvInvjx5tuc2rzl06BCz58yhZYsWTJs2DU8vL34ZMoTo6Ogs01++fJnKlSoxZvRoJk6YgK2NDT//8gvh4eGqNImJiQQFBdGhfft/KRcf5vLhuVw/sZRyDYfToPsqdPWN2bWgM6kpSdku8+TeGfKXbkH97iup3WEeCkUKOxd0JCX5ZY7He2zHXE7tXULd1sPp9PNq9A2MWDqx0zvjvXp6O7tXjaFSg+/oOmw99q7+LJ3UiRexEQCYWTny/cQjaq/KDXuhb2CMb0HlgVNQya8ypfEuUB53/xIaPbE9cWQvS+ZOpUnzDvw+eQHunj6MGdqPmOjILNMnJyVi5+BE87bdsbDMOo4bVy9Qs24TRv4xm8GjppCalsrooX1JTEzQWNyaomNiTOzlW1ztPSK3Q1Fz/vhONiz+g1pNuvHDmNU4ufvx5+9diYuJyDL9vVsXWTz1R0pX+ZofxqyhYImqzPujD48f/q1Kk5yUgJd/ERq06Jft97p6BdKi2ygGTdxE98GzIB1m/tYVhSJN43l87dy+OVw8vIQqTYfTrN9qdPWN2Dir4zvrWErSS2yd/Kn8zbB3rts9oAIdRx5VvWq3mfjZ8R7YMo8jO5fxTcdh9Bm1An0DI2aP6UJKcvbxXjixg81LxlGzSQ/6/b4GJ3d/Zo9R35+blozl+vmDtOkzkR5DFxEbFcbCSX1Unz9+cJO5Y7sRULgc/UevpXXvCVw7d5BtKyap0ty4eIRlM36kTLVm/DBuI1+3H8Lh7Ys5umvZR+Xx9NFdrFowkQbNujBswnJcPXyZNPI7YrNpF+7cvMTsiYOpUK0hwyYsp0ipykwf059HD+6o0jx/EsqYwR1xdPbgh1GzGTFpFfWbdkZPzwAAK2t7Js7frfZq+L9uGBgaU7BouSy/92OcObqLNQsmUO/brvwyfjmuHn5MGdkj2zyF3LzI3ImDKF+tEUMmrKBIycrMHNuff97IE0BQkbL8MW+P6tWp/+gs17du8WQsrGw/Ox9v279lPod3LqNpx6H0HbUcAwMjZo3p+t7yuHHJOGo16c73r8rjX2+Vx41LxnLt/EHa9ZlIz6ELiYkKY/6kvlmub+XsoTi5+WkkP6eP7n6j7C3D1cOPiSN7vrPs/TXxZypUa8TwV2Vv2pjv1crepPm71F7tew5DS0uLYmWqqtKkpaZQomx1Ktf+RiP5eNPJI3tYPn8yjZt1YtTExbh5+jJueO9sf2dv37jMzPFDqFS9AaMmLaFYqUpMHv0DoQ9CAOUJ5eTffyDs6T/0+3k8v05aio2dI2OG9lT9ziYmJjBueC+0tLQYNGomQ8fMITU1hYm/fo9CodBY3k7snMOZfUuo02o47QevRl/fiOWT391+XzuznT2rR1Oh/nd0GrIBe5cAVkzuqDpGAtg0/0cin97j255/0mX4FvyL1GD9X315+vC62roqNexN3/FHVa8SVVtpLG//GVpauff6Av3nT24VCgXjxo3Dx8cHAwMD3Nzc+O2331Sf3717lypVqmBsbEzhwoU5ceKE2vLr1q0jKCgIAwMDPDw8mDBhwr+dBQA2bNhAndq1qVmzJu5ubvTq2RMDAwN2796dZfofBw6kXr16eHt74+rqSp8+fVAoFFy8dEmVplq1arRs0YIiRYr8W9l4r/T0dK4dX0xwlW64B1bDytGfSk3H8DLuOQ+u7812udrt5+BXrDGW9r5YOwZQscloXkQ/Ifyfazke76m9i6lYrxsBRaph7+pPo45jiYt+zs3z2cd7cvdCilZsSpHyTbB18qFe6xHo6Rty4eg6ALS1dchnbqv2unl+L4El6qBvaAKAnr6h2uda2jrcu3GKIuU1+8O7beNKqtZqQOXq9XBx86Rjj4HoGxhwcM/WLNN7+wXSskNPylasga6eXpZpBo2YRKXqdXF198Ld05fufX8hPOwZ9+7c1GjsmhC26zC3h03m2abs92duOLhtMWWrNaF0lcY4uHjzbaeh6OsbcfLAhizTH9qxlIDgclRr0B4HFy/qNuuFi2cgR3atUKUpUbE+tb/pjl/B0tl+b9nqTfEJLI61nTOuXoF81awn0RFPiXz+WON5BGUdu3h4MSVrdse7YHVsnAKo2XIcL2Kec/dK9vvEI7ASZer2w7vQu3vzdHT1MTGzVb0Mjc0/O97DO5ZQvXFXChSvipO7P817jCY26jlXz2bf43942yJKV/2GkpUb4+DiQ5OOw9DTN+T0wfUAJLyM4/SBdTRoPRDfAqVx9QqiWddfuX/7Ig/+VrbrF0/sxMnNj5pNemDj4I53YAnqtejPsd0rSEx4AcC5I5spULwqZWs0w9relcCilajasDP7N88nPT39g/O5e/MyKtZoTPlqDXFy9aJ1t5/RNzDk6L5NWabfu3U5BYqUoXbjtji5etG4RQ/cvQLYv32VKs365TMoWKwcTdv2xd0rADtHV4JLVsLMwgoAbR0dzC1t1F7nTx2gRLkaGBoZf3Ds2dmzZSnla3xNuWoNcXL1pmVXZZ6O7d+YZfp9W1cQVKQstRq1xdHFi4YtvsPNMz8HdqxUS6erp68Ws0m+zL2WV84f5frFk3zTNvsLS58iPT2dQzuWULNxFwq+Ko8tevxObNRzrryjPB7ctpgyVb+hVGVl+9K041D09Q05dVDZviS8jOPUgfU0bD0Q3wKlcPUKonnXUdy/fZH7f19SW9exPStJeBFLlbrtNJKnXZuXUrFGYypUa4Czqxdtug1G38CQI9mUvT1bV1CgSBnqNG6Dk6snX6vK3mpVmrfL1cXTBwkoUBw7BxdVmkbNu1GzQUtc3H00ko837di0nMo1G1Gxen2c3bxo3/0nDAwMObx3S5bpd29ZSaGipan7dWucXT35pmU3PLwC2LtNmaenjx9y59ZV2nX/ES/fQBxd3GnX7UeSk5M4eXgXAH/fuETY8yd06TMUVw8fXD186NpnOPfu3OD65bMayVd6ejqn9y2mfN3u+AdXx94lgAYdxhEX/ZxbF7Jvv0/tWUCRCt8SXE55jPRVK+Ux0sVj61RpHoVcoHjVVjh7FsLS1pUK9XpgaGzGkwfqx336hiZqx0r6Bp/fVogv23/+5HbQoEGMGTOGIUOGcP36dZYvX469vb3q859//pkBAwZw8eJF/Pz8aN68OampqQCcO3eOb7/9lv/9739cuXKF4cOHM2TIEBYuXPiv5iElJYW/79whODhY9Z62tjbBwcHcuPlhJwNJSUmkpaVhmi9fDkWpGXFRj0iIC8fJu4zqPX1DU2xdCvH84aV3LKkuJSkOAAOjzztQfZ/o8EfEx4ThFVhW9Z6hsSkuXoUIDbmY5TJpqck8fnANr/wZy2hpa+MVWIZH2Szz+P5VnobeoGiFJtnGcun4RvT0DQksXivbNB8rNSWFe3duUaBwcdV72traFAguwd+3rmrse16+UB545zP9vKFq/1+kpqYQeve62kmotrY2fgVLZzqwfO3e7Uv4F1A/aQ0oXJb7tz+8Xr0tKfElpw5uxNrOGQsbh09ez7vERjziZWwYrn4Z9cXAyBR798I8uX/hs9f/6M5p5vxShsW/1eLA6mEkvIj6rPVFPn9EXHQ4fm9sayNjU9y8C6lOQt+WmprMo3vX8S2Q0e5pa2vjV6C0aplHd6+RlpaK3xtp7J29sLRx5P7fF5XrSUlG91Uv52t6+oakpiTx6N411XfpZUpjQEzkU6LCP+wCRWpKCg9CbpC/cCm1eAMLlSLk1uUslwm5dYXAN9IDBAWXIeS2Mr1CoeDy2aM4OLkzcUQP+ratxq8D23D+1IFs47gfcp3Qe7eoUL3RB8X9vjw9DLlB/kLqecpfqBR3s8vT7ctq6QGCipTJlP721bN8364qQ3o2YtlfvxEfF632eWx0BEtmjqJDn1HoGxh9dl7eFKEqjxnlxsjYFHfvQtm2FampKTy6d12tDGtra+OrVh6vk5aWqtamZJTHjPU+fRTCrvWzaNljNFoaeFyJsuzdJLBwSbXYAguVJOTWlSyXCbl1OVPZKxBchju3s96vMdERXD53lArVG352vB8iNSWF+yE3CSpcQvWetrY2QYVLcCebPN25dYWgN7YBQMEipfn7VfrUlBQAtbqura2Nnq4et24o909KSgpaaKGrp69Ko6evj5aWNrdvXNRI3l4fI3nmVz9GcvYqzKO7WbffaanJPHlwTW0ZLW1tPPKX5Z+QjGVcvItw/cwOEl5Ek65QcO30NlJTknD3V98ux3fMYULfUswZ2YgTu+aiSEvVSN7+U7S1c+/1BfpP5youLo4pU6Ywbtw42rZti7e3N+XLl6dTp06qNAMGDKBu3br4+fkxYsQIHjx4wJ07yqEqEydOpFq1agwZMgQ/Pz/atWtHz549+eOPP/7VfMTGxqJQKLC0tFR739LCgqjIrIesvG3+ggVYWVn9p3pps5IQpxw2bZRPfTirUT4bEuLDPmgd6QoFJ7eOxt69KFYOmhkGlZ34GGVMbw8DNjGz4UVseFaL8DIuinRFWpbLxMdkvcyFI+uwcfTG1adotrFcOLKOgqXqoadv+DFZeKfY2GgUijTMLa3U3je3sCI66sPK3vsoFAoWz5mMf/5CuLrn/j3fecGL2CgUijRMzdXLkKm5NXHRWQ9LjosOx9Qic/rYbMrcuxzZtZIf2pRkYNtS3Lh4lB4/z0FXN+te+s/1Mk5Zx4xN1WM3NrXmZTZ17EO5569AzVZjadxjIeXq/8CjkDNs/qvzZw2xfr09Tc3V7zs0NbcmNjrreF+8qmdv78985tbEvVomLiYcHV29TPcqvpnGv3A57t++yPlj21Ao0oiJfMae9X8q44pSbkf/QuW4cmYvt6+eRKFQEPbkPoe2LVJL8z5xccp4zczV2wUzCytisil/MdHhmL1V/swsrImNiniVv0iSEl+yff0CChQpS//hMylaqgozxw7g1tVzWa7zyN5NOLp44hNQ+IPifpf4OGWdet1L/JqphXW2eYqNDs+U3sxcPX1QkbK07z2KfiP+4uvWfbh97RxTR/VEkaYsY+np6SyYNpRKtb7Bwyf7+ys/Vdyr8pjvHWXrbe9qX16X4dhsyqPpG+tNTUlmybQfaNDieyxtHDWTH1XZy1yWYrLJT0x0ROb9ZGGlKntvO35gK4ZGJhQrXTXLzzUt7vXvbBYxRmcTY3R0RKb05hZWxLz6XXZ08cDa1oHVS2bwIj6W1JQUtq5bRGTEc2IildvJx78ABoaGrFo0naSkRBITE1ixYAoKRVq23/uxsj1GMrXmRTa/PS/jsz5GymdmTfwbbX6TrpNRpKUyoW8pRvcoyPalQ/mmx3Ss7DLuJS9RtTWNu0yk1YBFFK3YjGPb/2Lf2n/3GF7kPf/pCaVu3LhBUlIS1apVyzZNoUIZN6c7Oiob3+fPnxMQEMCNGzdo2FD9yl25cuWYPHkyaWlp6OjovDeGpKQkkpKSMr1nYGCQzRKat3r1ag4dOsS4sWPR19d//wL/ojsXt3Bs43DV3zXb/PnZ6zy+eSRRz/6mXtePu4fsQ1w+uYWtizPu4WvRZ5bGv+NtKcmJXDm1lYr1u2ebJvTOBcKfhNC409gcj0fTFsyaQOjDuwwfm/PbUmhG8Qp18S9UhtioMA5sXcSCyd/Td+QS9PQ/v127eXYzB1Zn1LH6Xf767HVmx69oXdX/bZz8sXHyZ9Gv1fnnzmlc/cq8Y8kM545uZe3c4aq/Ow38/DbsU/kXKkf9lt+zbt5IVswchK6ePtUbd+XuzXNovbrCXrpqUyKehTJvXA8UaakYGJlQoXZrdq+boUqTGxSvhkQXKVmZmg2U98S5efpz59YlDu5ai38B9Ql/kpMSOXV4B/W/7fyvx/oxSpavrfq/i7svLu6+/NyjPreunSV/oVLs376CxISX1Pn64yf0ysq5o1tZPTdjfoDOA2dqZL2fYuvKydg7e1G8Qv1ci+FTHNm3idIV62ikPcsturq69PlpLHOn/0q3ltXR1tYhqHAJChUrC6/qmpm5Jb0GjmbhrLHs3roKLS1tylSsiYd3AFqfeC/llZOb2b40o/3+X6+ca78PbpxCYkIsLfsvxDifJbcu7GX9X31pO3AZdi7KydhK18yYU8beJQAdXT22Lx1Gla+/V+uxFuJN/+mTWyOj9w/v0XvjnsDXlVmTN9KPHj2aESPUJ6Lp3asXffr0yWaJzMzMzNDW1iYqSn24XFR0NJZWVtkspbR23TpWr1nD77/9hqdnzs8c/LHc8lfFzjXjAkNaajIACfERGJvZqd5PiA/HyjH/e9d3fPMoQm8dom7nJZiYa36YpH/hKrgMy4g39VW8L2IjMLXIiPdFbDj2rlnHa2xqiZa2jtrECK+XyWeeeZbJ62d3kZKcSOGyjbKN6/yRtTi45sfJI/vZIj+FmZkF2to6qqvBr8VER2Jh+e6y9yEWzJrA+TPHGDZ6JtY2du9fQABgYmaJtrZOpsmj4mIiMvXOvmZqYZOpVzcuJgKzLMrc+xgZm2JkbIqdozsefoUZ1KEcl8/so1i5rz56XW/zKlAVB/eMnrjXbcLLuAhMzDPKyMu4CGydAzIt/znMbVwxNLEkOuzBB5/cBhWrojaD7OvhgHEx4ZhZZkwOFBcTgbNH1vGavKpnb+/P+JgI1cyzpuY2pKWmkPAiVq237M00AJXqtqPiV22JjQrDOJ8ZkWH/sH3lZKztlPcOamlpUa/F93z1v77ERYdjYmbJ31dPAajSvI+pqTLe2Bj1diE2OjLbWVbNLWyIfav8xUZHYPZq0jlTUwt0dHRxdFWfddvRxZM7WQyRPHtiL8nJiZStnPXsyR8rn6myTr09KVFcdES2eTKzsMmUPjYm+/QAtg4u5DOz4PmTUPIXKsXNK2e4e/syPZqpD5v97YeWlKpYh/a9R31UPoKKVWHAGzNsp6Yo6098TATmb5TH+JgInDyyno35Xe2L2auyZpZNeYx7ozz+fe0UTx7+zaVTyvr8+p7uX7pUoHqjztRp2vOj8gZvlr3MZck8i1maAcwtrDPvp+hIVdl70+3rF3j6zwO6fT/mo2P7VKavf2eziDG7SRktLKwzpY+JjlQbZeXpk5/fJi/j5Yt4UlNTMDO3ZNiA9nj6ZBybFCxSmgl/bSAuNhptbR1M8pnSs21t7Mp/2szjfsFVcfZ6o/1OyeYYKS4Ce9es20PjfFkfI8XHRpDPTLmPI58/5OyBpXQdvhVbZ18A7F0DeHjnLGcPLOOr1iOzXLezZ2EUaanERDzC2iHnZvj/132hEzvllv/0sGRfX1+MjIzYt+/THtuRP39+jh07pvbesWPH8PPz+6BeW1De8xsTE6P26tat20fFoaenh6+Pj9pkUAqFgosXL5I/IPuDuzVr1rBixQpGjRqFn1/ODs/9VPoGJphZu6teFnY+GJna8DjkpCpNcmI8YY8uY+eW/dCz9PR0jm8exYPre6nTcQGmVh92kPaxDIzyYWXvrnrZOvmQz9yWuzcyJiJLSojn0d3LuHoHZ7kOHV19nNyD1JZJVyi4e+MkLlksc+HoWvyDq2BimvXJZHLiC66f2UGRd9yP+6l09fTw9PHn6uWMYYEKhYJrl87i6//pJ9Lp6eksmDWBMycO8ctv07BzcNJEuP9v6Orq4eoVyO0rp1TvKRQKbl89iYdv1vXE068wt6+eUnvv1pUTePh95pDO9HTS09NVB9GfS98wHxa27qqXlYMPxma2hP79Rh1LjOfZg0s4emj2Nou46KckvozGxPzDZ6w1NDLBxsFd9bJ38cbUwkZ1wgiQ+DKehyGXcc9m3+jq6uPiGcjfVzPaPYVCwd/XTqmWcfEKQkdHVy3N88f3iAp/godvsNr6tLS0MLeyU05Sd3w7FtYOuHiqP7pLW1sHcyt7dHX1uXB8O+6+weQz+7ALVrp6erh75+fG5dNq8d64chpv/0JZLuPtX1AtPcD1S6fw9iukWqeHTyBP/7mvlubZ44dY22Ye0np07yaCS1TC1Nwy02efQldPDzfv/Ny8rF6nblw+jVd2efIrxM0rb+fpZLbpAaLCn/EiLgZzS+VB+v86DmTohFUMmbCSIRNW0uuXaQB0/n4MjVp8/MmfoZEJtg5uqpfDq/J4+41yk/gyngchl7NtK3R19XDxDFRrLzKXx0B0dHTV0mSUR2Wa9v0m8cPYdQwYs5YBY9bSrIvyQn+vYYsoX7P5R+cNXpe9AG5cPqMW240rZ/D2z/oxaN7+hTKVvWuXTuHjl3k/Hdm7EXfv/Lh5/nvHTLp6enh4B3D9rTxdu3wWn2zy5ONfkGtvpAe4evEUvlmkNzbJh5m5JU8fP+ReyA2KlaqYKY2pmQUm+Uy5dvkMsTFRFC2ZOc2HMDDMh5Wdu+pl8+oY6f5N9WOkf+5ewsUr6/ZbR1cfR/cg7r11jHT/xgmcvZXLpCYrZ3x+e7SJtpbOOyfGexp6Ay0t7Uy3uQjxpv90z62hoSE//vgjAwcORF9fn3LlyhEWFsa1a9feOVT5te+//54SJUowatQomjVrxokTJ5g+fTozZ374MB8DA4NMQ5DDP2FIcuPGjZkwcSK+vr74+/mxcdMmkpKSqFFDeXVt/PjxWFtb0/7VY31Wr1nDkiVL+HHgQOzt7Ih8dW+ukZGRqkc7Li6O58+fE/Hqs0ePHgFgaWmJ1Xt6hHOKlpYWQWXbcPHALMxs3DG1dOHcnqkYm9rhHpjxjMrtc9vjEVSdwDItAeVQ5LuXtlG91XT0DExU9+npG5qiq6e5e1CzirdU9TYc2ToLa3sPLGycObBhKqYWdgQUzYh38R/tCChanZLVlMPtStdsx8Z5P+HkUQBnz0Kc3LuIlKQEgst9rbb+yGcPeHD7LC37zM42hqtndqBQpFGoTIMcyWPdRv/jz0m/4uUTgI9fIDs2rSIpMZFK1ZU9JjMnjsTS2pbmbZXDplNTUngUek/5/9RUoiLCuH/3NoaGxjg4KS86zP9zPMcP7+H7n8diZGSsur/H2Dgf+v/ikP0PoWNijIlPxnMBjT1dMCscQHJkDImhT3Itrsp127Bs5s+4eQfh5l2QQ9uXkJyUQKnKjQBYOn0w5lZ21G/RF4BKdVoxdUR79m9ZRFDRCpw/vpPQkGs065wxhOxFfAxR4U+IiXoOwPPH9wFlD5WZhQ3hz0K5cHwXAYXLYGJmRUzEM/ZumoeevgGBRSqQE7S0tAiu2IYzu//EwtYdMysXTm6fgom5HV4FM+rY+hlt8S5Ug8IVlHUsOekFMWEPVZ/HRj4i7NENDE3MMbV0IjnpBad3Tse7cC1MTG2IiQjl6OY/sLBxxy3g0/OipaVFxTqt2bvxL2wc3LC2c2HHmmmYWdpRoHjG786fv3agYIlqlK+lbMMq1m3Lyj8H4+oVhJtPQQ7vUO7PkpUaA8re8pJVmrB56TiM85ljYJSPDQt/x903WO2k+cCW+QQULo+WljZXzuxh/6a5tO4zEW1t5QXZ+NgoLp/ajXdgCVJTkjhzaCOXTu7iu6ELPyqfNRu0ZN7UYXh4B+LpG8TerctJSkygXDVlOzR3yhAsrexo0roXANXrtWDcL53ZtWkJhYqV5/TRXdwPuU6b7r+o1lm7URtmTfgJv8CiBBQsztULx7l05jADR6m3f8+ePOT29fP0+WXqR8X8PjXqt2LBtKG4+wTi6VuAvVuWk5yUQLmqytuT5k/5BQtrO75u1RuAavWa88eQzuzetJiCxSpw5uguHoRcp3W3IQAkJrxk6+q/KFq6GmaWNoQ9DWXd4inYOrgSVEQ5Wc7bJ+4Gr2Z9tnNwxdLGns+lpaVFpTqt2bNxNrYO7ljZObNjzXTMLO0o+EZ5nPlrRwqWqEaFWi0AZfuy/M+fcfUKwt2nAId2LFW2L5UaAcryWKrK12x6VR4NjUxYv/B3PHwLq05ubezd1GJ5EaccfWbv7PVZz7mt1aAVc6cOw8M7P56+BdjzquyVf1X25kwZiqWVLd+8Kns16jVn7C+d2blpCYWLlefU0d3cD7lO2+4/q6034WU8Z47vpVm7rGesjgh7wov4WCLDnqJQKHh47xag3FefO1t3nYYtmD1lBJ4++fHyDWLXlpUkJSZQ8dXv7KxJw7C0tqNZm+8AqFn/f/z+c1e2b1xGcPFynDyym3shN+jw3WDVOk8d24uZmSXWtg6EPrjD0rkTKVaqEgWLZEwCdnjvFpxcPTA1s+TOrSssnTuB2g2a46ihZ85raWlRslobjm77Eys7dyxsXDi4aQqmFnb4F8lov5dOaIt/kRqqx/SUqtGezfN/xPHVMdKpvYtISU6g8KtjJGsHLyzt3Nm2ZCjVm/6IkYkFty/u5e6NY6qh0I9CLvDPvUt4+JdG39CERyEX2LN6NAVKN8DIJGcnG/3Xaf2n+xrznP/0yS3AkCFD0NXVZejQoTx+/BhHR8cP7jktWrQoq1evZujQoYwaNQpHR0dGjhxJu3btcjboLFSqVImY2FiWLllCZFQU3l5ejBo5UjXJ1POwMLUrWNu2bSM1NZXffv9dbT0tW7SgVStl43Hy5EkmTsp4/uGYsWMzpckNhSp2IjU5gWMbhpGcGIu9e1FqtZ+tNgtoXORDEt+Y1fTmKeWjF7bPbau2rgpNfsevWOMcjbdcnU6kJCewZdFQEl/G4uZbjFb95qjFGxn2kJfxGfEWKPkVL+MiObhxGvGxYTi45qdlvzmZhiVfOLoOM0sHvIOyf4bjhSNryV+0BobGOTPTcJkK1YmNiWbtsjlER0Xi7uXLTyMmqoYlh4c9Q+uNhjUqMpxBfdqp/t66YTlbNywnf4EiDB09A4C9O5SPkxg1+Du17+rW52cqVa/Lf4l5sQKU2bdE9XfgeOXBQ+ji9VzuOCi3wqJo2drEx0ayffUMYqPDcfEIoNugWaphg1ERT9RmJ/X0D6ZNrzFsXzWdrSunYOvgTscfpuDk5qtKc/XsAZb/OUT196IpPwBQ+5vu1GnaAz09A0JunuPgjiUkxMdiamGNd0Ax+o5akmnyGU0qVq0zqckJ7F81lKSEWJy8itGw61y1OhYTHkrCG3Xs+cOrrJ/RRvX3kY3KZ4vmL9GYGi3HoK2lQ/jj29w4s5GkhDhMzOxwCyhHma/6oKv7efdiVanfkeSkBNbOHU7Cyzg8/YvS5ae/1O7hi3gWyos3Zs0tUqYOL2Ij2bV2OrHR4Ti7B9D5p7/Uhhw3bP0jWlpaLJzUl7TUFPwLlePrDr+8+dXcvHiEvRtnk5qSjJO7P+0HTCd/sPrJ+tkjm9iyTDmpirtvYXoMXYibT/a9jVkpWb4WcbFRbFz5J7FREbh6+tNv6HTVkNzIsKdq7YJPQGE69/uNDctnsn7pdOwc3ej500S1x6oULV2V1l0Hs339AlbM+wMHJ3d6DPwD30D1Hp6j+zZhaW1PUPCHDR3/UCVe5Wnzij+JjY7AxdOf3kNmqCbCigx/qvY76x0QTKd+v7Np+Qw2LlPmqcePE3F+lSdtbW0ePfibEwe28PJlHBaWtgQGl6Fh8x7o/Yv3+1Wt34HkpARWv1Eeu/40S608hj8LVZ18grI8xsdGsfON8tj1p1lq5bFR6x/R0tJm4aS+pKam4F+oLN90GEJOK1m+5quyN4uYqAhcPf3oN3SaWtnTfmOYpk9AYbr0+431y/9k/dIZ2Du60eunCZke6XPq6G5IT6dUhayfOLBxxSyOHch4BN7w/soLAQNH/UVAgeJZLvOhSleoQVxsFOuWzyYmKgI3Tz9+GDZFlaeI8GdqZc8vfyG6fz+KtUtnsWbJTOydXOk76A+1SRmjIyNYPm8yMTGRWFjaUL7KVzT6tqPa9z755wGrl8wgPj4WWztHGjRtT+0GLT4rL28rU7szyckJbFuiPEZy9S1G8z7q7XdUWKjaMVJQCeUx0qFNU3kRG4a9a36a95mrGpaso6tH896z2b9+AqundSM56SWWdm40aD8Gn4KVXqXR5/rp7RzePJ201GQsbFwoVb0dpWq0R4h30Ur/mAfjCQDuhoTkdggat/bif+9+3s/lYv/l3cMQYKeZGY7/S54ElX1/ojxG50zWj3/I60KefHkTeLjbf3mPlbAwTHp/ojwmLf3La89fJOXMDOW5yfwLLHt62p8++/p/2a3nX1jvJ9D600Zj57rEnXNz7bsNa3d6f6I8RvrBhRBCCCGEEELkeXJyK4QQQgghhBAiz/vP33MrhBBCCCGEEF8keRSQRknPrRBCCCGEEEKIPE96boUQQgghhBAiN8ijgDRKtqYQQgghhBBCiDxPTm6FEEIIIYQQQuR5MixZCCGEEEIIIXKDTCilUdJzK4QQQgghhBAiz5OeWyGEEEIIIYTIDdrS16hJsjWFEEIIIYQQQuR50nMrhBBCCCGEELkgXe651SjpuRVCCCGEEEIIkefJya0QQgghhBBCiDxPhiULIYQQQgghRG7Qkr5GTZKtKYQQQgghhBAiz5OeWyGEEEIIIYTIDdJzq1FycvsJotMscjsEjSvpn5TbIWicsW5yboegccY6CbkdgsbpnLmS2yFoXFqJgrkdQo4w338zt0MQHyAh5cv7aU9VfHkHf/FJOrkdgsa5mL7M7RA0LiTKOrdDyBGmRmm5HUIO+PLqlPh4X96vhRBCCCGEEEKI/3e+vMu7QgghhBBCCJEHyHNuNUt6boUQQgghhBBC5HnScyuEEEIIIYQQuUEmlNIo2ZpCCCGEEEIIIfI86bkVQgghhBBCiNwg99xqlPTcCiGEEEIIIYTI8+TkVgghhBBCCCFEnifDkoUQQgghhBAiN2hLX6MmydYUQgghhBBCCPFeM2bMwMPDA0NDQ0qVKsXp06c/aLmVK1eipaVFo0aNcjQ+ObkVQgghhBBCiFyQrqWVa6+PtWrVKvr378+wYcM4f/48hQsXplatWjx//vydy92/f58BAwZQoUKFT91MH0xOboUQQgghhBBCvNPEiRPp3Lkz7du3JzAwkFmzZmFsbMz8+fOzXSYtLY2WLVsyYsQIvLy8cjxGObkVQgghhBBCCJGt5ORkzp07R/Xq1VXvaWtrU716dU6cOJHtciNHjsTOzo6OHTv+G2HKhFJCCCGEEEIIkSu0cq+vMSkpiaSkJLX3DAwMMDAwyJQ2PDyctLQ07O3t1d63t7fn5s2bWa7/6NGjzJs3j4sXL2os5vfJ0z236enpdOnSBSsrK7S0tLCwsKBv3765HZYQQgghhBBC/KeNHj0ac3Nztdfo0aM1su64uDhat27NnDlzsLGx0cg6P0Se7rnduXMnCxcu5ODBg3h5efHNN9/kdkjvtHvbOrasX0ZMVCRunj6069ofH7/ALNOGPrjL2mVzuRtyk/DnT2ndqQ9fNWymlmbjmsWcOX6Qx/88RF9fH7+AgjRv1wMnF/ccy8OBHSvZs2kRMdERuHj48b+OP+LpWzDb9OeO72bTiplEhD3GztGNr1v1oWCxrG8mX/bXrxzevZam7QdQvV4r1fuDu9UhIuyJWtrGLXtT++sOGsnTnm1r2L5xKTFREbh6+NKmywC8/YKyTX/q2F7WLfuL8OdPsHdypVmbngQXL6f6PCY6gpWLpnP1wilevojDP6gIbboMwMHJLdO60tPTGT+yL5fPn6DPoHEUL11ZI3l627YtG9m4bjVRUZF4eHrTpXsv/PwDskz78MF9li9ZSMid2zx//oyOXXrQoFETtTRpaWmsXLaYgwf2Eh0ViZWVNVWr1+Lb5q3Q+oQJCj7EkV0r2L9lIbHR4Ti7+9Ok/SDcfbIvexdO7GL76ulEhj3G1sGN+i37EVSkourzS6f2cmzvakLvXudlfAw/jF2Di4f6Nlk1ewS3rp4kNjIMfUNjPP0L06BFP+ydc/6ekXexKl8cr+87Yl60AIZOdpxt0oNnm/flakxvSk9P59CmaVw4sobEl7G4+hSlTqthWNt7vHO5M/uXcWLXPOJjwrF3DaB2819w9iqk+jw+Joy9a/7g7vXjJCe+wNrBk/J1u5K/WK1M60pNSWb+79/yLPQmnYduwMEt/0fFv2vtdE7uX0vCizg8/YvQpMNQbB3f3bYe3b2cg1sWEBcTjpObP43bDcbNJyP+lOQkNi8dx8UTO0hNSca/cDmatB+CqUXGj/7DkCtsWzGJR/euo6Wlhat3Aeq3+B4n94yymZ6ezsFtCzm5bw1R4Y8xMbWkXI3/Ub1x1w/OI8ChnSvZp6pTfjTtMAiPd9Sp8yd2s23VdCJe1alGLfsRVFTZnqelprBl5XSuXThCxPNHGBqbElCwFA1a9MXCyk5tPVfPH2bH2lk8fvA3uvr6+OYvTpeBUz4qdnjdJmRs7ybtB7+zTbh48nWb8A+2Du7Ub9GPwDfahPT0dHasmaG235t2HKK230f0rElU+GO19dZr3pfqDTsBsGPNDHat+zPTd+sbGDFu0ZmPzmN20tPT2b9hGmcPrSHxZRxuvkVo0GYY1g4e71zu1N5lHN0xn/iYcBzcAqjb6mdc3qhjAA/vXGDvuik8CrmMtrY2Dm4BtB0wFz19Q43F/7adW9ezef0KoqMicff0pkPXvvj6Z3d8dI9Vy+Zx984twp4/pV3nXtRt+G22696wZinLF/3FVw2a0r5L75zKAqDcL3vWT+fMgTUkvIzDw68IjdoNxeY9++XEnuUc2q7cL46u/jRo8zOu3hn7Zf38Ydy5dpLYqOcYGBrj5htMnWbfY+ek/C16/OAmh7bO5f7t87yIi8LS1plSVZtRvlZrzeRp3XROv5Gnxu3fn6fje5ZzeNt84mLCcXTzp+EbeXoZH82eddO5feU40RFPMDGzJKhYNWp+0xsjY1PVOkJDrrBj1UT+uX8dLbRw8S7IV/9Tbw+/BOm52HM7aNAg+vfvr/ZeVr22ADY2Nujo6PDs2TO19589e4aDg0Om9CEhIdy/f5/69eur3lMoFADo6upy69YtvL29PzcLmeTpntuQkBAcHR0pW7YsDg4O6Or+d8/VTxzZy5K5U2nSvAO/T16Au6cPY4b2IyY6Msv0yUmJ2Dk40bxtdywsrbNMc+PqBWrWbcLIP2YzeNQUUtNSGT20L4mJCTmShzPHdrF24QTqftuVn/9YgYu7H1NH9SA2Jus8hNy8yNxJgyhXrRG/jF9JcMkq/DmuH/88vJMp7YVT+7l7+zIWVrZZrqvB/3owbu5e1avKV801kqeTR/awfP5kGjfrxKiJi3Hz9GXc8N7Z7pfbNy4zc/wQKlVvwKhJSyhWqhKTR/9A6IMQQPkjMPn3Hwh7+g/9fh7Pr5OWYmPnyJihPbPcLzs3r4AcOhl87cihA8yfM4tmLdowcdosPL28GT7kR6Kjo7JMn5SUiL2jI63bd8LS0irLNOvXrmTH9s107d6L6X8toE2Hzqxft4qtmzfkSB7OH9/JhsV/UKtJN34Ysxondz/+/L0rcTERWaa/d+sii6f+SOkqX/PDmDUULFGVeX/04fHDv1VpkpMS8PIvQoMW/bL9XlevQFp0G8WgiZvoPngWpMPM37qiUKRpPI8fQ8fEmNjLt7jae0SuxpGd4zvncnrfEr5qNZwOg1ejZ2DE8kmdSE1JynaZa6e3s2f1GCrW/47OQ9dj7+rP8smdeBGbsY83zfuRiKf3aNZzJl1HbCagaA3WzerHk4fXM61v39o/MDW3y/T+hziwZR5Hdi7jm47D6DNqBfoGRswe04WU5Ozjv3BiB5uXjKNmkx70+30NTu7+zB6jXkY3LRnL9fMHadNnIj2GLiI2KoyFk/qoPk9KfMGcMV2xtHGkz6gV9By2BENDE2aP7kJaaooq3cZFozl1YB31Ww7gxwlb6TBgOq7e2Z/UZeXcqzpV55tu/Dh2Fc7u/sz4rVu2derurYssnPIjZao25qexqylcoiqz36hTycmJhN67QZ0mXflx7Co6fz+RZ4/v89c49ZOJCyf3sHjaYEpXbsRPf6yh/6jFFC//1UfFDnD++A42LhlH7W+6M2D0Gpzd/Zk1+l1twgUWTx1I6SqNGTBmDQWLV2Xe+N48Cc1oE/Ztns/hncto2mko/X5djr6BEbNGd8203+s07cnIWQdVrwq1Wqg+q1q/vdpnI2cdxMHFm8Klan50Ht/lyPa5nNyzlAZth9N16Cr0DYxZNKHzO8volVPb2bFyLFUafUf3EetwcPVn0fjOxL9Rxx7eucDiCV3wCSpH12Gr6DpsDaWqt0QrBw++jx3ex6K502navB1jp8zF3dOH34Z+T8w7fqPsHBxp2bYrFtn8Rr125/YN9uzcjLuH5g+gs3Jo2zyO715Ko/bD+G74SvQMjJg/7t1tx6WTO9i6fCzVG/eg16i1OLoFMG9cF+LfKMvOHkF80/k3+o/dSoeBcyAd5o3rpPot+uf+NUzMrGjWbSz9xmymaoMu7Fo9ieN7ln1+nrbO49jupTTuMIyeI1aib2DEvLEfkKdlY6nWuAe9f32Vp7EZeYqNCiM2Ooy6LX6g/5hNfNvld25fPsraOUNU60hKfMH8P7pgYe1Iz+Er6TZ0CQaGJswb11mtPRSfx8DAADMzM7VXdie3+vr6FCtWjH37Mi6mKxQK9u3bR5kyZTKlDwgI4MqVK1y8eFH1atCgAVWqVOHixYu4urrmSJ7y7Mltu3bt6NWrFw8fPkRLSwsPDw8AUlNT6dmzJ+bm5tjY2DBkyBDS09NVy82cORNfX18MDQ2xt7f/13p7t21cSdVaDahcvR4ubp507DEQfQMDDu7ZmmV6b79AWnboSdmKNdDV08syzaARk6hUvS6u7l64e/rSve8vhIc9496drMe9f669W5ZQvvrXlKvaCCdXb1p2/QV9A0OO79uYZfp925YTVKQstRq1w9HFi4bNv8PNMz8Hd6xUSxcV8YyVc8fQsc/v6OhkfYHCwMgYc0sb1cvA0EgjedqxaTmVazaiYvX6OLt50b77TxgYGHJ475Ys0+/espJCRUtT9+vWOLt68k3Lbnh4BbB322oAnj5+yJ1bV2nX/Ue8fANxdHGnXbcfSU5O4uThXWrrenD3Njs2Ladzr180kpfsbNqwlpq1v6J6zdq4uXnQvWdfDAwM2Lt7Z5bpff0CaN+xKxUrVUUvm7J38/o1SpUuS/GSpbG3d6Bc+UoUKVKcv2/nTNk7uG0xZas1oXSVxji4ePNtp6Ho6xtx8kDWJ9OHdiwlILgc1Rq0x8HFi7rNeuHiGciRXStUaUpUrE/tb7rjV7B0tt9btnpTfAKLY23njKtXIF8160l0xFMinz/Odpl/Q9iuw9weNplnm/bmahxZSU9P5/TexVSo1w3/ItWwd/WnYYexxEU/5+aF7OM9uWchRSo0Jbh8E2ydfKjbagR6+oZcPLpOlSY05CIlqrXC2asQlrauVKjXHUNjU57ev6a2rjtXDhNy7RjVvx34SfEf3rGE6o27UqB4VZzc/WneYzSxUc+5ejb73vHD2xZRuuo3lKzcGAcXH5p0HIaeviGnD64HIOFlHKcPrKNB64H4FiiNq1cQzbr+yv3bF3nw9yUAnv9zj5fxMdRq2hM7J08cXH2o2aQHcTERqt7CZ/+EcHzvKjp8P40CxatibeeCq1cQ/oXKflQ+929V1qkyVRrh6OLN/zoPQV/fiBMHNmaZ/uD2ZeQPLkf1V3Wq3v964uqVn0M7le25kbEpvYbMpmjZWtg7eeLpV5hvOwwm9O51IsOVI2/S0lJZt3AsjVr3p0LNb7F38sDRxZuiZTP3vL/PwW2LKVP1G0pVVrYJTTsNRV/fkFMH39EmFC5H1fodcHD25itVm7AcyNjvNRt3oeCr/d7yu9+JiXrOlbf2u4GRCWYWNqqXgaFxxmeGxmqfxcWE8/RRCKWrfP3RecxOeno6J3YvplKDbuQvWg0HV3+adB5DXNRzbpzPvo4d37WI4pWaUrTC19g5+1C/7XD09A05f3i9Ks2O5WMoXb0VFet1xt7ZF1tHTwqWrIOunr7G4n/b1o2rqFarPlVq1MXVzZMu3w1A38CQ/Xu2ZZnexy8/bTp8R7lK1dF7R1wJCS+ZOn4k3XoNxCSfabbpNCU9PZ1jOxdTtUFXgopVw9HNn2ZdxxAb/Zzr57JvO47uWEjJyk0pXvFr7J19aNR+GPoGhpx9Y7+UqvotXgHFsbJ1xtkjkJrf9CYm4ilRYf8AUKJSExq0HoxX/hJY27lSpFwDilVozNUzn/cbkZ6eztGdi6naMCNP33ZT5unaO/J0ZMdCSlZpSolKyjw1bj8MPQNDzhxS5snB1ZfWfaYQWLQK1vZu+ASVplbTPty4cIC0tFQAwh4r28Oa3/TC1skTBxdfqn/dg/g32sMvhpZW7r0+Uv/+/ZkzZw6LFi3ixo0bdO/enRcvXtC+fXsA2rRpw6BBgwAwNDSkQIECai8LCwtMTU0pUKAA+vo5067k2ZPbKVOmMHLkSFxcXHjy5AlnziiH+yxatAhdXV1Onz7NlClTmDhxInPnzgXg7Nmz9O7dm5EjR3Lr1i127txJxYoV3/U1GpGaksK9O7coULi46j1tbW0KBJfg71tXNfY9L1+8ACCfqZnG1vlaakoKD0NukL9QKdV72traBBQqxd3bl7Nc5u7tywS8kR4gMLgMd29lpFcoFCyY+gs1G7bFyc0n2+/ftWEB/dtW4tcBzdi1caGq8fscqSkp3A+5SVDhEqr3tLW1CSpcgju3rmS5zJ1bVwgqXFLtvYJFSvP3q/SpKcqriXp6GVe9tLW10dPV49aNS6r3kpISmTlhCG27/oCFZc7dh5CSkkLIndsUDi6qFk/h4KLcupm5t+tDBQQGcfniBf55FArAvbshXL9+haLFS75nyY+XmppC6N3raieh2tra+BUszf2/L2W5zL3bl/AvoH7SGlC4LPdvZ53+QyQlvuTUwY1Y2zljYZN5+I1Qig5/RHxMGJ75M062DI1NcfYqxD8hF7NcJi01mScPruEZmLGMlrY2nvnL8OhuxjKu3sFcP7OdhPho0hUKrp7eRmpKMu7+GeUuPiacrYuH0KjT2E8aRhn5/BFx0eH4vVF+jIxNcfMupDoJfVtqajKP7l3Ht0DGlWttbW38CpRWLfPo7jXS0lLxeyONvbMXljaO3P9bmUdbJ0+M81lw+sB6UlOTSUlO5NSBdcp0ts4AXDt3EGs7F66fP8RvvWvya68arJo9lJfx0R+cR2WduoH/W3XKv2Ap7mVTR+7dvkRAQfX2PH/hstnWQYCEl/FoaWmphhmG3rtBdORztLS0GTPwWwZ3qcrM37urjaj40Pgf3cumTcgm/vt/X8KvoHrPwpttQsTzR8RGh6ulMTI2xd2nUKZ17ts0l8GdyvHHT9+wf8v8d/4endy/HltHD7zzF/uoPL5LVNgj4mPC8Q7MiNXQ2BQX70KEhmRfRh/fv4ZXoHoZ9Q4qQ+irehkfG8Gju5fJZ2bN7F+bM6Z3eeaNbs2D2+c0FvvbUlJSuHvnNoWCM7aPtrY2hYKLc/vmtXcs+X7z/pxE0RJlKBRc/P2JNSAy7BFxMeH4FFDfL65ehXhw52KWy6SmJvPP/ev4BKmXZZ+gMtkuk5z4krOHN2Bl64K5dfa/RYkJcRjnM/+kvLz2Ok9vtm1Gxqa4ehfi4d9Zx5eamsw/967jm0WeHmaTJ4DEl/EYGuVTdXLYOirbwzMH16nawzMH12HnlNEein9fs2bNGD9+PEOHDiU4OJiLFy+yc+dO1SRTDx8+5MmTJ+9ZS876747jfQ9zc3NMTU3R0dFRG+ft6urKpEmT0NLSwt/fnytXrjBp0iQ6d+7Mw4cPMTExoV69epiamuLu7k6RIkVyPNbY2GgUijTM3xo+Y25hxeNHDzTyHQqFgsVzJuOfvxCu7poffhMfF4VCkYaphfoQaTNza57+cz/LZWKjwzEzfyu9hTUx0eGqv3dtXIC2jg5V67Z4e3GVKl+1wM0rAJN85oTcusTGZVOJiQrn2/YDPj1DQNzr/WKhvl/M3rFfoqMjMqU3t7AiJko5jNnRxQNrWwdWL5lBhx6DMDAwYufm5URGPCcmMiPfy+ZNwjegIMVKVfqsPLxPbGwMCoUCC0tLtfctLCx5FBr6yett0rQ5L1++5Luu7dHW1kahUNCqTQcqV6n+/oU/0ovYV2XvrbJkam7N88f3slwmLjo8U1k1NbcmNiY8y/TvcmTXSjYvm0hyUgJ2Th70+HkOurpZ92gL5X2xACZm6tvfxMyG+Gy2/8v4KNIVaeTLYpnwpxn7uEm3yaz7qx/j+5ZGW0cXPX1Dmn43DSt75T2R6enpbF4wiGKV/oeTR0Giwx99dPyvy4ipufpFJ1Nza2Kjs47/xau25O0ymu+NMhoXE46Orh5GJmaZ0sS9Wq+hkQk9hi5kwYRe7Fk/CwAbR3e6/DRbdcAX+fwRUeGPuXRqF817jEahSGPT4rEsmtSP7kMWfFAe42Ozac8trHmWTZ2KjQ7Psg5mt01SkpPYtGwSxcrVwcg4HwDhz5T7Y/uaP/m6zQCs7ZzZt2URU0Z0ZOiULZh84IH4u9qEZ/+8o03IlN5Gtb9f74P35bFinZa4eOTHJJ85925fZOvKKcREhdO4TeZRAinJSZw7upVqr+7H1ZTX9SifeVZ1LCzLZV7GKcvo28vkM7Mm/Ilym0U9V/4m7N84ndr/G4iDWwAXj21iwbj29Pp183vv5/0UcbExWf4Om1tY8s9nHB8dO7SXuyG3GTNp9ueG+MHio1/vF/W2I5+5dfZtn2q/vLWMmTVhj++qvXdi7wp2rBxPclICto6edPxxLrq6Wfd8Pbh9gcundtLu+8z3f3+M1/Uin1nm+OI+Mk+m5taEPbmb5TIv4qLYt/FPSlZpqnrPwMiErj8vYvGknuzb+Ko9dHCn44+zsx3lJ/4dPXv2pGfPnll+dvDgwXcuu3DhQs0H9JYvrnSULl1abUKbMmXKMGHCBNLS0qhRowbu7u54eXlRu3ZtateuTePGjTE2Ns52fVlNkZ2cnIS+ftbj0XPLglkTCH14l+FjZ+V2KB/sQch19m9bzs9/rHjnJEQ1GmRMiODi4Yeurh5L//qVxq16v3NIUm7Q1dWlz09jmTv9V7q1rI62tg5BhUtQqFhZeDU8/vypw1y/fJZfJy3J5Wg/3dEjBzl0YB/9Bw7Gzc2De3dDmDd7BlbWyomlviTFK9TFv1AZYqPCOLB1EQsmf0/fkUvQ+4+1AbnlysktbFsyTPV389451wYd3DiFxJdxtPp+AUb5LLl1YS/rZvWj7Y9LsXfx58y+JSQnvqDcV10+eJ3njm5l7dzhqr87Dfy8g8HPkZKcyOq/huDpV4RWvf4gXaHg4NYFzBvXnb6/rUJP35D0dAWpKcm06DEaW0cPAJp1HcWkwU15/vgedk6euRb/a2mpKcybNIB00mnWKeO2i/R05UQitb7uTJHSNQBo1WMUQ7rV4MKJ3ZSv0TTL9f2XVKnbVvV/J3d/dHT1WD13JPWb9800dPfymX0kJr6kZMUGn/Wdl45vYfOi4aq/W/XLmTL6+hauElWaUbSCchi1k3sgd6+f5NyR9dRs2v9di/9nhIc9Y8GcqQwZNTFHj9UuHNvChgXDVX+3+z5nj7+KlK2Hb4EyxEaHc2T7ApZP70+3Icsy/RY9Df2bxZN7Uq1RD/wKlstmbVm7cGwL6+cPV/3dfkDOH1Mmvoxnwfhu2Dl7U+Pr71TvpyQnsnbuL7j7FaX5d+NRpCs4vG0BC8Z3p9fI1Tk6wdm/LTcnlPoSfXEnt+9iamrK+fPnOXjwILt372bo0KEMHz6cM2fOYGFhkeUyo0ePZsQI9UlbuvT8ga69fvzg7zUzs0BbW0fVu/daTHTkeydD+BALZk3g/JljDBs9E2ubT5tA5X3ymVqira1DXLT6ZB2xMRGYW2Q9rNbMwobYtyb3iI3OSP/3jfPExUQyqGsd1ecKRRprF01k/9Zl/D5rR5br9fQtgCItlYjnj3Fw9vjkPJm+3i9vTR4VGx2Z7SReFhbWmdLHREeq9cp7+uTnt8nLePkintTUFMzMLRk2oD2ePsrZWq9fOcvzp4/o2qKa2nqmjv0J/8Bgfv5Ncz8mZmbmaGtrEx2lPjFHdHQUllafXvYWzptNk6b/o2KlqgB4eHoR9vwZa1ev0PjJrYnZq7L3VlmKi4nI1PP0mqmFTaayGhcTgZn5xw8BNzI2xcjYFDtHdzz8CjOoQzkun9lHsXIfPwnOl8gvuArOnhmzeqamJgPwIjYCU4uM9uhFbDgOrlnPWGyczxItbR21iW1eL/P66n/k84ec2b+MriO2YOfsC4CDawChf5/j7IHl1G09gns3T/Eo5CK/d1Of/XXur99QsFQ9GnYcm+m7g4pVUZth9/WtBXEx4ZhZZkxwFxcTgbNH1jN0mrxqS94uo/ExEaqZkE3NbUhLTSHhRaxa7+2bac4f20Zk2GN6jVyOtrbyYKdlr3EM6VSWq2f3U6TsV5ha2KKto6s6sQVUs3dHhT/5oJPbfGbZtOfREZi9oz3Pqg6+nV55YvsDUeFP6DV0rqrXFsDcQrk9HV0yZhvX09PH2t5ZdV/uh3hXm5Bd/KZZxh+uahNe74O4mAjM397v7v7ZxuLuU0j5exT2D/ZvbfuT+9cRVLSi2mzYnyKgSFVcvDPXMWXZeauOZTMruLGpsozGv11GYyNUdcz01f6xdVIf/WXr5EVMRM4MMzQ1M8/ydzgmOirb3+H3uXvnFjHRUQzsk9FjrlCkcePaJXZuXc/yDfvQ0dH5rLgBAotWxfWN2dDTUl7vl3DMLDLKUHxMBI7ZzO6bsV/Ue0HjYyPI91a5MTQ2xdDYFBsHD9x8CjGiaxmundtLcJm6qjTP/rnD3DEdKFmlKdUadfu0PGVV1mLV28P42Aic3D4uT3ExEZlGxCQlvGDeH10wMDShTd9p6LwxKurC8W1EhT2mx7AVqvaw+XfjGN61DNfO7Se4jPwGi6x9cZcKTp06pfb3yZMn8fX1VTVkurq6VK9enXHjxnH58mXu37/P/v37s13foEGDiImJUXu179r3o2LS1dPD08efq5cz7ltRKBRcu3QWX/8CH7WuN6Wnp7Ng1gTOnDjEL79Nw87B6ZPX9T66enq4eefnxpXTqvcUCgU3L5/Gy69Qlst4+RXi5uXTau/duHwSL39l+tKV6jFk4hp+mbBK9bKwsqVmg7b0HpL9lenQ+7fQ0tbG1PzzLgzo6unh4R3A9csZj2dQKBRcu3wWH/+sZx718S/Itcvqj3O4evEUvlmkNzbJh5m5JU8fP+ReyA2KlVLe312vSRt+m7KcXycvVb0AWnboR+feQzKt53Po6enh7ePH5UsXVO8pFAouX7yAf0DWj1n4EMlJiaofm9e0tbVJfzXFuybp6urh6hXI7SsZdVuhUHD76kk8fAtnuYynX2FuX1VvC25dOYGHX9bpP1h6Ounp6aS+OogRYGCYDyt7d9XL1smHfOa23LtxQpUmKSGef+5extk7OMt16Ojq4+gexP03lklXKLh38yQuXsplUpKVs42/PWurlra2qkewdvOf6TJ8I12GbaDLsA007/MXAE26TqRK46xnxTY0MsHGwV31snfxxtTChr/fKD+JL+N5GHIZ92zKm66uPi6egfx99aTqPYVCwd/XTqmWcfEKQkdHVy3N88f3iAp/goevMo/JSYloaWupjWR5nd/XefT0L4IiLZXwZw9VacKe3AfAyvbDfgOUdSo/t66+XadO4ZlNHfH0K8ytK+p16uZl9Tr4+sQ27OkDeg6ZTT5TC7X0rl6B6Orp8+zxfbVlIsMef3Dsr+NXbu/M8WdXxz18C6tte4BblzPaBGs7F8wsbNTSJL6M58Gdy+9sN/55cBMtLW1MzdR/jyKeP+LO9dOUrvz5E0kZGJlgbe+uetk5+ZDP3Ia719+INSGeRyGXcfXOvow6eQSpLaNQKLh7/SSur+qlhY0zphZ2qmHKr4U/fYCFTc4cX+jp6eHl48eVS+rHR1cuncMvIPtH8r1LwcLFmTB9EX9Mna96efsGUL5yDf6YOl8jJ7ag3C829u6ql52zD6bmNty5pr5fQu9ext0nOMt16Orq4+wRyJ239sudayezXQaAdOU/b/4WPXv0N3N+b0/R8g2p1bTvp+fpzfYwqzy9jCc05DJuvu/Ik2eg2jKv8+T2Rp4SX8Yzd2wndHX0aNt/RqYe6JTkBLS0MreHWmS0h1+MPDShVF7wxfXcPnz4kP79+9O1a1fOnz/PtGnTmDBhAgBbt27l7t27VKxYEUtLS7Zv345CocDfP/ursgYGBpmmxNbX//gpyOs2+h9/TvoVL58AfPwC2bFpFUmJiVSqXg+AmRNHYmltS/O23QFl78GjUOUPTGpqKlERYdy/extDQ2McnFwAmP/neI4f3sP3P4/FyMiY6CjlFVlj43zoZzON9+eoXr81C6cNwcM7EA/fAuzbuozkpATKVm0IwIKpv2BhZUfjVspHP1Sr24LxQzuxZ/NiChatwJljO3kQcp1W3YYCkM/UItPBj46OLmaW1qoe2ZBbl7j39xX8C5TA0NCEu7cvsWbBeEpV/AqTfJ8/cVadhi2YPWUEnj758fINYteWlSQlJlDx1X6ZNWkYltZ2NGujHCpTs/7/+P3nrmzfuIzg4uU4eWQ390Ju0OG7wap1njq2FzMzS6xtHQh9cIelcydSrFQlChZRTq5gYWmT5SRS1rb22NlrfpKEho2/YcrEsfj4+uHrF8CWTetITEqkeg1lD+uk8WOwtrahTXvlVe6UlBRCHyrvdUpJTSUiIpy7IXcwMjLC0UkZX4lSZVizchm2tna4untwN+QOmzaspXrN2hqPH6By3TYsm/kzbt5BuHkX5ND2JSQnJVCqciMAlk4fjLmVHfVb9AWgUp1WTB3Rnv1bFhFUtALnj+8kNOQazTpnDJ99ER9DVPgTYqKeA/D81QH361lOw5+FcuH4LgIKl8HEzIqYJ5yGSgABAABJREFUiGfs3TQPPX0DAotk/azmf4uOiTEmPhnPTTb2dMGscADJkTEkhubuRA5aWlqUrN6Go9tmYWXvgYWNMwc3TsXUwo6AIhn3ZC8Z346AotUpUVX5TOvSNdqxaf5POLoXwMmzEKf3LiIlKYHC5ZQnBzYOXljZubN9yTCqNx2IUT4Lbl3Yy93rx/lfL+VoB3Nr9QNwfQPlLSeWtm6YWX3YJGBaWlpUrNOavRv/wsbBDWs7F3asmYaZpR0FimeMtvjz1w4ULFGN8rVaAlCxbltW/jkYV68g3HwKcniHsoyWrNQYUI4AKFmlCZuXjsM4nzkGRvnYsPB33H2DVSfAfgXLsHX5eNbPH0X52i1JV6Szf/NctHV08QlUTubkW6AMLp6BrJo1hIZtfiI9XcH6Bb/iV7CsWm/u+1St14YlM37BzSsQD5+CHNi+lKSkBEq/qlOLpw/G3Mqehi2Ujyqq/FVLJg/vwL4tiwgqWpFzx3bwMOQazbso2/O01BTmTvye0Hs36PbjdNIVCtW9qsb5zNHV1cPIOB/lazRl++qZWFo7YGXryN7NCwEoWvrjHpVTuW4blv/586vtXYBD25cq24RKyviXzhikbBOaKy9qVKrTimkj23Ng60ICi1Tk/PEdhN69RrMuw4GM/b57w2xsHdyxsnNm++rpmFvaUfDVfr93+yIP7lzBN6gEBoYm3P/7EhsXj6N4hXqZJu45dWADZha25M+BtkJLS4syNdtwcMssrBzcsbRxYd/6qZha2pG/aEYdWzC2PfmLVad0dWUZLVurLevnDMLZswDOXgU5sXsxyUkJFK3QWLXe8nU6sH/jdBzcAnB0C+DC0Y2EP7lL856TNZ6P1+o1asaMSb/j7RuAj19+tm1aQ1JiAlWqK3vmpk34FStrG1q2U/ZEpqSk8Cj0PqCcXCwiIox7d//G0NAIRycXjIyNcfNQfxa5gYEhpqbmmd7XJC0tLcrVbsP+TX9h4+COla0Lu9dOxczCjsBiGW3HnNHtCSpenbI1lPulfJ12rJk9CBfPArh6FeToLuV+KVZRuV8inody+eQOfAuWI5+pJTGRzzi4dS56+gYEFFZeNH8a+jdzRrfHr1A5KtRpS1y08t5rLW0d8pl9ekeAlpYW5Wu3Yf/Gv7Cxd8fSLiNPQW/kafbv7SlQvDplayrzVKFOO1b/pcyTi3dBju5cTEpSAsVftYevT2xTkhP5X/exJCXEk5QQD4CJmRXa2jr4FijL9hXj2bhwFGVrtiQ9XcHBLcr20Dt/qczBCvHKF3dy26ZNGxISEihZsiQ6Ojr06dOHLl2U919ZWFiwfv16hg8fTmJiIr6+vqxYsYKgoE+7OvgxylSoTmxMNGuXzVE+pNzLl59GTFQNSw4Pe6bWIxEVGc6gPu1Uf2/dsJytG5aTv0ARho6eAcDeHcpHHowanHGPAkC3Pj9TqXpdNK1EuVrEx0SxeeWfxEaH4+LpT+9fZmL2amhoZPgTtSts3gHBdOr7O5tWzGDjsmnYObrRfeAknN8xK/Lb9PT0OXt0F1tXzSI1NQUbO2eq1W9F9fqf/2BygNIVahAXG8W65bOJiYrAzdOPH4ZNwfxVniLCn6H1Rg+lX/5CdP9+FGuXzmLNkpnYO7nSd9AfapN4RUdGsHzeZGJiIrGwtKF8la9o9G1HjcT7KSpUqkJsbAzLlywkKioKTy9vho0c80bZe462dsZ+i4yMoF+vrqq/N65bzcZ1qylQsDC/jZ0IQOduvVi+ZAGzZkwhJiYaKytratWpR7MWmtkvbytatjbxsZFsXz1DWfY8Aug2aJZqCGJUxBO03siDp38wbXqNYfuq6WxdOQVbB3c6/jAFJzdfVZqrZw+w/M+MnvJFU34AoPY33anTtAd6egaE3DzHwR1LSIiPxdTCGu+AYvQdtSTTpDP/NvNiBSizL+Oe7cDxyosroYvXc7njoNwKS6Vs7U6kJCWwbfFQEl/G4uZbjBZ956D7xiziUWEPeRmXMVw+qORXvIyP5NCmacTHhmHvmp8Wfeeohkzq6Orxvz5/sX/dBFZN605y0kss7dxo2GEMvoU0OzFblfodSU5KYO3c4SS8jMPTvyhdfvpLrWch4lkoL+KiVX8XKVOHF7GR7Fo7ndjocJzdA+j8019qQ1Ibtv4RLS0tFk7qS1pqCv6FyvF1h4x7Uu2dvegwYAa7189k6tCWaGlp4eyRny4//aUaEqitrU2HATPYsOg3Zo5sg76BEQHBFWjQ6oePymOxsrWJj41i2+qZxEWH4+zhz3eD/3yjPX+q9pvk5R9Mu95j2LpyGltWTMXW0Y0ub9Sp6MjnXDl7EIAxA9Xvne09bB5+QcpZ6Ru36o+2tg6Lpw8mJTkJd5+C9B46F+OPvFhZtGwdXsRGsWNNxvbu+tMs1faOCn+iFr+nfxHa9BrLtlXTMtqEAVNxdM1oE6o16EByUgKr5ij3u5d/Ubr+NEu133X19LlwfAc7184kLSUZKztnKn3VWu0+XFD2Up0+tJGSlRqira2ZXsK3VfhKWcc2LximrGN+RWnz/Wy1Mhr5XL2OFSz1lXLing1TiY8Jx9EtP22+n6028U/ZWm1JTUlmx4oxJMTH4ODmT7sf5mFl50ZOKVexGrEx0axaOo/oqEg8vHz4eeR49eOjN9r3qMhwBvbuoPp7y/qVbFm/ksACwYwYMy3H4vwQleoq247184eR+DIOD7+itP9Bfb9EPA/lxRv7pXDpOryIi2TPumnExYTj5BZAhx/+Ug3h1dMz4P6tcxzbtYSEFzHkM7fB078Y3YcuV00QduXMLl7ERXLh2BYuHMt4lKGFjRM/Tfq8xwFVqqfM07o38tRh4NtlLYs8xUay+3We3APoMDAjT//cv05oiPLJGeO+V78o/uOkPVjZOmPn5EXb/jPZt2EmM0e0QEtLCyf3/HQYOFttiLQQb9NKf/MhsOKDnL+d9UPi87LY5Own1cqrjHW/vKGjZnpxuR2Cxt2Py5n7xHNTWomsh7XndVH7c+Y5xrnJwiQtt0PQOAOdLy9PqYov7i4q4hJz5sQ3NwXYfPyM9P91IVG5ezEzp3yJI1IblcibdSru7M5c+27T4jkz4i43fXm/FkIIIYQQQggh/t/54oYlCyGEEEIIIURekP4ldqPnIum5FUIIIYQQQgiR58nJrRBCCCGEEEKIPE+GJQshhBBCCCFEbtCSvkZNkq0phBBCCCGEECLPk55bIYQQQgghhMgF6ciEUpokPbdCCCGEEEIIIfI86bkVQgghhBBCiFyQLvfcapRsTSGEEEIIIYQQeZ6c3AohhBBCCCGEyPNkWLIQQgghhBBC5AYZlqxRsjWFEEIIIYQQQuR50nMrhBBCCCGEELkgXUseBaRJ0nMrhBBCCCGEECLPk5NbIYQQQgghhBB5ngxLFkIIIYQQQohcIM+51Sw5uf0E50OtczsEjTMzVuR2CBpnmy+3I9C8q49dcjsEjUtIyu0INM98/83cDiFHWFYNyO0QNM74/MXcDkHjnsYa5nYIGqejnZ7bIWicm2Vcboegcdee2+Z2CBqXzzAtt0PIEa5mUbkdQg748sqf+HhyciuEEEIIIYQQuUEmlNIo6QcXQgghhBBCCJHnSc+tEEIIIYQQQuQCuedWs2RrCiGEEEIIIYTI8+TkVgghhBBCCCFEnifDkoUQQgghhBAiF6QjE0ppkvTcCiGEEEIIIYTI86TnVgghhBBCCCFygUwopVmyNYUQQgghhBBC5HlyciuEEEIIIYQQIs+TYclCCCGEEEIIkRu0ZEIpTZKeWyGEEEIIIYQQeZ703AohhBBCCCFELkiXvkaNkq0phBBCCCGEECLPk55bIYQQQgghhMgF6XLPrUb9J09u27VrR3R0NBs3bsztUDQqPT2dY1uncvnYGpISYnHyKkrN5sOxtPPIdpnQv89wZs88noZe5UVMGI26zMA3uLrq87S0FI5unszda4eJCQ/9P/buOrypqw/g+DeppO4tdS8tFCnF3Yo7DBiw4Q4bG2MwHAYbDLcNhwHDHYYXh+HuUKxo3SWV5P0jkBJI0ZQC7/k8T56Nm3Nvzq85ufcevRgam+HhX4GqTX/CzKpAnsSwb+NMTh9cS3pqEu5+JWjcfiS2jrnHAHAidDlHdiwiOSEaR/cAGnwzFFfvYur3F45rz70bpzT2KV2tNY07jlL/++GdS+xZO4XH966ARIKrd1FqtxqAk3vAB8V0YMcqdm9ZQmJ8DK4eBWndZRBefkVzTX/mv91sWfUXMVGPcXByp9k3/SgaXFlr2uVzx3J4zzpadhxAzYbfvPJ+ZmYGfwz+hof3bjJ04ircvD4sltwolUqO/DuDC0dUZc/FO5jabUdh84ayd2LPQiLCL5OcEEWzHn9S8IWyB3Dj3G7OH17F0/ArpKfE03HIJgq4FcqTGLRRKpWc2DGDy8ef/aa8gqnechRW9p657vPo9inO7FtI1IPLpCRG0aDzn/gU04xrz/JfuHZqo8Y294BKNO25UOf5P7h5JucOryU9NRE332DqfTMS2wK55x/g1L7lHNu1kOSEaAq4BVC3zTBcXvg9JSdEEbp2Ineu/kdGegq2jl5UatCDQiXrvHKsrMwMFv3eiogH1+k2YiOO7h/v+3uRTaVSeP/UBcvgIhg5O3C6RW8ituzNl7y87Es9RyiVSvZvmsnZQznlr2H7N5e/k3uXc3Snqvw5ugVQr90w9fk8Lvoh0weGaN2vZa9pBJauC8D25WN5EHaWyEe3sHPyodfoTTqLKb+uUbevHmPvhhlEPLyJoaEJQZWaENLiB/T0PuxWK3TbWnZs+oeEuBjcPP34pvsAfAoG5pr+5NFQNiyfS3TkEwo4u9GqfV+Kl6qofj8hPoY1S2Zx+dwJUlOS8A8swTfdB+Do7K5Os/ivcVy5cJL42GiMjIzxDShGqw59cXb1/KBYnsuvsvc0/DpHts8j/NZZUpPjsLJzoVS1rylXq71OYtq1bhYn9q8jLSUJr4IlaN55BPZOHq/d7+juFRz4dzFJCdE4ufvTrMMQ3H1zyt7xvWs4+992Ht27ijwthTHzj2FsaqF+PzbqEaEb53DrygmS4qOxtHYguFJDajbtjr6+4QfH9bJd/65n64aVxMfF4uHlQ6ceP+LrX1hr2gf377Bm+ULuht0gKvIp7bt9T4MmrXI99qa1y1i5ZC71GrekY/d+Os+78P8hT4YlZ2Rk5MVhP3sn98zn7IFl1GozinY/r8FQZszamV3IypTnuk9mRir2rv6EtB6p9f2sjHQiHlylfL1etB+8gabdZxEXeZcNc3rlSQyHty/g+J5/aNxhFD1GrMZQZsKSyd3IzMg9hksntrNj1R9Ub9qHXqPX4+jmz5JJ3UhOjNFIV6pqSwZOO6R+1W49QP2ePD2FpZO7YWnrRPcRq+k69B8MjUxZOqkb2VmZ7x3P6aO7WLdkMg1b9mDIhJW4ehZk5tjeJCbEak1/+/p5Fk4bTMWaTRk6cRVBpaszZ8KPPAoPeyXtuRP7uHvrIpY29rl+/oZlU7G0zv19XTmxez5n9i+jTttRfDtwDQYyY9bMeH3Zy5Cn4uDiT62vtZc9UJVPV59gqjUdkGuavHRm73zOH1pG9ZajaP3jGvQNjdk05w2/KXkq9s7+VPsq97gAPAIq0+XXI+pX3fZTdJ19/tu5gJN7l1H/m1F0HqL6XlZM7fra/F85uZ09a8ZTpVEfuo3YQAE3f1ZM60rKC7+nzQsHEfP0Lq37/kWP0VsICK7F+jk/8iT86ivH27tuIuaWDjqP7V3pmZqQePEGl78fnd9Z0fAlnyOO7ljAidBlNGw/iq7DVNekZZO7kvma8nf55HZ2rR5PtcZ96DFSVf7+mdJVfT63tHHip6mHNV7Vmn6HocwE36KaFfwSlVoQWLq+TmPKr2vUk/DrLJvSA7+ileg9egOtek/m+rn97Fn7YeeNE4f3sHLRNJq07sroKUtx8/Jj0qjvSYzXXv5uXbvI7EnDqRLSmF+nLiO4bFWmj/uZh/dvA6oK2PTffyby6SP6DZ3Er1P/wdbBiQkj+iJPT1Mfx9MngK7fD2fcrNUMGDUDpVLJxJHfocjO/qB4nsuvsvf4/hVMLWxp3n0Cvcf8S+WGPQldP4UTe//54Jj2b13IkV3LadF5JN+PWYmhkTHzx3d/bdk7f2wHW/6ZQK3mvfnht7U4u/szf3wPkhJyyl5GRjoBxStSs0k3rceIfHwHhULBV11G8vOEzTT+diDHQtewY/X0D47pZf8d2svSBbNo0aYT46cvxMPLl99H9CchPk5rerlcTgFHZ9p06ImVte1rjx128xqhO7fg7umj83wL/190UrmtVq0affv25YcffsDOzo46depw+fJl6tWrh5mZGQUKFODbb78lOjpavc+6desoWrQoxsbG2NraEhISQkpKCqNGjWLJkiVs3rwZiUSCRCLhwIEDADx48IBWrVphZWWFjY0NTZo04d69exp5WbRoEYGBgchkMpycnOjbt6/6vevXr1OpUiWMjIwoXLgwoaGhSCSSj9JDrFQqObNvKeXq9sKveAgOrgHU7zCB5IRIbl0IzXU/78CqVG78IwWDaml9X2ZsTqvvFxNQsj42Bbxx9gqiZqvhRIRfITH2sc5jOLZ7KVUb96RQcE0c3fxp0W08SXGRXDubewz/7VpCqaotCa7cHAcXXxp1GIWBoRFnD23QSGdgaIS5lb36ZWRspn4v+sld0lISqNnsO+ydvCjg4kf1Jn1ITowmPub94wzduoyKIc2pUKMpzm4+tO0+DAOZEf/t26Q1/b7tKwgMqkDtJh1xcvWmcZs+uHsV4sCOVRrp4mIiWL1wPJ37/Z5rq/3ls0e4duE4Ldr3f+/8vw2lUsnpfUspXy+n7DXsqCp7N8/n/r35FKlKlSa5lz2AImWbUrFBXzwLlc+LrL+WUqnk/KGllKndC5+iIdg5B1C73QRSEiK5cyn3uDwLV6V8gx/xKZZ7XAB6+oaYWtirX0YmljrP/8nQpVRu2BP/EjUp4OZPk85/kBQfyfVzuef/+J6/KVG5JUGVWmDv7EuDb0ZjYGjE+SPr1Wke3D5P6Zrf4OJdDGt7Nyo37IWRiTlP713ROFbYpUPcvnKUkFYDdRrb+4jadYibI6cRsTn32PPDl3qOUCqVHN+zlCqNehJQQnU+b9b1Wfl7zfn82K6/Ca7SkhKVW+Dg4kvD9qryd+6wqvxJpXqYW9prvK6fDSWwdD1kRqbq49RvN4wyNdthbe+q05jy6xp1+eQOHN38qd6kD7YFPPAKKEOdVgM4sXcF8rSU945p5+YVVK3dlCohjXBx96Zjr18wlBlxKHSr1vS7t66iaHA56jf/Fmc3L1q064mndwCh29YAEPE4nNs3LtOh1yC8/Qrj5OpBh56DyMiQc+zQLvVxqtdpRkBgMPYFnPH0CaDFNz2JjY4gKvLJe8fyXH6WveDKLajXdiie/mWwcXCjePnGlKjYnGtn9nxwTId3LiOkaQ+KlKqBs7s/X/caR2J8JJdP5z4C5eD2JZSt/hVlqjXD0dWXFl1GYiAz4tTBnLJXpV57ajTuhrtvca3HCChema97/oZ/sYrYFnAjsGQNqjboyKWTuj+Xbtu0ipp1GlG9VgNc3b3o2udnDGVG7N/zr9b0vgUL8U3nPlSsGoKBgUGux01PS2XWpNF0/24gZmbmOs/3p04pkebb60uks6iWLFmCoaEhR48eZfz48dSoUYMSJUpw+vRpdu7cSUREBK1aqYYiPHnyhDZt2tC5c2euXbvGgQMHaN68OUqlkgEDBtCqVSvq1q3LkydPePLkCRUqVCAzM5M6depgbm7O4cOHOXr0KGZmZtStW1fdUzx79mz69OlD9+7duXTpElu2bMHX1xeA7OxsmjZtiomJCSdOnGDevHkMHTpUV+G/UULMQ1ISo/AIqKDeJjM2x8mzOI/vnNPpZ8nTk0EiQWZs8ebE7yAu6iHJCdH4FM6pyBiZmOPqU4wHty9o3ScrK4PH967g/cI+UqkUn8DyPLh9XiPtheP/Mq5veWYObcTutVPIkOe0Its5emFiZsWZQ+vJysogMyOds4fWYe/sg5Wdy3vFk5WZSfidaxQqVlYjb4WKluXOjYta97lz8yIBL6QHKBxUnjs3c9IrFAr+njmMWk064Ozmq/U4ifEx/DPnVzp9NxZDmdF75f9tJUSryp7nS2XP2as4j+/qtux9TIkxD0lNjMKtoGZcBTyK8+Teh8f1MOwk84eVZ+lvddi/ZiRpKdpbpt9XfPRDkhOi8CqUk38jE3NcvIvx6KXfxnPZWRk8uX8Fr8I5+0ikUrwKlefhnZx93HyCuHpqO2nJ8SgVCi6f3EZWZgYe/mXUaZITovl36XCadv0DA8O8LYOfqy/5HKE6n0fhXViz/Ll6F+NhLuUvKyuDx/evaOwjlUrxLlw+130e37vM0/BrlKjSQpfZ1yo/r1FZmRnoG8g00hsYysjKlKum0ryHrMxM7t2+TmDx0hp5CyxemrAbl7TuE3bjEoHFy2hsK1KinDp9ZqZqpJPBC3mVSqUY6Btw65r2v5E8PY3DoVuxL+CMrd2HT3f61MpeeloSxqYf1ngZG/mQpPho/IqUU28zNjHH3acY92/lXvYe3b1KwSKaZc+vSLlc93lb6WlJmJjptkE2KzOTO2E3KRpUSr1NKpVSNKgUt66/Xxl/buHsKZQoXYFiQaXfnFgQ3kBnc279/PyYMGECAGPHjqVEiRL8/vvv6vcXLVqEm5sbN2/eJDk5maysLJo3b46Hh2ouQtGiOfOXjI2NkcvlODo6qrf9888/KBQKFixYgOTZxOvFixdjZWXFgQMHqF27NmPHjuWnn36iX7+ccfqlS6t+KHv27OH27dscOHBAfdzffvuNWrVe33ujKykJUQCYWmgOyzC1sCUlMVrbLu8lK1POoY2TKFSqAbIXWpV1ITlBlU8zy5djsCP5WXwvS02KR6HIfmUfMwtbop/cVf+7WPmGWNk6Y27lQMSDG+xeO5nop3dp+91MAGTGpnT+ZQkrZnzHgS2zAbAt4EGHAfPfez5TclIcCkU2Fi/lzdzKlqeP7mndJzE+Ggurl9Jb2pIYn/Md7t60GKlUjxr122o9hlKpZMmsEVSp3RIP30CiIx+9V/7fVnKi9rJnYq7bsvexpSap4jIxfzWu1A+My6NQZXyK18LCxpWE6Af8t20KW+Z2o+UPq5FK9T7o2M8l53pOsFP/1l6WmhyHUpGNmZZ9op/m/J5a9JzG+rk/MumHckj19DEwNKJln5nYFFCdb5VKJVsWD6Zk1a9x9ixKfPRDncT0pfmSzxHPzwvaylKu5S/pNeXvhfP5i84eXo+dkw/uvsE6yPXr5ec1yq9oJY7tXsrF49soUqYuyQnR7N/8FwBJuXz2myQlqvJmaWWjsd3SyoYnD+9r3SchPgYLLekT4lTDmJ1cPbG1d2Ttsj/p1HswMpkxu7asIDYmkvhYze997/Z1rF4yE3l6Gk4uHvw8ehb6r+l9e1ufUtkLDzvLlVM7aNtvzruE8IqkZ/k2t7TT2G5maat+72UpuZQ9c0tbIh9rj+ltRD+9z9FdK2jYTrfThRITE3Itj49zKY9v4+jBUO7evsnvU+d/aBY/W0rEglK6pLPKbcmSJdX/f+HCBfbv34+Z2auVq9u3b1O7dm1q1qxJ0aJFqVOnDrVr1+arr77C2to61+NfuHCBsLAwzM01hyukp6dz+/ZtIiMjefz4MTVr1tS6/40bN3Bzc9OoMJcpU0Zr2hfJ5XLkcs35EpkZMgwMZbnsoXL15BZ2r8yZ09ei19w3ftaHys7OZMuCfihRUuvrD5+3duG/rWxZMkr9729+nP3Bx8xN6Wo5Cww4uhXE3MqexRM6ERsZjo2DO5kZ6WxaNBx3vxK07DkJpSKbIzsXs2xqT3qOXPvJ9Dzdv32VfdtXMGTCSnUjzMv2b19JenoKdZt1zpM8XDm5hV0rcsreV73zvux9DNdPb2H/mpy4GnXPu7gKBjdQ/7+dsz92zv4sGRvCo7CTuBV8vyHYl45vZduynPy3+f7DbqZe58Cm6aSnJvHNT4sxNrPmxrlQ1s/5kQ6D/qGAqz+n9i4jIz2FivW751keBO3y6xxx8dhWti7NKX/tfsi78vdcZkY6l47/S9VGebMGxKd0jfItUpE6rX9my5JRrJ83CD19Q6o17sX9m2dy/Z7zg76+Pt/98geLZo2ld7sQpFI9AouXpljJCiiVSo205avWJTCoDPFx0ezYuJw/Jw5h2Pj5GL7h/udln2rZi3h4k1Uz+lC1cR98i1R6p+OfPfIv6xaOUv+7y8C8K3vvIiE2gvl/9KBY2TqUq9Eyv7PzRtFRESyZP52hY6a+c7kShNzorHJrapozlyY5OZlGjRrxxx9/vJLOyckJPT099uzZw3///cfu3buZOXMmQ4cO5cSJE3h5eWk9fnJyMiVLlmT58uWvvGdvb49UmjfjxseNG8fo0ZoVxUbfjqRxh1Gv3c+3WA2cPHPmR2RnqYZOpyTGYPbC4i0piTE4uH746peqiu0PJMY+pnW/JTrptQ0oUQNXn5wV+7KexZCcEIO51YsxROe6wqqJuRVSqR7JCZoLcyQnxmD2Ugvni55/bkyE6sbh4rF/iYt+RLdhK9XfdcueE/m9dzmund1LsXINcj1WbszMrZFK9Uh8KW9J8TFYWGnPm4WVHYnxL6VPyEkfdu0sSQmxDOlZT/2+QpHNuqVT2LttOb/P3sGNyye5c/MifdtoNq6MG9SOMpXr0fG7se8cy4t8i9XA+YWyl5VL2UtN0k3Z+1i8i9TA0ePV31RqUgymL8Vl76LbuCzt3DAytSY+6v57V24LBlXHxevV31NKopbfUy4rTpuYWSOR6r2y0E1KYrT69xQbGc6pfcvpMXorDi5+ADi6BfDg1hlO719Bg29Hc/f6CR7ePs/vPYtpHGfB2K8oWrYhTbq8eu7+f/QlnSP8g6prrKj9/PeTrK385Xo+f3P5e9HV07vIzEineIWm75zft/EpXaMAKtbtSIU6HUiKj8LY1IK46EfsWTcFa3u394rP3EKVt4SXFo9KiI/FMpfFeSytbF9ZbEqVPqe3zcu3EGOmLSc1JZmsrEwsLK0ZPaATXr6afyMTUzNMTM1wdHbHt2BRerWryZnjByhf5dVV11/nUyx7kY/CWDqpEyWrtnqvxpfCJavT3zdnxGHWs4UtkxKisXhhAbjkhBicPbRfj0xzKXsvni/eRUJcJLPHdsLTrwRfdR31zvu/iYWFZa7l8U2LReXmbtgNEuLj+KVfF/U2hSKba1cusOvfDSzfuA+pnm5GSwn/P/LkUUDBwcGsX78eT09P9PW1f4REIqFixYpUrFiRESNG4OHhwcaNG+nfvz+GhoZkv7QiX3BwMKtXr8bBwQELC+1zST09Pdm7dy/Vq1d/5T1/f38ePHhAREQEBQqo5oycOnXqlXQvGzx4MP37ay7msfzom1uXDI3MMDTKqWAqlUpMLewJv3FM/agUeVoyT+5dIKhKmzce73WeV2zjI+/T+oelGJvl3gP+LmTGpsiMcxotlEolZpZ23Ll6HCcPVQzpack8vH2R0tW/1noMfX1DnD0DuXP1OIVLqpboVygU3Ll6nLI12+X62U/CrwNgbqW6SGRmpKsXGHtOIpEikUheaW1+W/oGBrh7F+L6pZMElamhztv1SyepVk97PN4Fi3H90kmNR3Zcu3Ac74KqC3fZqg0JKFZOY58ZY3tRrkpDyldvAkDrzoNo3CZnobOE2EhmjO1N1/5/vPbxIm9LZmSGTEvZu/9S2Xt89wJBlT+s7H1M2n5TJhb2PLh1DHvXZ3GlJxNx/wLFKuo2rqT4p6SnxmNq+f6r1mr7Xsws7bl77Zj6hk6elsyjOxcpWU17/vX0DXHyCOTetWMElFD9npQKBXevH6d0ddXvKTNDNQ9Q8tJCERKpFKVSAUDdNkOp3ixn+kZSfCQrpnalRY8puHhpX7Tk/9GXdI6QGZtpNHqqy9/VYzi5v3A+v3ORUtW1lz99fUOcPQK5e+0YhYJfOJ9fO06ZGq+ez88eXod/UHVMLWxeeU8XPqVr1HMSiQQLa1WF7dLxbVjaOOHsqf0xKW+ib2CAp08AVy+eomS5auq8Xb14mpD62nvlfP2LcvXiKeo0zvkOr5w/ga//q+XGxFRVHp4+Dufu7Ws0b9cj17woUYJSSVbmuz+d4FMre5GPbrFkYkeKV2hKzRY/vnM8AEbGphi9VPbMrey4deUELp7PYkpNJvz2RcqHtM41Jhevwty6cpwipWuqYwq7coKKtd/tGpYQG8HssZ1w9SpM655j86TDR9/AAG/fgly6cIbS5auo83v5whnqNGz+XscsUrwUE2ct1dg2e/rvuLh60LhFu/+biu2XurBTfsmTym2fPn2YP38+bdq0YeDAgdjY2BAWFsaqVatYsGABp0+fZu/evdSuXRsHBwdOnDhBVFQUhQqpTgienp7s2rWLGzduYGtri6WlJe3atWPixIk0adKEX3/9FVdXV+7fv8+GDRsYOHAgrq6ujBo1ip49e+Lg4EC9evVISkri6NGjfPfdd9SqVQsfHx86dOjAhAkTSEpKYtiwYQCvHTIkk8mQyV5eJOLd/yYSiYSSNdpzbMdsrB08sLR15cjW6ZhZOuBXPOe5bKund8CveC2Cq6lujDLSU4iLCle/nxDzkIgH1zA2tcTCxllVsZ3/PRHhV2neey4KRbZ6bpGxqSV6OnzGmUQioXzt9hzYOgcbRw+s7VzZu2EG5tYO6osNwOI/OlGoZAjlQlQXnAp1OrBh/mBcvIrg4l2UY7uXkiFPI7hyM0DV03Th2L8ULF4VE1Mrnj68wY4V4/H0L4Wjmz8APoEV2LV6Iv8u+5WyId+gVCo4/O98pFI9vAu9eXh5bkIafcvfs4bj4VMYT98i7Nu2nAx5GhWe3WQunjEMK1sHmrX7HoAa9dsyeWRX9mxZStGSlTl1ZCf371ylXc8RAJiZW2FmbqXxGXp6+lhY2eLo4gmAjb2TxvsyI2MA7Au4Ym2r+2cTSyQSStVoz3/bZ2Nt74GVnSuHn5W9F59bu2paB/yCalHyLcseQFpKPImxT0hOiAQgNkI1T8jUwg6zD6gIvm1cQVXac2r3bKzsPbCwceX49umYWjrgXTQnrg1/dsCnWC2KV34WlzyFhBfiSox9SNTDaxiZWmJu7UyGPIWTO2fhU7wOpuZ2JMQ84MiWiVjZeeAeoP1Zpe+b/zIh7TmybQ42BTyxsnPhwKYZmFs5qCuuAMsmdSQgOITSNVT5L1erI5sX/YKTRxGcvYpxMnQJmfI0ildU3VzYOXpj4+DB9mUjCWk5EGMzK26cC+XO1f/4+jvVcEBLW2eNvBjKTACwtnfHwsaR/KBnaoKpb85zNk28