forked from openvinotoolkit/training_extensions
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtemplate.yaml
66 lines (66 loc) · 1.5 KB
/
template.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
name: vehicle-detection-0200
domain: Object Detection
problem: Vehicle Detection
framework: OTEDetection v2.9.1
summary: Vehicle Detection based on MobileNetV2 (SSD).
annotation_format: COCO
initial_weights: snapshot.pth
dependencies:
- sha256: d66bbe25f8d8811a88a2c405310ea4cda968f4f2f7991a5bddcfbe7d40293984
size: 14905214
source: https://download.01.org/opencv/openvino_training_extensions/models/object_detection/v2/vehicle-detection-0200-1.pth
destination: snapshot.pth
- source: ../../../../../ote/tools/train.py
destination: train.py
- source: ../../../../../ote/tools/eval.py
destination: eval.py
- source: ../../../../../ote/tools/export.py
destination: export.py
- source: ../../../../../ote/tools/compress.py
destination: compress.py
- source: ../../../../../ote
destination: packages/ote
- source: ../../requirements.txt
destination: requirements.txt
dataset_requirements:
classes:
- vehicle
max_nodes: 1
training_target:
- CPU
- GPU
inference_target:
- CPU
- iGPU
- VPU
hyper_parameters:
basic:
batch_size: 185
base_learning_rate: 0.05
epochs: 20
output_format:
onnx:
default: true
openvino:
default: true
input_format: BGR
optimisations:
nncf_quantization:
config: compression_config.json
default: false
metrics:
- display_name: Size
key: size
unit: Mp
value: 1.83
- display_name: Complexity
key: complexity
unit: GFLOPs
value: 0.82
- display_name: AP @ [IoU=0.50:0.95]
key: ap
unit: '%'
value: 25.4
gpu_num: 4
tensorboard: true
config: model.py