forked from openvinotoolkit/training_extensions
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtemplate.yaml
62 lines (62 loc) · 1.43 KB
/
template.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
name: vehicle-detection-0203
domain: Object Detection
problem: Vehicle Detection
framework: OTEDetection v2.9.1
summary: Vehicle Detection based on ResNet18+fpn+CascadeRCNN.
annotation_format: COCO
initial_weights: snapshot.pth
dependencies:
- sha256: d77e6bcf1af3e94508f67d849a8ca8adf6e09c7360c8f6cfc97fa94e23621a22
size: 193586663
source: https://download.01.org/opencv/openvino_training_extensions/models/object_detection/v3/vehicle-detection-0203.pth
destination: snapshot.pth
- source: ../../../../../ote/tools/train.py
destination: train.py
- source: ../../../../../ote/tools/eval.py
destination: eval.py
- source: ../../../../../ote/tools/export.py
destination: export.py
- source: ../../../../../ote/tools/compress.py
destination: compress.py
- source: ../../../../../ote
destination: packages/ote
- source: ../../requirements.txt
destination: requirements.txt
dataset_requirements:
classes:
- vehicle
max_nodes: 1
training_target:
- GPU
inference_target:
- CPU
- iGPU
- VPU
hyper_parameters:
basic:
batch_size: 4
base_learning_rate: 0.02
epochs: 16
output_format:
onnx:
default: true
openvino:
default: true
input_format: BGR
optimisations: ~
metrics:
- display_name: Size
key: size
unit: Mp
value: 24.11
- display_name: Complexity
key: complexity
unit: GFLOPs
value: 112.34
- display_name: AP @ [IoU=0.50:0.95]
key: ap
unit: '%'
value: 43.5
gpu_num: 1
tensorboard: true
config: model.py