XLEoHkBGbALpDz58hdb39aWeIyQSCeVqtefQv6ryZ23vwr6Nz8rfC+fzJRNV5a9sTVX5K1+nIxsX/IKzZxFcvIpxfI+q/JWopHlzGxNxn/s3T9Puh3laPz8m4j4Z8lSSE6PJykjnSfg1VYzOPu/9bM78vEYBHNm+EN+ilZFIJVw9vYfD2xbQqveUD5qnX7dJW+ZPH42XbyG8/QLZtXUV8vQ0Koc0BGDu1JFY2zrQqn0fAGo3+ppxQ3uwY9NyipeqyInDu7l7+xqd+gxRH/Pk0VDMLayxtXfk4f0wli+YQsmyVSlaQtXoEvn0ESeO7KFIUFksLK2JjY7k3/VLMJDJKF6ywquZfEf5WfYiHt5kycSO+BapRPk6HdXzoaUSvQ9qhJFIJFSu+y17N87F3tEdG3tXdq6diYWVA0VK5UyXm/NbZ4qUqkmlOqqyV7V+B1bNGYKrdyDuPkU5vGMZGelplK7aTL1PYnwUSfHRxESorltPHtxCZmSCtZ0TJmZWqortmI5Y2znTqN3PJCfm9KxaWOn2Otyg6df8NfU3fPwC8ClYiO2b1yBPT6NaiGr03KzJY7Cxtadtx56AahGqhw/uqf4/K5O4mCju3bmFkZExjs6uGJuY4O7prfEZRjIjzMwtXtkuCG8rTyq3zs7OHD16lEGDBlG7dm3kcjkeHh7UrVsXqVSKhYUFhw4dYtq0aSQmJuLh4cHkyZOpV081TKtbt24cOHCAUqVKkZyczP79+6lWrRqHDh1i0KBBNG/enKSkJFxcXKhZs6a6J7dDhw6kp6czdepUBgwYgJ2dHV999RUAenp6bNq0ia5du1K6dGm8vb2ZOHEijRo1wsjo48zXLFOrG5nyNHatGIE8NREXn5J81XeBxgqL8VEPSEvOWZX1afhlVk/Lebj4/vXjAAgs14z67ceTHB9B2MV9ACz5vYnG57X+YSnuBTVX7fxQlet3JVOexpbFI0lPTcS9YDDtf5qnMQc5NjKc1KScGIqWrU9KUhx7N84gOSEaJ/dCtP9pnnookZ6eAXeuHuPY7qVkytOwsHUksFQtqjbOGSpk7+xNux/+Yv/mv5g/pg0SqVR9nBeHNb2rUhXrkJQYx9ZVs0mMj8bV05/vhv6lXhAmNvoJEmlO44dPQBBd+v3OllV/snnFTByc3Ok5cCou7tpXPP1UlK3djcwMVdlLT03E1ackrb7TLHtxWsreyqk5ZW/fOlXZK1KuGQ06jAcg7OI+ti8drE6zZaGqFbxig75UavhdnsYEULJmN7Iy0ti3egTytEScvUvSpIdmXAnRmnFFhl9mw585cR3epIqrUOlm1Go3HqlEj+jHN7l2ahPytCRMLRxwD6hI+fr93vumOzcV6qp+T9uWqr4Xd7+StP1h/kvfi+bvKbBMfVKTYzm4eSbJiVEUcCtE2x/m5/ye9A34ut9c9q2fzOqZvciQp2Lt4E6TzuPxK1ZVp/nXJcuSRSi/d5n634UnqW7GHyzdwMUug3PbLc99yeeIivW6kiFPY+uSnPL3Tf/5Givpvnw+L1KmPilJsezfNJPkhCgc3QrxzY/zXxkaeu7IeiysHfEJrKj1s7f8PYz7N3JGT80dpbqZ7zchFGu79388UH5dowBuXjrMwa1zycrKwNHNn7b9ZlGwWJX3jgWgbOVaJCbGsWHFPBLiYnD3KsiAkdOxVJe/CI1eOr9Cxej50xjW/zOHdcv+ooCzG/0GT8TVI+fZofGxMaxcOI2EhFisrO2oWL0+TVrlDAs1MDDk5tXz7N6yipSURCwtbfAPLMHw8QtfWazqfeVX2bt6ehepSbFcPLaFi8e2qLdb2jrz48R9HxRT9UZdyJCnsW7BKNJSk/AqGEy3X+ZqlL2YiAekJMWr/x1Uvh7JibHsWjeLpPhonD0C6PrLXI2FqY6FrmHPhr/U//7rV9X1q3WPsZSu2oybl/4jOiKc6IhwxvStoZGnSSs+bBXjl1WoUpPEhHjW/LOA+LhYPL19GfzrZKyeDXuPidIsj7Gx0Qz6vpP631s3rGTrhpUULhLEyPGzdJq3z5nyE5qX/yWQKN93TOcX4OjRo1SqVImwsDB8fN7+odELcn9k2WfLwkSR31nQOXuz3B+c/rm6G2Wc31nQubQv72vC0uzLPK1a1/h85mi/LZOz5/M7Czr3NPHTWGBPl/SkX95vyt06Kb+zoHN3Y3T7CMJPgZlR9psTfYbcLHT7eLtPQZBf3o4YyyuPbmp/tNfH4FLww6fDfWrypOf2U7Vx40bMzMzw8/MjLCyMfv36UbFixXeq2AqCIAiCIAiCIOiCeBSQbv1fVW6TkpIYNGgQ4eHh2NnZERISwuTJk/M7W4IgCIIgCIIgCMIH+r+q3LZv35727du/OaEgCIIgCIIgCILwWfm/qtwKgiAIgiAIgiB8KsSjgHRL/DUFQRAEQRAEQRCEz57ouRUEQRAEQRAEQcgHYkEp3RI9t4IgCIIgCIIgCMJnT1RuBUEQBEEQBEEQhM+eGJYsCIIgCIIgCIKQD8SCUrol/pqCIAiCIAiCIAjCZ0/03AqCIAiCIAiCIOQDsaCUbomeW0EQBEEQBEEQBOGzJ3puBUEQBEEQBEEQ8oGYc6tb4q8pCIIgCIIgCIIgfPZE5VYQBEEQBEEQBEH47IlhyYIgCIIgCIIgCPlALCilW6LnVhAEQRAEQRAEQfjsiZ7b93D44NP8zoLONWrgkN9Z0LkiepfyOws6F2NaKr+zoHMOVor8zoLwlkzOns/vLOhcanBQfmdB50JHHMnvLOicoZFBfmdB5yZWOZzfWdC5/Y/q53cWdM6lwJd5q1wzZX9+Z0H3/Frldw7ei1LyefXc/vnnn0ycOJGnT59SvHhxZs6cSZkyZbSmnT9/PkuXLuXy5csAlCxZkt9//z3X9Logem4FQRAEQRAEQRCE11q9ejX9+/dn5MiRnD17luLFi1OnTh0iIyO1pj9w4ABt2rRh//79HDt2DDc3N2rXrs2jR4/yLI+icisIgiAIgiAIgiC81pQpU+jWrRudOnWicOHCzJkzBxMTExYtWqQ1/fLly+nduzdBQUEEBASwYMECFAoFe/fuzbM8isqtIAiCIAiCIAhCPlAqJfn2ehcZGRmcOXOGkJAQ9TapVEpISAjHjh17q2OkpqaSmZmJjY3NO332u/gyJxIIgiAIgiAIgiAIuZLL5cjlco1tMpkMmUz2Stro6Giys7MpUKCAxvYCBQpw/fr1t/q8QYMG4ezsrFFB1jXRcysIgiAIgiAIgpAPlEjz7TVu3DgsLS01XuPGjcuTOMePH8+qVavYuHEjRkZGefIZIHpuBUEQBEEQBEEQ/u8MHjyY/v37a2zT1msLYGdnh56eHhERERrbIyIicHR0fO3nTJo0ifHjxxMaGkqxYsU+LNNvIHpuBUEQBEEQBEEQ8oESSb69ZDIZFhYWGq/cKreGhoaULFlSYzGo54tDlS9fPtf4JkyYwJgxY9i5cyelSuX9Iy1Fz60gCIIgCIIgCILwWv3796dDhw6UKlWKMmXKMG3aNFJSUujUqRMA7du3x8XFRT20+Y8//mDEiBGsWLECT09Pnj59CoCZmRlmZmZ5kkdRuRUEQRAEQRAEQRBeq3Xr1kRFRTFixAiePn1KUFAQO3fuVC8yFR4ejlSaMzB49uzZZGRk8NVXX2kcZ+TIkYwaNSpP8igqt4IgCIIgCIIgCPlAybs9kie/9e3bl759+2p978CBAxr/vnfvXt5n6CVizq0gCIIgCIIgCILw2RM9t4IgCIIgCIIgCPngc+u5/dSJnltBEARBEARBEAThsycqt4IgCIIgCIIgCMJnL08qtwcOHEAikRAfH/9Bx/H09GTatGk6yRNAtWrV+OGHH3R2PEEQBEEQBEEQhPeVn8+5/RLpZM5ttWrVCAoK0mlF9P9JsxpmVCtpjImRlFvhGSzZmkhEbPZb7dugsimtapmz61gKK3Yk5XFOQalUsnfDTE4dWEt6ahIefiVo3HEkdo6er93veOhyDm9fRHJCNI5uATT8dihuPsW0Hn/J5B7cuniYdv1mUrhkyCtpUpPimDmsGYlxEQybfQJjUwtdhZer9dv3sHLTdmLjE/DxdOPHru0pXNBHa9qDx06xdP1WHj2JICs7C1cnR75uUo+61SrleT6fy6/v6ezhjayfP0TrsQfPOoKZhe07xbBr3SyO71tHWkoSXv4laNF5BPZOHq/d78juFRzYupikhGic3f1p1nEI7r45MWRmyNnyzwTOH9tBVmYG/sUr0qLTcMyt7NRpbl4+zs41M3n64CaGMmNKVWlCvdb90NPLOWWeP7aTvZvnEfXkPmYW1lSs3ZbqjTp/sjGF377EtpVTeXj3KhKJBDefIjRq+xPOHgEa+Tuw7W+O711LXPRjTM2tqVjra0Ka9Xht/l50YMcqdm9ZQmJ8DK4eBWndZRBefkVzTX/mv91sWfUXMVGPcXByp9k3/SgaXFlr2uVzx3J4zzpadhxAzYbfvPJ+ZmYGfwz+hof3bjJ04ircvAK0HOXjsalUCu+fumAZXAQjZwdOt+hNxJa9+ZqnN2lS1YQqJYwwMZIS9iCTZTuSiXzN9ahaSSOqlTTGzkrVVv44Kpsth1K5fDtDncbCVEKrEDMKextiZCjhaUwW246kcuZ6Rm6H1amGFY2oVMwQY5mEO4+zWLE7jah4Ra7pqwQZUjlIhq2FKqYnMdls/y+dK3eztKbv28KUQG8D5mxM4UJYZp7E8KI1oUdZuv0AMQlJ+Lk5MfDbZhTxcdeadt+pSyzaupcHkdFkZWXj7mjPN/Wq0qBiSXWamIQkZqzexvHLN0lKTSPY35uB3zbF3dE+z2N5WeVACUHeEmQG8DAGdp1REJece/ryARL8XSXYmENWNjyKgf0XFcS+cDsU5C2hsLsER2uQGUiYsjEbeR58TUqlkkNbZnDu8FrkaYm4+gRTr90obAp4vna/0/uXc3z3QpIToijgGkDtNsNx8co5v8dFhhO67g8ehp0hKysDn8DK1G4zHDMLO43j3Lp4gCP//knkoxvoG8hw9ytNyz5/6TzO1ftPsGTXEWISkino5sigNg0o4uX6xv12nrzI4PlrqRYUwNQ+7QDIzMrmr02hHLl8k4dRcZgZG1G2kDfft6iNg1Xe39sJXyYxLDmf1a9kSq2yJvy9NZFf58Ugz1AyoL01Bm/R7ODlrE/1UsaEP837i+lzh7ct4Nief2jScRS9Rq7GQGbC3xO7kZkhz3Wfi8e3s33FH9Ro2oc+v67H0d2fvyd2Izkx5pW0/+1a8sZ2pA0Lh+PoVvADI3l7e48cZ9biFXRq3YyFk8fg6+lO/18nEBefoDW9ubkZ7b9qzJzxI1gy9Xfq16jCuJnzOXHu4kfLc359T0XL1uOXGYc0Xn5FK+EVUPqdKrYA+7cu5PDO5XzVZST9xqzEUGbMvPHdXxvDuWM72LJsArVb9ObH39fi7OHPvPE9SErIiWHzsj+4evYA7ftNofeIJSTGRfH31H7q9x/fv86CP3oSULwi/cet49vvJ3PlzAG2rZyqTnPt/GGW/zmI8jVb8/OETTTvNJxD25dyZNfyTzImeXoK88f3wNrOiX5jVtJ35DKMjEyZN6472Vk5549NS8ZxYv96GrUbwKDJ/9J5wCzcfHKvmL7s9NFdrFsymYYtezBkwkpcPQsyc2xvEhNitaa/ff08C6cNpmLNpgyduIqg0tWZM+FHHoWHvfp3OLGPu7cuYmmT+w33hmVTsbT++DfkudEzNSHx4g0ufz86v7PyVupVMCakjDHLtifz26I45JlK+re1RF8v933iEhWs35fCrwviGbMgnmv3MviutQXO9jk7dW1iQQFbPWauTmDE3FjOXs+gZwsL3B3zfk3L2mVkVA+WsWJPKhOWJyHPgO9bmr4+piQFmw6mMW5pEuOXJXHjfhY9m5niZPvqLVONkjKUeZj/l+0+fp4pK7bQvWktlv/6AwXdnek7cT6xidobty3MjOncuCZ/D/+OVb/9RKPKpRk9fzX/XbwBqCpkP037m0dRMUz5oSMrxvyIk501vf6YS5o89/NSXigXIKGUn4SdZxQs2asgMwtaV5Gi95o7VXd7CWfClCzdq2DVQQVSCXxdRYrBC9+vgR7cearkv2t5+00d2zWfU/uWUe+bUXQcvAYDmTErp3chKzP3v+PVU9sJXTuOyg370GXYRhzcAlg1vQspz667GfJUVkzrjEQioV3/JXQYuJLsrEzWzOqJUpHTQHP9zC62LBpIsYrN6TpiM+0HriSwbEOdx7jr1CUmr9lBj0bVWTG8FwVdHek9bQmxia9pgQAeR8cxde0uSvhpNuSmZ2RyLfwJ3RpUY+XwXkzu1Yb7ETH8MOv119IvjVIpybfXl+iDK7cdO3bk4MGDTJ8+HYlEgkQiUT/T6MyZM5QqVQoTExMqVKjAjRs31Pvdvn2bJk2aUKBAAczMzChdujShoaGv/awpU6ZQtGhRTE1NcXNzo3fv3iQna/6gjh49SrVq1TAxMcHa2po6deoQFxenfl+hUDBw4EBsbGxwdHTMswcIv6065U3YeiiZc9flPIjIYt6GBKzM9QgOMHrtfjJDCT2/smLR5kRS0j7OpVWpVHJ011KqNe5J4ZI1cXT3p2WP8STFR3LtbO7f3dGdSyhVrSUlqzTHwcWXJh1HYSAz4szBDRrpHt+/xpEdf9O862+5HuvE3pWkpyZSqf7re8h0adWWHTSqVY0GNavg5ebCzz07YSST8e/eQ1rTBxcpRNVypfB0c8HFqQCtGtXBx9ONi9dufpT85uf3ZGBohLmVvfollepx5+oJSlZt8c4xHNqxjJBmPShSqgbOHv606T2OxLhILp/Ovefr0LYllKvxFWWqNcPR1ZcWXUZiYGjEyQOqGNJSkzi5fz2Nvx2IX5FyuHkH0rrHWO7dPM/9WxcAVY+ss3tBarfojZ2jBz6FS9OwbX+O7l5JeloKAGcOb6FIqRpUqNUa2wJuFA6uSo0m3di3ZRFKpfbfY37GFPnoLqnJCdRp2RcHZy8c3Xyp3aI3SQkxxEU/BiDi0W3+C11N559mUqRUDWwdXHHzDsS/WIW3/t5Cty6jYkhzKtRoirObD227D8NAZsR/+zZpTb9v+woCgypQu0lHnFy9adymD+5ehTiwY5VGuriYCFYvHE/nfr9r9J6/6PLZI1y7cJwW7fu/dX7zWtSuQ9wcOY2Iza+/tn0qQsoY8+/hVM7fzOBhZDYLNydhZS4lOECW6z4XbmVwKSyDyNhsImKz2bg/FXmGEm8XA3UaHzcD9p1K4+7jLKLjFfx7JJXUdCUeH6FyW6OkjB3H07kYlsWjKAV/b0/B0kxKkJ9Brvtcup3FlbtZRMUriIxTsOVIOvIMJV7Omvl1ddAjpLSMZTtT8zoMtX92HqRZtbI0rlIGbxdHhnRsgZHMgM0HT2lNX6qQLzVKFcXLpQBuBexoW6cyvm5OnL95F4Dwp9Fcun2fwR1aEOjtjqeTA4M7NEeekcnOY+c/WlwApf0kHL2m5NZjiEqAf08qMDeGgi6534CvPqzg0j0l0YkQmQD/nlJgaarqpX3u1C0lx68reRyTd/dKSqWSk6FLqdSgF/5BIRRwDaBxpwkkxUdy41zuv/8TexYTVKkVxSu2wN7Zl/rtRqNvaMSFo+sBeBh2loSYRzTqOB4HV38cXP1p1OkPnty/zL3rxwFQZGexe/Vv1PzqZ0pWbYNtAS/snX0pXKq+zuP8Z89/NK9ciiYVg/FxdmDoN40wMjRg09Gzue6TrVAwZME6ejaugaudjcZ75iZGzOnfkdqli+LpaE8xHzd+adOAa/cf8yQmXuf5F/4/fHDldvr06ZQvX55u3brx5MkTnjx5gpubGwBDhw5l8uTJnD59Gn19fTp3zqmQJCcnU79+ffbu3cu5c+eoW7cujRo1Ijw8PPfMSqXMmDGDK1eusGTJEvbt28fAgQPV758/f56aNWtSuHBhjh07xpEjR2jUqBHZ2TlDqpYsWYKpqSknTpxgwoQJ/Prrr+zZs+dD/wzvxd5aDytzPa68MHwrTa7kzqNMfN1yv/ACtG9gwYWbcq7e+TjDugDioh6SnBCNT2B59TYjE3NcvYsRHnZB6z5ZWRk8vncF3xf2kUql+BYuT3jYefW2DHkaa2b/TKP2wzG30t7zEvkojH2b/uKr7uORSD7OoIPMzCxu3r5HqeKB6m1SqZRSxQK5cuPV3qWXKZVKTl+8QvijJwQV9s/LrKrl9/f0onNHN2MgM6JI6TrvFENs5EOS4qMpWKScepuxiTnuPsXUFTZtMTy8exW/IpoxFCxSTr3PwztXyM7OouALaQq4eGNt58S9W6o4szIz0DfQvJk3MDQiK1POw7tX1J9l8EoaGQmxT9WVxU8pJntnL0zMrDi5fwNZWRlkZqRzYv96VTp7FwCunDmArYMrV88e5LfvazP2u1qsnjeC1OR4rXl7Ja+ZmYTfuUahYmU18lqoaFnu3NA+auHOzYsEvJAeoHBQee7czEmvUCj4e+YwajXpgLObr9bjJMbH8M+cX+n03VgMZa9vGBS0s7OSYmWux9W7r16PfFzerhIqkUCZQBmGBhJuP8wZEXD7QSalC8swNZIgQZXGQF/Cjft5e/2ys5RiaSbl+v2c4cTpGXD3SfYrFdXcSCRQKsAAQwPVkObnDPShcwMTVoWmkpjycRqYM7OyuH7vEWUCc0YuSaVSyhT241LY/Tfur1QqOXnlFvefRBIc4A1ARpYqJsMXhotJpVIMDfTVFeCPwcoUzIwl3IvI+VvKM+FxDLi8w6Afo2e3Tmkf79YIgPjoh6QkRuFZKKcx0MjEHBev4jy6c07rPtlZGTwJv4LXC/tIpFK8ClXg4bN9srIyQCJBT99QnUbfQIZEIuVB2BkAnoRfJSk+AolEyoIxTZk2oBIrp3cl8pFuG9Qzs7K4dv8xZQt5q7dJpVLKFvLh4u0Hue43b+t+bMxNaVa5ZK5pXpSUJkcikWBuIs7lwvv54GZTS0tLDA0NMTExwdHREYDr168D8Ntvv1G1alUAfvnlFxo0aEB6ejpGRkYUL16c4sWLq48zZswYNm7cyJYtW+jbt6/Wz3pxMShPT0/Gjh1Lz549+esv1ZyCCRMmUKpUKfW/AQIDAzWOUaxYMUaOHAmAn58fs2bNYu/evdSqVesD/xLvztJMVUFLSNac+5OYnK1+T5uyRYzwcNZn9NxXh4vmpaSEaADMLDWvNGaWdiTHR2ndJzUpHoUi+5UhqWaWtkQ9yblwbl8xHne/IAqXrKn1OFmZGaz+awD1vv4ZKztnYqMefkgoby0hKYlshQIbS0uN7TZWFtx/pL0SA5Cckkqzrt+TkZmFnlRK/+4dKB309sM7P0R+fk8vO31wPcXKNcDA8N0uUonPYjC31JxTZG5pS2J8tNZ9UhJVMZi/ErctkY9VMSQlRKOnb/DKPG0zS1uSnh3Xv3hFDu1Yxtmj2wgqX5ek+Gj2bJitylec6u/nX6wiW5ZN4Obl4/gWLkNMRDgHty1Rp7F5VmH8VGIyMjal94i/WTz5O/ZsmAOAnZMH3X+Zp+4JjY18SFz0Yy6c2EWb3uNQKLLZvPQPlkz9kV7DF2vN34uSk+JQKLKxeCmv5la2PH10T+s+ifHRWFi9lP6lv8fuTYuRSvWoUb+t1mMolUqWzBpBldot8fANJDry0RvzKrzq+TXn5YpaYooCi9dcjwBcHPQY0kk1nUaeoeTPtYk8ic5pVJ69PpGeLSyY8bMdWdlKMjKV/Lk2gci43Oe96oKFqUQdw4uSUhTq93LjbCfl53bmz2KCuZtSeBqTc5yWNYy58ziLi2Ha5+HmhfikFLIVCmwtzDS221qac+9JZK77JaWmUa/fGDKyVNejX9o3p1wRVQXZ08kBR1srZq3dztBOX2EsM2T5zkNExCYQHZ+Yp/G8yPTZJSIlXXN7ilypfu9thARJeRCl6sn9mFISVdcGU3PN85mphS3JidrP76nJcSgV2Zi+dN01Nbcl5skdAFy8gzA0NGbfholUb9ofJUr2b5iMUpFNcoLqM+OjVBXLQ1tnUavlL1jauXBiz2L+mfQtvcbuwtjUSicxxiWnqu6HXi5/Fmbce6o9xnO37rPpyFlWjej9Vp8hz8xkxvrd1C1dFDPj/5/K7Ze6sFN+ydMxQcWK5UyId3JyAiAyMhJ3d3eSk5MZNWoU27Zt48mTJ2RlZZGWlvbantvQ0FDGjRvH9evXSUxMJCsri/T0dFJTUzExMeH8+fO0bNnyrfP0PF+RkblfFORyOfKX5p1kZ8nR0899mFZuyhczomOjnBvQKcvjXpNaOxsLKe3qmzNxSRyZeXxNPf/fVjYvHqX+d/ufZufJ51w7u487V4/TZ8yGXNPsXjMFe2dvgio2zpM86JqJsRGLp/xGWno6py9eYdbiFTg7OhBcpJDOP+tT+p5eFH7rHFGPb9Oyxx9vTHvmyL+sWzBK/e+uA/MmhrfhX6wijdr9xPqFv7Lyr8HoGxgS0qwHd66fQSJV3eSXq9GSmIgHLJzQG0V2FjJjUyrX/Zbd6/9Up/mUYsrMSGfN3OF4FSzBN99NRKlQcODfxSyc0IsffluNgaERSqWCrMwM2vYeh72TJwCte4xh6pCWRD6+i4Oz10fP9/3bV9m3fQVDJqxEItF+8d+/fSXp6SnUbfbxpip8CcoWkdG+gbn639NXal9D4G08jc5m9LxYjGVSShaW0aWxOX8sjVdXcJtVM8XESMKkZfEkpSkI9pfRs4UF45fE8yjy7RZPfBulCxnQtraJ+t9/rX/9PMDXiYhV8PuSJIxlEkoUNKBDfROmrErmaYyCYj76+Lvr8/uSvF/EURdMjWSsHNuf1HQ5J6/eYsrKLbg42FCqkC8G+npM+r4jvy5cQ/VeI9CTSikT6EfFYgEo83A2caC7hLolc37Ta458eENHnWAJdpbwz768bTQBuHxiC9v/Gan+d+u+c/Pkc0zNbWjeYzo7lo/i1L5lSCRSAks3wNE9EIlU9fdTKlXxVqzfk4CSqlFSDTuMY+agKlw7vZPgql/nSd7eJCVdzrCF6xjevgnW5qZvTJ+Zlc3AuatRomTIN40+Qg6FL1WeVm4NDHKG1j6/MVE8mwA/YMAA9uzZw6RJk/D19cXY2JivvvqKjAztY0nu3btHw4YN6dWrF7/99hs2NjYcOXKELl26kJGRgYmJCcbGxu+Up+f5UihyPxGOGzeO0aM1FwMpVuUngqoOeONnvezcdTm3H+b0throqf4mlmZSjd5bCzM9wp9oXyTK09kASzM9RvfMaenT05Pg72FASBkTuvwaQS5T/t5ZoRI1NFbKzcpUfTfJCTFYWDmotycnROPkob3SZmJuhVSq98qiRMkJMZg968G6c/U4sZEPGNtTc3jiihn98PQvSdchS7l97QQRD24y/FQRAPW8xt/7VKBq4x6ENP/uA6PVztLcHD2plNgEzRu/2PhEbK2sct1PKpXi6lQAAD8vD+4/fMw/67fmSeX2U/qeXnT64Dqc3Avh4qU5ekKbwJLV8fDN6dnOylSV/6SEaCxeWCAoKSEGF0/tK+CaWqhieHGhpecxPF812NzSjuysTNJSEjV6Ol9MA1C1QUeq1O9AYlwUJmYWxEY9Yvuqadg6qFaElEgkNGz7E/W//oGk+GhMLay5dfkEgDrNpxTT2aPbiI16zHe/rkD6rPLd7rsJDO9agcun91GiQn3VHGk9fXXFFlTDmwHiop+8sXJrZm6NVKpH4kt5TYqPwcLKTus+FlZ2JMa/lD4hJ33YtbMkJcQypGc99fsKRTbrlk5h77bl/D57Bzcun+TOzYv0bVNG4zjjBrWjTOV6dPxu7Gvz/f/qws0MRj/KWehLX191PbIwlZDwQp3QwlTKg6evb0nNVvCsF1bB/adZeDnpqxemsreWUrOMMcPnxPI4SlWRfRiRip+bATVKqdLoysWwTO49yalwPl80ysJUSmJKTiXa3FTKwzdUqrMVqFdUDo/IxtNJjxolZazYnYa/uwF2VlImf685oqd7ExPCHmYzdbXuYnqRlbkpelIpMS8t3hOTkISdZe4ry0qlUtwKqH5T/h4u3H0cyeKt+yhVSDXMv5CXKyvH9icpNY2srGysLcxoP2o6hb3c8iQOgFuPlTyOzblZeb5olKmRZu+tqUxCRPybb2pql5Dg6yzhn/0KktJ0ndtX+RWvQVevnNGH2Vmq625KUgzmL1x3UxJjKOCm/fxuYmaNRKqnXjxKvU9SDKYvjPDxDqxEn99DSU2KRaqnj5GJBdMGVMTKTjWn1sxSdT2xd8p5goO+gSFWdm4kxD75wEhzWJuZqO6HXi5/icmvjCYAeBgZy+OYeI3FoRTP7t1K9RjJxjH9cHNQzcHNzMpm0NzVPImJZ95Pnf+vem1B9Nzqmk4qt4aGhhrzWt/G0aNH6dixI82aNQNUc3CfL0SlzZkzZ1AoFEyePFl9c7ZmzRqNNMWKFWPv3r2vVEY/xODBg+nfX3OBkt7j373HFSA9Q0n6S49UiE/KprC3IeHPbh6MZBK8XQzYd1L7AhVX72QwZJbm8I+uzSx5EpXFtiMpOqvYAsiMTZEZ57S2KZVKzCztuHP1OM7PKknpack8vHORsjW1twzq6xvi7BnI7SvH1Y+LUSgU3L56nHIhqqXgqzTsRqlqX2nsN2NIE+q3+4WAEtUBaPvddLIyc654D+9cZsOCoXQbugybAtofgaALBgb6FPTx5MzFq1QpW0qd/zOXrtC83tsPZVcolGRk5s2q1p/S9/ScPD2FSyd3Urvl2y3uY2RsitFLMZhb2XHr8glcPJ/FkJpM+O2LVKjVOtcYXL0Kc+vycYqWrqmO4daVE1Ss3QYAV+9A9PT0uXX5OMXK1gYg8vFd4qKf4OkXpHE8iUSCpY3qJuXcf9uxsnXE1auwRhqpVA9LmwLqNB5+QZhZ2HxyMWXI05FIJRq9n8/nrT9v9ffyL4EiO4voiHDsnv2mop7cA8DG3llr/jTyamCAu3chrl86SVCZGuq8Xr90kmr1tJc774LFuH7ppMZjfa5dOI53QVVjTdmqDQkoVk5jnxlje1GuSkPKV28CQOvOg2jcJmcqS0JsJDPG9qZr/z9e+wii/3fpGUrSMzQvGPFJ2RTyMuRBhKp2YGSouh4dOJOu7RC5kkjA4Fll2dDgee+SZhqFUpVOl+SZvPKIn4RkBf7u+urKrJEheDnpcfj8u60ELAH0nzVI7zqZztFLmvsP72TBuv1pXLydd0OqDPT1CfB04dSVW1QvqWroVSgUnLoaRquQim99HKVCSWbWq/k0N1F1EIQ/jeLa3Yf0alFXNxnXIiMLMl5qA0hOU+LpICHyWWXWUB+cbeHs7dcfq3YJCQVdJCw/oCAhJY8y/BKZkRkyo5wKnVKpxNTCnnvXjuHopjq/y9OSeXT3AsFV22g9hp6+IU7ugdy7fgz/EqrrrlKh4N61Y5Sq/uqjzkzMVdeWe9ePkZIUQ8HiqvOsk0cR9PQNiYm4i5uf6j4lOyuThJhHWNq++dz9tgz09Snk4cyJa3eoXkJ1LVQoFJy8dofWNcq+kt7TyY61ozSnGf65KZTU9Ax+/ro+jjaqBpnnFdvwyBjmDeiMlZnJK8cShHehk8qtp6cnJ06c4N69e5iZmb22J/Q5Pz8/NmzYQKNGjZBIJAwfPvy1+/n6+pKZmcnMmTNp1KgRR48eZc6cORppBg8eTNGiRenduzc9e/bE0NCQ/fv307JlS+zstPccvIlMJkMm0xyCrKevu5URdx1LpXFVMyJisomKy6Z5TTPik7I5ez3nZmJgR2vOXpUTejKV9AwljyI1L0ryDCXJaYpXtuuaRCKhYp327N88B9sCHljbuxK6fgbmVg4UCs55Hu3C8Z0oXDKE8rVUlaKKdTuwfv5gXLyK4OpdlP92LyVDnkbJKqqGjecr677MytYJG3tVL5jtSxXYlKR4AOydffL8ObdfN67HbzPmEeDjRSE/b9b8u4u0dDkNalYBYMz0OdjbWNPzW1UFZdn6LQT4eOHsWIDMzEyOnb3AroNHGdCjY57m87n8/J6eu3RiB4rsbIIqvN/QIolEQpV63xK6aS52ju7YOriyY+1MLKwdKFIqZ77v7LGdKVq6JpXqPKuAN+jAqtlDcPMOxN23KId2LCNDnkaZqqoYjE3MKVO9BVv+mYCJmSUyYzM2/v07Hn5BePjltMLv37qIgOKVkEikXDq1h32bF/BtvylIpaquoOTEOC6e2I1P4dJkZco5dXATF47vos+Ivz/JmAoWLc+/KyaxYdEYKtVth1KhZN+WBUj19PEtrLop8StSHlevwqyeM5wm7X9BqVSwYfFYChatoNGb+zohjb7l71nD8fApjKdvEfZtW06GPI0Kzyqii2cMw8rWgWbtvgegRv22TB7ZlT1bllK0ZGVOHdnJ/TtXaddzBABm5laYmVtpfIaenj4WVrY4uqjyZGPvpPG+zEh1g25fwBVr2wJvle+8omdqgqlvzrnLxMsVi+IBZMQmkP5Adz0quhJ6Mo2GlUyIiM0mOj6bZtVMiU9ScPZ6TkVuwDeWnL0uZ99p1TWqeQ1TLodlEJOQjZFMQtkiRvh7GjB1uWq0y9PobCJismhf34w1oSkkpyko4S+jsLcBM1blfRfbvjNy6peXERWXTXSCgkaVjElIVnD+Vk5jY79Wppy/lcnBc6retyaVjbhyN5PYRCVGhlC6kCF+7vrMXKuqOSWmKLUuIhWbqCQmIW+HxH5Ttyoj56+ikJcrRbzdWbH7MGnyDBpXKQ3AiLkrsbe25LtWql69RVv3UtjLDVcHWzIzszhy8Rrb/jvD4A45K9jvOXkBa3NTHG2tCXvwhEnLN1OtZBHKF/04iyA+d+qWkgqFJcQmK0lIgSpFpCSlwc1HOX/rNlWl3Hyk5EyYaludYNUzbNcdVZCRlTN3V56peu4tqLaZGoG1mapxwt5SVblOTFUtMKYLEomEMiHtObp9NjYOHljZuXJw83TMrRzUFVeA5VM6UDCoFqVrqCqvZWt1YsviQTh5FMHZqxgnQ5eQmZFGsYrN1ftcOLoeOycfTMxseHjnHHtW/07ZkI7YOqpG1siMzQiu+jWHtszEwtoJS1tnju1eCEChkrptoPimVgVGLNpAYU8Xini5sCL0GGkZGTSpGAzAsIXrcLC24PvmtZEZGODronkONn82wvL59sysbH6es4rr4Y+Z/t03KBQKohNUoy8sTY0x0M/7FdU/BaLnVrd0UmoGDBhAhw4dKFy4MGlpaSxe/ObFR6ZMmULnzp2pUKECdnZ2DBo0iMTE3FcAKF68OFOmTOGPP/5g8ODBVKlShXHjxtG+fXt1moIFC7J7926GDBlCmTJlMDY2pmzZsrRpo73V7FOw/UgKMkMJHRtbYGIk5VZ4BpOWac6ndbDWx8z04z3L9nUqN+hKhjyNTYtHkp6aiIdfMB0HzMPAMKcBIDYynNSknN7tYuXqk5IUx94NM0hKiMbJvRAdf56nHu76qatZqRzxiUksWLWe2LgEfL3cmTziZ2ysVEPSIqJikL7QBZGWLmfyvCVExsQiMzTEw8WJET/0pGalcrl9hM7l9/d05uB6AkvV+qCGh+qNupAhT2PdglGkpSbh5R9M91/masQQE/FA3dABUKJ8PVISY9m1bhaJ8dG4eATQ7Ze5GkOOm3w7CIlEwt9TfyA7KxP/YhVp3nmYxmdfP3+Y0E3zyMrMwNnDn04DZlEoqLJGmtOHN7N1+UQAPPyK03vE37j7as7p/1RiKuDiTecBf7J7w1/MGNEOiUSCi2chuv8yVz1EWiqV0nnAn2xc8ht//doeQ5kxAUGVafzNz6+N6UWlKtYhKTGOratmkxgfjaunP98N/Uu9aFRs9BP1PDEAn4AguvT7nS2r/mTzipk4OLnTc+BUXNy1r4r8ubEsWYTye5ep/1140hAAHizdwMUug/MrW7na8V8ahgYSOjQwx8RIwq3wTKauSFBXEkC1yr+ZSc4CUxYmEro0McfSTEqaXMnDiCymLk/g6l3VNStbAdNWJfJVDVO+a22JkaGEyLhsFm1O4lJY3i9pu/ukHEMDCW3rmGAik3D7URYz16VoxmSlh5nxC8OWTSR0rG+KhamEdLmSR9HZzFyborHqcn6pXS6IuKRk5mzYRUxCEgXdnZn5c1dsLVXzp5/GxGmM0EiXZzB+yQYiY+ORGRrg6eTA2B5tqV0uSJ0mOj6RqSu2EJOQjJ2VOQ0qlqJb05CXPzrPHb+uxEAP6pWUYmQID6JhzSEF2S+0F1iZgfEL/Q3Bvqqy+E11zQcX/3tS9YgggBI+EioH5pTZb2vovZJGF8rX6UamPI3t/4wgPTURN9+SfN1vgcbq+3FRD0hLzrnuFi5dn5SkWA5umUFKYhQFXAvx9fcLMLPIOb/HRNxl/8YppKUkYGXrQsX6PSkT0lHjs2u2GIhUqs+WRQPJzEzHxas47X5agrGp5tD5D1WndFHiklKYvXkvMYnJ+Ls58We/9uphyU9jE5C+w9MsouITOXhBtQjt17/+pfHe/AGdKeX/8dd6ED5/EmVuD2UUctVhxNP8zoLONWrg8OZEn5mq5qfzOws6dzCpVH5nQeeMDPJ+8Q9BN0wNPo1GNl1KDQ7K7yzo3IYRR/I7CzpnaPT6x+N9jiZWOZzfWdC5mfd1/2zV/OZSQO/NiT5DX0nWvDnRZ8akSqv8zsJ7uRQWkW+fXdQ3f0c45YX/j/5+QRAEQRAEQRCET4xSKYYl69Lbjx0QBEEQBEEQBEEQhE+U6LkVBEEQBEEQBEHIBwqxoJROiZ5bQRAEQRAEQRAE4bMnKreCIAiCIAiCIAjCZ08MSxYEQRAEQRAEQcgH4jm3uiV6bgVBEARBEARBEITPnui5FQRBEARBEARByAfiUUC6JXpuBUEQBEEQBEEQhM+e6LkVBEEQBEEQBEHIB2LOrW6JnltBEARBEARBEAThsycqt4IgCIIgCIIgCMJnTwxLFgRBEARBEARByAdiQSndEj23giAIgiAIgiAIwmdP9NwKgiAIgiAIgiDkA7GglG6JnltBEARBEARBEAThsycqt4IgCIIgCIIgCMJnT6JUKpX5nYnPzcnrCfmdBZ0z0pPndxZ0bvIyRX5nQee6fW2e31kQ3kJa5pc54yM62TC/s6Bzofui8zsLOtf810r5nQWdK31heX5nQedmnCyW31nQuWYVkvM7CzpnpR+f31nIE4P//PL6t9ZM9szvLLyX/KxXlAmwzLfPzitfXskWBEEQBEEQBEEQ/u98md0LgiAIgiAIgiAIn7gvb5xh/hI9t4IgCIIgCIIgCMJnT/TcCoIgCIIgCIIg5AOlUjwKSJdEz60gCIIgCIIgCILw2ROVW0EQBEEQBEEQBOGzJ4YlC4IgCIIgCIIg5AMlYliyLomeW0EQBEEQBEEQBOGzJ3puBUEQBEEQBEEQ8oFYUEq3RM+tIAiCIAiCIAiC8NkTlVtBEARBEARBEAThsyeGJQuCIAiCIAiCIOQDsaCUbomeW0EQBEEQBEEQBOGzJ3puBUEQBEEQBEEQ8oFCmd85+LKInltBEARBEARBEAThsyd6bvPInm1r2b7pHxLiYnDz9KN99wH4FAzMNf2Jo6GsXz6X6MgnFHB2o3X7vgSVqqh+PyE+hlVLZnH53AlSU5LwDyxB++4DcHR2ByAq4jH9uzfVeuy+A3+nbMUQncb33M5/N7Blw0ri42Lx8PKhc48f8PMvrDXtg/t3Wb18IXfCbhAV+ZSO3b6jQZNWuR5749p/WLFkLvUbt6RT9+/zJP+5aVbDjGoljTExknIrPIMlWxOJiM3ONX2N0sbUKG2CnZUeAI+isth8IJmLtzLUaRys9fi6jjl+HoYY6MGlMDnLtiWRmKLQef73bV/Nzk1LSYiPwc2zIG27DsS7YJFc0586uodNK2cTHfmYAk7ufNX+e4qVrKSR5vGDO6xbNoObV86SnZ2Fs5s3vQdOxNbeCYCEuGjWLJnG1QsnSE9LwdHFkwZfdaFU+ZqfZUzRkY8Z1KOh1mP3HPAHpSvW+uCYDu5cxd6tf5MYH42LR0Fadh6Mp2/RXNOfPbabbatnERP1GHtHd5q2+5HA4MoAZGdlsnXVLK6cO0xM5EOMTMwJKFqWxm1/wMrGQeM4l88eYse6OTy+fwt9Q0P8CpWi+8DpHxzPc0qlkv2bZnL20FrSUxNx8w2mYfuR2BbwfO1+J/cu5+jOhSQnROPoFkC9dsNw9S4GQFz0Q6YP1H4ea9lrGoGl6wKwfflYHoSdJfLRLeycfOg1epPO4npZk6omVClhhImRlLAHmSzbkUzka84T1UoaUa2kMXZWqnblx1HZbDmUyuXbOecJC1MJrULMKOxtiJGhhKcxWWw7ksqZ6xm5Hfajs6lUCu+fumAZXAQjZwdOt+hNxJa9+Z0trTZs383KTduIjU/Ax9OdH7p2oHBBH61pt+zex64DR7gT/gAAfx8vurdrrZE+Nj6B2UtXcur8JZJTUikeGMAPXTvg5uz4UeJ5Uc0gPUoVlGJkCOGRSrYcyyImKff0VYpKKewhxd5SQmYWhEcp2X06i+hEzXRu9hJqBevhaidBoYSnsUr+3pNFVu5F+4Pt3raOfzcsJyEuFncvXzr06I9vLvdMD+/fYe3y+dy9fZ3oyKd827Uf9Zp8rZFm89olnPrvII8f3cfQUIZfQFHadOyNs6tH3gWhxdatW1m/bh1xcXF4eXvTq1cv/P39tabduWMHe/fu5f79+wD4+vrSoWNHjfRHjx5l+7ZthIWFkZSUxMxZs/Dx0V6e81KrOlbULGeGqbGU63flLFgfw9PorLfat0kNS9o1sGbboUSWbI7VmmZwVwdKFDJh4uJITl1O1WXWP0lizq1uiZ7bPHD88B5WLJpGs9ZdGTNlKe5efkwY9T0J8dp/xDevXeSvScOpGtKYMVOXUbJsVaaN+5kH928DqhvFab//TNTTR/w4dBJjp/6DnYMT40f0JT09DQBbuwLM/Hu7xqt5m+4YGZlQPLhCnsR59NBeliyYRcs2Hflj+gI8vHz5bcRPJMTHaU0vl6fj4OhEuw49sLK2ee2xw25eY8/OLXh4fvyTdv1KptQqa8LfWxP5dV4M8gwlA9pbY/CapqDYRAVr9iQxck4MI+fGcPVOBv3aWONir9rJ0EDCzx2sUQJ/LI5l7IJY9PQk/NjOComOz2knj+xi9eIpNG7dnZGTV+Dm6cfUX/uQmEv5C7t+gXlThlC5ZhNGTl5BibLVmDW+Pw/vh6nTRD55wPghXXBy8eTnMfMYPXU1jVp2w8BApk6zYPoIIh7d57vBU/l12hqCy9VgzqRB3L9z/bOMyca2AFMW7dZ4Nfm6JzIjE4oGV9T6ue/izH872bh0IvW+6smgP1bj4uHPn7/1JCkhRmv6OzfO8/f0QZSv0Yxf/lhD8dI1mDexH4/DbwGQkZHOg7vXqNeiB4P+WE23n6YQ8fgecydoNgydO76HpTOHUK5aU36ZuJb+Y5ZSqlL9D47nRUd3LOBE6DIath9F12FrMJQZs2xyVzIz5bnuc/nkdnatHk+1xn3oMXIDBdz8+WdKV5ITVX8PSxsnfpp6WONVrel3GMpM8C1aWeNYJSq1ILC0bmN6Wb0KxoSUMWbZ9mR+WxSHPFNJ/7aW6Ovlvk9cooL1+1L4dUE8YxbEc+1eBt+1tsDZPmenrk0sKGCrx8zVCYyYG8vZ6xn0bGGBu+On0xatZ2pC4sUbXP5+dH5n5bX2HjnGrMXL6di6OQsmj8XX052ffh1PXHyC1vTnr1wjpHJ5ZowZypzxo3Gws+Wn0eOJilGdZ5RKJUPGTeFJRCTjBvdn0ZTfcLS348dRv5OWnv4xQ6NyESnlCkvZfCyLOduyyMiCDrUNXlv+PB2lnLiuYO62LP7enYWeBDrWNtC4trnZS+hQS5+wxwrmbMtizr+ZHL+uQJmHwyaPHQ7lnwUzaN6mC79N+xt3Lz/Gj/gx13sm1b2EM1936I2Vta3WNNcun6NWgxb8OnE+g8dMJzs7i/EjflDfM30MBw8eZP68ebRt146ZM2fi7eXF8GHDiI+P15r+4sWLVK1WjXHjxzN5yhTs7O0ZNnQo0dHR6jTp6ekEBgbSqXPnjxTFq5pUt6BeZQvmr4thyPQnyDOUDO1eAAP9N9/M+LgZUqucGfce595Y16CKBWKUrvAhPlrlVqFQMG7cOLy8vDA2NqZ48eKsW7cOpVJJSEgIderUQfns7BkbG4urqysjRowAIDs7my5duqj39ff3Z/p0zV6Gjh070rRpUyZNmoSTkxO2trb06dOHzMxMdZonT57QoEEDjI2N8fLyYsWKFXh6ejJt2jSdxrpj8wqq1W5KlZBGuLh706nXL8hkRhwK3ao1/e6tqygWXI4Gzb/Fxc2Lr9r1xNM7gNBtawB4+jicsBuX6dhrEN5+hXFy9aBjz0FkZMg5fmgXAFI9Pays7TReZ44foEylmhgZm+g0vuf+3bSamnUaUb1WA9zcvejeZwCGMiP27dmmNb1vwUK079yHilVDMDAwzPW4aWmpzJj0Kz2/G4ipmXme5P116pQ3YeuhZM5dl/MgIot5GxKwMtcjOMAo133O35Bz8VYGEbHZRMRks35vMukZSnzcDAAo6G6AnZUe8zcm8DAyi4eRWczfkICnswGFvHL/W7yP3VuWU6VWMyrVbIKzmzff9hyKocyII3s3a00f+u8KipQoT91mHXB286ZZ2954eAewb/tqdZoNK/6kaMmKtOzwAx7eATg4uRFUpioWVjmNFLdvXKBGg9Z4FyyCvaMrjVp2xcTEnPu3r32WMUn19LC0ttN4nT2xn9IVa+nkN7Xv36VUqNmC8tWb4uTqw9fdhmNoaMyx/Zu0pj+wfTmFgioS0rgTjq7eNPy6L27ehTi4cxUAxibmfDd8HsEV6lDA2QuvgsVp1XkID+5cJTb6CQDZ2Vms//sPmn7bn8q1W1HA2RMnVx+CK9T54HieUyqVHN+zlCqNehJQoiaObv406/oHSfGRXD8bmut+x3b9TXCVlpSo3AIHF18ath+NgaER5w6vB0Aq1cPc0l7jdf1sKIGl6yEzMlUfp367YZSp2Q5re1edxaRNSBlj/j2cyvmbGTyMzGbh5iSszKUEB8hy3efCrQwuhWUQGZtNRGw2G/enIs9Q4u1ioE7j42bAvlNp3H2cRXS8gn+PpJKarsTjE6rcRu06xM2R04jYnPv3+SlYvWUHjWpVp0HNqni5uTKgZ2eMZDK27T2oNf2IH/vQrF4t/Lw88XB1ZlDvbiiUCs5cvALAg8dPuXIzjJ96dKaQnw/uLs781KMTcnkmoYePfczQqFBYjwMXsrn+QElEnJJ1h7MwN4FC7rnf1i3dk8W5MAWR8UqexilZfyQLKzMJLrY5lZL6ZfQ4dk3BoUuqdNGJcPmegmzdDzBS275pJdXrNKZaSENc3b3o0nsgMpmMg3v+1Zrep2Bh2nX+jgpVaqFvYKA1zS+jp1E1pAGuHt54ePnR84dhREc95W7Yhze2vq2NGzdSt149ateujbuHB32/+w6ZTMbu3bu1ph84aBANGzbEx8cHNzc3+vXrh0Kh4ML58+o0NWvWpG27dpQoUeIjRfGq+lUs2BAaz+kraYQ/yWTWyiisLfQpXeT110WZoYTv2tkzd20MKanaC5SHsyENq1owe7X2Rl5BeBsfrXI7btw4li5dypw5c7hy5Qo//vgj33zzDYcOHWLJkiWcOnWKGTNmANCzZ09cXFzUlVuFQoGrqytr167l6tWrjBgxgiFDhrBmzRqNz9i/fz+3b99m//79LFmyhL///pu///5b/X779u15/PgxBw4cYP369cybN4/IyEidxpmVmcm929cJLF5avU0qlRJYvDRhNy5p3SfsxiUCi5fR2Fa0RDluPUuf9ayC/mIvmVQqxUDfgBvXLmg95t2wa9y/e5OqIU0+KJ7cZGZmcifsJsWCSmrkqVhQKW5ev/JBx144eyrBpctTLKjUh2bzndlb62FlrseVF4YJpsmV3HmUia+b9ovoyyQSKFvECJmhhLAHquPo60tQKiErK6c9MjNLiVIJBT10V7nNyszk/u1rFCpeVr1NKpVSuFhZbt+4qHWf2zcuUfiF9ACBQeW5fVOVXqFQcPH0ERydPZgyujc/dKjJ2IHtOXtiv8Y+Pv7FOXVkN8lJCSgUCk4c3kVmphz/IiX5EPkZ04vu3b7Kg7s3qBzS9IPiAcjKyuTBnWv4Fy2nEZN/0bLcvZnLb/rmBQKKasZUqHgF7t3Snh4gLTUZiUSCsYmqkejB3WvEx0YikUgZP7AVQ7rX4K/fe6l7f3UhLuohyQlReBfOGTFiZGKOq3cxHt4+r3WfrKwMHt+/orGPVCrFu3D5XPd5fO8yT8OvUaJKC53l/W3ZWUmxMtfj6t1XzxM+Lm9XCZVIoEygDEMDCbcf5jTC3n6QSenCMkyNJEhQpTHQl3Dj/qczLPlzkJmZxc3bdylZPGfqglQqpVSxIly58XblXZ4hJys7G3MzVeNJZpbqezJ8oUIllUoxNNDn4rUbOsz961mbgbmJhNtPcq4n8kx4GKXEzf7thwIZPbv0pD4bUGFqBG72UlLSlHSvr88vrQ3oUlcfD4e8GzKZlZnJ3bAbFHnpnqlIUGlu3biss89JTUkGwMzcQmfHfJ3MzEzCbt0iKChIvU0qlRIUFMT1a2/X4CuXy8nOzsbM/OM38ufGwUYfawt9Lt7MGamQlq4kLFxOQY/cG/YAuja35dzVVC7d0j7KwdBAQr92dizcEENCUh6Ogf8EKZWSfHt9iT5KU7BcLuf3338nNDSU8uXLA+Dt7c2RI0eYO3cuK1asYO7cubRv356nT5+yfft2zp07h76+KnsGBgaMHp0z/MnLy4tjx46xZs0aWrXKmbNpbW3NrFmz0NPTIyAggAYNGrB37166devG9evXCQ0N5dSpU5Qqpao0LViwAD8/P53GmpQYj0KRjaWV5rBbCysbHj+8r3Wf+PiYV9JbWtmQEKcakuPk6omtvSNrlv1J596DkcmM2bllBbExkSTERms7JAdDt+Ds6kXBQsV0ENWrkhITtMZpaWXNo1zifBtHD4Zy5/ZNxk+d96FZfC+WZqr2noRkzVbFxORs9Xu5cXXQZ3g3Gwz0JaRnKJmxMo7HUaoT9O0HGcgzlbSqbc660CRAQqtaZujpSbB6w3HfRVKSqvxZWL5a/p48uqd1n4T4aCysbF9Kb0tinKrlNCkhFnl6Kts3LKZZ29581b4fl8/+x19/DODnX+epK6+9fv6DOZMG0a99dfT09DGUGdHnl8kUcHL/bGN60eHQzTi5euEbUPyD4gFIToxDocjGXEseIx7f1bpPYnw05paa6c0tbUmM134OyMyQs3n5VEpWrIexiRkA0REPAdi+djbN2w/A1sGFvVuXMH10F0ZM34qpmeWHhkZyYhQAZhaaeTW1sCM5QXteU5PiUCqyte4T/UT73+Ps4fXYOfng7hv8wXl+V8/PBYkpmoPnElMUWLzh9+zioMeQTqppDvIMJX+uTeRJdM6N3Oz1ifRsYcGMn+3IylaSkankz7UJRMblYdfZFyghKYlshQIbS80ybW1lwf1Hj9/qGLOXrsLO2ppSzyrIHi7OFLC3Ze4/q/m5VxeMZDLWbN1BZEwsMXHxug4hV2bGqhvS5DTN8pecpsTc+O2OIQHql9HnfoSqhxbA2lx13BpBeuw8nc2TWCVBPlI61dFn5qbM187nfV/qeybrV++BcrtnelcKhYJl86dRsFAx3Dw+zlSnxMREFAoF1tbWGtutrK158PDhWx1j8aJF2NjY5Gsv7cusLFTj3l+ufCYkZavf06ZCkCleroYMnvYk1zQdmthw476c01c+3tBx4cv0USq3YWFhpKamUquW5gIsGRkZ6h9ty5Yt2bhxI+PHj2f27NmvVDr//PNPFi1aRHh4OGlpaWRkZGi0iAEEBgaip5fz43JycuLSJVXv540bN9DX1yc4OOdGyNfX95UTz8vkcjlyueY8sYwMOYaGr2+h0iV9fX36/fIHC2aNpWe7EKRSPQKLl6ZYyQpomwiTIU/n2KFdNGnV5aPlUReioyJYPH8Gw8dM+Wh/3/LFjOjYKKcld8py7fOF38aTmCyGz47BRCahdKAR3ZpbMW5RDI+jsklKVfLn6ng6NLKgVlkTlEo4fimde48z83Quky4onmWwRJlq1G78DQDuXv6E3bjAgV3r1BXBjSv+IjUlmZ9Gz8bc3JqzJ/czZ+Igfvl9Ia4eum1E+lBvG9NzGfJ0ThzaQaNW3T56Xt9HdlYmC6cOQImS1l2HqbcrlaoKUp3m3ShRTnU+/qb3GIb3rMW5Y7upVKvlO3/WxWNb2bp0pPrf7X6Y84G5f7PMjHQuHf+Xqo165flnAZQtIqN9g5zek+krtc/ZfBtPo7MZPS8WY5mUkoVldGlszh9L49UV3GbVTDExkjBpWTxJaQqC/WX0bGHB+CXxPIr8/+rNyE//rN/C3iPHmDFmGDJDVRenvr4+vw36kfGz5lH/2+7oSaWULF6EcsHF1dOq8kJxbymNy+fc2ywLfbuFe16nYTk9ClhLmL89Z9TA8z6cUzcVnA1TnSuexGbj4yQh2E+PPWc/z/K3eM4kHoTfYeQfc/M7K29tzZo1HDx4kD8mTMDQULdTl95FpWBTun+V0+g4bkHEOx/D1kqPjk1tGDv3KZlZ2n8nJQONKeJrxMApb9fw9KX51O8DPzcfpXKbnKwaDrJt2zZcXFw03pPJVJWY1NRUzpw5g56eHrduaQ4ZWrVqFQMGDGDy5MmUL18ec3NzJk6cyIkTJzTSGbw090IikaBQfFhr97hx4zR6jQG69hlEt76DtaY3t7BCKtV7ZSGExPjYXBc+sLKyfSV9QnysRkuml28hfpu2nNSUZLKyMrGwtGbkgE54+RZ65Xgn/9uHXJ5Opep5t6CKuYWl1jgT4uNyjfNN7oTdICE+joH9uqq3KRTZXLtygZ3/bmDFxr0ajRe6cO66nNsPc+Z2GOipLu+WZlKN3lsLMz3Cn2S+sv+LsrNRr5R670kyXi4G1C5nyt9bVUtRXr6dwc/TojEzkaBQQGq6kuk/2xMZ9+E3Ks+Zm6vKX2LCq+XP0kr792JpZUdifMxL6WOwePY9mptboaenj5Obt0YaJ1cvwq6dB1SLM+3bvppfp6/FxV3VMu7mVZBbV8+xb/sa2vca+tnF9KLTx0LJyEinQjXtqye/KzMLa6RSPZK05dHKTus+FlZ2ryw2lZTwanpVxfZn4qKf8N2IBepeWwBLK3sAnFxz4jYwMMS2gIt6Xu678g+qjot3zgiR7CzV8NnkxBjMrXJWaU5JjMbR/dXzFYCJuTUSqZ568agX9zGzfPXvcfX0LjIz0ileoel75fldXbiZwehHOeVP/9nCKRamEhKSc9JZmEp58PT1v+dsBc96YRXcf5qFl5O+emEqe2spNcsYM3xOrHrUx8OIVPzcDKhRSpVGeDuW5uboSaXEJmg2RMTFJ2Jr9foRCis3bWP5hq1MHT0YX0/NkSf+Pl4snjqO5JRUMrOysLa0oPvAEQT4eOk8hueuhSt4EJVzPdJ/dp0yM5Zo9N6aGUt4Evvmu+SGZfUIcJOyYEcmiS8sRPv8WM97cp+LSlBiZUqeUN8zxb16D/S+9xIvWjxnEudOHWXEuNnY2jm8eQcdsbCwQCqVEhen2WAeHxeHzRs6VdavW8faNWv47fff8fLKu3L1Nk5fSeXW/ZwOnueLRlma6xH/Qu+tpbke9x5pnzrh7SrDylyPP350Vm/T05NQyFtG3YrmtB10nyK+xhSw1efvsZq/t5862HPtjpzRs5/qMizhC/dR5twWLlwYmUxGeHg4vr6+Gi83NzcAfvrpJ6RSKTt27GDGjBns27dPvf/Ro0epUKECvXv3pkSJEvj6+nL79u13yoO/vz9ZWVmcO3dOvS0sLOyVE8/LBg8eTEJCgsarQ/f+uabXNzDA0yeAqxdPqbcpFAquXDyNr7/2R3z4+hflygvpAS6fP4GflvQmpmZYWFrz9HE4d29fo2TZKq+kORi6heDSVbCwfP0J9EMYGBjg7VuQSxfOqLcpFAouXThDwYDcH3n0OkWLl2LyrCVMnLFI/fLxC6BStVpMnLFI5xVbgPQMJZGx2erXo6gs4pOyKeyd01JqJJPg7WJA2IPXV25fJpHk3AS/KDlVSWq6kkJehliYSjl3PfcVZN+VvoEBHj6FuHbxpHqbQqHg2qWT+PhrH6Lu419UIz3A1Qsn8ClYTH1MT9/CPH1pCHDE43D1Y4AyMlRzaCQvLf0slUrVvYWfW0wvOhK6maDSVTHX0W9KX98AN+9C3Lic00CnUCi4efkEXgW1D3v2KlicG5c0G/SuXzyOp19O+ucV26in9+k7fB5m5lYa6d28C6NvYEjE43sa+8RGPcbG3pn3ITM2w7aAh/pl7+yLmaU9d6/mLLCTnpbMwzsXcfUJ0noMfX1DnD0CuXstZx+FQsGda8e17nP28Dr8g6pjavH6Vdd1JT1DSWScQv16HJVNfFK2xmJwRoaq88TtR+/WWCWR5NwwGhqo/vtyK75Cic5XVf/SGRjoU9DHS70YFKjK1JlLlwn0z30kyfKNW1mydiOTRgwkwNc713RmpiZYW1rw4PFTbty+Q6WyH7a2wOtkZEFsUs4rMl5JUqoSH6ecQiEzAFd7CQ+iXl+5bVhWj8LuUhbtzCTupbaSuGTVUHs7S83CZmshIT5FZ+Fo0DcwwMvXnysXT6u3KRQKrlw4jZ9/7o96exOlUsniOZM4fewgQ3+bhYPj+53f3peBgQG+fn4ai0EpFArOnz9PQCHtjXwAa9euZeXKlYwZM4aCBQt+hJy+XrpcSURMlvr1MCKTuMQsivrlLLBpLJPg6y7j5n3t9zKXbqXx08RHDJzyWP0KC5dz5GwKA6c8RqmETfsS+HnyY400AEs2x/LXau3TWQQhNx+l59bc3JwBAwbw448/olAoqFSpEgkJCRw9ehQLCwvs7OxYtGgRx44dIzg4mJ9//pkOHTpw8eJFrK2t8fPzY+nSpezatQsvLy+WLVvGqVOn3qlFKyAggJCQELp3787s2bMxMDDgp59+wtjY+JUb8hfJZDJ17/Jzhoavv3jUa9KWedNH4+VbCG+/QHZtXYU8PY0qIapenzlTR2Jt60Dr9n0AqN3oa34f2oPtm5YTVKoixw/v5u7ta3TuM0R9zBNHQ7GwsMbW3pEH98P4Z8EUSpatStES5TQ+O+LJA25cOceAEdPe+m/zvho2bc2fU3/Hxy8A34KF2LZ5LfL0NKqHqHqMZ04ei42tHe069gRUCyw8fHAPUC2oExMTxd07tzAyMsbJ2RVjExPcPTVvJmQyI8zNLV/Znpd2HUulcVUzImKyiYrLpnlNM+KTsjl7PWcRhIEdrTl7VU7oSVWzd8sQMy7ekhOToMDIUEL5YkYEeBoyaVlO40nlEsY8jsoiKUWBr5sB7epbsOtYKk9jdDvUq3bjdiycMRJPn8J4+QUS+u8K5OlpVKzZGIAF04djbeNAi2+/AyCkYVsmDOvGrs3LKFayEieP7OLe7au075UznLVu0/bMmfwLBQsHE1C0FJfP/ceFU4cYOEY1N9rRxRMHJzeWzvmNVh1+xMzcknMnD3D1wgm+H/rhz0/Nj5iei3gSzs2rZ+k3bMYHx/GiGg3bs+zPYbh7F8bTtyj7t/+DXJ5GuWpNAVg6awiWNgVo0rYfANXqt2PaqM7s3bqEwOAqnDm6g/DbV2jT/dmq8lmZLJjyEw/uXqPnoFkoFQr1fFwTM0v09Q0wNjGjUq2WbF/zF9a2jtjYOxG65W8AgsvV1klcEomEcrXac+jfOdgU8MTa3oV9G2dgbuVAQHDOc2qXTOxIQHAIZWuqhoWXr9ORjQt+wdmzCC5exTi+ZwmZ8jRKVGqucfyYiPvcv3madj9on5cfE3GfDHkqyYnRZGWk8yRctXiLvbMP+vq6G94XejKNhpVMiIjNJjo+m2bVTIlPUnD2hcaqAd9Ycva6nH2nVeeO5jVMuRyWQUxCNkYyCWWLGOHvacDU5arexafR2UTEZNG+vhlrQlNITlNQwl9GYW8DZqz6dOah6ZmaYOqb08Ni4uWKRfEAMmITSH/wfiMA8kLrxvX4fcZcAny8KOTnw9p/d5KWLqd+zaoAjJ0+Gzsba3p+q3pG6vINW1m4ch0j+vfB0cFePY/W2MgIE2PVzfz+oyewsjSngJ0dt++HM2PhMiqXKUWZoLxZ3yI3/13NploxPWISlcQlQc1gPZJSVb28z3Wqrc/VcAUnrqu2NSqnRzFvKcv3ZiHPArNn83PTM1A/w/bwlWxqBunxNFbBk1glJXz1sLeUsOqA7kYYvax+0zbMmToGb98AfAoGsmPzKtLT06n67J7prymjsbG15+sOvQHVIlQPH6jm4mdlZREbE8W9OzcxMjLG0VnVYbJ49iT+O7Sbn4b+gbGxCfHP1lswMTHFUJb7kw90qVmzZkyZPBk/Pz8K+vuzedMm5HK5eorepEmTsLW1pVOnTgCsXbOGZcuWMXDQIBwKFCA2VtWbbWxsjLGx6stKSkoiMjKS2BhVPA+fzd+1trbGxubjNPZtP5RI8xBLnkRnEhmTxdf1rIlLzNJ4Hu3wngU4eSmVXUeTSJcrefBUs3NAnqEkKVWh3p6QlK11Eano+GyiYvOu7H0qFOI5tzr10Z4tMGbMGOzt7Rk3bhx37tzBysqK4OBgBg8eTOvWrRk1apR6Puzo0aPZvXs3PXv2ZPXq1fTo0YNz587RunVrJBIJbdq0oXfv3uzYseOd8rB06VK6dOlClSpVcHR0ZNy4cVy5cgUjI92e6MpVrkVSYhzrV8wjIS4Gd6+C/DxyunoIZUx0BBJpTqd5wULF6PXTGNb9M4e1y/6igLMbPwyeqLHwQXxsDCsWTiMhIRYrazsqVa9PUy1zag+GbsXG1oEiQWVfeU/XKlapSWJCPKv/WUh8XCye3r4M/XWS+hm20VERSKQ5P9i42GgGfp/zbLatG1axdcMqChcJYvT4mXme37e1/UgKMkMJHRtbYGIk5VZ4BpOWxZH5wvnVwVofM9Ock7W5qZRuza2wMpeSlq7gQUQWk5bFaay67Ginx1chZpgZS4mOz2bLoWR2/af7h5OXqVSHpMQ4Nq2aTWJcDG5e/vw4Ypa6/MVGPUUiySl/vgHF6fbjb2xc8Rcb/pmFg5M7fX+ZgquHrzpNcLkafNtjCNs3LGblwok4OnvQe+BE/Aqr5szr6xvww7CZrFs2g5m//0B6eioOTm50/n40xUpW+ixjeu7I3s1Y2xYgMKj8B8fxopIV6pKcGMe2NX+RFB+Ni6c/fYbMVi+EFRutGZO3fxAdvx/Pv6tmsnXlDOyd3On+83Sc3VW9UPGxkVw6fQCA8QM1585+P3IhBQNVq5E2+6Y/UqkeS2cNITNDjodvUb4fsQATM92tIlqxXlcy5GlsXTKC9NRE3P1K8k3/+RorvsdGhpOalNP4U6RMfVKSYtm/aSbJCVE4uhXimx/nvzIs+dyR9VhYO+ITqP1Zw1v+Hsb9GzkjYeaOagZAvwmhWNvp7vFAO/5Lw9BAQocG5pgYSbgVnsnUFQnqSgKoVl83M8n5Di1MJHRpYo6lmZQ0uZKHEVlMXZ7A1buqc0m2AqatSuSrGqZ819oSI0MJkXHZLNqcxKWwT2e1ZMuSRSi/d5n634UnqRpiHyzdwMUu2qfs5IealcoTn5jEwlXriI1LwNfLg0kjBmHzbFhyRFSMRuP2pp2hZGZlMXyCZoNcp9bN6fy1alXumLg4Zi3+h9iEBGytrahbrTIdWjb7eEE9c/iyAkN9CU0q6GNkCOERSpbsydQofzYWEkyNcuIrG6Aa/dS1nuYUrvVHVI8IAjh2VYGBnmqxKWNDeBqn5O/dWcTmwWJSz5WvHEJiQhzrli8gPi4GD28/fhk9VT01KyYqAukL58K42GiG9Oug/ve2jSvYtnEFhYqUYPi4vwAI3bEBgDFD+mh8Vo9+w6ga0iDvgnlB1apVSUxIYNk//xAXG4u3jw+/jhmjXuslKjIS6Qvlb9u2bWRlZfH7b79pHKdtu3Z8842qEfD48eNMnTJF/d4f48e/kiavbd6fiMxQSo+v7DAxlnL9bjq/z4vQmE9bwNYAC1Pdj7YThLchUeblKgifuIcPH+Lm5kZoaCg1a9Z86/1OXn//xUQ+VUZ6uhsa+6mYvOzLW12029efziMBhNylZX46zyTVpejk/FvYJK+E7vvyhrw1//XDG5Q+NaUvLM/vLOjcjJMft7f3Y2hW4cubF26lH5/fWcgTg//8aE8D/WjWTPbM7yy8l9CL+XcPHlLs4y2Q+7F8mXdgudi3bx/JyckULVqUJ0+eMHDgQDw9PalS5dV5q4IgCIIgCIIgCMLn4/+qcpuZmcmQIUO4c+cO5ubmVKhQgeXLl7+yyrIgCIIgCIIgCEJe+/8dQ5s3/q8qt3Xq1KFOnTr5nQ1BEARBEARBEARBx768AfeCIAiCIAiCIAjC/53/q55bQRAEQRAEQRCET4VSPApIp0TPrSAIgiAIgiAIgvDZEz23giAIgiAIgiAI+UAhFpTSKdFzKwiCIAiCIAiCILzRn3/+iaenJ0ZGRpQtW5aTJ0++Nv3atWsJCAjAyMiIokWLsn379jzNn6jcCoIgCIIgCIIgCK+1evVq+vfvz8iRIzl79izFixenTp06REZGak3/33//0aZNG7p06cK5c+do2rQpTZs25fLly3mWR1G5FQRBEARBEARByAdKpSTfXu9qypQpdOvWjU6dOlG4cGHmzJmDiYkJixYt0pp++vTp1K1bl59//plChQoxZswYgoODmTVr1of+2XIlKreCIAiCIAiCIAhCrjIyMjhz5gwhISHqbVKplJCQEI4dO6Z1n2PHjmmkB6hTp06u6XVBLCglCIIgCIIgCIKQD5T5uKCUXC5HLpdrbJPJZMhkslfSRkdHk52dTYECBTS2FyhQgOvXr2s9/tOnT7Wmf/r06QfmPHei51YQBEEQBEEQBOH/zLhx47C0tNR4jRs3Lr+z9UFEz60gCIIgCIIgCEI+UPDuc191ZfDgwfTv319jm7ZeWwA7Ozv09PSIiIjQ2B4REYGjo6PWfRwdHd8pvS6InltBEARBEARBEIT/MzKZDAsLC41XbpVbQ0NDSpYsyd69e9XbFAoFe/fupXz58lr3KV++vEZ6gD179uSaXhdEz60gCIIgCIIgCILwWv3796dDhw6UKlWKMmXKMG3aNFJSUujUqRMA7du3x8XFRT20uV+/flStWpXJkyfToEEDVq1axenTp5k3b16e5VFUbgVBEARBEARBEPJBfi4o9a5at25NVFQUI0aM4OnTpwQFBbFz5071olHh4eFIpTkDgytUqMCKFSsYNmwYQ4YMwc/Pj02bNlGkSJE8y6NEqfyc/qSfhtt37uR3FnQuJsM2v7Ogc6fuWuZ3FnSudsH7+Z0FnXucbp/fWdC51AyD/M5CnkhK18vvLOjc/iOJ+Z0FnRvdICy/s6Bzp4q3y+8s6Ny4unnXc5Fflk1zye8s6JxC8mXO4Bvy15d3Pl89ySO/s/Betp7JyrfPblTyy+vn/PIiEgRBEARBEARB+Awolfm3oNSX6MtsjhIEQRAEQRAEQRD+r4jKrSAIgiAIgiAIgvDZE8OSBUEQBEEQBEEQ8oFCrH6kU6LnVhAEQRAEQRAEQfjsiZ5bQRAEQRAEQRCEfCCeW6NboudWEARBEARBEARB+OyJyq0gCIIgCIIgCILw2RPDkgVBEARBEARBEPKBEvGcW10SPbeCIAiCIAiCIAjCZ0/03AqCIAiCIAiCIOQD8Sgg3RI9t4IgCIIgCIIgCMJnT/TcCoIgCIIgCIIg5APxKCDdEj23giAIgiAIgiAIwmdP55XbAwcOIJFIiI+PzzXN33//jZWVla4/+o1GjRpFUFDQR/9cQRAEQRAEQRAEIW+JYckf0datW1m/bh1xcXF4eXvTq1cv/P39tabduWMHe/fu5f79+wD4+vrSoWNHjfRHjx5l+7ZthIWFkZSUxMxZs/Dx8cmz/O/Ztpbtm/4hIS4GN08/2ncfgE/BwFzTnzgayvrlc4mOfEIBZzdat+9LUKmK6vcT4mNYtWQWl8+dIDUlCf/AErTvPgBHZ3eN49y6fpG1/8zm9s0rSKV6eHj5MXDUDAxlRnkSp1Kp5MSOGVw+vhZ5WiLOXsFUbzkKK3vPXPd5dPsUZ/YtJOrBZVISo2jQ+U98ioVopNmz/Beundqosc09oBJNey7MizA0/Lt1CxvWryUuLhYvL2969OqDv3+A1rT3799j+bKlhIXdIjIygm7de9KkaXONNKmpqfyzbAnH/jtKQkI83j6+dO/Ri4IFtZdnXdi/YzW7Ny0hIT4GV8+CtOk6CC+/IrmmP/3fHjav/IuYyMc4OLnT4tvvKVqysvr9xTNHcGz/Vo19AoMq0G/En68cKzMzg3GDvuXhvZsMn7wKN6/3i/PwrpXs27qYpIRonN39adFpCB6+RXNNf/74LravmUVs1CPsHT1o1PZHCpeoon5fqVSyY+2fHN+3jrSUJLz8S9Cyy3DsnTzUaUb3rU1c9GON4zZs8wMhTboCsGPtn+xaP/uVzzaUGTNhyan3ilOpVLJv40xOH1xLemoS7n4laNx+JLaOnq/d70Toco7sWERyQjSO7gE0+GYort7F1O8vHNeeezc081S6Wmsadxyl/vftq8fYu2EGEQ9vYmhoQlClJoS0+AE9Pd1f7hpWNKJSMUOMZRLuPM5ixe40ouIVuaavEmRI5SAZthaqduUnMdls/y+dK3eztKbv28KUQG8D5mxM4UJYps7z/7IN23ezctM2YuMT8PF054euHShcUPs1Zcvufew6cIQ74Q8A8Pfxonu71hrpY+MTmL10JafOXyI5JZXigQH80LUDbs6OeR7Lu7KpVArvn7pgGVwEI2cHTrfoTcSWvfmdrdfq0s6TRrUdMTfV59K1RCb9dYuHT9JyTd+5jQed23pqbLv/MJV2vXJ+UzZWBvTu7EPpIGtMjPUIf5TK0jXhHPwvOq/CAGDL1n9Zt349cXFxeHt50btXz1zvj3bs3Eno3n3cv38PUN0fderQQZ0+KyuLJUuXcurUaZ48fYqpqSklgoLo3Kkjtra2eRrHyz73+77ctKxjSc2yZpgaS7lxV86CDbE8jdZ+HntZk+oWtG1gzfZDiSzZEqfe3q2FDUX8jLCx1CNdruTGPTkrtsXxOOrtjvs5E8OSdUsMS/5IDh48yPx582jbrh0zZ87E28uL4cOG5drDffHiRapWq8a48eOZPGUKdvb2DBs6lOjonAtMeno6gYGBdOrcOc/zf/zwHlYsmkaz1l0ZM2Up7l5+TBj1PQnxsVrT37x2kb8mDadqSGPGTF1GybJVmTbuZx7cvw2obn6n/f4zUU8f8ePQSYyd+g92Dk6MH9GX9PSci/Ot6xeZOLofRYPKMXrSYn6d9De1GrREIs27ontm73zOH1pG9ZajaP3jGvQNjdk0pwtZmfJc98mUp2Lv7E+1r0a+9tgeAZXp8usR9atu+ym6zv4rDh08wIL5c2nT9humz/wLL29vRgwfQnx8nNb0crkcRydHOnTqjLW1jdY0M6dP5fy5s/w0YCCz/ppLiRLBDBsySKN86tKpI7tYu3gyDVv1YNikFbh5FmT6r71JzKX83b5+ngVTBlOpZlOGT15JiTLV+OuP/jy6H6aRLrBEBSYu3KN+de0/Tuvx1i+dhpWN/QfFcPa/HWxaNoG6X/ViwLi1uHj4M2dcD5ISYrSmv3vjHEtnDKRc9WYMGL+WoqVqsHDS9zx5cEudZu+WRRzauZyWXUfw49gVGMqMmTOuB5kZmmW1Xsu+/DrngPpVuU5b9Xs1GnXSeO/XOQdwdPWheNna7x3r4e0LOL7nHxp3GEWPEasxlJmwZHK3V/L1oksntrNj1R9Ub9qHXqPX4+jmz5JJ3UhO1Pz7lKrakoHTDqlftVsPUL/3JPw6y6b0wK9oJXqP3kCr3pO5fm4/e9bq/ndWu4yM6sEyVuxJZcLyJOQZ8H1LU/T1ct8nLknBpoNpjFuaxPhlSdy4n0XPZqY42b56PqtRUsbHvN/Ze+QYsxYvp2Pr5iyYPBZfT3d++nU8cfEJWtOfv3KNkMrlmTFmKHPGj8bBzpafRo8nKkb1m1QqlQwZN4UnEZGMG9yfRVN+w9Hejh9H/U5aevpHjOzt6JmakHjxBpe/H53fWXkr7Vq48VVDFyb9dYvuA86Rlp7NlF+LYmjw+udl3rmfQuNv/1O/eg86p/H+sP4BuLsY88uYy3Toe5pD/0Xz68DC+Hmb5VksBw8eYv78+XzTti2zZs7A29uLocOHv+b+6BLVqlbhj3HjmDp5MvZ29gwZNlx9/ZHL5YSF3aZtmzbMmjmD4cOG8vDhQ0aN/jXPYtDmc7/vy03j6hbUq2TBgvWxDJ3xlPQMJUO6OWDwFu2HPm6GhJQ35/7jjFfeu/MwgzlrYug/4TG/z49EIoGh3QsgEY+AFd7Re9UQ5HI533//PQ4ODhgZGVGpUiVOncq9hf/vv//G3d0dExMTmjVrRkyM5s3K8+HCc+fOxc3NDRMTE1q1akVCguZFdcGCBRQqVAgjIyMCAgL466+/NN4fNGgQBQsWxMTEBG9vb4YPH05mZu6t3bdv38bb25u+ffuizONmk40bN1K3Xj1q166Nu4cHfb/7DplMxu7du7WmHzhoEA0bNsTHxwc3Nzf69euHQqHgwvnz6jQ1a9akbbt2lChRIk/zDrBj8wqq1W5KlZBGuLh706nXL8hkRhwK3ao1/e6tqygWXI4Gzb/Fxc2Lr9r1xNM7gNBtawB4+jicsBuX6dhrEN5+hXFy9aBjz0FkZMg5fmiX+jjLF06jdsPWNPqqA67uPji5elC2Ui0MDAzzJE6lUsn5Q0spU7sXPkVDsHMOoHa7CaQkRHLnUmiu+3kWrkr5Bj/iU6zWa4+vp2+IqYW9+mVkYqnrEF6xaeN66tStR63adXB396BP337IZDL27N6lNX3Bgv507tKdqlWrY2Bg8Mr7crmco0cP06lzV4oULYazswvtvmmPk7MzO7ZpLw8fas/Wf6hUqzkVazbB2c2Hdj2GYigz4ui+TVrT7/13JYElKlCnaQecXL1p0rYP7l6F2L9jlUY6fQNDLK3t1C9TM4tXjnXp7BGunj/OVx1+/KAYDmxbSvkaX1G2WjMcXX1o2XUEhoZGnDiwUWv6gzv+IaB4RWo06oyjiw/1W3+Hq1dhDu9aAajK6qEdy6jdrDtFS9XA2cOfdn1+JyEukkunNXucZMamWFjZqV8yI5Oc94xMNN5LSojm6cPblKuu2Vv/tpRKJcd2L6Vq454UCq6Jo5s/LbqNJykukmtnc/8N/bdrCaWqtiS4cnMcXHxp1GEUBoZGnD20QSOdgaER5lb26peRcc5N9+WTO3B086d6kz7YFvDAK6AMdVoN4MTeFcjTUt4rntzUKCn7H3t3Hd7U9TBw/JvU3YW6C1rcZbgPmDBk+LAxYEM2fgwfQ4bDNjbc3V0Hw21AcWiRAi3Uk3qTJu8fgZRAypCUDt7zeZ77QG7Oufec5lw598hl18lsIqOUPExQsXhnBnbWUiKCXzxmnroUreTKHSUJqSriU1RsPZpNTq4afw/du0IvVyPqVzRj2e5Mg6b5ZdZs3UWLBh/RrF5t/L29GNy7G+ZmZuw4cFhv+JHffk3rJg0I9vfD18uD7/t+hUqt4lzkFQDuxz7iys0oBvXqRnhwID6eHgzq1ZWcHAX7j5x4Z/l6VQl7/ubmqBk83lJwGf0v+aylJ0vX3uPoqSSi72bw0/TrODmaUbOK80vj5eWpSU5VaBeZXLdVrGSYHRu2P+TarTRiH2ezZG0M6RlKQoMKr3K7cdMmGjduTMOGDfD18eGbfv0wMzNnTwH3R98PHUKLZ+6PBg7oj1ql4sLFiwBYWVkx4efx1KpVE28vL8LDwujbtw+3oqKIj48vtHw8732/7ytI05o2bNwv4+yVLGLiFPy6OhEHW2MqlrR8aTwzUwn92jvz57ok0rNe7OFy4FQ6127nkJCSx52HuazZnYqzgzGujh9+J1OVWlJky4fojSq3Q4cOZcOGDSxZsoR//vmHoKAgGjVqRHLyi60op06donv37vTr148LFy7w0Ucf8dNPP70QLioqirVr17Jt2zZ2797N+fPn6du3r/b7FStWMHLkSMaPH8+1a9f4+eefGTFiBEuWLNGGsbGxYfHixVy9epWZM2cyb948pk+frjcPkZGR1KhRg/bt2zNnzhwkhfhoSKFQEHXrls54X6lUSkREBNevXXulbeTk5JCXl4e1jU0hpbJgSoWCu9HXKVGmonadVCqlRJmKRN24pDdO1I1LlChTSWddqbJVuPUkvPLJQwcTEzOdbZoYm3DjmuYCJUtNJvrmZWztHBgztDtfd2rMT//rxY2rFwyZPR3ypAdkyhPwDqmmXWdmYYObbxni7p5/ScxX8yDqNPN+rMrS8Y34a+0osjL0t54aikKhICrqFhER+RdCTdkry/Xrr1b2npeXl4dKpcLEVPcBg5mpGVeuXnmr9OqjVCiIib5GeOnK2nVSqZTw0pW5fSNSb5zom5E64QFKlK36Qvibl88yqEtdRvRrxYo/xpOelqrzvTw1iWW/jaPbgHGYmlm8eR6UCh7cuUpIqSo6eQgpVYW7Ny/qjXP31kVCSlXVWRdWppo2fFL8A+SpiTphLCxt8A0q/cI2D2yZz/96VOeXHz7l4LaF5OUV3M3r5MGNuBTzIzC8/GvnEyAl4QHpskQCi+eny9zSBq/A0tyP1p9XpTKX2LtXCHgmjlQqJbBEVe5HX9AJe/Hkdib0q8rs4S3Yu24auTn5PT2UilyMnzmnAJiYmqFU5BB713Bl09lOip21lOv38v+O2blwJy7vhYpqQSQSqBBmgqmJpkuzNr3G0K2ZJav3ZyLPeDdttwqFkpvRdyhfJr+bv1QqpULpkly5ceslMfPl5OagzMvDxtpKs02l5hxv+swDMqlUiqmJMZHXbhgw9f//eLiZ4+xoxpkL+dePjMw8rt6UUzLsxQd0z/LysGDz4iqsnVeJkYPCcHPRPV4uX5dRt6YrNtbGSCRQr6YLpqZSzl9KLYysoFAouBUVRdnn7o/KRkRw7fr1V9pGTs7Tslfw/VFGRgYSiQQr68KrpD/rfb/vK4irozEOtsZcupV/3s3KVhMVk0Owr9lLYkL3No6cv5bFpVv/3nPDzFRCnYrWPE5SkJj64XdLFgzrtR+HZGRk8Pvvv7N48WKaNGkCwLx589i3bx8LFiygYsWKOuFnzpxJ48aNGTp0KAAhISEcP36c3bt364TLzs5m6dKleHp6AjB79myaNWvG1KlTcXd3Z9SoUUydOpU2bTStCf7+/ly9epU//viDzp07A/Djjz9qt+fn58fgwYNZvXq1dt9PHT9+nObNmzN8+HAGDRr0un+C1yaXy1GpVDg4OOist3dw4P6DB6+0jUULF+Lo6FgkT+vS5KmoVHnY2et2UbW1dyT2wT29cVJTk14Ib2fviCxF8wCkmJcfTi7urF32K936DsPMzILdW1eSnBSPLFnTBSfh8UMANq2eR7suA/AJCOHowR1MHPE1E2avemFsriFkpiUAYGmjOy7H0saJTPnbdbn1Da9JYJkG2Dp6IUu8z/Ed09j6x1d8NnANUulL+jK+hadlz/75smfvwIP7999om5aWloSFF2f1qhV4e/tgb2/P34f/4vr1axQr5mGIZOtIT0tBpcrD9rnyZGPvRNzDu3rjyFMTXwhva+eELDW/10iJstUoW7kuzm6eJDx6wOYVs5k1rh8/TFiC1MgItVrNotkjqd3oU/yCSpAYH/v8bl5ZhlyTBxs73XJlY+fE44d39MZJS03UE94ZuSxR+/3TbTy/TXlqflmt1aQDXn7hWFnbcefmBbavnoksJZHWnXTPiwCK3BzOHd1OvSfjcd9E+pP0WT+XLitbZ9JlCXrjZKZpzjHPx7G2dSIxLv/vU7pqc+ydPLCxd+Xx/RvsXTeVxEd3aP/NbACCS9XgxN6lRJ7cQclKjUmXJfLXFk0Pn7QC9v0mbK00D0PlGbqtD2kZKu13BfFwljKkgw0mxpCTC39szuBRUv52Pqtrwe1YJZFR7+6GTpaWRp5KhaOdbk8SB3tb7j18tXL/+9LVODs