-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_scope.sh
executable file
·60 lines (52 loc) · 2.45 KB
/
train_scope.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
export PYTHONPATH=$PYTHONPATH:$(pwd)
export NUPLAN_DATA_ROOT="/nuplan/dataset"
export NUPLAN_MAPS_ROOT="/nuplan/dataset/maps"
export WS="/workspace/pluto"
export NUPLAN_EXP_ROOT="$WS/exp"
echo "====Start Sanity Check====" &&
CUDA_VISIBLE_DEVICES=4 python run_training.py \
py_func=train +training=train_scope \
worker=single_machine_thread_pool worker.max_workers=4 \
epochs=2 warmup_epochs=1 \
scenario_builder=nuplan cache.cache_path=$WS/exp/sanity_check cache.use_cache_without_dataset=true \
data_loader.params.batch_size=4 data_loader.params.num_workers=1 \
model.cat_x=true model.ref_free_traj=true \
+custom_trainer.use_contrast_loss=false model.use_hidden_proj=false \
+custom_trainer.mul_ade_loss=[] \
+custom_trainer.max_horizon=20 \
+custom_trainer.dynamic_weight=false \
+model.wtd_with_history=false +custom_trainer.wtd_with_history=false \
model.recursive_decoder=true +model.multihead_decoder=false \
model.future_steps=80 \
+custom_trainer.learning_output='velocity' \
+custom_trainer.init_weights=[1.0,1.0,1.0,1.0,1.0,1.0] \
+custom_trainer.wavelet=['cgau1','constant','haar','constant'] \
&&
# +custom_trainer.use_contrast_loss=true model.use_hidden_proj=true \
echo "====Start training====" &&
CUDA_VISIBLE_DEVICES=4,5,6,7 python run_training.py \
py_func=train +training=train_scope \
worker=single_machine_thread_pool worker.max_workers=32 \
scenario_builder=nuplan \
cache.use_cache_without_dataset=true \
cache.cache_path=$WS/exp/cache_pluto_1M \
data_loader.params.batch_size=32 data_loader.params.num_workers=32 \
lr=1e-3 epochs=35 warmup_epochs=3 weight_decay=0.0001 \
lightning.trainer.params.val_check_interval=0.5 \
wandb.mode=online wandb.project=nuplan wandb.name=scope \
data_loader.datamodule.train_fraction=0.2 \
data_loader.datamodule.val_fraction=0.2 \
data_loader.datamodule.test_fraction=0.2 \
model.cat_x=true model.ref_free_traj=true \
+custom_trainer.use_contrast_loss=false model.use_hidden_proj=false \
+custom_trainer.mul_ade_loss=[] \
+custom_trainer.max_horizon=20 \
+custom_trainer.dynamic_weight=false \
+model.wtd_with_history=false +custom_trainer.wtd_with_history=false \
model.recursive_decoder=true +model.multihead_decoder=false \
model.future_steps=80 \
+custom_trainer.learning_output='velocity' \
+custom_trainer.init_weights=[1.0,1.0,1.0,1.0,1.0,1.0] \
+custom_trainer.wavelet=['cgau1','constant','haar','constant'] \
&&
echo "====Training End===="