4UOFJBdnX0wM3Fyf+WL6GIX26Y25mxtptu4hPSiYpJdXQWfh/xdFB82AxJVW3Z1pKaq72O32u3kzj5xnXiXmYhZODKV3b+fLrxAi+7HeWrKw8AEZOusqYocXZtao6SqWK7BwV//v5Cg/jCqcref41yl5nvb29Pfdf8Rq1cNEinBwdKVs2Qu/3ubm5LFy0iDq1a2Nl+fLWRUN53+/7CmJvo7lXkaXpnvtk6Xna7/SpFmGJv6cp/5sZ99LtN6xmTYdmDpibSXkYr2D8n/Hk5b19uoX/X167chsdHY1CoaB69fyJgUxMTKhUqRLXrl17oXJ77do1WrdurbOuatWqL1RufXx8tBXbp2FUKhU3btzAxsaG6OhounfvzldffaUNo1QqsXvmYrxmzRpmzZpFdHQ06enpKJVKbG11n2LGxMTQoEEDxo8fz8CBA/81vzk5OeTk5Lywzszs5U+oDGnt2rUcPnyYSZMnY2paON1x3zVjY2MG/DCJ+XN+oneH+kilRpQoU5HS5atpR9arVJp/P2rUhlr1WwDgFxDK1cizHN6/jbadvn7rdFw/u5W/1uaPk23R84+33mZBQso10/7f2SMUZ49QlvxUn4dRp/EOqfqSmP89gwYPZeb0qXT+sp2mhS0omFq16xAV9WqtPP8FlWo01v7fyzcYL99ghvdtwY0rZwkvXZmDO1eRnZVJkzZFN7bJED5q1ln7fw/fUIyMTVg7fywt2g3E+Lnu/ZFnDpCdnUmlWi1fefsXj29j65LR2s8dv31xcipDqVjnc+3/3b1DsLF3YdHkriTHx+Do6kNQyeo0ajuErUtGs+HP7zEyNqVOyz7cu3nurXrnVAw3oX3D/Jvi3zakv/G2Hier+HlJGhZmEsqGmNC5qSXTVqfzKElF6UBjQn2M+XlJ2htvvygs37CVA0dPMGvcj5g9uUYZGxsz/vtvmTjnT5p+2RMjqZTyZUpSpVyZQh8G9KFpUNuVIV+HaD8PHau/x9S/OXkuv3dd9N0Mrt6Us35BFerWcGHHvkcA9Ojgj42VMQOGX0QmV1CzijNjhxbn6x8ucPueYbv2G8KatWs5dPhvJk+aqPf+SKlUMn7CBNRq6Nfv7e8Z3pX/yn1fjbJWfPVp/oPiiQtev1u3k50RnT92ZPyfj1H8yzO7I/9kEHkzGwdbI5rXtmXgl86MnPPoX+O978Qp0bDei47s6emaG4l58+ZRubJuV0MjI82TohMnTtChQwfGjBlDo0aNsLOzY/Xq1UydOlUnvIuLCx4eHqxatYpu3bq9UPl93oQJExgzRneCiW/692fAgAGvnH5bW1ukUikpKbpdUFNTUnB87qne8zasX8+6tWsZ//PP+Pv7v/I+DcnG1h6p1OiFyaPkqcnYO+ifedDe3umF8LLUZOyemaDIPyic8TNWkJmRjlKpwNbOgVGDu+IfFK7ZhqNm257euvn28PIjKeHRW+cLIKBkXdx9y2g/5yk1kxxkpiVhZeeqXZ+ZloSLp/7Zhd+UnbM35lYOpCbcK7TK7dOyl/p82UtNwcFR/2RRr6JYMQ8mTp5KdnYWmZmZODo6MWnCeNzdi71tkl9gbeOAVGr0wuRRaalJ2NnrL3+29s4vhJfLCg4P4OLuhbWtPfFx9wkvXZnrl85w+2YkfdvqnnPGD+lA5VpN6Np/3CvnwcpWk4fnJ49KkyVha69/jJyNvbOe8InY2jlrv3+6DTsHl2fCJOHpW/Bszr5BpVHlKUlKeIibh+6xdfLgBkqUq6Xd9qsIK1sXr8D8GY2VT46hdFkSNvb5x1CGPBF3n3C927C00Zxj0p/Lb7o8CWu7gtPydL9JjzWVW4DqjbtQrVFn0lITsLCyJSXxIfvWT8PBxfuV8/S8yCgFd+PyK5xPJ42ytZIiz8hvVrCxkvIg/uXNDHkqtDMqxzzOw6+YEXXLm7FybxahPiY420uZ2l+3BbXnx5ZEPchj+po3r1S/jJ2NDUZSKcnPzXORkirHyf7l8wKs2ryDFRu3MX3MMIL8dHvThAb6s2j6BNIzMlEolTjY2dJz6EjCAovmWva+Ono6ias3z2o/m5poRpQ52JuQlJI/MY+DvSlRt1+9jKRn5HE/NhOvYpohFx7u5nzawpMvvz7DnRjNeO+ouxmUKWFHm2YeTPnN8A8v869RqTrrU1NTcXB8+f3R+g0bWLtuPRPGjydAz/2RUqnk5wkTiY9PYNKEn99Zqy28//d9T529msmtafkNPCbGmoeEdjZSUtPyz3V21kbc1TNJFIC/lyn2NkZMHJh/f2BkJCHc34xG1W3o8EOMtnKXla0mK1vJo0QlN+8lsHCcNxVLWnL8wrubf0B4/732mNvAwEBMTU05duyYdp1CoeDMmTMUL178hfDh4eGcOnVKZ93JkydfCBcTE0NsbKxOGKlUSmhoKG5ubnh4eHD79m2CgoJ0lqcH/vHjx/H19WX48OFUqFCB4OBg7XTqz7KwsGD79u2Ym5vTqFEj0tJe/oR82LBhyGQynaV3794v/yM9x8TEhKDgYJ1JAVQqFRcuXCAsXP/NHsC6detYtWoV48aNIyQkpMBwhc3YxAS/wDCuRuZPGqZSqbgSeZagUP2vMQkKLcWVSN1Jxi5fOEWwnvCWVtbY2jnwKDaGO9HXKF9Z86oTF1cPHBxdiHuo+zs+io3B2dUwlShTc2vsXXy1i6N7EJa2Lty/lT/hSU52Oo/vXaSYn2G7BqWlPiI7MxUru7ebhfdlTExMCAoK5uLFC9p1TyeoCAsruOy9KnNzCxwdnUhPS+Off85SpYrhK+nGJib4BIZzPTL/PKJSqbgWeZqA0NJ64wSGlOb6pdM6665ePFlgeICUxMdkpMmwc9BUpr7oPpSRU9cwYupqRkxdzTc/arq+fjVoIq3a93u9PBib4OVfnFuXdfNw8/Ip/ELK6I3jF1yGW5d1z5U3Ik9owzu5emFr76wTJjsznXtRkQVuE+DhvetIJFJsbHUfbiTFPyDq6mmq1Hm9iaTMLKxwcvPVLq4eQVjbOXP76jPpykrnQXQk3oH602VsbIqHXwmdOCqVittXT+IdGFHgvuNiNGPybOx1jyGJRIKtgysmpuZcOrkDO8diePi9eH16VTkKTYX06RKXpEKWriLUJ//5sLkp+Bcz4k7s6zUxSABjI80N457T2YxfnMbPS/IXgPV/ZbG0ECeXMjExJiTQXzsZFGj+/ucuXaZEaHCB8VZs2saSdZuYMnIoYUEBBYaztrLEwc6W+7GPuBF9mxqV32w89/9XWVl5PIzL1i53YjJJTM6hQpn8SpKlhRHFQ2y5fF3+ytu1MJfi6W6hrSCbm2me2qiem+snT6VGWkjTkpiYmBAcFMSF565RFy5cIDys4AfK69atZ+Wq1fw0biwhIS+W0acV24exsUz4efy/NmQY2vt+3/dUdo6ax0lK7fLgsYIUuZJSwfmvYrQwkxDkY8ate/pnw78clc3gKbF8Pz1Ou0Tfz+Ho+Qy+nx5XYKul5MnytEL9IVOri275EL12y62VlRV9+vRhyJAhODo64uPjw+TJk8nMzKR79+5cvKg7YUj//v2pXr06U6ZM4eOPP2bPnj0vdEkGMDc3p3PnzkyZMgW5XE7//v35/PPPcXfXvA9vzJgx9O/fHzs7Oxo3bkxOTg5nz54lJSWF7777juDgYGJiYli9ejUVK1Zkx44dbNqkfxZSKysrduzYQZMmTWjSpAm7d+/GuoBJBszMzF7ogmz2Bq87ad26NdOmTiU4OJiQ0FC2bN5MTk4ODRpoZtedMmUKTk5OdO3aFYB1a9eybNkyhn7/Pa5ubtrJuiwsLLCw0DxlTUtLIz4+nuQns08/eDKOw8HBAce3aJXTp8nH7flz5hj8g8IJCC7Bnm2rycnOolb95gDMnT4KBydXbVfhhi2+4Ofhvdi5eQURFapz8she7kRfo9vX/9Nu89Sx/djaOuDk4s79e1Esnz+N8pVrU6qsZtIdiURC09Yd2bjqT3z8gvENCOHIwR3EPrzHN99PNGj+npJIJETU6sSZvb9j7+KLraMXJ3fOxMrOlYBS+e+t3fhrZwJLN6BMzY4A5OZkIEuI0X4vT35AwoNrmFvZYePgQW5OBqd3zyGwTCOsbJyRJd3n6NZfsHf2xSes5gvpMKRWrT9h+rRfNGUvJIwtWzaSnZNN/QaNAJg6ZTJOTk506dod0Dysuh+jyYtSqSApKZHb0dGYW5jj4aEZOnDu3FlQq/H08iIuNpaFC+fh5eWt3aahNWjRkUWzR+IbVBz/4JLs37aS3Jwsqtf9GICFM3/E3smVNh37A1CveTt+GfEVe7cspVT5mpw5uod70Vf5svcIALKzMtm+9g/KVamHrYMzCY/us2HpTFzcvSlRVjOZmJOL7gMUMwvNU39Xd28cnN1eOw91mnVi5e/D8Q4ogU9QSQ7vXE5uThaVa7cCYPmvw7BzdKVFO82szLWbdGT22K78tX0xxcvW4p/ju7h/+wpte44GNGW1VpMv2bvpT1zcfXF09WTn2jnYObhSqkI9AO7cvMC9qEsEl6iImbkVd29dZPPSyVSo2RxLa90WuVN/bcLW3oXwsm9XHiUSCVUbduLQtrk4uvvi4OzFgY2zsHFwJbxc/jG0aFJXwsvXp0r9DgBUa9SZjfOG4elfEs+AUpzYu5TcnCzK1dQMa0mOj+Hiie2ElKmNpZU9jx7cYNfKifiFVsDdO7+l+ujOBQSVqolEKuHq2X0c2TGfz/tOM/i49oPncmha1YyElDwSZSpa1LBAlq7iwq38cZADPrfiwi0Fh89rKg8f1zTnyh0FyXI15qZQMdyUYB9jZq/TdPeUZ6j1TiKVLFeTJCv4/bmG0LZlE36e9Qdhgf6EBweybvtusrJzaFqvNgA/zfwdZ0cHen/5BQArNm5jwar1jPzua9xdXbTjaC3MzbG00Nz4/nXsFPZ2Nrg5OxN9L4ZZC5ZRs1IFKkUU/JCpqBhZWWIVlN/ybOnvhW2ZMHKTZWTff/k4waKwbutDOrf14X5sFnGPs+nR0Y+k5ByOnMy/P5nxU2n+PpHIxh2ahoOvuwVw7HQSj+KzcXY0o3t7P/JUavYf1nQ1vfcgk/uxmQz5OphfF95GlqagVhVnKkY4MHTs5ULLS5vWrZkybRrBwcGEhoSwacsWsnOyafjk/uiXKVNxcnKiW9cuAKxdt45ly5bz/dChuLm6vnB/pFQq+ennn4mKimbs6FGo8vK0YWxsbPS+BaAwvO/3fQXZeSSN1vXsiEtQEp+spG1je1LkSs5czn8A92MvV85czmLPsTSyc9Tcf6Q7Pjw7V016hkq73tXRmGoRlly8kY08Iw8nO2M+rmtLrkLN+esFv7tZEPR5o27JEydORKVS8eWXX5KWlkaFChXYs2fPCwPnAapUqcK8efMYNWoUI0eOpH79+vz444+MG6fbpS8oKIg2bdrQtGlTkpOTad68uc6rfnr06IGlpSW//PILQ4YMwcrKilKlSmnHzbZs2ZJvv/2Wfv36kZOTQ7NmzRgxYgSjR4/Wmwdra2t27dpFo0aNaNasGTt37sTKyupN/hyvpHbt2shlMpYtX05KcjIBgYGMHTdO+zdLiI9H+syYsB07dmiePI4fr7Od9h060LGjpkJ18uRJpk/Lf3/jpIkTXwhjKFVqNiBNnsKGlX8iS0nCxz+EIaNmart5JiU+1nn3bEh4afoMGsf65XNZt+w33Dy8GTjsF7x98182npqcxMoFM5DJkrF3cKbGR01p9Xl3nf02btkORW4uKxZMJz1djo9fMN+PmY1bMS+D5u9Z5et9hTI3i4NrRpKTJccjoDwf95qvMwurLPE+Wen53Y3iYy6z8ddO2s9HNmvelxpesTUNOkxEKjEiMfYm185sJicrDStbV3zCqlO16QCMjQt3PE2t2nWQyWUsX7aUlJQUAgICGDt2fH7ZS4hH+sxj+eTkJPp/00f7eeOG9WzcsJ6SpUozcdIUADIzMliyeCGJiYnY2NhQrXoNOnXuirFx4Yx0qFijEWnyFLau+h15ahJe/qH0H/Ertk/KX3LiI53yFxgWQY9vf2bLyl/ZvGIOrsV86Pv9NDx9gwDNrJUP7t3ixF/byMxMw97BheIRVfm4Xd9Ce81UuWpNyJCnsGvdHOSpiXj6htHrh7naLsApiXFIJPl58A8tS6dvJrFjzWy2r56Ji7sv3QfPoph3fitFvZbdyM3JYs280WRlphEQWo5eP8zFxFRTVo1NTDl/fBe71/9GniIXR1dPajf9UmccLmhaFE4f3kyl2h8bpBJYs2kPFDlZbF00iuxMOT4h5eg06E9tukBTWc1Myz+GSlVuSkZaCgc2zSJdlkgxn3A6DfpT2y3ZyMiE21dPcGLvUhQ5Wdg6uVOiQgNqt+yjs++bl45weNsfKJW5uHuH0n7AHEJK13rrPD1v7+kcTE0ktG9kiaWZhOiHSmavz0D5TK9kF3sjrC2e6bZsKaFLUytsrSRk56h5mJjH7HUZOrMuF5V6NaqSKk9jwer1JKfICPL3ZcrI73F80i35cUKSzrjlzbv3o1AqGTF5ps52urZtQ7cvPgEgKSWFOYuWkyyT4eRgT+M6Nen8me4cHP8VduVLUvXAMu3n4lM0D2LvL91IZPdhRZWsAq3YcB9zcyOG9gvB2sqYS1dlDBp1iVxF/sMRT3cL7G3zK3IuTmaMHhyOra0JqTIFkVdl9Bp8nlS5poKRl6dmyOjL9O7iz6QRJbGwMOJhXBbjZ1zXGa9raLVr10Iml7Fs2XLtNeqnsWO116j4hAQkz1yjtu/YieJJBfZZHdq358uOHUhMSuLkSU0vmb79vtEJM2niBMqUfjcPV973+76CbP1LjpmphJ6fOmFpIeXGnWwmzIvXGRfr5mSCjVXB7zV/nkKpJszfnCY1bbG2kJKansf12zmMmPMIeXrhPtj7L1B9oC2oRUWi/g/M7DB69Gg2b97MhWe6b/yXRd++XdRJMLik3ILHIr6vztwp/HfIvmsNQ/TPTv0+i80uvG7ZRSUz9920DLxradmFM6t3Ufrr6Kt343xfjGkWVdRJMLgzZToUdRIMbkLjP4s6CQa3bIbnvwd6z6gkb/TWzP+8//324Z3P10zxLeokvJHlR4quKtax5ofX7fvDPGIFQRAEQRAEQRCE/1fei9mSBUEQBEEQBEEQPjRq9YfXelqU/hMtt6NHj35vuiQLgiAIgiAIgiAI/z2i5VYQBEEQBEEQBKEIFP3sRx+W/0TLrSAIgiAIgiAIgiC8DVG5FQRBEARBEARBEN57oluyIAiCIAiCIAhCERDvuTUs0XIrCIIgCIIgCIIgvPdEy60gCIIgCIIgCEIREBNKGZZouRUEQRAEQRAEQRDee6LlVhAEQRAEQRAEoQiIllvDEi23giAIgiAIgiAIwntPVG4FQRAEQRAEQRCE957oliwIgiAIgiAIglAExKuADEu03AqCIAiCIAiCIAjvPdFyKwiCIAiCIAiCUATEhFKGJVpuBUEQBEEQBEEQhPeeaLl9A9uv+Bd1EgzOx01V1EkwuKqBSUWdBIM7fNe3qJNgcB4OiqJOgsGl5xgVdRIKhY9DWlEnweB+qXWkqJNgcBNPNyrqJBjcocZ/FnUSDG7Y7p5FnQSDOxZ7vaiTYHAKpaSok1Ao/uhwsKiTUAg+vHsk4fWJyq0gCIIgCIIgCEIRUH147UtFSnRLFgRBEARBEARBEN57ouVWEARBEARBEAShCIgJpQxLtNwKgiAIgiAIgiAI7z3RcisIgiAIgiAIglAERMutYYmWW0EQBEEQBEEQBOG9Jyq3giAIgiAIgiAIwntPdEsWBEEQBEEQBEEoAirRLdmgRMutIAiCIAiCIAiC8N4TLbeCIAiCIAiCIAhFQF2kM0pJinDfhUO03AqCIAiCIAiCIAjvPVG5FQRBEARBEARBEN57oluyIAiCIAiCIAhCERDvuTUs0XIrCIIgCIIgCIIgvPf+sy23Xbp0ITU1lc2bNxd1UgRBEARBEARBEAxOpSrqFHxY/rOV2w+RWq3mzJ7ZXD21jpwsOcX8y1GrzSjsXfwKjBMbfYbzhxaQ8PAKmfIEGneZQ0DJ+jphfhscpjdu1WZDKPtRd0NmAbVazb6Nczjz1zqyMtPwCylLqy4jcXb3e2m8E/tWcnjnQtJliRTzDqVlp+F4B5bWfr9x4SiirpxEnhKPmbklPsERNGk7CFePAG2YrUvHc+/WeR49uIWrRwADxm8yaN6e2rtjA9s2rkCWkoyPfxBden1HUEhxvWHv37vN+hXzuR19ncT4R3zZYwBNP26rE2bzuqWcOX6I2IcxmJqaEhJWinZd+uLh5Vso6S+IWq3m2PZZRB7TlD+PgHI0bDcaB1e/AuPcv3WGM/sW8Oj+ZTJkCbTq+SvBEfnlLy9PwdGtM7h95W9kifcxtbDGN7QatVsNwtrezeDp373+V04cXE92Rhp+oWX5rNsIXIq9/O94dO8qDm5bRJosEQ+fUNp0+R++QaW03ytyc9iy/BfOn9iFUpFLWJnqfNr1R2zsnV/YVkZaKr/88Amy5Mf8PP84Fla2Bs3j03we3DSbs4fXkZ2Zhk9wWVp2GoXTvxxjp/av4OguzTHm7hNGs47D8QoorRMmJuo8+zfM5EF0JFKpFHefMDoPno+JqbnB0r9/xzp2bV6OLCUJb79gOvYcTGBIiQLDnz62n40r/iAxPg43D28+79SPMhWqa7+XpSaxdskcLp8/RWZGGqElytKx52DcPXy0YRb9NoErF0+TmpyIubkFQWGl+bxzPzy8/AyWr+et3X+MpTsPkSRLI9i7GEO/bE3JQB+9YQ+eucTCbQe4H5+IUpmHj7sLHZvUpln18towSbI0Zq3ZwcnLN0nLzKJcaABDv2yFj7tLoeVBn3oRRlQIkWJuCjHxaraeUJKUVnD4WqWkFPeV4mInQaGEmAQ1e88qSZTrhvN2kdCgnBFezhJUaniUrGbxPiXKvMLND0D3Dn60aOiOjZUxl67JmfLbLR7EZRUYvls7X7q199NZd+9BJh36nNF+drQ3oW+3QCpGOGBpYUTMw0yWro3h8PHEwsrGa3OsUYGAQd2xK1cScw9Xzn7Sl8dbDxR1sgqkVqs5vGU254+sIztTjndQOZp0HIWTm99L4505uIITexaQLkvEzTuMxu1+xPOZc1+6LIH9637h9tXj5GZn4OTuT41mvQgv36iQc/QitVrNkW2zuHhUcx32DCxHo3ajcXxJHmNuneHU3gU8jrlMuiyBNr1/JSSifoHhC9u6PYdYsW0fSTI5wT5eDOralhJBfnrD/nX6PIs37+bBowSUeXl4u7vSvll9mtaqrA0z9rcl7Pj7pE68KmWKM3PYN4WZDeEDJrolv0Pn/5pP5NFl1P5kNJ/0X4uxqQXb5/VAqcgpMI4iNwtnjzBqtR5ZYJguI4/oLB99Ph4kEgJKNzR4Hg7vWMDxvctp1XUUX49ejYmZBQsn90SRW3AeLp7cxfaVk6jfui/fjFtPMZ8wFkzuSbosSRvG068En341nu8mbafb0HmghgWTe6BS6d75VKjVhtKVmxg8X0+dOLKfZfNn8Um7bvw8YxG+/kFMHPktstRkveFzc7JxdfegXec+2Ds46Q1z7fJ5Gjb7hLG//Mn/xs1EmadkwsiBZGcXfHNVGE7vm8c/h5bRoN1oOgxZi6mZBetmd/+X8peJi1co9duO0vu9Mjebx/evUrVJHzoN20irnnNIib/Dxrl9DJ7+g9sW8vfuFXzWfSQDx63EzMyCuRN7vbTsnT+xi83LJtPokz4M+nkdHr6h/DGxF2nPlL3NyyZx5Z9DdBkwjX4jFyNLSWDh9IF6t7f6z5F4+IQYOms6juycz8l9y2nZeTS9Rq7B1MySJVO/emk+L53aya7Vk/io1df0GbMBd+9Qlkz5inR5fj5jos6zdGpPgkpUp9eoNfQatY7K9TsgkRjuMnDqyD5WLZzBx217MGbaUrz9g5kyuj/yAo6fW9ci+X3KCGrVb8nY6csoV7k2MycM4cG9aEBzIzjz5yHEP3rIgOFTGDt9OU6uxZg8sh85zxw/foFh9Og/gglz1jB49CzUajW/jPoGVV7h1Jz2nrzAtJVb6dmqASvGDiTEx4N+v8wjWa6/FmhrbUG3lvVYPOIbVo8fRIuaFRkzbw3HI29o8zloxmIeJiQxbWAXVo77lmLODvSZ9AdZOQX/7oZWs6SUKsWlbDmhZO4OJblK6NzQBGOjguP4uUs5dV3FHzuULN6rxEgCXRqaYPLMo3NvFwmdGxgTFati7g4lc7crOHld9U7GmXX4xJtPm3sy5bdb9Bx8nqzsPKaNLYWpyctff3H7XgYtvzyuXfp+f17n+x+/C8PH04Ifxl2mc7+z/H08kbFDixMcYF2Y2XktRlaWyCNvcLn/mKJOyis5vns+pw8so2nH0XT731pMzCxYOf3l90hXTu9k39qJ1GrxNV+N3IibdygrZ/Qg45lz35YF35P06A5t+/1GrzFbCSvXgA1zvyUu5uq7yJaOU3vnce6vZTRqP5pO36/FxNSCNf92Hc7JxM0rlAZf6L8Ov0v7jp9l5rINdP+0GUsm/I8gXy8GTJhFskyuN7ytlRVdWzVh/rghrJj0I81rV+WnuUs5eVH3b1+1THF2zp2oXcZ90+1dZOc/Q60uuuVDVOSV2/Xr11OqVCksLCxwcnKifv36ZGRkvBAuJyeH/v374+rqirm5OTVq1ODMmfynqIcOHUIikbBjxw5Kly6Nubk5VapU4fLlyzrbOXr0KDVr1sTCwgJvb2/69++vd3+GplariTyylPL1e+Nfsh7OHqHU+2ISGfJ47lzeX2A83/BaVG4ykIBSDQoMY2nrorPcvXIQz8DK2Dl5GzwPx3YvpW7LXpQoX49iPqG07TUReWo8V88V/DT46K7FVKrzGRVqtcHNM4hWXUdhambO2b83asNUrvs5AWEVcHTxxNOvOA0/7Y8s6REpCQ+1YVp2Gk7VBu1xdPUyaL6etWPzauo2akmd+s3x8vGne9+hmJqZcWjfdr3hA0OK06FbP6rVaoCxiYneMMPGTKd2/WZ4+wbg6x9Mn4E/kpjwmDtR1wstH89Tq9WcO7iUKo37EFymPq5eYTTtPJl0WTy3LhZc/gJK1KZmy28JidBf/swsbPi8/yLCyjfF0S0AD/8I6n0+gscxV5Anxxo0/Yd3LaNh656UqlAXD99Q2vf9GXlKPJfOFlz2Du1YStW6n1K5TmvcvQL5rPtITE3NOXVI0+qflZnGqb828vGXQwkuWRnvgBK06zWOuzcvcPfWRZ1tHdu3mqwMOR8162KwfOnL54m9S6ndsjfh5erh7h3KJ19NJC0lnmv/FPw7Hd+zhAq1P6NczTa4egbRovNoTEzN+eeZY2zXyolUqd+RWs2/ws0zGJdi/pSq1ARjE1ODpX/3lpXUbtiKWvVb4OkTQJc+P2BqZs7f+7fpDb9322pKlatC0zZf4uHtzycdeuMXEMb+HWsBeBwbQ/SNy3Tu8z0BwcUp5uVL597fk5ubw4m/92i381Gj1oSVKIeLmwd+gWF80rE3yYmPSYiPM1jenrV892Fa16lMy1qVCPB0539dPsHczIQth8/oDV8hPIi6FUrh7+mGt5sz7RvVJMi7GBdu3gEg5lEil6LvMazzJ5QI8MGvmCvDOrchJ1fB7hMXCiUP+lQrbsShi3lcv6/mcYqa9UeU2FhCuE/BtwpL9yk5H6UiPlXNoxQ1G44qsbeW4OmUX3lsWsmIE9dU/H1JEy5RDpfvqsh7B13xPmvpydK19zh6Konouxn8NP06To5m1KzyYs+MZ+XlqUlOVWgXmVyp833JMDs2bH/ItVtpxD7OZsnaGNIzlIQG/Xcqtwl7/ubmqBk83lLwueO/Qq1Wc3r/Umo2701o2Xq4eYfycbdJpKXGc/18wek/uW8xZWt+RkSNT3DxCKJZxzGYmJpz4egGbZj70ReoWK8jngGlcXDxpmbzPphb2vDo7pV3kTUttVrNmQNLqdakDyERmutw866TSU+N5+aFgvMYWLI2tT7+ltCyBd8Hviurdhzg47rVaVGnGgFexfihRzvMTU3ZduiE3vDlS4RQp1IE/p7F8HJ34YumdQny8eTC9SidcCYmJjjZ22kXW2urd5Ed4QNVpJXbuLg42rVrR7du3bh27RqHDh2iTZs2el9mPHToUDZs2MCSJUv4559/CAoKolGjRiQn67YIDBkyhKlTp3LmzBlcXFxo0aIFCoUCgOjoaBo3bswnn3xCZGQka9as4ejRo/Tr16/Q8ypPfkBmWgLewdW068wsbHDzKc2jexcMtp/MtETuXTtMeKVPDLbNp5ITHpAmSySoZFXtOnNLG7wDSnMv6oLeOEplLg/vXiWoRBXtOqlUSlCJqgXGyc3O5Ozfm3B08cLOyd2QWXgppULBnagblCxTQbtOKpVSMqIit25cfknM15P55GGKtY3hu7QWRJb0gAx5Ar5huuWvmF8ZYm+ff0nM15eTnQ4SCWYWhstfUvwD0lITCXmm7FlY2uAbWPqFSuhTSqWCB3euElJSt+wFl6zCvSdxHty+Sl6ektBnwrh5BuDgXExnu48eRLNn41w69J2ARFp4LzxPSXhAuiyRwOK6x5hXYGnuRxeUz1xi714h4Jk4UqmUwBJVuR99AYB0eRIPbkdibevEnz+1Y2L/GiyY8CX3bp4zWNqVCgV3o69TokxFnXSUKFORqBuX9MaJunGJEmUq6awrWbaKNvzTc7eJiZnONk2MTbh1Tf/fIyc7iyP7t+Hi5oGTs2G7xgMolEqu331IpRL5LfhSqZRKxYO5FHXvX+Or1WpOX7nFvbh4yoVphl3kKjUVJ9NnmjulUimmJsbaCnBhc7AGG0sJ0XH5198cBTxIUOPt8upl3vzJs5LMJw1RVubg7SIlI0tNz6bG/NDWhO6NjfF1Lbzj6CkPN3OcHc04cyFFuy4jM4+rN+WUDHv5+cnLw4LNi6uwdl4lRg4Kw83FTOf7y9dl1K3pio21MRIJ1KvpgqmplPOXUgsjKx+81MQHpMsS8A/Pv0aZW9rgGVCah0/OY8/LU+YSd+8K/sXz40ikUvzDq/Lgdn4c78AIrp7ZSVZ6KmqVisund6BU5OIbWknPVguPLFFzHfZ7No8WNnj4l+Ghga/DhUGhVHL9TgyVSuUPhZNKpVQsFcalm7f/Nb5arebMpevci3tM2fBgne/+uXqTxj2H8Nm3o5g0fyWytHSDp1/4/6NIx9zGxcWhVCpp06YNvr6acXOlSpV6IVxGRga///47ixcvpkkTTZfUefPmsW/fPhYsWMCQIUO0YUeNGkWDBpqnW0uWLMHLy4tNmzbx+eefM2HCBDp06MDAgQMBCA4OZtasWdSuXZvff/8dc3PDjTt7XmZaAgAWNrpdVy2snclMM9wYnRtnN2NiZkVAKcN3SU5P1aTT2k73ibe1nRPpMv15yExLRaXKezGOrRMJsbonwxP7V7Fr9RRyc7JwKeZP9+/nY2xsuFalfyOXa9Jq5+Cos97O3pHYB/9+0/oqVCoVS+fNIDS8NN6+gQbZ5qvIkGnKn5WtbvmzsnUiQ2648qdU5PD3pimEV2iGmYXhWjDSZE/Lnm76re2cSEvVn/4MeQoqVR42z8WxsXMiPlZTYZDLEjEyNnlh7KzNM9tVKnJZNnsILdsPwsG5GEnx9w2SJ33SC8inla0z6U9+w+flH2PP/W1snUiM0+Qz5UmaD26eQ+MvhuLuE8aFY1tYNLkr3/y09V/H876KtKfHj/2Lx09cAcePLDUJWz3hZSmah5bFvPxwcnFn3bJf6dp3GGZmFuzZupLkpHhSk3V/9wM717NmyWxysrMo5unLkDFzCuxN8TZS0zLIU6lwstUt3052NtyNiy8wXlpmFk0GjCNXqcRIKuWHTm2oUlJTQfYr5oq7kz1z1u1keNdPsTAzZcXuv3mcLCMxVX93P0OzttBUNtOzdB8up2epsbF4tW1IgKaVjLn3WNNCC+Bgo9lu3Qgjdp/NIy5ZTUSglK6NjJm9WfHS8bxvy9FBc/1ISVXorE9JzdV+p8/Vm2n8POM6MQ+zcHIwpWs7X36dGMGX/c6SlaXp6j5y0lXGDC3OrlXVUSpVZOeo+N/PV3gYl114GfqApRd4jXIu+P4iPQW1Kg9rPXESH+U/FPqk9ww2/PEtUwZWQWpkjImpOZ99PRtHt3c770W6vIA82hj2OlxYUuXp5KlUONrpXi8d7Wy59/BxgfHSM7No3mcYuUoFRlIpQ7q1o3LpcO33VSKKU6dSBB6uzjx8nMBvq7cwcOIc5o8bipG0yDuYvhOqD7R7cFEp0sptmTJlqFevHqVKlaJRo0Y0bNiQTz/9FAcHB51w0dHRKBQKqlfPn2TExMSESpUqce3aNZ2wVavmt144OjoSGhqqDXPx4kUiIyNZsWKFNoxarUalUnHnzh3Cw8N5Xk5ODjnPjXlSKkwxNjF7Ieyzbv6zjUPr88dHNOs+96XhDeXa6Q2ElGv+r+l7FeePbWPTotHaz10GFW4eylZrTnDJqshTEzmycxEr53xH7xErMDF9+7z8VyyaO5X7MbcZPalw/5ZXT29l76r88vdJnz8KdX+gmVxq6/wBqFHT4Iu3G+N17uh21s7P38ZXQ3972+S9se2rZ+DmGUCFmi0Mvu2Lx7exdclo7eeO3/5u8H0A2t4wFT9qS7mabQDw8C3O7asnOXdkIw0/+65Q9vu2jI2N+eaHSSyc8xN9O9RHKjWiRJmKlC5f7YUePlVrN6ZERCVSUxLZtWkFv/7yP36cOA/T/8j5w8rcjFU/fUdmdg6nr95i2qqteLo6UiE8CBNjI6b078LYBWv5qM9IjKRSKpUIpnrpMNQUzl1PmQApLavmD6Zdtl/5ktCvpnkVI9wcJMzbmV+ZfNo+e+amin+iNP2Q45LzCCwmoVywEfv+Mdy46Aa1XRnydX6L+tCx+nsM/JuT5/J7hEXfzeDqTTnrF1Shbg0Xdux7BECPDv7YWBkzYPhFZHIFNas4M3Zocb7+4QK37xX+UKf33aWT29ixLP8a1a5/4V0TD22eSXZmGh0HLcLC2oEb5/ezYe63dP5+OW5eoYW23yuntrJ7ZX4eP/u68K/D/0WW5mYsm/Q/srJzOHP5BjOXrcfT1ZnyT3q/NKyW39snyMeTIB9P2gwYyT9XblKxlP4JUwXhZYq0cmtkZMS+ffs4fvw4e/fuZfbs2QwfPpxTp04Vyv7S09Pp1asX/fv3f+E7Hx/9s1xOmDCBMWN0b9QbfTGSJu1Hv3RffsU/ou13+bP15SlzAchKS8LK1lW7Pis9ESePFyvVbyL29llSE+7Q8MvpBtle8XJ18Q56Jg8KTR7SZYnY2ufP4JkuS6KYr/4TkKWNPVKp0QtPXtPlSVg/NxutuaUN5pY2OLv74RNUmjG9qnLl3H4iqjYzSH7+ja2tJq1PW42ekqUmY/9ca+6bWDR3Kv+cOcaoCb/h5Oz67xHeQlDpuhTzK6P9/LT8ZciTsLbL33eGPAlXr7e/eGgqtgORJ8fSdsCSt261LVH+IwY/U/aU2rKXhJ2Dbtnz8NN/c2Jl64BUaqQzeRRAmiwJ2ydlz9bOmTylgqwMuU7rbZosSTtb8q0rp4iLucXFU5q/59NK1Y89a1K/1Vc0+ezNhzWEla2L1zOzhiuV+fm0sX/2d0rE3Uf/eSL/GNPNZ7o8SdtjwubJ8eriodtbwMUjAFmSYcal2jw9flJfPH7sCphszc7e6YXJpjTh8483/6Bwxs1YQWZGOkqlAls7B8YM7op/kO7fw9LKGksra9w9fAgKKUWfDvU4d/IQVWsZdkZUexsrjKRSkuS63eaSZGk42xXc1VUqleLtpvk9Qn09uRMbz6JtB6kQHgRAuL8Xq376jrTMLJTKPBxsrek0eibF/Q07d8JT12JU3E/IH/RqbKSphlpbSHRab60tJMQl/3sFu3llI8K8pczfpUCemb/+6baetuQ+lSBTY2/gYXVHTydx9eZZ7WdTE02rj4O9CUkpudr1DvamRN1+9W6P6Rl53I/NxKuYpgnbw92cT1t48uXXZ7gTo8ls1N0MypSwo00zD6b8dssQ2fmghUR8hKf/i+e+DLmec593Aec+awckUiOdifOexnl67kuOj+HMwRX0GrMNV09NV1h37zDu3zrH2b9W0uzLwptsK6hMXbr551+HlQVdh9MMcx0ubPa21hhJpS9MHpUsk+No/y/nPndNfkP8vLn7MI4lW3ZrK7fP83Rzwd7GmvuPE/7fVG4/1ImdikqRt/dLJBKqV6/OmDFjOH/+PKampmzapPuKl8DAQExNTTl27Jh2nUKh4MyZMxQvrvuKlpMn86cTT0lJ4ebNm9oW2XLlynH16lWCgoJeWExN9XdRGjZsGDKZTGdp8Nmwf82Xqbk1ds6+2sXBLQhLGxce3MofdJ+bnc7jmEjcfSP+dXuv4trp9bh4lcDZwzAnAzMLK5zdfLWLq2cQNnbORF3J/xtnZ6Vz/3YkvkERerdhbGyKp19xoq7mx1GpVERdOVlgHABNY4VaW6l5F4xNTPAPCuVyZP44RJVKxZWLZwkOLfnG21Wr1SyaO5UzJw7z4/jZuLp7GCK5L2Vqbo2Dq692cSoWhJWtCzE38stfTlY6cXcv4hFQ9q329bRimxp/j8/7L8bC2uHfI/0LcwsrXNx9tIu7VyA29s7cvPxM2ctM5150JH7BZfRuw9jYBC//4ty8nP+wTKVScevKKXyfxPEKKI6RkbFOmPjYO6Qkxmm32/Xb6QyZtIHBE9czeOJ62vbU3Ax9M2oJNRq2e6t8mllY4eTmq11cPYKwtnPm9lXdY+xBdCTegQXl0xQPvxI6cVQqFbevnsQ7MAIAe2dPbOxdtd2Un0p8dA97Z8OUR2MTE/wCw7gamT+pkkql4mrkWYJCXxxuAhAUWkonPMCVC6f0hre0ssbWzoFHsTHcib5G2cq1CkyLGs00kEqFosAwb8rE2JgwP0/OXMmvwKhUKs5cjaJU0Kt3c1Sr1CiUL7aW2lha4GBrTcyjBK7deUDtcgW/Rult5CohOS1/iU9Vk5apJrBY/lhYMxPwcpFwP+Hld17NKxtR3EfKwt0KUp6rM6akgzxDjbOd7hhbJ1sJqQZu4MzKyuNhXLZ2uROTSWJyDhXK5J+TLC2MKB5iy+Xrr97d28Jciqe7hbaCbG6mafF+/t2UeSo1hTgk/4NiZm6No5uvdnHxCMLazoU713SvUQ9vR+L55Dz2PCNjU4r5luDuM3HUKhV3rp/EK0ATR5GrmVX9+VnhJVIpanXhzmhm9tx12PnJdfjudd08xt65iOdbXoffBRNjY8L8fThz+YZ2nUql4szlG5QKCXhJTF0qtRqFouCeIo+TUpClZ+D8kgqzILxMkbbcnjp1igMHDtCwYUNcXV05deoUCQkJhIeHExkZqQ1nZWVFnz59GDJkCI6Ojvj4+DB58mQyMzPp3l33Pa5jx47FyckJNzc3hg8fjrOzM61atQLg+++/p0qVKvTr148ePXpgZWXF1atX2bdvH3PmzNGbRjMzM8zMdLu1GZu8/iMWiURC6ZqdOHdgLnYuftg6enJ69yysbF3xf+a9tVvmdiGgZH1K1egIgCInA1lijPb7tOQHJD68hpmlHTYO+TeludnpRF/cQ7UW37922l4nD9Ubd+Lglj9wdvfF0cWLvetnYWvvSvHy9bTh5k3oSokK9anWoAMANZp0Yd2fw/DyL4l3QCmO7llKbk4W5Wu1BiAp/j6RJ3cRXKo61jYOyJIfc2j7fExMzQgrk38Dm/j4HrnZmaTLElHk5hB7T9Pd3NUz0GBjc5u1+oLfp/9EQFAYQSHF2bVlDTnZ2dSu3xyA36aNxcHJhXadNa+6USoUPLivqTAolUpSkhK4e/sm5uaWuHtoZnVe+PsUjv+9j0HDJ2FhYUlqiuYps6WlNaZm76bLpEQioXzdTpzY9TsOrr7YOXlxdNtMrO1cCS6TX/7WzOxMcJkGlKujKX+52RmkJOSXP1nSAx7fv4aFlR22jh6aiu28/jyOuUqbvn+gUuVpx05ZWNlhZKDfRSKRULvJl+zb/Ccu7r44unqya90cbB1cKVUhv+z99lN3SlWsR81G7QGo06wTK38fjndACXyDSnJ413Jyc7KoXLuVJo2WNlT+qA1blk/G0toOcwsrNi7+Gb/gMtrKrbObbq+OjDTN5DRungEGf8+tRCKhasNOHNo2F0d3XxycvTiwcRY2Dq6El8v/nRZN6kp4+fpUqa85xqo16szGecPw9C+JZ0ApTuzVHGPlarbWbrdGk24c3DwHd58wivmEcf7oZhLjbtOu3wyDpb/xx+2ZN3MM/kHhBASXYM+21eRkZ1HzyfHzx/RRODi58nmnrwFo2OILJgzvxa7NKyhToTqnjuzlTvQ1un79P+02Tx/bj42tA04u7jy4F8WK+dMoX7k2pcpqJgGLf/SQU0f3UTKiMrZ2DiQnxrN9wxJMzMwoU77ai4k0gI6NazNq3mrC/b0oGeDDyr1HyMrJpWUtTfe6kX+swsXBjm8+bwrAwm0HKO7vjZerEwqFkqOR19hx/BzDOudP/Lfv9EUcbKxwd3Ig6n4cU1ZsoU75klQtVXjdJp93/GoedUobkSRXk5IG9coZkZapaeV9qmtDY67GqDh1XbOuRRUjSgdIWXFASY4SrJ+Mz83ORfsO2yNX8qgXYcSjZBVxyWrKBhnhYidh9aG37wr9b9ZtfUjntj7cj80i7nE2PTr6kZScw5GT+b2JZvxUmr9PJLJxh2aG96+7BXDsdBKP4rNxdjSje3s/8lRq9h/WjKm+9yCT+7GZDPk6mF8X3kaWpqBWFWcqRjgwdKzhJh98W0ZWllgF5Z+/LP29sC0TRm6yjOz7hTOT+JuSSCRUqt+Jozvm4ujmh72zJ4c2z8LG3pWwsvnnvmVTuhBWrj4V62quUVUadGHLwh8o5lsSD//SnN6/BEVOFmWqa4ZfOLsH4Ojqy85lo6j/2VAsrO25cX4/t68e54tv3s1wsWfzWLFeJ47v+h1HV1/snL04snUm1vauOu+tXTW9MyERDSj/kf7rcGqi5jpsbmWHnWPhPyx/Vrtm9Rj7+xLCA3woHuTH6p0Hyc7JoXltzZDA0b8uxsXRnq/btQJg8ebdhAf44uXmTK5SyfHzV9h15BTfd9c8GM7Mzmb++h18VLksTnZ2PHycwOyVG/Fyc6FKmeIFJUN4DyQnJ/PNN9+wbds2pFIpn3zyCTNnzsTaWn/PvuTkZEaNGsXevXuJiYnBxcWFVq1aMW7cOOzs7F5r30VaubW1teXvv/9mxowZyOVyfH19mTp1Kk2aNGHNmjU6YSdOnIhKpeLLL78kLS2NChUqsGfPnhfG506cOJEBAwZw69YtIiIi2LZtm7ZVtnTp0hw+fJjhw4dTs2ZN1Go1gYGBtG3b9p3kt+xHPVDmZnFo/Uhys+QU8y9P86/m6YyPlSfFkJWRP7Nj/P3LbJnbWfv52NaJAIRWaEW9LyZq19+6sANQE1y2cLvw1m7WndycLDYuHEV2Zhp+IeXoOuRPnXGxSfH3tRUAgDJVmpCRlsy+DbNJkyXi4RNGtyF/YPOk25CJiRl3b5zj2J5lZGXIsLZzxj+0PH1GrtSZJGfD/JHcuZ7fyjPrR82N4dBp+3B08TRI/qrWrI9clsr6FfNITUnGNyCYH8ZM03ZLTkx4rPMEOCU5kWEDumg/b9+0ku2bVhJesiwjJ/wKwP5dmp4I4/73tc6+eg8YTu3676bLNUClBl+hyMliz8qR5GTK8Qwsz6f95uuUv9SE+2Sl5/92j2Ius2ZGJ+3nvzZMAKBEldY07TSR9NTHREUeBGDJzx/r7K/twKX4hFTGUOq26EZuThZr548mKzMN/9By9Pphrk7ZS3ysW/bKVm1CujyF3evnIE9NxNM3jF4/zNV2OQZo9eX3SCRSFk8fiFKpILR0NT7tNsJg6X5dNZv2QJGTxdZFo8jOlOMTUo5Og3SPseT4GDKfyWepyk3JSEvhwKZZpMsSKeYTTqdBf+pM5FatUWeUilx2rZpIVroMd59QugxZgKOr/iEZb6JyzQbI5SlsXPknspQkfPxDGDxqJnb2muM4OfEx0mcmCAkOL03vQePYsHwu65f9hpuHNwOG/YLXM5OtpSYnsWrBDGSyZOwdnKn+UVM+/jz/oaaJiSk3r15g79bVZGTIsbNzJLREWUZMXPDCZFWG0rBKBClp6czduIckWRohPh7MHtIDJzsbAB4lpSCR5DfhZefkMnHJRuKTUzEzNcGvmCs/9WpPwyoR2jCJqXKmr9xKkiwdZ3sbmlWvwFet6j+/60J15LIKU2MJH1czxtwUYh6rWbJPoa2kAjjaSrAyz89b5TBNK2aPJrqTd204qnlFEMCJqypMjDSTTVmYwqMUNYv3KkkuxMmknlqx4T7m5kYM7ReCtZUxl67KGDTqErmK/IfUnu4W2Nvmp9/FyYzRg8OxtTUhVaYg8qqMXoPPkyrX9ATIy1MzZPRlenfxZ9KIklhYGPEwLovxM67rjNctanblS1L1wDLt5+JTNA+N7i/dSGT3f++B9q5Va6w59+1YOlJz7gsuT/uBuvdIKQm6574SlZqSmZ7M4S2zSZcn4OYdTvuB87TnPiNjE74Y8AcHN0xlzew+5OZk4uDqw8fdJhJcuvY7z2Plhl+Rm5PF7hWaPHoFlaftN/Ofy+N9Mp+5Dsfdu8yq6fnX4YPrNdfhklVa07xL/n3gu9CgWgVS5en8uW47SalyQny9mPHDNzg9aWV9nJiMVOfcl8PkhatISNKc+3w93BnzdVcaVNO8lUIqlRIV85Cdf58kLSMLFwc7KpUuTq/PW2BaCBMC/lepi3RGqcLpbtKhQwfi4uLYt28fCoWCrl270rNnT1auXKk3fGxsLLGxsUyZMoXixYtz7949evfuTWxsLOvXr3+tfUvU+t678x46dOgQH330ESkpKdjb2xfqvmZu+yD+ZDp83N7BCwffMV/71KJOgsH9c1//2MX3mYeD4buOFrX0HKN/D/Qe8nF4B7WRd6yk7O+iToLBTbxm2HHG/wWHNuh/j+b7bNjunkWdBINLOfju3t/+riiUH2Zf89b2B4s6CQZnX7ZuUSfhjUzZWHT34IPbGH6E6rVr1yhevDhnzpyhQgXNg4zdu3fTtGlTHjx4gIfHq/U4WLduHR07diQjIwNj41dvjy3yMbeCIAiCIAiCIAj/H6nURbcUhhMnTmBvb6+t2ALUr18fqVT6WpMGy2QybG1tX6tiC0XcLVkQBEEQBEEQBEF49/S98lTffEOv49GjR7i66r4VxNjYGEdHRx49evRK20hMTGTcuHH07Pn6PVw+mJbbOnXqoFarC71LsiAIgiAIgiAIgiGo1UW3TJgwATs7O51lwoQJetP5ww8/IJFIXrpcv/72QxPkcjnNmjWjePHijB49+rXji5ZbQRAEQRAEQRCE/2eGDRvGd999p7OuoFbbQYMG0aVLl5duLyAgAHd3d+Lj43XWK5VKkpOTcXd3f2n8tLQ0GjdujI2NDZs2bcLkDSYWE5VbQRAEQRAEQRCE/2depwuyi4sLLi4u/xquatWqpKamcu7cOcqXLw/AwYMHUalUVK5c8Fs05HI5jRo1wszMjK1bt2Jubv5qmXjOB9MtWRAEQRAEQRAE4X2iUqmLbCkM4eHhNG7cmK+++orTp09z7Ngx+vXrxxdffKGdKfnhw4eEhYVx+vRpQFOxbdiwIRkZGSxYsAC5XM6jR4949OgReXl5L9vdC0TLrSAIgiAIgiAIgmAQK1asoF+/ftSrVw+pVMonn3zCrFmztN8rFApu3LhBZmYmAP/88492JuWgoCCdbd25cwc/P79X3reo3AqCIAiCIAiCIBQBdSG9kqcoOTo6snLlygK/9/PzQ/1Mxp9ODGwIoluyIAiCIAiCIAiC8N4TlVtBEARBEARBEAThvSe6JQuCIAiCIAiCIBSBD7FbclESLbeCIAiCIAiCIAjCe0+03AqCIAiCIAiCIBQBlWi6NSjRcisIgiAIgiAIgiC890TlVhAEQRAEQRAEQXjviW7JgiAIgiAIgiAIRUCtKuoUfFhEy60gCIIgCIIgCILw3hMtt2+gbfCFok6CwT2U+hZ1Egzu0DXHok6CwdUMSy3qJBhcbt6Hdxryssks6iQUiivxLkWdBIP762HTok6CwbWuJivqJBhc95qeRZ0EgzsWe72ok2BwDnXDijoJBud77XBRJ6FQDFxeoqiTYHCLyxZ1Ct6MWkwoZVCi5VYQBEEQBEEQBEF47314TSaCIAiCIAiCIAjvAZUYc2tQouVWEARBEARBEARBeO+Jyq0gCIIgCIIgCILw3hPdkgVBEARBEARBEIqAmFDKsETLrSAIgiAIgiAIgvDeEy23giAIgiAIgiAIRUAlGm4NSrTcCoIgCIIgCIIgCO89UbkVBEEQBEEQBEEQ3nuiW7IgCIIgCIIgCEIRUIt+yQYlWm4FQRAEQRAEQRCE955ouRUEQRAEQRAEQSgC4k1AhiVabgVBEARBEARBEIT3nmi5FQRBEARBEARBKAIqMebWoETLrSAIgiAIgiAIgvDeEy2379CmHXtYvXkbySkyAv18GNCzK+EhQXrDbtt7gD1//c2dew8ACA3056svv9AJn5mVzZ9LV3L01FlkaWkUc3Xlk+aN+bhJg3eSH4C9O9azfeMKZCnJ+PgH0bnXdwSFlNAb9sG926xbMY870ddJjH/Elz0G0OTjL3TCbFm3hDPHDxP78B6mpmYEh5WiXZe+eHj5vovsAKBWqzm7dzbXT68jJ0uOu185arYehZ2LX4FxYm+f4eLhBSQ+uEJmWgINO83Bv2R9nTCKnAxO7ZrK3SsHyM5IxcbRi1LVv6R41S8K2Grh2rdjHTs2rUCWkoSPfzCdeg4isKDfLuY2G1b8wZ3oGyTGx9Gx+0Aaf9zunab3wM617N68FFlqEt5+wXToMZSAkJIFhj9zbB+bVv1OYnwcbsW8+axTf0qXr6H9vlvr8nrjfdZpAE1adwJg27oFRJ47yv07NzAyNuHXFYcNmyk9dm/fyNaNq0hNScbXP5BuvQYSHFpcb9j79+6wZsUCbkfdICH+EV2++oZmH39e4LY3rVvOyiV/0LTlZ3Tt2b+wsoBareavzbP55+91ZGfK8Q4qR/NOo3By83tpvNMHVnBs9wLSZYm4e4fRpMOPeAWUBiAl8QEzh9bXG++zPjMoUbExj2Kuc3Tnn8Tc+ofM9BTsnT2pUOcLqjToZOgsAlCzhISIAAlmJvAgCfacU5GSXnD4qmESQr0kONqAMg8eJsFfkSqS0/LDRARIKO4jwd0BzEwkTNuUR46iUJL/gg/xfL5123bWb9hASkoKAf7+9O3Tm9DQUL1hd+3ezf4DB7l37y4AQUFBdO3cWRteqVSyZOlSzpw5S9yjR1hZWVE2IoJuXbvg5OT0rrIEaI6xw1tmc/5I/jHWpOO/H2NnDq7gxB7NMebmHUbjdj/i+eQYA0iXJbB/3S/cvnqc3OwMnNz9qdGsF+HlGxVyjl6NY40KBAzqjl25kph7uHL2k7483nqgqJNVoF3bN7Flw2pSU5Lx8w+ke+8BBIeG6w0bc+8Oq5cv5HbUTRLiH9H1q340b/WZTpg1KxaxduVinXUeXj7M/mNZYWVBr9YfWVG7nAWW5lJu3c9l6fY0HifnFRj+owoW1K1ogbO9EQAP45VsOZzBpahcbRgXByO+aGhNsI8pJsZwKSqX5TvTkGeoCj0/wodFtNy+IwePHOfXhcvo3PZT5k2bQKC/L4NHTyAlVaY3/IVLV6lXszozfhrBb5PH4uLsxODRP5OQlKwN8+vCpZz+5yLDv/2apXOm8mnLJsz8cxHHTp19J3k6cWQ/y+fPok277oyfsRgf/2AmjvwWWWqy3vA5Odm4unvwRee+2DvovxG4dvk8DZp9wthf5jFs3Ezy8pRMHDmQ7OyswsyKjouH5nP52DJqthlN62/WYmxqwY4FPVAqcgqMo8zNwqlYGDVajywwzPFtE7l/4yh1v5hM28E7KFWjE0e3jOPulYOFkIuXO3lkHysWzKT1F935afoSfPyCmDRqwEt/Oxd3T9p26otdAb9dYTp9dC9rFk2jZduejJq6Am+/EKaN7Ye8gPRGXb/IH9OGU7NeK0ZPXUnZynWYPXEQD+5FacNMX7hHZ+nabxQSiYTyVetqw+QpFVSsVp86jT8t9DwCHPv7AEvmz+Gzdl2YNHM+vv5BjB85CFlqit7wmmOqGB0698LewfGl2466eY19u7fi6xdYGEnXcWzXfE7tX0bzTqPp8eNaTM0sWDa1B4qXHEOXT+9kz5qJ1Gn5Nb1GbcTNO5Tl03qQLk8CwM6xGIOmH9FZ6rT6BlMzS4JK1QQg9t4VrGydaNNzMn3Hbadm897s3zCNUweWGzyPVcIkVAiWsPuciiUHVCiU0LaWFKOXXFV9XCSci1Kz9ICK1YdVSCXwRS0pJkb5YUyM4PYjNcevvdtuah/i+fzw4b+ZN28eHdu3Z87sWQQE+DN8xAhSU1P1ho+MvESd2rWYNGEC06dOxcXZhf/9OILExEQAcnJyiIqKpn27dsyZPYsRPw7nwYMHjB4z9p3k51nHd8/n9IFlNO04mm7/W4uJmQUrp7/8OnXl9E72rZ1IrRZf89VIzTG2ckYPMp4cYwBbFnxP0qM7tO33G73GbCWsXAM2zP2WuJir7yJb/8rIyhJ55A0u9x9T1En5V8f+Psjieb/yefvO/DJrHr7+gYwbMbjA83luTjZu7h507NLzpedzb19/5i/bqF3GT55dWFnQq2l1SxpUtmTJ9jTGzk8mJ1fNoC/tMXlJc1mKPI91+9MZ/Ucyo/9M5tqdXAa0s8fDRXPyMzWBIV/aowYmL0lh/IIUjI1gYHt7JJJ3k6+ipFari2z5EH2QlVuVSsXkyZMJCgrCzMwMHx8fxo8fD8D3339PSEgIlpaWBAQEMGLECBSKwn8svnbLDpo3rEvT+nXw8/FiUJ8emJuZsnP/Ib3hRwz6htZNGxIc4IevlydD+/VCpVJz7uJlbZgr12/SqG4typYqQTE3V1o2qk+gvy/XbkUXen4Adm5exUeNWlKnfnO8fPzp3ncoZmZmHN63XW/4wJDidOj2DdVqNcDYxERvmB/GzKB2/WZ4+Qbg6x9M74E/kpjwiDtR1wszK1pqtZpLR5dSrl5v/ErUw6lYKB+1nUSmPJ67V/YXGM8nrBaVGg/Ev2TBreaP710gpHwrPAIrY+PoRfEqbXEqFkr8/cjCyMpL7dqyio8afkzt+i3w9Amga98fMDMz5/D+bXrDBwYXp33X/lSt1RATE9N3nFrYs3U5tRq0pma9lnh6B9Cp9/8wNTPnyIEtesPv276KkmWr0qR1Jzy8/WnTvi++AWEc3LlWG8bOwVlnuXD6EGElK+Dq7qUN06pdbxq27ICXr/4eFoa2ffMa6jVqwUcNmuHt40/PrwdjambOwX079IYPCgmnU7evqV67/kt/l6ysTGZNGUvvb4ZiZW1TWMkHNMfQyX1LqdWiN2Fl6+HuHUrrHpNIS43n+j8FH0Mn9iymXK3PKFvzE1w9g2jeaQwmpuacP7IBAKnUCBs7F53l+j/7KVGxCWbmVgCUq/kJTdoPxy+0Eo6u3pSp2pKy1dtw7dw+g+ezYrCEY9fU3IqFBBlsP63CxgJCPAu+E1tzRMWlu2oS5RAvg+1nVNhZaVppnzpzS83J62pik97tTceHeD7fuGkTjRs3pmHDBvj6+PBNv36YmZmzZ+9eveG/HzqEFs2bExgYiLe3NwMH9EetUnHh4kUArKysmPDzeGrVqom3lxfhYWH07duHW1FRxMfHv5M8geYYO71/KTWb9ya0bD3cvEP5uNuTY+x8wcfYyX2LKVvzMyJqfIKLRxDNOmqOsQtHN2jD3I++QMV6HfEMKI2Dizc1m/fB3NKGR3evvIus/auEPX9zc9QMHm8pOJ//Fds2raV+4+bUbdAUbx8/evUbhJm5OQf27tQbPigknM7d+1Cjdr2Xns+NpEY4ODppF1s7+0LKgX4Nq1iy9e8Mzt/I4cFjJfM2yXGwMaJcmFmBcS7czCXyVi6Pk/N4nJTHhoMZZOeqCfLSnDuCfUxxtjdi/mY5D+KVPIjXbNfPw5hw/3d/zyG83z7Iyu2wYcOYOHEiI0aM4OrVq6xcuRI3NzcAbGxsWLx4MVevXmXmzJnMmzeP6dOnF2p6FAolN6PvUL5MKe06qVRK+TKluHLj5ittIycnB2WeElsbK+26EmEhHDt9joSkZNRqNf9EXuH+wzgqli39ki0ZhlKh4E7UDUqWqahdJ5VKKRlRkVs3Lr8k5uvJzND08bO2sTXYNl8mLfkBmWkJeAZX064zs7DB1bs0j+9deKttu/lGcO/qQTJkj1Gr1TyMOoks4S5eIdXfMtWvR/PbXadERCXtOqlUSokyFYm6fumdpuVVKBUK7kVfp3gZ3fQWL12J6Bv60xt9I5LiZSrrrCsZUZWom/ofJMhSk4g8d5Sa9T82XMJfk0Kh4HbUTUpH5HeXlkqllI6owM3rb3djueD36ZSrWJXSERXeNpn/KiXhAemyBAKK5x9D5pY2eAWU5kH0Bb1xlMpcYu9d0YkjlUoJKF61wDixdy/zKOYaZWt98tL0ZGelYWFl99r5eBl7K7C2kHD3cX4FNEcBsUng+RodG8yf1Amzcl8errB9iOdzhULBragoykZEaNdJpVLKRkRw7fqrVa411908bF7yQCgjIwOJRIKVtfXbJvmVpSZqjjH/cN1jzDOgNA8LOF7ylLnE3buC/zPHmEQqxT+8Kg9u58fxDozg6pmdZKWnolapuHx6B0pFLr6hlfRsVSiIQqEgWu/5vPxbn8/jYh/Q48s29On2BTN+GUdC/OO3Te4rc3Ewwt7GiKu3809aWTlqoh8oCPR6tUqoRAKVS5phZiIh6oGmccnECNSAUpl/TlUo1ajVEOKj/+HZh0StKrrlQ/TBjblNS0tj5syZzJkzh86dOwMQGBhIjRqasXY//vijNqyfnx+DBw9m9erVDB06tNDSJJPLyVOpcLDXvcFysLcj5sHDV9rG3KUrcXZ00KkgD+jZlSm/zuPTbn0xMjJCKpEw+OuelCmhfzyHIaXJU1Gp8rB7ruuMnb0jsQ/uGWQfKpWKZfNmEBJeGm/fwu9KCZCZlgCAhbXuHaqFjTOZaYlvte0arUbw94YRLB9fG6nUGCQSan86Do+Aiv8e2YC0v539i79d3EPD/HaGlJamSa+tne5vYmvvRNzDu3rjyFKTsH0uf7b2jshTkvSGP/7XdswtrChfpa7e79+FNLmsgN/FgYdvcUwdO7yf29E3mTj9z7dN4itJl2uOIWtb3d/LytaZdJn+YygzLQW1Kk9vnMS4O3rj/HNkA87FAvEJKldgWmKi/uHKmV20HzD3dbLwr6zMNf9mZOuuz8hRa797FfUjpNxP0LTkFqUP8Xwul8tRqVTYO9jrrLe3t+f+/fuvtI2Fixbh5OhI2bIRer/Pzc1l4aJF1KldGytLy7dM8atLl2mOMavXOcbSX3KMPco/xj7pPYMNf3zLlIFVkBoZY2Jqzmdfz8bR7d2Nk/4QPD2f29s76Ky3s3fg4f2YN95ucGg4/b79AQ8vH1KSk1i3cjE/Dv2GGb8txuIdlEE7a02bmCxdt1Ykz1BpvyuIl6sxP/ZwwMRYQk6umtlrUolN0IzTjX6gICdXzecNrFl/QPMQ7PP6NhhJJf+6XUF43gdXub127Ro5OTnUq1dP7/dr1qxh1qxZREdHk56ejlKpxNa24KfIOTk55OTojmHJyc3FzPTddZNYsX4LB48cZ+b4kTr73bh9N1dv3OLn4UNwd3Xm4pVrzPhjIc6ODlSIKPWSLb4fFs2dwv2Y24ya9Eeh7ePWP9v4e+Mo7ecmXQ17E/ysy8eW8fjeRRp1+Q0bB0/ibp/h6KaxWNq64vVMS7Hw7h05sIUqtZpgYlpwt6r3UWLCYxbNm8WIcdMwLaS8RZ7Yxral+cdQh4GFdww9pcjN5tLJ7dRu0afAMI8f3GT1rK+p3fJrgkrWKDDcqyjhI6Fx+fzuxmuPvv3j7kblJDjbwfKDH+ij8+e8i/O5Ia1Zu5ZDh/9m8qSJmOq53iuVSsZPmIBaDf36fV2oabl0chs7luUfY+36F94xdmjzTLIz0+g4aBEW1g7cOL+fDXO/pfP3y3Hz0j8Rl/DulKtQRft/P/9AQkLD6d21LceO/EX9Rs0Mvr+qpczp3CK/58L0FalvvK24JCUj5yZjYSahYnFzerSyY+LiZGIT8kjLVPPrOhmdm9lQv7IlajWcupTN3VgFH+iwUKEQfXCVWwsLiwK/O3HiBB06dGDMmDE0atQIOzs7Vq9ezdSpUwuMM2HCBMaM0Z24YNDXPRncr/crp8nO1hYjqfSFyaNSUmU4PvdU+XmrN21j5cYtTB0znEC//CenOTm5zFu+mp+GDaJqBU3LRaCfL1G377Fm8/ZCr9za2NojlRohS9GdbESWmlzg5CKvY9HcKZw/c4yRE37Hydn1rbdXEN/iH/GpT3437jylpqtNVnoSVrb5+81KS8TJ481bxJWKbE7vnkHDTrPxDa8DgFOxUJJir3Px8MJ3WrnV/napL/52z7ca/hfY2GjSK5fptrrKU5Ows3fWG8fO3umFyabkqcnY6imbN6+e59HDe/QeNNFwiX4DNrZ2BfwuKW98TN2OuoEsNYWhA3po16lUeVy7cpHd2zeyctMBjIyMXrKFfxca8ZHObKtPj6F0eRI29vnHUIY8EXcf/ceQpY0DEqmRdvKoZ+NY2734G189uwdFbjZlqrXSu734h1EsndKV8rU/f2kF+FXdilUTm5x/h/V00igrc93WWyszCY9T//1OrGFZCUEeEpb/pSLt3c2VV6AP5Xz+LFtbW6RSKakpqTrrU1NTcXB00B/pifUbNrB23XomjB9PgL//C98rlUp+njCR+PgEJk34udBbbUMiPsLTP/8YUz45xjL0HWPeBRxj1v9+jCXHx3Dm4Ap6jdmGq2cwAO7eYdy/dY6zf62k2Zf//Umc/iuens9Tn5s8SnM+N9x11srahmKeXjyKe7VegK/r/I0coh/mz0tj/ORyYWct1Wm9tbWSEvNI+dJt5eVB/JMZle/FpePvaaydmArgSnQuQ2clYW0pQaWCzGw1Mwc7k3C54FmYPxQqUYM3qA+urT84OBgLCwsOHHhxavjjx4/j6+vL8OHDqVChAsHBwdy79/IuV8OGDUMmk+ks3/Ts9lppMjExJiTQn3OR+WOXVCoV/0RepkRoSIHxVm7cytK1G5k8ahhhwbrduJR5SpTKPCTPTSMnNZKieged6I1NTPAPCuVKZP7MzCqViisXzxIcWvDrWf6NWq1m0dwpnD1xmOHj5+Dq7mGI5BbI1NwaO2df7eLgFoSljQsPb53QhsnNTif+fiRuvhFvvB9VnhJVngKJRPeQk0il73zQg+a3C+PKxTP56VOpuBJ5hqCw/16Lv7GJCb6BYVyL1E3vtUtnCAzVn97A0NJcizyts+7KxVMEhbw4Hv3I/s34Bobj41/wsfgumJiYEBAUwqWL57TrVCoVly6eIyRM/+tY/k2pMhWYOmcJv8xaqF0Cg8OoUacBv8xa+NYVWwAzC2uc3Hy1i4tHENZ2Lty5mn8MZWel8+B2JF6BEXq3YWxsiodvCe5cy4+jUqm4fe2k3jj/HFlPaMRHWNm+eJMY//AWS37pTJlqraj3ybdvnT+AXCWkpOcviXJIz1Lj55p//jU1Bg8nzet9XqZhWQkhnhJWHlIhyzBI8t7ah3I+f5aJiQnBQUFcuHhBu06lUnHhwgXCw8IKjLdu3XpWrlrNT+PGEhIS/ML3Tyu2D2NjmfDz+Jf2/DIUM3NrHN18tYv2GHvmeMnJSufh7Ug8CzjGjIxNKeZbgrvPxFGrVNy5fhKvAE0cRa7mSYu+65T6Qx2cV0hMTEwIDArh0gXd83nkhX/e+HyuT1ZWJo/jYnFwLJwH09m5auKT87RLbEIeqWl5FH9mkidzMwmBXiZEP3i9yQMkEgkmxi9OwJeeqSYzW024vwk2VlLO3yh4BnBB0OeDa7k1Nzfn+++/Z+jQoZiamlK9enUSEhK4cuUKwcHBxMTEsHr1aipWrMiOHTvYtGnTS7dnZmaGmZlud77MN+iS/PnHzZgw83fCggIICw5i/badZGXn0KR+bQDGT/8VFydHenbSvDt05YYtLFy5jhGDvsHd1YWkJ0+fLczNsbQwx8rSkoiS4cxdvAIzU1PcXV24cPkqe/76m6+7ffna6XsTTVu1Y+70cQQEhREYUoJdW1aTnZ1N7frNAfht2hgcnVz4onNfQDNpyYP7mrE9SqWS5KQE7t6+ibm5Be4e3gAs+n0Kx//ey6Dhk7CwsCT1yRhJS0srTM1eYzDbG5JIJJSq0Yl/Ds7FztkPG0dPzu6dhaWtK34l8t+xue3PLviXqE/J6h0BzTtsZUn542jSkh+QGHsNMws7bBw8MDW3plhARU7u+AVjEzOsHTyJu32am+e2ULXFD4Wer+c1+bgdf8wYi39QOIEhxdm9dTU52dnUrqf57eZOH42DowttO2u62ykVCh5qfzsFyckJ3Lt9E7NnfrvC1KhlR+bPGoVfYDj+wSXZt30lOdlZ1KjXEoB5M0fi4OjCp19+A0CD5u2Y9ONX7N6yjDLla3Dq6F7uRl+lc5/hOtvNykznzPH9tO2ivxKUlBBHRrqc5IRHqFQqYu7cAMDV3RtzC8O31jRv1ZZfp/9MYHAYQSHh7NiyjpzsLD6q3xSA2VN/wtHJmQ5dND1HFAoFD+7fBTS/S1JSAndu38Lc3IJiHl5YWFri4xegsw8zM3NsbOxeWG8oEomEKg068ff2uTi6+eHg4snBTbOwsXclrFz+MbTkly6ElatP5XqaY6hqoy5smv8DHn4l8fQvzcl9S1DkZFG2Rhud7Sc9vse9m2fpMPDFMcSPH9xkyS9dCCpZg6qNupD2ZGyiVGKktyL8Ns7cUlOtuITkdDWyDKhVUkpaFtx8mP8Evl1tKTcfqjkXpVnXqJzmHbbrj6nIVeaP3c1RaN57C5p1VubgYK256XOx01Su5ZmQXYgTT32I5/M2rVszZdo0goODCQ0JYdOWLWTnZNOwgWZW+1+mTMXJyYluXbsAsHbdOpYtW873Q4fi5upKcrKmJdvCwgILCwuUSiU//fwzUVHRjB09ClVenjaMjY0NJgXMGm1oEomESvU7cXSH5hizd/bk0OYnx1jZ/GNs2RTNMVaxruYYq9KgC1sW/kAx35J4+Jfm9H7NMVamuuYYc3YPwNHVl53LRlH/s6FYWNtz4/x+bl89zhffFP5wg1dhZGWJVZCP9rOlvxe2ZcLITZaRfT+uCFP2ohatP2f2tAkEBocRHBLG9i3rycnOom6DJgDMmjoeRycXOnbpCTw5n8fcBZ6ezxO5E30LcwvN+RxgyfzfqFC5Gi6ubiQnJbFmxUKkUik1aut/B3hh2Hsykxa1rHiUnEdiSh5t6lqRkpbHP9fzK6FDO9lz7noOB05rHph8Ws+ayKgckmV5mJtKqVLKnDA/E6Yuy3/CVyPCnLjEPOQZKoK8TejQ2Ia9JzJ5lPTht9x+qK/kKSofXOUWYMSIERgbGzNy5EhiY2MpVqwYvXv3pnv37nz77bf069ePnJwcmjVrxogRIxg9enShp6luzWqkyuUsXLmO5JRUgvx9+WXUDzja2wMQn5iIVJr/BGvL7n0olEpGTtKdybnLF5/QtZ3mpd4jBw/gz6Wr+GnaHOTp6bi7uNCj4xd83Ljg19EYUtWa9ZHLUli/Yj6pKUn4BgTzw5jp2klJkhIeI33mCXBKciL/G9BZ+3nHppXs2LSS8JJlGTHhNwD279oIwLj/6Y5h6jXgR2rXN/x4En3K1OmBIjeLvzeMJDdbjrtfeZp2n4exSf5DDnlSDNkZ+d2NEh5cZtsf+Xk7sV3TxTWkfCs+aqv5f/0O0zi1axoHVg0hJ1OGjYMHlRoPpHiVL95Jvp5VpWYD5LJUNqz8E1lKEr4BIQwdPUP7DtvEhMc6T+9TkhMYPjD/ocnOTSvYuWkFYSXL8ePPvxd6eivVaEiaPIXNq+ciS0nC2z+Eb0fOxs5ek97khEdIn+nFEBRWhp7fjmfjyt/ZuPxX3Ir58M0PU194pc+po3tBraZyzUZ697t51VyO/ZX/KpTR37UHYOi4PwgrafiZh6vXqodclsqa5QtITUnGLyCI4WOnaLuxJSY8RvLMeSIlOZGh/fN7kmzbuJptG1dTvGQEYya+23cfPqt6kx7k5mSxbclIsjPl+ASXp+N38zB55hhKjo8hMy3/GCpZqSkZacn8tXk26bIE3L3D6fjtvBe6JZ8/ugFbB3cCS7w4y/jVs3vITEsm8sRWIk9s1a63c/Lg218M+z7pk9fVmBhBk/JSzE3hfiKs/VtF3jMNXPbWYPHMs9FyQZpjquNHui3m209rXhEEUDZQQs0S+cfel3WNXghTGD7E83nt2rWQyWUsW7aclJQUAgIC+GnsWBwcNN2S4xMSdI6n7Tt2onhSgX1Wh/bt+bJjBxKTkjh58hQAfft9oxNm0sQJlCld+G8qeKpa4x4ocrLYsTT/GGs/UPc6lZKge4yVqNSUzPRkDm+ZTbo8ATfvcNoPzD/GjIxN+GLAHxzcMJU1s/uQm5OJg6sPH3ebSHDp2u8sby9jV74kVQ8s034uPuV/ANxfupHI7sOKKll6Va9VF5ksldXLF5Kakox/QBA/jv3lmfN5/HPX2UQG988fQrJ142q2blxNiVIRjJ04E4CkpASmTx5LmlyOrZ094SVKMWHa79i9w9cB7TyWiZmphK4tbLA0l3IzJpepy1NRPNMr2dXRGBvL/O7MtlZSera2w85aSlaOmvuPFUxdlsqVZ2ZdLuZszGf1rbGykJKYmse2IxnsOZH5zvIlfDgkavG44LU9un6+qJNgcA+lH95MiIevvXxc1fuoZpjs3wO9Z3LzPrxnbDYmH+YF+Uq8S1EnweDuPvzwuls2jPjwzhOORsn/Hug9cyz23bwF4F1yqFtwl+/3le+1w0WdhEIxZXnB7+R+Xy0e7VbUSXgj385JL7J9T+/37l5j9q58cGNuBUEQBEEQBEEQhP9/ROVWEARBEARBEARBeO99eP0BBUEQBEEQBEEQ3gNigKhhiZZbQRAEQRAEQRAE4b0nWm4FQRAEQRAEQRCKgFolmm4NSbTcCoIgCIIgCIIgCO89UbkVBEEQBEEQBEEQ3nuiW7IgCIIgCIIgCEIRUIkZpQxKtNwKgiAIgiAIgiAI7z3RcisIgiAIgiAIglAExIRShiVabgVBEARBEARBEIT3nmi5FQRBEARBEARBKAKi5dawRMutIAiCIAiCIAiC8N4TlVtBEARBEARBEAThvSe6JQuCIAiCIAiCIBQB0SvZsETLrSAIgiAIgiAIgvDeEy23giAIgiAIgiAIRUBMKGVYonL7BqJUIUWdBIMrZvq4qJNgcCbGDkWdBIPLUpoUdRIMztxIWdRJMLjoFKeiTkKhsDbPK+okGJyn24d3GbQ3Ti3qJBic6gPsaKZQSoo6CQbne+1wUSfB4O6F1y7qJBQKi59PFXUSBKFQfHhXC0EQBEEQBEEQBOH/nQ/vkbUgCIIgCIIgCMJ7QK0W3ZINSbTcCoIgCIIgCIIgCO890XIrCIIgCIIgCIJQBFRiQimDEi23giAIgiAIgiAIwntPtNwKgiAIgiAIgiAUATHm1rBEy60gCIIgCIIgCILw3hOVW0EQBEEQBEEQBOG9J7olC4IgCIIgCIIgFAG1mFDKoETLrSAIgiAIgiAIgvDeEy23giAIgiAIgiAIRUC03BqWaLkVBEEQBEEQBEEQ3nuicisIgiAIgiAIgiC890S3ZEEQBEEQBEEQhCKgEu+5Naj3tuX20KFDSCQSUlNT32o7fn5+zJgxwyBpEgRBEARBEARB+P8sOTmZDh06YGtri729Pd27dyc9Pf2V4qrVapo0aYJEImHz5s2vve/3puW2Tp06REREvDcV0YM717B781JkqUl4+4XQvsdQAkJKFhj+zLF9bF71O4nxsbgV8+HTTv0pXb6GTpjY+7dZv2wWN6/8Q16eEg/vAPoO/QUnl2IAyFISWbtkBlcvniI7KwN3Tz+afdqdClXrFVo+t23bxob160lJScE/IIA+ffoQGhqqN+zuXbs4cOAA9+7dAyAoKIjOXbrohD927Bg7d+wgKiqKtLQ0Zs+ZQ2BgYKGlXx+1Ws3p3bO5cnIdOVlyivmXo86no7B38SswzsPoM5z/awHxD66QKU+gadc5BJSq/0K45MfRHN8+hdjoM6hUeTi6BdKkyyxsHDwMmoe/dq1hzzPlr12PofgHF1z+zh7fx5Znyt8nX/an1HPlL+7BbTYsncXNq5ryV8wrgD5Pyl9Gmowtq+dy9eJJkhMfYWPrQESlOnzcrg+WVjYGydO+HevYuXk5spQkvP2C6dRzMIEhJQoMf+rYfjas+IPE+DjcPLxp26kfERWqa7+XpSaxeskcLp8/RWZGGqElytKp52DcPXy0YR7HPWDVopncvHYRhUJB6XJV6NRzMHb2TgbJE2jK276Nczjz1zqyMtPwCylLqy4jcXb3e2m8E/tWcnjnQtJliRTzDqVlp+F4B5bWfr9x4SiirpxEnhKPmbklPsERNGk7CFePAABi713n8Pb53L35DxlpKTi4eFK5bltqNPrSIHnas34Op/5aT1ZGGv4hZWnTbSQuxXxfGu/Y3pUc2r6INFkixXxCad35f/gE5efp5IG1/HN8Jw/vXiUnK4Nx805gYWWr/T454SH7N83l1pVTpKUmYufgSrkazanXqifGxqZvnae/t87i/BHNecErsBxNOozG0c3vpfHO/rWCk3sXkC5LwM0rjIbtRuDpn5+nlPgY9q+fxIOocyiVuQSWqEnDdiOwtnXW2c6tyEMc3f4r8Q9vYGxihk9wRT77+re3ytPzPsTz+YeYJ33UajVHts3i4lFN+fQMLEejdi8vnzG3znBq7wIex1wmXZZAm96/EhLx4nXrXdi1fRNbNqwmNSUZP/9AuvceQHBouN6wMffusHr5Qm5H3SQh/hFdv+pH81af6YRZs2IRa1cu1lnn4eXD7D+WFVYW3phjjQoEDOqOXbmSmHu4cvaTvjzeeqCok/VSzaubU6O0KRZmEm7HKlm5N4uEVFWB4WtFmFIzwgwnW02bWlxSHjuPZ3PljlJv+H6fWFEiwIS5mzK4GKUolDz8l3yIE0p16NCBuLg49u3bh0KhoGvXrvTs2ZOVK1f+a9wZM2YgkUjeeN/vbcvtf9npo3tYs2gaLdv2ZNTUlXj7BTN97NfIU5P1ho+6fpE/p/2PmvU+ZtTUlZStXIc5E7/jwb0obZj4uPtM/F93inn6MWTcn4yZvoYWn32FiYmZNsz8mSN5/PAe3wybztgZaylXpS5zp3zPvdvXCyWfhw8fZt6ff9K+Qwdmz55NgL8/I378scDW9MjISGrXqcOEiROZOm0azi4u/Dh8OImJidow2dnZlChRgq7duhVKml/FPwfnc/HIMup8NprPBq7FxNSCrX/0QKnIKTCOMjcLZ48warcZWWAYWWIMG2a3x8E1gNZ9l9Ju8BYqNuiLkbFZgXHexJmje1i7aBotPu/JiCkr8fILZsa/lL950/5HjXofM3LqSiIq1eHXSd/x8Nny9+g+k/7XHXcvPwaP/ZNR09fQ/Jnyl5qcgCwlgc86D2T0jLV0+WY0l88fZ8mvYw2Sp5NH9rFy4Qxat+3BuGlL8fEPZvLo/sgKyNPNa5H8NmUEteu3ZNz0ZZSvXJsZE4Zw/140oLkRnDNrRcUAAGPTSURBVPHzEBIePeTb4VP4afpynF2LMXFkP7KzswDIzs5i8uhvkEgkDBv3GyMnzkOpVDDtp0GoVAVfxF/X4R0LOL53Oa26juLr0asxMbNg4eSeKHILLm8XT+5i+8pJ1G/dl2/GraeYTxgLJvckXZakDePpV4JPvxrPd5O2023oPFDDgsk9UKnyAHh49wpWto607T2JbydupW7LnuxZO53j+1a8dZ7+2raAo3tW8Em3UfQftwpTcwvmTXx5ni6c2MXW5ZNp0KYvA8evw8MnlHkTe5H2TJ5yc7MJK1Odeh9/pXcb8bG3UalUfNp9FEMmb6Hll0M5sX8tu9bMfOs8ndgzjzMHl9Gk42i6DFuLiZkFq2Z2f+l54eqZnexfN4Gazb+m+4+bcPUOY/XM7mTINXnKzclk5YxuSCQSOny3hM5DV5GnVLB2Tm/Uz5Sx6+f2sHXhUEpXb0OPkVvoNHQVJSo3f+s8PetDPJ9/iHkqyKm98zj31zIatR9Np+811601s19ePhU5mbh5hdLgi1HvMKUvOvb3QRbP+5XP23fml1nz8PUPZNyIwchSU/SGz83Jxs3dg45demLv4Fjgdr19/Zm/bKN2GT95dmFl4a0YWVkij7zB5f5jijopr6RhJTM+KmfGyn2ZTF6RRk4u9P/MCmOjguOkpKnYfDiLCUvTmLgsjRv3lPRubUUxpxerIXXLm/HhVfX+f7l27Rq7d+9m/vz5VK5cmRo1ajB79mxWr15NbGzsS+NeuHCBqVOnsnDhwjfe/3tRue3SpQuHDx9m5syZSCQSJBIJd+/eBeDcuXNUqFABS0tLqlWrxo0bN7TxoqOj+fjjj3Fzc8Pa2pqKFSuyf//+Qk/v3q0rqNWgNTXqfYyHdwBf9h6OqZk5Rw9s0Rt+//aVlCxblcatO+PhHUDr9n3xDQjj4M412jAbV/5KqfLV+azzQHwDwnAt5k1EpdrY2uef2KNvXKRus7YEhJTExd2LFp/1wNLShnvR1woln5s2baJxkyY0bNgQH19f+n3zDWZmZuzdu1dv+KHff0/z5s0JDAzE29ubAQMGoFKpuHjhgjZMvXr1aN+hA2XLli2UNP8btVrNxb+XUqFBbwJK1sPZI5T67SeRIY/n9uWCy45veC2qNB1IYOkGBYY5uXMGfuG1qd5iCC5exbFz9sG/ZF0sbQzXCgiwb9sKajZoTfUn5a9jL035O3ZQf/k7sH0lJcpWpVGrzhTzCqBV+774+IdxcFd++du8QlP+Pu00EJ+AMFzddcufp28QfYZOoUzF2ri6exNeqhKtO3xN5Nm/ycvT/2T2dezaspI6DVtRq34LPH0C6NrnB8zMzPl7/za94fduW03pclVo1uZLPL39+bRDb/wCwti/Yy0Aj2JjiLpxmS59vicguDjFvHzp0vt7cnNzOPn3HgBuXbtIQnwcPQeMxNsvCG+/IHoNGM2dqGtcjTz71nkCTXk7tnspdVv2okT5ehTzCaVtr4nIU+O5eq7gJ/dHdy2mUp3PqFCrDW6eQbTqOgpTM3PO/r1RG6Zy3c8JCKuAo4snnn7Fafhpf2RJj0hJeAhAxdqf0PLL/xEQXhEnV2/KVm9J+ZqtuXzm7c6RarWaI7uXUb9VL0pWqIuHTyhf9JmAPDWey2cLztPhnUuo/NGnVKrTGnevID7pPgoTM3POHM7PU60mnajb8it8gsro3UZYmZp80Xs8oaWr4+TmTYnydandrAuXTr99nk7vX0qNZn0IjaiPm1cYLbtOJi01nhvnC972qX2LiKjxOWWqf4KLRxBNO4zB2NSci8c2APAg6h9kSQ9p0WUirl6huHqF0qLrJOLuXebu9ZMAqPKU7F0znnqfDqF87XY4ufnj4hFE8QpN3ypPz/sQz+cfYp70UavVnDmwlGpN+hASUR9XrzCad51Memo8Ny8UXD4DS9am1sffElq24OvWu7Bt01rqN25O3QZN8fbxo1e/QZiZm3Ng70694YNCwuncvQ81atfDxKTgHhlGUiMcHJ20i62dfSHl4O0k7Pmbm6Nm8HhL4d+fGkLd8mbsOplNZJSShwkqFu/MwM5aSkSwSYFxLkUruXJHSUKqivgUFVuPZpOTq8bfQ7cDqZerEfUrmrFsd2ZhZ+M/Ra1WF9mSk5ODXC7XWXJyCn4o9ipOnDiBvb09FSpU0K6rX78+UqmUU6dOFRgvMzOT9u3b8+uvv+Lu7v7G+38vKrczZ86katWqfPXVV8TFxREXF4e3tzcAw4cPZ+rUqZw9exZjY2O6PfM0NT09naZNm3LgwAHOnz9P48aNadGiBTExMYWWVqVCwb3oa4SXqaxdJ5VKKV66MtE3IvXGib5xieLPhAcoEVGV6Jua8CqVisizR3H38GXamL4M7FyPn4Z24p9Tf+nECQwtw5mje0lPk6FSqTh1ZA8KRQ6hJcsbOJegUCiIunWLiIgI7TqpVEpERATXr71aZTonJ4e8vDysbQzTbdUQ5MkPyExLwDukmnadmYUNbj6leXT3whtvV61ScffaIexd/NjyR3cWjKzGuhmfc/uSYS9m2vJXWrf8hb+k/N2+eYnipZ8rf2WrcvvGM+Xv3FHcivkyfWxfvutSj5+/78T558rf87Iy0jG3tMLI6O1GPygVCu5GX6dEmYo6eSpRpiJRNy7pjRN14xIlylTSWVeqbBVuPQmvVGi6OT3b80EqlWJibMKNaxcBTRmXIMH4mZsnE1NTJBIpN69deKs8PZWc8IA0WSJBJatq15lb2uAdUJp7Ufr3oVTm8vDuVYJKVNFJe1CJqgXGyc3O5Ozfm3B08cLOqeALRnZWGpbWdm+Ul6eS4x+QlppIcMn89FlY2uATWJp7ty7qjaNU5vLwzlVCnvk7SKVSgktWKTDOqzJEnlITH5AhT8AvPP+8YG5pg6d/GR7ePq83Tp4yl7iYK/g/E0cileIfXo0HT+IolbkgkWD0TJdpYxMzJBIp96POARAXc5W01MdIJFLmj2vFjME1WDWzB/EPb75Vnp71IZ7PP8Q8FUSmr3xa2ODxkvL5X6FQKIiOuknpiPz7FKlUSumI8ty8fuWtth0X+4AeX7ahT7cvmPHLOBLiH79tcv/fc7aTYmct5fq9/IfW2blwJy7vhYpqQSQSqBBmgqmJpkvzUybG0K2ZJav3ZyLPEG2378qECROws7PTWSZMmPBW23z06BGurq4664yNjXF0dOTRo0cFxvv222+pVq0aH3/88Vvt/72o3NrZ2WFqaoqlpSXu7u64u7tjZKTp/zB+/Hhq165N8eLF+eGHHzh+/DjZ2dkAlClThl69elGyZEmCg4MZN24cgYGBbN26tdDSmpaWikqVh62dblcZW3tHZKlJeuPIUhOxfW4Mn629E/IUTfg0WTI52Zns3LiIkmWr8d3o3yhX+SN+mzSYG5fPaeP0GTKJvDwlAzp9RO/Pq7Bs7ni+/mEqbsV8MDS5XI5KpcLBwUFnvb2DA8kp+rsSPW/RwoU4Ojr+p56AZ8oTAF5oTbW0cSYzLVFflFfbbnoSipxMzh2ch29YTVr2WkBAqfrsXPwND6NOv1Wan5X+tPzZv1j+5C8pfzbPlz87J215fVr+dm3SlL+Bo36jbOWP+H3yYG5cOadvk6TJU9i+bh61GrR56zylyTV5stOTp9QU/XlKTU16IbydvSOyFE035mJefji5uLN22a9kpMtRKhRs37CE5KR4ZMma3zkotCRm5uasWTKHnJxssrOzWLVoJipVXoH7fV3pqZp9Wdvpjq+0tnMiXaa/vGU++Y1fiGPrpN3eUyf2r2Jkj/KM/KoCNyOP0P37+QWOPb138zyRp3ZT6aPP9H7/qtKepNtGT57SCshThjZPuuXQxs4JeeqbH3eJj+5xbM9KqtR7uzxlPDkvWD13XrCydSJdXsDvlJ6CWpWHle1zcWycyHjyd/AMiMDU1IKDG39BkZNFbk4mB9ZPQq3KI12m2Wdqwn0A/t42hxpN+9D2m7lYWNmxfMqXZGWkvlW+nvoQz+cfYp4Kkv60fOorawWUz/+KNLkMlSoPe3vd38nO3oHUFP3DTl5FcGg4/b79gR/H/kLPr78j/lEcPw79hqzM/18tgoZma6UZBynP0B2ak5ah0n5XEA9nKdMH2DH7OzvaNbDkj80ZPErK385ndS24HaskMurte3sJr27YsGHIZDKdZdiwYXrD/vDDD9oetAUt16+/2VDIrVu3cvDgQYPMrfTeTChVkNKl8yfmKFZMM7FSfHw8Pj4+pKenM3r0aHbs2EFcXBxKpZKsrKzXarnNycl5oXk+N1eJqalhx0m+zNMpwstWqkPDlh0B8PEPJerGRQ7tWa9tmd208jcyM9IZNOZ3bGwc+Of0X8z95Xt++HkBXr7B7yy9r2Lt2rUcPnyYSZMnY2r6dhO9vI0b57ZxaF3+eKPmPeYWyn7Uas0J3L9EXSJqdwHAxTOcuLvnuXxiNZ5BlV4Su2ipn5S/iEp1aNAiv/xFX7/I4T3rCS2h2zMgKzOd2eMH4OEdQIu2vd55el+FsbExA36YxPw5P9G7Q32kUiNKlKlI6fLV4El+be0c+GboBBbPncTe7WuQSKRUrdUQv8CwN57o4PyxbWxaNFr7ucugwilvT5Wt1pzgklWRpyZyZOciVs75jt4jVmDy3Pnr0f1bLJ3Rj3qt+hJSqnoBW9Pvn6PbWb9gtPZz96G/GyLpb02W/Jh5k3pRunIjqtR9vcrt5VNb2bk8/7zQtt8fhk4eAFY2jrTpNZNdK0Zz5uAyJBIpJSo2w92nBBKppow9PXdUb9qbsPKNAGjeeQKzv6/FtbO7KVf7i0JJ2+v4r5zPDem/nKcrp7aye2V++fzs68Ipn++zchXye474+QcSEhpO765tOXbkL+o3alaEKXu/VAw3oX1DS+3n3za82my3+jxOVvHzkjQszCSUDTGhc1NLpq1O51GSitKBxoT6GPPzkjRDJPu9oyrCCaXMzMwwM3u1Os2gQYPo0qXLS8MEBATg7u5OfHy8znqlUklycnKB3Y0PHjxIdHQ09vb2Ous/+eQTatasyaFDh14pjfABVG5NTPL7+D+94Xw62cvgwYPZt28fU6ZMISgoCAsLCz799FNyc3NfefsTJkxgzBjdQf5d+w6j29fD9Ya3sbFHKjVCLtN94ihPTS5whlU7e+cXWtXkqUnYOjhpt2lkZEwx7wCdMMW8/Il60j0yPu4+B3euYezMdXj6aGZu9PYP4dbV8xzcuZZOffSn903Z2toilUpJee4JeGpKCo7PPSl/3ob161m3di3jf/4Zf39/g6brdfmX+Ag3n/wHJHl5mrKRmZaElW1+l4rMtEScPfXP3PgqLKwckEqNcXQP0lnv6BpI7B39rZ9vwvpp+Ut9sfw93zvgKTt7Z9KeL3+yJG15tX5a/rx0y5/7M+XvqeysDGaO64e5hSV9v5+KsXHBY3BelY2tJk/PTx4lT03G3kF/nuztnV4IL0tNxu6ZyUf8g8IZP2MFmRnpKJUKbO0cGDW4K/5B+b9zqbJVmPrHJtLkqUilRlhZ29Cvc2Nca7zZGLXi5eri/czsv3kKTXlLlyVia++iXZ8uS6KYb5jebVg++Y2fb9lNlydhba/bWmpuaYO5pQ3O7n74BJVmTK+qXDm3n4iq+Td3jx9GMX9iNyp99Bn1WvV+/TyV/4jvgkppPyuVmi7fabJEbB108+RRQJ6stHnSLYdpsiRsn8vTq5ClxPP7T13xCy7Lpz1Gv3b84DJ16eGfP643T6n5nTLSkrCxzz8vZMiTcPMu4HeydkAiNdJOHqWNk5aE1TOt2gElavD1z/vJTEtGamSMuaUtMwZXx95ZM6bW2k7zN3Qplj8jr7GJKfbO3siS4147b/p8KOfzZ32IeXoqqExduj1TPpVPy6c8CWu7Z8pnWhKuXvrL53+Fja0dUqkRqc9NHiVLTXnpZFGvy8rahmKeXjyKe2iwbf5/EBml4G5cfoXz6aRRtlZS5Bl52vU2VlIexOc9H11HngrtjMoxj/PwK2ZE3fJmrNybRaiPCc72Uqb21x1C0vNjS6Ie5DF9zZtXqgXDcXFxwcXF5V/DVa1aldTUVM6dO0f58poGkIMHD6JSqahcubLeOD/88AM9evTQWVeqVCmmT59OixYtXiud70W3ZABTU1Py8l5+4Dzv2LFjdOnShdatW1OqVCnc3d21E1G9Kn3N9R2/GlxgeGMTE3wDw7kWmd/VVKVSce3SaQJDS+uNExhaSic8wNWLpwgMKa3dpl9QcR491E3749gY7WuAcnM1XbGfb1GSSqXaJ/+GZGJiQlBwsM5EGyqVigsXLhAWXnAlcN26daxatYpx48YREhJi8HS9LlNza+xdfLWLo1sQljYuPLh1QhsmNzudxzGRuPtFvPF+jIxNcfUpSWr8HZ31qQl3DfoaoALLX2TB5S8gpBTXLumWv2sXTxEQqlv+Hsfe1QnzODYGJ9di2s9ZmelMH9MXI2MTvh42/YXWwbfJk19gGFcjz+jk6UrkWYJCS+mNExRaiivPhAe4fOEUwXrCW1pZY2vnwKPYGO5EX6N85VovhLGxtcfK2oYrkWeQy1IoV+nFMK/CzMIKZzdf7eLqGYSNnTNRV05qw2RnpXP/diS+QRF6t2FsbIqnX3GirubHUalURF05WWAcAM30k2qUivyHe48f3GLez10pV+NjGn028I3yZG5hhbO7r3Zx8wzExt6ZW1fyJ43IzkwnJjoS32D9E0EZG5vi6V+cW1eez9OpAuMURJb8mN/HdcHLvzhte/+EVPr6lzkzc2scXX21i/P/tXffYVEcbxzAv3fAFTh670W6gihWMGJDbMSYRI0axRKNLWpijQWNRpPYjcbeW0zsvbcoNjTYEQVBLCi9w93Bze+PC4snVT1A/L2f5+F5uG33zt7s7M7O7KylM3T0TBEXWVwuSPOy8Tz2FqydSu+yqqEpgKVdXcQ9KF5H+ez9ZdiUso62rhFE2nqIe3AZOVkpcK3fBgBgaV8PGpoCpLwqLjsKC+TISHkOfWP1lB0fS3n+uo8xTUWEIgkMzey5Py5/PlDNny/KyZ8fCi0tLdRxdsWdm8U3eRUKBW7f/Beu7mW/6u1t5eXl4lXCCxgaqa/C/P9AKldWSIv+ElIUyMhWwM2uuG1MJAAcLTUQ++LtuhPzAGhqKK9Zj1/Lx+yNWZizqfgPAHadzcPm/4PBpZiC1dhfVfDw8ECHDh0wePBgXLt2DWFhYRg5ciS++uorWFkpz1vPnz+Hu7s7rl1TXn9aWFigXr16Kn8AYGdn99Y3GWtNy62DgwOuXr2KuLg4SCSSSr2Kw8XFBXv27EFwcDB4PB6mTZv21q/wKK25XiDIKXed9p/2wbrfp8OhjiccXeri1KHtkObnwb/tpwCAtUumwdDIDF/0/Q4A0K5Lb8ydOhjH92+Bt28LXLt4HHEx99Fv2FRumx0+64eVCybB1bMh3L0a4W7EJdwK/wcTZq0GAFhYO8DM0habV85Gj5DvIdHVR8S1c7h/6ypGTXn/12CUplu3bli4YAFcXFzg6uaG/fv2QSqVIjBQ2ao1f/58GBsbY8CAAQCAnX//jS1btmDCxIkwMzdHaqqyZU0sFkMsFgMAsrKykJiYiNQUZWvHs2fPAACGhoYwqoaTEo/HQ/2W/XD95EoYmDhA18gaV4/9Dh09MzjVK37/374V/eFUrx28P1F205VJc5CRXNzdPTP1GZKeR0Kkrc9VXhu0GoTjW36AlVMjWDs3RfyDC4i9fxbdhm9WaxoCg/tg/dLpcHD+L/8d3A6ZNA/+bZT5b92SaTA0NsPnXyvzX9suvTF/2mCc2L8FXr4tEP5f/us7tDj/te/aD6sXToKLZ0O411Pmv9vX/8G4//JfUcVWJsvHoDE/Iz83B/m5yuNEV88QfI1y3hFQCR279sbqJT/B0dkDTi51cfzgDkjz89CynfJ1KCsXTYehsRl69huhjDf4K8yZ8i2O7NsGn0b+uHLhBGJjIjFwxGRum1fDTkFPzxDGphZ4+iQaW9cuhG/TAHg1KO7O9s+pg7CydYCuniGio+5g69oF6PBpL1jalP++1sri8Xjw79APZ/avgomFPYxMbXBi1+/QMzCDp2/x+6nX/DIAdRu1g19gHwBAi479sXP1j7BxrAdbJy9cPL4ZMmkefFt2AwCkJD7F7StH4eLlD4muITJSX+HcobXQEgjhXl9ZMX/59BHW/DIArt7++KRjCLLSlc/t8fgakOi9+7HG4/HwSYe+OL13FUwt7GBkaoNjO5dCz8AM9RoVp2nl7IGo16gtWgQp0xTQKQQ7Vk6GjVNd2NXxwoWjWyDLz0PjgG7cOpnpSchKT0bKK+WxlvD0EYQibRiaWEJbYsBVbA1NrBDcZzyyM4tb719vGX+XNDVp1w9hR1bAyMweBiY2OL9/CXQNzODWoLhc2LYwBK4+gWjcRlkuNA0cgAMbJsLSvh6sHL1x7dQmyGV58PYvfhb9VthumFjWgbbECM8eR+DkX3PQtF1/GFsoe0oIxRI0DPgK/xxYCj1DS+gbW+HyiXUAAA/fDu+cpjd9jOX5x5im0vB4PDRu2w+Xjirzp76JDS4cWAKJgZnKe2v/XKTMn76t/ztv5ecgLan4vJWe/AyvnkZCpKMPfSP1vnu9PMHdemDpwl9Qx8UdLq7uOLR/F6T5eWgT2BEA8PuC2TAyNsXX/YcAUA5C9Sw+DoCyp0hKSjJiYx5BJBbD0soGALBp7XI0auoHUzNzpKak4K9t68Hn89EioGbe41seDR1t6DgXj42i7WgDvfrukKVmIP+penpnqNOZG1J0ai5EUlohkjMUCG4hRka2AjcfFb+PdnQPHdx8JMf5COXN1K6fiHAvVo7UTAaRAGjsIYCLnSaW7lReJ2TmsFIHkUrNZEjJUH8DDal627Ztw8iRI9G2bVvw+Xx88cUX+P3337n5crkcUVFRyK2C5+BrTeV23LhxCAkJgaenJ/Ly8rBhw4YK11m4cCEGDhwIPz8/mJiYYOLEicjMzKzyWJu0CEJWZhr27ViBzLQU2Dq64fvQZVw3z9Skl+DxilsTnN3rY/D3s7F3+3Ls2boMZpZ2GDlpIWzsi7uwNmzWBn2/nYwjezbgz3XzYGFlj+ET5sHFU3lXVlNTC2OmLsWuLb9j6ZwxyM/PhZmlLQaO+gnevi2qJJ0BAQHIzMjAlq1bkZaaCqc6dTBz1ixuAI+kxETwX2tJPnz4MAoKCjBn9myV7fTu0wdff6082V65cgWLFi7k5v32668llqlqDdt8gwJZHs7uDIU0LxOWjr4IHrIGmq+NrJuRHI+8nOJuVIlP72Lf8hDu88X9yrjdG3+Gdr2U/9fxDkSrL2fgxunV+GfvbBiaOaJj/99h5aTe0awb/5f/9v+5Apnpyvw3etoyrltyavJL8Piq+e+b72dj3/bl2LtNmf9GTFwI6zfy39ffTsbRPRuwY908mFvZY9iEeXDxUOa/+McPEPvoLgBgynDVUe5+WXkIJmbvd6HU7JNAZGWmYff21chIS4GdoyvGT1/CHVMpya9U0uTq4Y1hY2dh19aV2LllOcytbDHmx3mwtS/u2pmemoLt6xYjIyMVBoYmaNG6Ez7rMUjlexOeP8HfW/5AdnYmTM0s8Wn3Aejwae/3SsubAjoPgkyahz3rpyM/NwsOrg0xYPxqlZbvlMSnyMkqzm/1m3VETlYqTu5eiqyMZFjZuWPg+FXcIE5aWkLERd1A2PEtyMvJgETfBI5uvhgWup0btOlO+HHkZKUiIuwgIsKKX6lkYGKFSYvebxTv1sHKNO1aOwN5uVlwdG2IwZNWqabp1VPkZKVzn32ad0R2ZiqO71qGrPRkWNm745tJq1QGprp86m+c3LOc+7x8Zj8AQM9vf0bjgG54eOcSkl/FI/lVPGaNbKMS0/zt7zfyavOgwZBL83BkayjyczNh6+yLr0avVSkX0pKeIi+7+HfybNwJOVmpOH/gd+RkJsHcxgNfjVoLiV5xmlJexeLs3oXIy8mAgbE1/DsNRZN2/VW+u+0XE8Dna+LA+gmQy/Nh7VgffcZugljn/UaBft3HWJ5/jGkqS9P2gyGT5uHYNmX+tHH2Rc/vSubP3NfyZ8KTu/hzUT/u85ldyhFS6zXrhi79f6222P1btkFGRjp2bF2P9LRUODo5Y+rMeVy35OSkRJVrprTUZIwbVdx98cCeHTiwZwfqevlg5q/Km/kpKUlYNHcmsjIzoadvAI+6Xvhl4Qrof4CvA9L3rYfmp7dwnz3nK2/CPt28B7cHlT6wT006cU0KgRYPvYO0oS3kIeZ5AZbuykHBa50rTQ00IBG/1m1Zm4f+nXSgp8NDvpTheXIhlu7MURl1mXxcjIyMsH379jLnOzg4cGO6lKWi+WXhsXdd8//Yxfvlt9zWRpaij2+I/CORH96zUu+rvsPH1z1HpPHxndyeZ0pqOoQqoanx8Z0u0rJrzT3eSvO3fVzTIZBK+OeJU8UL1TKNbct+zUdt9cQjoKZDqBKH5pT9vtHaasV4g5oO4Z30nvSsxr57+682NfbdVaXWPHNLCCGEEEIIIYSU5eO7ZU0IIYQQQgghtQB7y/GASPmo5ZYQQgghhBBCSK1HlVtCCCGEEEIIIbUedUsmhBBCCCGEkBqgqKL3zf6/opZbQgghhBBCCCG1HrXcEkIIIYQQQkgNoLeyqhe13BJCCCGEEEIIqfWo5ZYQQgghhBBCagCjZ27VilpuCSGEEEIIIYTUelS5JYQQQgghhBBS61G3ZEIIIYQQQgipAdQtWb2o5ZYQQgghhBBCSK1HLbeEEEIIIYQQUgMUTFHTIXxUqOWWEEIIIYQQQkitR5VbQgghhBBCCCG1HnVLJoQQQgghhJAaQANKqRdVbt/B+duimg5B7bKyrGo6BLWb7rKjpkNQu41Pe9V0CGon0a7pCNRPV1xY0yFUCVu9tJoOQe3a5pyt6RDUrv8fTWo6BLXj8Xg1HYLarepzpqZDULsxW+vWdAhqJ55ztaZDqBJdJjet6RDUb3xUTUdAPgBUuSWEEEIIIYSQGkAtt+pFz9wSQgghhBBCCKn1qOWWEEIIIYQQQmoAY9Ryq07UcksIIYQQQgghpNajyi0hhBBCCCGEkFqPuiUTQgghhBBCSA1QKBQ1HcJHhVpuCSGEEEIIIYTUetRySwghhBBCCCE1gF4FpF7UcksIIYQQQgghpNajyi0hhBBCCCGEkFqPuiUTQgghhBBCSA1gjAaUUidquSWEEEIIIYQQUutRyy0hhBBCCCGE1AAaUEq9qOWWEEIIIYQQQkitRy23hBBCCCGEEFIDqOVWvaqtctuqVSv4+Phg8eLF1fWV5aqpeFrW46FBHR6EWsCzZODodQXSsste3s+DBzcbHoz1gIJC5TpnbimQmlW8TMdGPDha8CARAbIC4Pl/y6Rklb1ddQr01URjdw2IBUDcKwX2XSxASmbZB2qr+hqo66gBM30e5IXAk1cKHL1WgOSM4nUkYqBTUy24WPMh1AKSMhjORhTgblzVP3S/4+w1bDoZhpSMbLjaWGDiVx3h5WhT4XrHwu9g0trdaFXfDYuH9+Kmrzh4FsfD7+JlWia0NDXgaWeJkZ+1rdQ21YkxhitHf8edyzshzcuElWNDtOk+A4ZmDmWu8yw6HDfOrEPi07vIyUxCl0F/wNm7XZnLn/4rFHcu/YWW3X5Ew1b91R7/+QO/4+aFncjPzYSNc0N06jMDRuZlxw8A189uw+Xj65CdkQRzW3cE9ZoGa0dvbn52RhJO7ZqL2PuXIMvPgbGFI/w7DYWHbxC3zNJJbZCR8lxlu60/Hwv/jkPeO00ndy/DtbM7kZebBQfXBug2IBQmFuWn6dLJ7fjn8HpkZSTD0s4NXftNgW0dZZpys9NxcvcyPLxzCekpCdDRM0Rd37Zo/+UoiLV1uW08jbmDo38txPO4++CBB5s6Xuj01VhY2bu/V5pKc/zQbhzc8yfS01Jh71gHA779Hs5unqUu+/TJY/y9bR1io6OQlPgS/QaPQueuPcrc9r6dW/DnplXo+Gl39B8yWu2xl+Wvs1ex6fhFZTlha4GJvTqjXmXKiWu38eOanWjl445FI/oAAOQFhVi+7xQu3n2IZ0lpkIhFaOrhhFFftIeZgV5VJ0VFjyADtG0mgY6YjwexUqzdnYKXyQWVWrdrG3306WyIw/9kYtP+1FKX+fEbMzTw0Ma8DYkIv5urztDL1D1IH22bKtMUFSvF2j2plU9Taz307myII/9kYtOBNG764C+MUM9FBCN9DeRLGaLipNh+OA0vkiq33fex8/g5bDt4EikZmXCxs8HYAT1R19mh1GXPXovAxn3H8OxlEgoKC2FrYYbenduhU8um3DIzl2/C4X+uqKzXrL4nlvz4XVUmo1TdWusgoKEY2iI+Hj2VYfOhLLxKLSxz+daNxGjTWAwTAw0AwPPEAuw/n4M70TJuGVNDDXzVXgIXOwG0NIE70TJsPZKFzJzqGcSni78ILbwFEAt5ePyiANtP5CEpvezvbukjwCc+QhjrKTtXJqQU4silfNyLLT1vjfxCB3WdtLBybw5uRcurJA1vy6hFIziNHQT9hvUgsjLD9S+G49WB0zUdFvk/Uau6JctksooX+oA1d+ehsSsPR68rsPGkAvICoFcrPjTK+RXszHi4Ec2w8aQC288poMEHerfiQ0ujeJmXacDBqwqsOqrAjvMKgKfcLo9X9WkKqK8Bv7oa2HdRjj/2yyCXAwM7akFTo+x1HC35uHKvEH8ckGHdERk0+MCgjsqTTpEerbRgqs/DphMyLN4tw724QvRuqwUr46pN1PHwu1iw6zi+7dwKf075Fq425hj++1akZpZzBwLA8+Q0LNx1Ag2d7UrMszc3xqRenbArdBg2jB8IK2MDDFu8BalZOVWVjFJdP70GEf9sQdseM/DV939DSyDG3pWDUCCXlrmOXJYLU2s3tP5yeoXbj751EglPbkFH30ydYXMuH1uD8NNb0PHrGRgw+W8IBGJsX1x+/PfCj+Dk37/gk+AR+GbaXpjbuOPPxYOQk5nCLbN//USkvoxFj5ErMGTGQbg1CMSeVWPwMv6+yrYCuo7CmPkXub/Gbb5+7zSdP7QOYSe2otvA6Rj50w4IhGKs+20I5LKy03TrylEc2vYb2nYbjlE/74KlnTvW/TYE2RnKNGWmJSEzPQmde4/HD7/uR48hc/Dw9kXsWjON24Y0Pwfr5w2BgbElRs7YgaGhWyAU6WDd3MEoLFDvxdGlf05j89pl+KLXAPy6ZB3sHZ0xJ/QHZKSnlbq8VCqFuYUVeoUMhYGhcbnbjn4YiVPHDsDOoY5aY67I8fA7WPD3UXwb3Brbpw2Dq40Fhi/eVGE58SI5DYt2HkcDF3uV6fkyOSLjEzC4cyv8OW0YFgzrhSevUjBm2baqTEYJXVvroeMnelizKwWTlyRAKmOYMsQcWpoVl7t1bAUIbCZB3Iuyz9OdW+qhutsnPm2th44t9LB2dyqm/P4S+TKGyYPNVM43ZaljK0C75rp4UkqaHj+TYeXfKfhh7gvMWZMIHg+YMsS8ys+7Jy9dx5ItuzHoy87Y9MtkONvbYPQvvyM1I7PU5fV0dDDgs45YO2s8tv02FV0CmuPnlZtx5ZZq+da8vieOrPyV+5v13cCqTUgpOvlrI7CpNjYdysLMtamQyhjG9jUo97dKyyzEzlPZmLEqFTNWpyIyVobRvQxgZaq8CBFoAeP7GoABmLspDbPXpUFTAxjT26BarpHaNxGidUMhtp/MxdxtWZDKgFHddcq9RkrLUmDf+Tz8sjkLv27JQtSTAgztpgNL45IXi218hdV+TFWGho42Mm9H4e6on2o6FPJ/qFoqt/3798f58+exZMkS8Hg88Hg8xMTEYNCgQXB0dIRYLIabmxuWLFlSYr3PPvsMs2fPhpWVFdzc3AAAly5dgo+PD0QiERo1aoR9+/aBx+Ph5s2b3Lp3795Fx44dIZFIYG5ujr59+yI5ObnMeOLi4qp8PzRx4+HiPYaHz4HEDODAVQV0xYCbTdkl7I7zCtyOZUjOBBLTlZVYfR0eLIyKl4mIYXiaBGTkKCu6528rl9HXqfIkwb+eJs5EFOD+EwVepjL8dU4OPW0ePO3Lzlobjslx41EhEtMYElIZdp6Xw1CXBxuT4v1gb87HpXsFeJbEkJrFcCaiEHkywNqkarPsllOX8XmLhvjMvwHqWJlhap8uEAm0sO9SRJnrFCoUmLx+D4YFt4a1qWGJ+Z2aeKOZRx3YmBrB2coMY7sHITtfikfPXlVlUlQwxhBxfjOath+GOl7tYGrtjqCv5yInIxExd06VuZ6jZwD8On8P5/qB5W4/O/0Vzu2ehY5954OvoaXu8MEYw7XTm9Gi8zC4+bSDuY07Ph04F1npiYiKKDv+qyc3oMEnPeDj/wVMrZzR6eufoCUQ4WbYbm6ZZzERaNTma1g7esPQ1BafdBkOkbYeEp7cU9mWQKQDib4p9ycQar93mi4e24w2Xb9FXd+2sLRzQ4+hvyIzPRH3bpR9h/vC0Y1o0ro7Ggd8DnNrZ3QbMB1aQhHCz+8BAFjYuqDv6CXwbNgaxuZ2cK7bDEHdRyMy4iwKC5V3/pNexCI3OwPtv/wOplaOsLBxQbvPhyM7IwVpyS/eK11vOrxvB9oGBaN1YGfY2DnimxHjIRCKcPbkoVKXd3b1wNcDR8A/oB20tMrOS/l5uVg2/ycM+W4CJBLdMperCltPXsLnnzRCV/+GqGNlhilfByvLibB/y1ynUKHA5LW7MPTTNrAxMVKZp6stwsof+qN9Yy84WJjCu44tJvXqjMgnL5CQkl7FqSnWqaUe9pxKx/V7eYhPkGPZn0kw1NNE43rl53WhgIfv+phi1c4U5OSW3iJlbyVAlwA9rPgrpdT5VaXTJ7rYcyqDS9MfO5IrnaaRvU2wemcKsvNKpun01WxEPpYiKa0Qsc9l+OtYOkwMNWFmVLUd4v48fBpd2/gjuJUfnGwsMembXhAJBDh47nKpy/vWdUWrJj5wtLaEjYUpvurUBs521rj5IFplOS0tLRgb6HN/epJquIB4Q/tm2jjwTw4ioqR49qoAa/ZmwlBXAw3dhWWuc/OhDLcfyfAqtRCvUgqx+0wO8mUMzjbKssPFTgATAw2s3ZeJZ4kFeJao3K6DlSY8HAVVnqY2vkIcvZKP29EFeJ6kwMYjOdCX8OHjUnbZdiemAPdiC5CUrkBimgIHLuZDKmNwtFLNWzZmGmjXWIgtx6qnB8TbSDr+Dx5OX4xX+8s+P5NiCqaosb+PUbVUbpcsWYLmzZtj8ODBSEhIQEJCAmxsbGBjY4OdO3fi/v37CA0NxeTJk/H333+rrHv69GlERUXh5MmTOHToEDIzMxEcHAwvLy/8+++/mDVrFiZOnKiyTnp6Otq0aYMGDRrg+vXrOHbsGF69eoUePXqUGY+trW2V7gMDHUAi5iHuVfE9NqkceJ4CWJffOKFC+F95mF/GzXEtDcDbiYe0bIbMKi7vjHR50NPmIfp58cEhlQNPkxjszSuftUQCZaU297XGqievFPCuowGxEOAB8HZStlY/Tqi6A1FeUIDI+Bdo6uHETePz+Wjq7oTbj5+Vud6qQ+dhpKuDbi0aVuo7dl+4AYlYCFdbc7XEXRmZKc+Qm5kEW1c/bppQrAsL+/pIiC274l4ZTKHAsa3j4dtmEIwtXd431FKlJz9DdkYSHD2K4xdp68LaqT6ePS49/sICGRKe3FNZh8fnw8HDD89jitexqdMA98OPIi8nHUyhwL1rh1Egl8LerYnK9i4dXYMFY5pizczPcPn4WigK36/7YWrSM2RlJMOlXnNumlhbF7Z1vBH/6Gap6xQUyPA89j5c6jbjpvH5fDjXbY746NLXAYD83GyIxBJoaCgvjkwtHaEtMUD4ud0oKJBBLstH+LndMLNygqGp9XulSyVeuRyPox/Cy6eRSrxePo3w6MG9ctas2LoVC9GgsR+8fRq/b5hvRV5QgMgnpZQTHnVwO+ZpmeutPnhWWU584lup78nKk4LH40FXW/TeMVeGmZEmDPU0cfthPjctL58hOl4KV/uyKxcA8M3nxoi4n4s7j/JLnS/Q4mF0HxOs25OCjKyyu5iqW1Ga7jzK46YVpcmlgjQN+twIEZF5ZabpdUIBD60aS/AqRY7k9KrrliwvKMCD2Hg08Sp+dIDP56OxlzvuPHxc4fqMMYTfeYAnCa/QwEO1rP73/kN0GDIe3b+fjt/WbkdGVvm9ENTN1FADBroauP+4+OImT8oQ80yOOjaVq4TyeEDTekIItXiIfqbsgaKlATAABQXF117yAgbGAFc79d+IfZ2JPh/6Ej4ePCnOE/kyIDahsERFtSw8HtDIXQsCLWWX5iJamsDAztrYcSoXmTkfYtstITWnWp651dfXh0AggLa2NiwsLLjpP/1U3F3B0dERly9fxt9//81VQgFAR0cHa9euhUCgLNxWrlwJHo+HNWvWQCQSwdPTE8+fP8fgwYO5dZYtW4YGDRpgzpw53LT169fD1tYWDx8+hKura6nxVCWd/65Pct44T+bkM0jEld9OYAM+niYxJGWoTvd15qFNfR4EWjwkZzJsP6eAoopvyBTFnZ2nWrBm5zFIxJXr78MD0KW5JuJeKvAqrXg720/L0butFqb3E6FQwSAvALaclJf7LO/7SsvORaGCwVhXojLdWE8HcS+TS10nIvoJ9oX9i7+mDS132//cjsLEtbuQL5PDRF8XK8f0g2E13hnPyUoCAOjoqt5J0dY1Rk5W6WmrrPDTa8Dna8InoN97bac82Rn/xa+nGr+OrjFyMkqPPzc7DUxRWGIdiZ4xUl4WXwh+8e1i7Fn1PRaMaQq+hia0BCJ8OXwZjMyKu442btMXFvaeEOvo41l0BM7uXYjs9CQE9vzxndOUlZ78XzwmJeLLKitNWelQKAoh0VddR1ffGEkJpV/c5mSl4fS+FWjSujs3TSjWwbdTNmHzopE4vW8lAMDEwh6DJq7mKsDqkJmZAYWiEPoGqi2V+gZGePHsyTtvN+z8KcTGPMScRWveN8S3piwnFDDSe7OckJRdTjx6gn0X/8WO0OGV+g6pXI7fd59Ah8ZekIirp3JroKfsJ/lm5TMjq5CbVxo/Hx042gjw4+KEMpcJ6WqEqCdSXL+XV+YyVcFAtyhNqifDjOxCbl5p/Hy04WgtwOQlZacJANr7SdCnsyFEQj6eJ8oxe3UiCquw7p6ema3Me/qqz2Eb6evhyfOyewJl5+ahy7AfISuQQ4PPx/iBvdDU24Ob38zHE62a+MDKzATPXyVh+Y79GPPrMqydNQEa/Op5ek1fovyejGzV3yozR8HNK4uNmSamfmMILU0epDKGpX+l40WS8oeIeSaHVMbQI1CCXaeVFfYe7XShwedVuN33pafD49LwuqwcBTevLFYmfIzvowstTUAqA1bty8HLlOLtdG8jxuMXBbgdXfXPeJOqRwNKqVeNjpb8xx9/YP369YiPj0deXh5kMhl8fHxUlvHy8uIqtgAQFRUFb29viETFJ/wmTVRbWG7duoWzZ89CIlG9+ACAmJgYuLq6VjpGqVQKqVT1+bcCuSY0tcq/61vXnodOjYoLr7/+ef+aZgdfHkwNgM2nSm7r7hOGxy+VFeVm7nx87sfHplMKFKqxgutTh49unxTf6dx47P2fge7qrwkLQz5WHFTdx+0baUIk4GHNYRly8xk8Hfjo3VYLKw/KVCrBNSknX4op6/citO+nFVZUG7s54q+pQ5GenYs9F//FhNU7sXXSNyUukNXlwfUDOP1X8XOyXb9dVSXf8+rpXdw8vxm9x+8BT40PMN25cgBHthbH/9V3VRM/AJzbtwT5eZno88NGaEsMERVxCntWjUHIhG0ws1E+CtGs/QBueXMbd2hoauHI1ulo/flYaGpVrlUhIuwg9qyfwX0eMG6lWtNRmvzcbGyYPxRm1nUQ+PkIbrpclo9da6fC3rUheo2YDwVT4J/DG7Bh/jB8N/NvaAmqp0L1LpKTXmHTmiWYMmsRBILyy+EPQU6+FFPX7cK0fl1hqFvxDS15QSEmrPoLDAyTvw6usrhaNNTBkC+Lb/z8svbtH5MwNtBA/8+M8POql5AXlF4u+9YVo56zCBMWqre7e2laNNDB4C+Lb6T8ui7xrbdhrK+BkK5GmL36FeQV1Bsu/JuD2w/zYaingS4BehjT1wShy15WuF510xYJseW3ycjLlyL8bhSWbNkFazMT+NZVXgu19yvu/eBsZw1nO2t8PjoU/957iMZe6h9gDgCae4kQElz8OMGibenvvK2ElAKErkyFWMhDY08RvvlMH79uTMWLpEJk5TL8sTMDIZ110a6pNhgDrt7JR9wLOZiaLyUae2ihd/vi7u7Ld7976/erVAXmbMqCWMhDA1cthHTSxsId2XiZooB3HU242WlizqZqGjWUkFqmxiq3O3bswLhx47BgwQI0b94curq6mDdvHq5evaqynI7O27duZWdnIzg4GL/99luJeZaWlm+1rV9++UWlhRkAWn8xDW0rGGDn0XOGtSnFJWfRoFE6IiD7tdZbHRGvUpW1oIY8uFjzsPm0Alml3PyWypV/adnA8xQFxn7Oh5sND/fj1Vd6349X4Ome4gqtxn83viViHrJea72ViHlISKm4Vv2pnybc7TSw6pAMma+NrWSky4NfXU0s3CVF4n/7JiG1EA4WfDSvq4F9F6vmysFQog0NPg8pb3THSsnMgYl+yUro06RUvEhJx+g/tnPTFP+dLX2H/YR9M7+DranyQkssFMDOzBh2ZsbwdrJF8LTfsTcsAoM6flIlaXGq1wYW9vW5z4UFyt8tJytFZcCn3KwUmFq/+8XL85jryM1OwboZrblpTFGIC/t+Q8T5zRg0/cw7bdfVpw2snV6LX/5f/Jkp0DUojj8nKwXmtqXHry0xBI+voTJ4FABkZ6ZwraWpifG4fnYrvp1xCKbWym565rbuiI++jutnt6FT35mlbtvasT4UhQXISHkGYwunUpd5k2fDNtyIxoCyi7EynmToGZqqxGdlV0aadA3A52sg+42W3ayMFOi+0ZorzcvBunlDIBTpoN+YpdDQLL4xFXHpMNKSXmD49D/B/69lpteIuZjxbXPcu3EGPs07VSpNFdHT0wefr4GMdNWRczPSUyscLKossdFRyEhPw6TRg7hpCkUhIu/dwvFDe7Bt7xnwNcoZreU9KcsJfonBo1Iys2Fcys2qZ4nKcuL1waGKyolG307H3lmjYWumLCfkBYWYuOovJKSkY/XYgVXaanv9Xi4ePSm+qVg0aJS+rgbSX2u91dfVQNzz0m9kOtkIYaCrgd++t+KmaWjw4OEkRAd/XfSe+AT1nMUwN9bExp9VB9sbG2KKyMdS/LTipfrSdD8XjxaWlia+apokGmUOfOVoI4CBrgZ+HVN8raChwYOHoxBB/rroMymeqxTl5TPk5RfgZXIBHj5JwvpZtmhcTxuXblbNM0EGehJl3ntj8KjUjEwYlTOqNp/Ph62Fstx0dbBF3PMEbNp/jKvcvsna3BQGuhI8fZVUZZXbiCgpYp4XD15XNMCSvoSv0nqrp8NH/Mvyz/mFhUDifyMqP0nIhqO1JjcwFQDci5Fhwu8pkGjzoFAAufkMS8aZIOmuepvZb0fLEZdQXOEsSpOeDh+ZOcXfpavDx7PE8r+7UAFuROX4V4VwsNRAG18htp/Ig5udFkwM+FgwSl9lnSFdtRH9rBCL/qreLuWEfGiqrXIrEAhQ+Fp/nbCwMPj5+WH48OJuWjExMRVux83NDVu3boVUKoVQqLxrHx4errJMw4YNsXv3bjg4OEBTs/QkvhlPWX788Uf88MMPKtMW7a94t8kKANkb5Ut2HoODOQ+v0pVnRoGm8nnbf6NL2cBrghoqXwe05YwCGZUYYJf33195o/G9C5kcSJGrVpYzcxmcrflI+O/EItQCbE15uHK//Mrtp36aqOuggdWHZEjLUt1m0ciIb95VZUyZrqqipakJDzsrXIuMRRsfZZcthUKBaw8e46vWTUos72hhgl2hw1SmLdt/Brn5Mkzo2QEWhmVfbDAFg6yg6m7vC0QSCETFF9qMMWjrmeLpw8sws1GmTZqfjZdPbsG7Ra+yNlMhj8ZdYffac7wAsHflIHg06grPpp+/83aFIgmEb8Qv0TdF3IPLsLD7L/68bDx/fAu+AaXHr6EpgKV9XcRGXoZbA+Xri5hCgbjIy2j030jHBTLlnSLeG13v+DwNsHJu6798Ggkejw9t3cpX0IRiHQjFxTfrGGPQ1TdB9L0rsLJXpik/NxtPY26jWduvSt2GpqYA1o6eiL53BXUbKdOkUCgQfe8K/AJ7c8vl52Zj3dzB0NQUIOSHP6D1RgunXJbHDaZXhMfjgweAqXGACU0tLTg5u+LOrRto3LwlF+/dWzcQ1OXd8ke9+o0wb9lmlWkrlsyBtY09Pv2iT5VWbIH/ygl7K1yNfIzWDZSvM1IoFLgW+Rg92zQtsbyDpQl2zhipMu2PfaeQmy/D+K86wcJIWU4UVWzjE1OwetxAGEjeb8CyiuRLGfKlqmVQWmYBvFxE3OjAYiEPznZCnLhUegvRnUd5GDtP9RVZw3qa4EWiHPvPZoAxYN+ZDJy5qrr+gvHW2LQ/Fdfvq7ebcvlpUlakitJ08nLpabobnY9x81VbmYf1NMbzRDkOnM0ss7Wv6LxbmZGl35WWpibcHe0QfjcKAY19ACjzXvjdKHQPalXp7SgYg7yc5uVXKWnIyM6BSRW+hipfxpD/xit+0rMK4eko4CqzIiEPdWy0cPb6290s4PF4pf4O2bnKH8/DUQu6OnxERJU9Kv27kMpR4hU/GdkKuNlpcpVZkQBwtNTAhZtv993Kazplmo5fy0fYHdX1pw3Qw66zebgd84F1GyCVwqr6OcL/M9VWuXVwcMDVq1cRFxcHiUQCFxcXbN68GcePH4ejoyO2bNmC8PBwODo6lrud3r17Y8qUKRgyZAgmTZqE+Ph4zJ8/HwC4C7URI0ZgzZo16NWrFyZMmAAjIyNER0djx44dWLt2LTQ0NErEY2RkxLVgvE4oFHKV6CKaWu92t+9aFIN/XR5SsxjSc4AALz6y8oCoZ8Vny96t+Xj4jOH6I+W0Dr481LXnYecFBWQFxc/uSuXK994a6ACedjw8fsmQKwV0xYCfJx/yQiD6RdV33w27W4A2DTSRnKEc1bh9I01k5jLcf1J8oH7TSQv34hS4fF+537r6a8KnjgY2n5BBKi9+5jhfpkxTUjpDcoYCn7fQwuGrcuTmA3Ud+HC25mPT8ap9h1vfds0xbeNeeDpYoZ6DNbadvoI8mRxd/RoAAKZu2AMzAz2M6tYOQi0tOFurDgpVNPhL0fQ8qQxrjvyDVvXdYKKvi/TsXPx17hoS0zMR6Fu3StPyOh6PhwYB/XDtxAoYmNpD39gGl44sgY6+Gep4Fb+3dveyENTxDoRPS2XlTybNQXpSPDc/M+UZEp9FQqStDz0jK4h1DCHWUR0hmq+hBW09ExiZV65Fs7LxN2nbDxcPr4CRmT0MTGxwbv8S6BqYcRVXANi6IARuDQK51/Q0DRyAA+snwtKhHqwdvXH11CbIZXmo76+sWBlbOMHQzB6Ht4SiXfeJEOsY4OHNU3gcGcZ1hX4WE4Hnsbfg4NYMApEOnsVE4OTfv6Bes08h1tEvGexbpKlFh344s28VTMztYWhmgxO7foeegRnq+rbllls9ZwDqNWoHv/bKd6J+0rE//l71I2wc68GmjhcuHtsMuTQPjQK6AVBWbNf+9g3ksnx8New3SPOyIc1T3mnT0TMCn68Bl3p+OPLnfOzbOAt+7fuAMQXOHVwLvoYm6niUrKC9j86ffYXli2ajjos76rh64Mj+vyHNz0Ordp0BAMsWzIKRsSl691c+t14gl+PZ0zjl/wVypKUkIe7xI4hEYlhY2UCsrQ07B9W8JRKKINHVKzG9qnwd6IfQ9Xvg6WCNeo7W2H7qMvJkMnT1Vw4qN3XdLpgZ6mHU5+1LLyfEykKvaLq8oBDjV+7Ag/gXWPLd11AoFEjOUFa+9HXE0CrjJq26HfknE5+300dCshyJKQX4qqMh0jILVN5HO22oOa7dycXxsCzkSxmevlQtk6UyhqxcBTc9I6uw1EGkktMLkZRa9RfiRy5koVtbfSQkFSAxtQA9OxiUSNPUb80QfjevzDTlyxiyc4rTZGakCT8fbdyKykdmTiGM9TXRtY0eZHKGiAdV+1xxr85tMXPFJng42cHT2QE7jpxBvlSKLgHKgelm/LERpkYGGNHrMwDAxn3H4OFkDxtzE8gKCnAp4h6OXriKiYOUNwVz8/OxdtdhtG7aAMb6+nj+KglLt++BjbkpmtUv/V3UVeXElVwEt9TBy9RCJKcV4vM2OkjLKsS/D4orchP6GeDGAylOX1Pu5y/bSnA7WorUjEKIBHw08xLB3UELC7YUtwS08BEhIbkQmTkKONtqoU8HXZy4nIuXKVU/uNmZG1J0ai5EUlohkjMUCG4hRka2AjcfFeex0T10cPORHOcjlDeVun4iwr1YOVIzGUQCoLGHAC52mli6U5mmzBxW6iBSqZkMKRkfRiVJQ0cbOq+9GlHb0QZ69d0hS81A/tPyn2Un5H1VW+V23LhxCAkJgaenJ/Ly8vDgwQNERESgZ8+e4PF46NWrF4YPH46jR4+Wux09PT0cPHgQw4YNg4+PD7y8vBAaGorevXtzz+FaWVkhLCwMEydORPv27SGVSmFvb48OHTpwFdg344mNjYWDg0OV7oPLDxi0NIFOjfkQCYCnScpX/bz+XKyhBBC/Vpf2dVHG27etamvEwavKVwQVFCpbShu78SDWAnKkQHwiw6ZTTGX04apy/lYhBJo8fP6JFkQCIO6VAhuOyVHw2jnDWI8PHVFxQdzcU5ntvg1WvWmw85zyFUEKpnxdUMcmmghpL4BQC0jJZNh5To6op1VbcAc1roe07BysOHAWyZnZcLOxwPJRX3PdDRNSM97q2VI+n4e4l8kYe+UW0rNzYaAjRl0Ha6wfPxDOVlXzPtiyNGo7GAWyPJz+KxTSvExYOfmi29C1Ks+Pp6c8RV5O8ftHX8Xfxe5lxQNF/bPvFwCAR5NuCOrza/UFD6B5h8GQyfJweEso8nMzYevii16jVeNPS3qK3Ozi+Os27oTcrFSc3/87cjKTYG7rgV6j13LdkjU0tdBr1Gqc2bMAfy8dCpk0F4Zmdvh0wK9w9gr4bxkB7l87gn8OLENhgQwGJjZo2q4/mgYOwPsK6DIIMmkedq+fjvzcLDi4NsTACatVWlpTE58iJ6s4TfWbdUROZipO7F6KrIxkWNm7Y+CEVVy35Odx9/E05jYAYO7YDirfN3HRSRiZWsPMygkhPyzH6b3Lsfyn3uDxeLCy98DACatVukirg1/LtsjMSMffW9ciPS0VDk7O+HHmAhgYKrvipiS9UrmxmJqajImjivftwT1/4uCeP+FZzwfTf12m1tjeVVBjL6Rl5WDF/tNIycyGm60l/hjdjysnXqZmgM+r/GA1SemZOH/rAQDgq5nLVeatGTcQjdzKv+mrLvvPZkIo4OPbL02gLebjQWw+5qx+pfI8rbmxFvR0qrZ1XJ0OnM2EUMDDkC+NoS3mIyo2H7+sSVR5LtbcWAu6OpU/YcoLGNwdRej4iR4kYj7Sswvx4LEU05a9RGZ21Z6jAv0aIT0zG6t3HkJKeiZc7W2weNJ3MP6vlfVVcir4r52j8qVSzF3/J5JS0iEUaMHeygI/jRiAQD/lCOZ8Ph/R8c9x5J8ryMrJg6mhPpp4e+LbHsEQlPMqrqpwJCwXQgEPA4J1oS3i42G8DAu2pqv8VmZGmtDVLq4Y6unwMaSbPvQlfORJGZ6+kmPBlnTce23UZUsTTXRvJ4GOmI/k9EIcvJCD45er5/U5J65JIdDioXeQNrSFPMQ8L8DSXTkq10imBhqQiF/rtqzNQ/9OOtDT4SFfyvA8uRBLd+aojLr8odP3rYfmp7dwnz3nTwYAPN28B7cHvftAjB8rGlBKvXisvL53tcS2bdswYMAAZGRkQCx+i6GH39HsHdX3KoPqkpVVtS2iNWG6y96aDkHtNua/exfiD1UV976sEbrij6+MAAAHg9SKF6plXBPO1nQIatd/f8nHKGo7dQ5Y96FY1afiR7FqmzH7q69HUnUR63z4A9e9iy6T1dtL50PQWR5V0yG8k3a9rtfYd5/6s1HFC9UyNTpa8rvavHkznJycYG1tjVu3bmHixIno0aNHtVRsCSGEEEIIIUQd1DnWBamllduXL18iNDQUL1++hKWlJbp3747Zs2fXdFiEEEIIIYQQQmpIrazcTpgwARMmTKjpMAghhBBCCCGEfCBqZeWWEEIIIYQQQmo7BQ0opVaVH86REEIIIYQQQgj5QFHLLSGEEEIIIYTUAKagAaXUiVpuCSGEEEIIIYTUelS5JYQQQgghhBBS61G3ZEIIIYQQQgipAYwGlFIrarklhBBCCCGEEFLrUcstIYQQQgghhNQAxmhAKXWilltCCCGEEEIIIbUetdwSQgghhBBCSA2gZ27Vi1puCSGEEEIIIYTUelS5JYQQQgghhBBS61G3ZEIIIYQQQgipAUxBA0qpE7XcEkIIIYQQQgip/Rj5IOXn57Pp06ez/Pz8mg5FbT7GNDH2caaL0lQ7UJpqB0pT7fExpovSVDtQmghRDx5jjIbo+gBlZmZCX18fGRkZ0NPTq+lw1OJjTBPwcaaL0lQ7UJpqB0pT7fExpovSVDtQmghRD+qWTAghhBBCCCGk1qPKLSGEEEIIIYSQWo8qt4QQQgghhBBCaj2q3H6ghEIhpk+fDqFQWNOhqM3HmCbg40wXpal2oDTVDpSm2uNjTBelqXagNBGiHjSgFCGEEEIIIYSQWo9abgkhhBBCCCGE1HpUuSWEEEIIIYQQUutR5ZYQQgghhBBCSK1HlVtCSKX0798fn332WU2HUaG4uDjweDzcvHnzvbbj4OCAxYsXqyWmd8UYw5AhQ2BkZAQejwcDAwOMGTOmRmP6f3Hu3DnweDykp6e/13bUnY9atWpFeaAUlfm9Nm7cCAMDg2qLqciMGTPg4+Oj9u3WljKZFPtQyxVCPiZUuSWkFqmOC1t1VQ7J+zt27Bg2btyIQ4cOISEhAfXq1avpkKrEh3CRTpVGQoi61cZy5UOL+UOLh3z4NGs6AEKI+jDGUFhYCE1NOrQ/BjExMbC0tISfnx8AfLC/q0wmg0AgqOkwCCGEfADonEBqErXcVrNjx46hRYsWMDAwgLGxMbp06YKYmBhu/qVLl+Dj4wORSIRGjRph3759JVrR7t69i44dO0IikcDc3Bx9+/ZFcnJyDaSm2K5du+Dl5QWxWAxjY2O0a9cOOTk5AIC1a9fCw8MDIpEI7u7uWL58ObfewIED4e3tDalUCkBZIDZo0AD9+vWrkXSUR6FQYO7cuXB2doZQKISdnR1mz57NtXTu2LEDfn5+EIlEqFevHs6fP6/W7+/fvz/Onz+PJUuWgMfjgcfjYePGjeDxeDh69Ch8fX0hFApx8eJFKBQK/PLLL3B0dIRYLEb9+vWxa9cubltpaWno06cPTE1NIRaL4eLigg0bNgAAHB0dAQANGjQAj8dDq1atVOL46aefYGpqCj09PQwdOhQymYyb16pVK4wcORIjR46Evr4+TExMMG3aNLz+xrHly5fDxcUFIpEI5ubm+PLLL99pf5T1exR5/PgxWrduDW1tbdSvXx+XL19WWX/37t2oW7cuhEIhHBwcsGDBgneKo6r0798f3333HeLj48Hj8eDg4AAAKCgoqJb9W56i33nMmDEwMTFBUFBQheVSWWXEjBkzsGnTJuzfv5/L1+fOnQMAPH36FD169ICBgQGMjIzQtWtXxMXFqcSyfv167ne0tLTEyJEjuXkPHjxAixYtIBKJ4OnpiVOnToHH42Hfvn0q2yjt2Cr6nhs3bqBRo0bQ1taGn58foqKiuPViYmLQtWtXmJubQyKRoHHjxjh16lS5+27hwoXw8vKCjo4ObG1tMXz4cGRnZ6ssExYWhlatWkFbWxuGhoYICgpCWloaN1+hUGDChAkwMjKChYUFZsyYUcEvVqyssoExhnbt2iEoKIjLT6mpqbCxsUFoaCgAoLCwEIMGDeLWdXNzw5IlS0rsy88++wzz58+HpaUljI2NMWLECMjlcm6ZhIQEdO7cGWKxGI6Ojti+fXulullKpVKMGjUKZmZmEIlEaNGiBcLDw8tcfuPGjbCzs4O2tja6deuGlJQUlflF3YVXrVoFW1tbaGtro0ePHsjIyFBZrrxzGABMnDgRrq6u0NbWhpOTE6ZNm6aS3jfFxMTAyckJI0eORGXexlje+fVt9k9Rl9jDhw/D29sbIpEIzZo1w927d1W2c/HiRXzyyScQi8WwtbXFqFGjSv2+6lBeOf+2+726VWe5UpUxx8TEVPq4nz17NqysrODm5gbg/a9py9uHhJSJkWq1a9cutnv3bvbo0SMWERHBgoODmZeXFyssLGQZGRnMyMiIff311+zevXvsyJEjzNXVlQFgERERjDHG0tLSmKmpKfvxxx9ZZGQk+/fff1lgYCBr3bp1jaXpxYsXTFNTky1cuJDFxsay27dvsz/++INlZWWxrVu3MktLS7Z79272+PFjtnv3bmZkZMQ2btzIGGMsKyuLOTk5sTFjxjDGGBs3bhxzcHBgGRkZNZaeskyYMIEZGhqyjRs3sujoaHbhwgW2Zs0aFhsbywAwGxsbtmvXLnb//n32zTffMF1dXZacnKy2709PT2fNmzdngwcPZgkJCSwhIYGdOnWKAWDe3t7sxIkTLDo6mqWkpLCff/6Zubu7s2PHjrGYmBi2YcMGJhQK2blz5xhjjI0YMYL5+Piw8PBwFhsby06ePMkOHDjAGGPs2rVrDAA7deoUS0hIYCkpKYwxxkJCQphEImE9e/Zkd+/eZYcOHWKmpqZs8uTJXIwBAQFMIpGw0aNHswcPHrCtW7cybW1ttnr1asYYY+Hh4UxDQ4Nt376dxcXFsX///ZctWbLknfZHRb+Hu7s7O3ToEIuKimJffvkls7e3Z3K5nDHG2PXr1xmfz2czZ85kUVFRbMOGDUwsFrMNGzZw27e3t2eLFi16p9jUIT09nc2cOZPZ2NiwhIQElpiYWK37tzxFcYwfP549ePCAXblypdxyqbwyIisri/Xo0YN16NCBy9dSqZTJZDLm4eHBBg4cyG7fvs3u37/Pevfuzdzc3JhUKmWMMbZ8+XImEonY4sWLWVRUFLt27Rr3mxUUFDA3NzcWGBjIbt68yS5cuMCaNGnCALC9e/eW2NdlHVtNmzZl586dY/fu3WOffPIJ8/Pz49a7efMmW7lyJbtz5w57+PAhmzp1KhOJROzJkyfcMm/mo0WLFrEzZ86w2NhYdvr0aebm5saGDRvGzY+IiGBCoZANGzaM3bx5k929e5ctXbqUJSUlcfteT0+PzZgxgz18+JBt2rSJ8Xg8duLEiUr9duWVDc+ePWOGhoZs8eLFjDHGunfvzpo0acIdNzKZjIWGhrLw8HD2+PFjLv/99ddf3PZDQkKYnp4eGzp0KIuMjGQHDx5UyaOMMdauXTvm4+PDrly5wm7cuMECAgKYWCyu8HgbNWoUs7KyYkeOHGH37t1jISEhzNDQkKWkpLCzZ88yACwtLY0xxtiVK1cYn89nv/32G4uKimJLlixhBgYGTF9fn9ve9OnTmY6ODmvTpg2LiIhg58+fZ87Ozqx3797cMhWdwxhjbNasWSwsLIzFxsayAwcOMHNzc/bbb7+pfE/9+vUZY4zdunWLWVhYsClTplTq9yrv2AkJCWFdu3at1P5hjHH7yMPDg504cYLdvn2bdenShTk4ODCZTMYYYyw6Oprp6OiwRYsWsYcPH7KwsDDWoEED1r9//0rFq25llfOMVbzfa1p1litVGXN+fn6ljnuJRML69u3L7t69y+7evauWa9rS4ikoKFB7usnHhSq3NSwpKYkBYHfu3GErVqxgxsbGLC8vj5u/Zs0alYJg1qxZrH379irbePr0KQPAoqKiqjN0zo0bNxgAFhcXV2JenTp12Pbt21WmzZo1izVv3pz7fOnSJaalpcWmTZvGNDU12YULF6o85reVmZnJhEIhd1J9XVFl6tdff+WmyeVyZmNjo/YTbUBAABs9ejT3uehiZd++fdy0/Px8pq2tzS5duqSy7qBBg1ivXr0YY4wFBwezAQMGlPodRekpynNFQkJCmJGREcvJyeGmrVixgkkkElZYWMjF5+HhwRQKBbfMxIkTmYeHB2OMsd27dzM9PT2WmZn59ol/TWV+j7Vr13LT7t27xwCwyMhIxhhjvXv3ZoGBgSrrjR8/nnl6enKfa7pyy5iyImRvb899rq79W5GAgADWoEED7nNF5VJ5ZQRjrMRFOmOMbdmyhbm5uamkVSqVMrFYzI4fP84YY8zKyqrMSsLRo0eZpqYmS0hI4KadPHmy1MptUZpKO7ZOnTrFTTt8+DADoFJGv6lu3bps6dKl3OeK8tHOnTuZsbEx97lXr17M39+/zOUDAgJYixYtVKY1btyYTZw4scx1ilSmbPj777+ZSCRikyZNYjo6Ouzhw4flbnPEiBHsiy++4D6HhIQwe3t7lQvQ7t27s549ezLGGIuMjGQAWHh4ODf/0aNHDEC5+yk7O5tpaWmxbdu2cdNkMhmzsrJic+fOLVG57dWrF+vUqZPKNnr27FmicquhocGePXvGTTt69Cjj8/lcvqnMOexN8+bNY76+virfU79+fRYWFsYMDQ3Z/Pnzy1z3TeUdO68fNxXtH8aK8/SOHTu4ZVJSUphYLOYqKoMGDWJDhgxR+Z4LFy4wPp9fbr6vCuWV86V5c79/CGqqXHkfb8ZcmtKOe3Nzc+7GI2NMbde0lYmHkNdRt+Rq9ujRI/Tq1QtOTk7Q09PjuhrGx8cjKiqK6ypUpEmTJirr37p1C2fPnoVEIuH+3N3dAUCle3N1ql+/Ptq2bQsvLy90794da9asQVpaGnJycrjuLK/H+/PPP6vE2rx5c4wbNw6zZs3C2LFj0aJFixpJR3kiIyMhlUrRtm3bMpdp3rw597+mpiYaNWqEyMjI6ggPjRo14v6Pjo5Gbm4uAgMDVfb75s2buf0+bNgw7NixAz4+PpgwYQIuXbpUqe+pX78+tLW1uc/NmzdHdnY2nj59yk1r1qwZeDyeyjKPHj1CYWEhAgMDYW9vDycnJ/Tt2xfbtm1Dbm7uW6e3Mr+Ht7c397+lpSUAIDExkVvf399fZXl/f38uzg9ZdezfyvD19eX+r6hcKquMKM+tW7cQHR0NXV1dbptGRkbIz89HTEwMEhMT8eLFizLzQFRUFGxtbWFhYcFNe7M8rYzy8lF2djbGjRsHDw8PGBgYQCKRIDIyEvHx8WVu79SpU2jbti2sra2hq6uLvn37IiUlhfudbt68WW6+fjOmoriKYipPZcqG7t27o1u3bvj1118xf/58uLi4qGzjjz/+gK+vL0xNTSGRSLB69eoS6a1bty40NDRKjS8qKgqamppo2LAhN9/Z2RmGhoblxh4TEwO5XK5y3GppaaFJkyallrORkZFo2rSpyrTXy+gidnZ2sLa2VllGoVAgKiqq0uewv/76C/7+/rCwsIBEIsHUqVNL7JP4+HgEBgYiNDQUY8eOLTetr6vssfM2++f1/WBkZAQ3NzdumVu3bmHjxo0q6Q0KCoJCoUBsbGyl41aHisr5yuz3D5W6y5WqVpnj3svLS+U529p6TUtqvw9zdJKPWHBwMOzt7bFmzRpYWVlBoVCgXr16Ks8tlic7OxvBwcH47bffSswrKiCrm4aGBk6ePIlLly7hxIkTWLp0KaZMmYKDBw8CANasWVPiIuP1Cx+FQoGwsDBoaGggOjq6WmOvLLFYXNMhlEtHR4f7v+j5vcOHD6tctAGAUCgEAHTs2BFPnjzBkSNHcPLkSbRt2xYjRozA/PnzqzROXV1d/Pvvvzh37hxOnDiB0NBQzJgxA+Hh4W/1io7K/B5aWlrc/0WVQYVC8dYx1ybq2r+V8WaeK69cKquMuHr1KveM95uys7Ph6+uLbdu2lZhnamoKPr967s2Wl4/GjRuHkydPYv78+XB2doZYLMaXX35ZZnkeFxeHLl26YNiwYZg9ezaMjIxw8eJFDBo0CDKZDNra2m+dt4viqkzerkzZkJubixs3bkBDQwOPHj1SWWbHjh0YN24cFixYgObNm0NXVxfz5s3D1atX1RLfh6Zof5V3Drt8+TL69OmDn376CUFBQdDX18eOHTtKPMNvamoKKysr/Pnnnxg4cCD09PQqFUN5x05VyM7OxrfffotRo0aVmGdnZ1cl31mW8o6Fyu73D5U6y5WqVtnj/vVzQmV9iNe0pPajlttqlJKSgqioKEydOhVt27aFh4eHyh1YNzc33LlzhxtcCUCJwTIaNmyIe/fuwcHBAc7Ozip/71KwqAuPx4O/vz9++uknREREQCAQICwsDFZWVnj8+HGJWF+/oJ03bx4ePHiA8+fP49ixY9zARh8SFxcXiMVinD59usxlrly5wv1fUFCAGzduwMPDQ61xCASCClsWPT09IRQKER8fX2K/29racsuZmpoiJCQEW7duxeLFi7F69WruOwCU+j23bt1CXl4e9/nKlSuQSCQq233zhHflyhW4uLhwF4Oamppo164d5s6di9u3byMuLg5nzpx5q/1Qmd+jPB4eHggLC1OZFhYWBldXV5UbLx+i6ti/b6sy5VJpZcTevXsBlJ6vGzZsiEePHsHMzKzENvX19aGrqwsHB4cy84CbmxuePn2KV69ecdPKG3yoMsfWm8LCwtC/f39069YNXl5esLCwKHewkxs3bkChUGDBggVo1qwZXF1d8eLFC5VlvL293zlfV6QyZcPYsWPB5/Nx9OhR/P777yp5JywsDH5+fhg+fDgaNGgAZ2fnt25dcXNzQ0FBASIiIrhp0dHRFbbk16lThzuvFJHL5QgPD4enp2eJ5T08PEo9Vt4UHx+v8htcuXIFfD4fbm5uMDc3r/AcdunSJdjb22PKlClo1KgRXFxc8OTJkxLfIxaLcejQIYhEIgQFBSErK6vc9L6uvGPnXfbP6/shLS0NDx8+5M5VDRs2xP3790uk19nZudpHvy2vnK/sfq9p1VGuqNubMb/rca+ua9p32Yfk/xu13FYjQ0NDGBsbY/Xq1bC0tER8fDwmTZrEze/duzemTJmCIUOGYNKkSYiPj+da0oru7I0YMQJr1qxBr169uNEyo6OjsWPHDqxdu7ZGLsyvXr2K06dPo3379jAzM8PVq1eRlJQEDw8P/PTTTxg1ahT09fXRoUMHSKVSXL9+HWlpafjhhx8QERGB0NBQ7Nq1C/7+/li4cCFGjx6NgIAAODk5VXtayiISiTBx4kRMmDABAoEA/v7+SEpKwr1797guU3/88QdcXFzg4eGBRYsWIS0tDQMHDlRrHA4ODrh69Sri4uIgkUhKbQ3R1dXFuHHj8P3330OhUKBFixbIyMhAWFgY9PT0EBISgtDQUPj6+qJu3bqQSqU4dOgQd3FjZmYGsViMY8eOwcbGBiKRCPr6+gCUo1kPGjQIU6dORVxcHKZPn46RI0eqtKLFx8fjhx9+wLfffot///0XS5cu5e6mHzp0CI8fP0bLli1haGiII0eOQKFQcCMrVlZlfo/yjB07Fo0bN8asWbPQs2dPXL58GcuWLSsxCuqHqDr279uqqFy6fv16mWUEoMzXx48fR1RUFIyNjaGvr48+ffpg3rx56Nq1K2bOnAkbGxs8efIEe/bswYQJE2BjY4MZM2Zg6NChMDMzQ8eOHZGVlYWwsDB89913CAwMRJ06dRASEoK5c+ciKysLU6dOBQCVbt1FKnNsvcnFxQV79uxBcHAweDwepk2bVu56zs7OkMvlWLp0KYKDgxEWFoaVK1eqLPPjjz/Cy8sLw4cPx9ChQyEQCHD27Fl0794dJiYmb/OzlFBR2WBiYoL169fj8uXLaNiwIcaPH4+QkBDcvn0bhoaGcHFxwebNm3H8+HE4Ojpiy5YtCA8PL7P1vTTu7u5o164dhgwZghUrVkBLSwtjx46FWCwu9XcpoqOjg2HDhmH8+PEwMjKCnZ0d5s6di9zcXAwaNAi3bt1SWX7UqFHw9/fH/Pnz0bVrVxw/fhzHjh0rsV2RSISQkBDMnz8fmZmZGDVqFHr06MF1Z6/oHObi4oL4+Hjs2LEDjRs3xuHDh0tUPF9Pw+HDh9GxY0d07NgRx44dg0QiKXd/lXd+vX37dqX3z+tmzpwJY2NjmJubY8qUKTAxMeHeMz1x4kQ0a9YMI0eOxDfffAMdHR3cv38fJ0+exLJly8qNVd3KK+ffZr/XpOooV9TtzZjf9bhX1zXtm/EYGRlVW88dUkvV9EO//29OnjzJPDw8mFAoZN7e3uzcuXMqA5yEhYUxb29vJhAImK+vL9u+fTsDwB48eMBt4+HDh6xbt27MwMCAicVi5u7uzsaMGaMy8Ep1un//PgsKCmKmpqZMKBQyV1dXlYEPtm3bxnx8fJhAIGCGhoasZcuWbM+ePSwvL495enqWGLzi008/ZX5+fh/ciHiFhYXs559/Zvb29kxLS4vZ2dmxOXPmcAMYbd++nTVp0oQJBALm6enJzpw5o/YYoqKiWLNmzZhYLGYA2IYNG1QGUSmiUCjY4sWLmZubG9PS0mKmpqYsKCiInT9/njGmHMTBw8ODicViZmRkxLp27coeP37Mrb9mzRpma2vL+Hw+CwgIYIwVD14SGhrKjI2NmUQiYYMHD2b5+fncegEBAWz48OFs6NChTE9PjxkaGrLJkydzefPChQssICCAGRoaMrFYzLy9vVVGXHwbFf0erw+IlZaWxgCws2fPctN27drFPD09uXXnzZunsv0PdUCp6tq/5SltgI/yyqWKyojExEQWGBjIJBKJyu+UkJDA+vXrx0xMTJhQKGROTk5s8ODBKqOpr1y5ksvnlpaW7LvvvuPmRUZGMn9/fyYQCJi7uzs7ePAgA8COHTtWIk2VObYiIiIYABYbG8sYUw5e1rp1ayYWi5mtrS1btmxZiX3zZj5auHAhs7S0ZGKxmAUFBbHNmzeX+J5z584xPz8/JhQKmYGBAQsKCuLml7bvu3btykJCQsr8vV5XVtlw7tw5Zm5uzubMmcMtK5PJmK+vL+vRowdjTDkgVf/+/Zm+vj4zMDBgw4YNY5MmTeJGAmas9MHBRo8ezZUjjClHAO7YsSMTCoXM3t6ebd++nZmZmbGVK1eWG3teXh777rvvuPzg7+/Prl27xhhjJQaUYoyxdevWMRsbGyYWi1lwcDCbP39+iQGl6tevz5YvX86srKyYSCRiX375JUtNTVX53rLOYUXGjx/PlYk9e/ZkixYtKvV7imRlZTE/Pz/WsmVLlp2dXW6ayzt23tzX5e2f1/fRwYMHWd26dZlAIGBNmjRht27dUvnOa9euccejjo4O8/b2ZrNnzy43zqpSVjnPWMX7/UNQXeVKVcb84MGDdzruGVPPNe2b8RTtJ0LKwmOsEi9ZIzVm27ZtGDBgADIyMj745z7/X8XFxcHR0RERERHw8fGp6XBqVKtWreDj41Ph+yoJqQlhYWFo0aIFoqOjUadOnZoOh/zn2bNnsLW15Qbbqi4zZszAvn37VN65+TE7d+4cWrdujbS0NLU/g09IZdA1LakO1C35A7N582Y4OTnB2toat27dwsSJE9GjRw8qBAgh5C3t3buX61YXHR2N0aNHw9/fnyq2NezMmTPIzs6Gl5cXEhISMGHCBDg4OKBly5Y1HRohRI3ompbUBKrcfmBevnyJ0NBQvHz5EpaWlujevTtmz55d02ERQkitk5WVhYkTJyI+Ph4mJiZo165drRlN9WMml8sxefJkPH78GLq6uvDz88O2bdtKjLJMCKnd6JqW1ATqlkwIIYQQQgghpNaj4cYIIYQQQgghhNR6VLklhBBCCCGEEFLrUeWWEEIIIYQQQkitR5VbQgghhBBCCCG1HlVuCSGEEEIIIYTUelS5JYQQQgghhBBS61HllhBCCCGEEEJIrUeVW0IIIYQQQgghtR5VbgkhhBBCCCGE1Hr/A96u32WTd/XHAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [],
+ "metadata": {
+ "id": "IGIXLSxVvLj7"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "1 ---> Defective Heart\n"
+ ],
+ "metadata": {
+ "id": "mG-lz-mvveLH"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "0 ----> Healthy Heart"
+ ],
+ "metadata": {
+ "id": "muSw2YVx1nLS"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "X=heart_data.drop(columns='target',axis=1)\n",
+ "Y=heart_data['target']"
+ ],
+ "metadata": {
+ "id": "bFsGPSXMvsfy"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "print(X)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "3HCqN-eXv2D-",
+ "outputId": "5d4b600a-c9a7-4de2-da4b-fefc7c857fac"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ " age sex cp trestbps chol fbs restecg thalach exang oldpeak \\\n",
+ "0 63 1 3 145 233 1 0 150 0 2.3 \n",
+ "1 37 1 2 130 250 0 1 187 0 3.5 \n",
+ "2 41 0 1 130 204 0 0 172 0 1.4 \n",
+ "3 56 1 1 120 236 0 1 178 0 0.8 \n",
+ "4 57 0 0 120 354 0 1 163 1 0.6 \n",
+ ".. ... ... .. ... ... ... ... ... ... ... \n",
+ "298 57 0 0 140 241 0 1 123 1 0.2 \n",
+ "299 45 1 3 110 264 0 1 132 0 1.2 \n",
+ "300 68 1 0 144 193 1 1 141 0 3.4 \n",
+ "301 57 1 0 130 131 0 1 115 1 1.2 \n",
+ "302 57 0 1 130 236 0 0 174 0 0.0 \n",
+ "\n",
+ " slope ca thal \n",
+ "0 0 0 1 \n",
+ "1 0 0 2 \n",
+ "2 2 0 2 \n",
+ "3 2 0 2 \n",
+ "4 2 0 2 \n",
+ ".. ... .. ... \n",
+ "298 1 0 3 \n",
+ "299 1 0 3 \n",
+ "300 1 2 3 \n",
+ "301 1 1 3 \n",
+ "302 1 1 2 \n",
+ "\n",
+ "[303 rows x 13 columns]\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "print(Y)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "oCoprhtZv3_a",
+ "outputId": "dd8356a8-c051-4269-e598-721e7ae766d1"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "0 1\n",
+ "1 1\n",
+ "2 1\n",
+ "3 1\n",
+ "4 1\n",
+ " ..\n",
+ "298 0\n",
+ "299 0\n",
+ "300 0\n",
+ "301 0\n",
+ "302 0\n",
+ "Name: target, Length: 303, dtype: int64\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Splitting the data into training data and test data"
+ ],
+ "metadata": {
+ "id": "JE0VX7sLv-kH"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2, stratify=Y, random_state=3)"
+ ],
+ "metadata": {
+ "id": "WMYZeRgqwCmp"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "print(X.shape,X_train.shape, X_test.shape)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "cUq_KMxnwtPw",
+ "outputId": "825ee43c-0ead-4872-e05e-98dbc8093e0e"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "(303, 13) (242, 13) (61, 13)\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Model Training"
+ ],
+ "metadata": {
+ "id": "99IFzRyKw8jj"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Logistic Regression"
+ ],
+ "metadata": {
+ "id": "riyEnawAw_DL"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "model=LogisticRegression()"
+ ],
+ "metadata": {
+ "id": "cjvx564IxBPs"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#Training the Logistic Regression model using training data\n",
+ "model.fit(X_train,Y_train)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 220
+ },
+ "id": "4cWQzdB_xFAY",
+ "outputId": "35395d9d-1d65-44d9-910e-5ebce3054cb1"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:469: ConvergenceWarning: lbfgs failed to converge (status=1):\n",
+ "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n",
+ "\n",
+ "Increase the number of iterations (max_iter) or scale the data as shown in:\n",
+ " https://scikit-learn.org/stable/modules/preprocessing.html\n",
+ "Please also refer to the documentation for alternative solver options:\n",
+ " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n",
+ " n_iter_i = _check_optimize_result(\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "LogisticRegression()"
+ ],
+ "text/html": [
+ "LogisticRegression() In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 18
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Model Evaluation"
+ ],
+ "metadata": {
+ "id": "UcsgRABRxe27"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Accuracy Score"
+ ],
+ "metadata": {
+ "id": "SpMn3K36xiWK"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Accuracy on training data\n",
+ "X_train_prediction=model.predict(X_train)\n",
+ "training_data_accuracy=accuracy_score(X_train_prediction, Y_train)"
+ ],
+ "metadata": {
+ "id": "iIrKda-Xxj18"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "print(\"Accuracy on training data: \",training_data_accuracy)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "VJs3tnw5x-Vs",
+ "outputId": "b8fbd9b9-4f03-41a4-a1c7-43d042b86485"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Accuracy on training data: 0.8636363636363636\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Accuracy on testing data\n",
+ "X_test_prediction=model.predict(X_test)\n",
+ "testing_data_accuracy=accuracy_score(X_test_prediction, Y_test)"
+ ],
+ "metadata": {
+ "id": "h5vxYfkiyL9n"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "print(\"Accuracy on training data: \",testing_data_accuracy)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "LsBV6qzQycNN",
+ "outputId": "f4494875-841c-4c29-d770-1416aeb1532a"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Accuracy on training data: 0.8032786885245902\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Building a Predictive System"
+ ],
+ "metadata": {
+ "id": "ug7DdKr6zKPa"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "input_data=(68,1,2,180,274,1,0,150,1,1.6,1,0,3)\n",
+ "\n",
+ "# Change input data to a numpy array\n",
+ "\n",
+ "input_data_As_numpy_array=np.asarray(input_data)\n",
+ "\n",
+ "# Reshape the numpy array as we are predicting for only 1 instance\n",
+ "input_data_reshaped=input_data_As_numpy_array.reshape(1,-1)\n",
+ "\n",
+ "prediction=model.predict(input_data_reshaped)\n",
+ "print(prediction)\n",
+ "\n",
+ "if(prediction[0]==0):\n",
+ " print(\"The person does not have heart disease\")\n",
+ "else:\n",
+ " print(\"The person has heart disease\")"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "BdwhGhx6zNVC",
+ "outputId": "2165d97c-4033-4642-90cb-db30d139db2f"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "[0]\n",
+ "The person does not have heart disease\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/sklearn/base.py:493: UserWarning: X does not have valid feature names, but LogisticRegression was fitted with feature names\n",
+ " warnings.warn(\n"
+ ]
+ }
+ ]
+ }
+ ]
+}
\ No newline at end of file