-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathagentBatchVFA.py
281 lines (229 loc) · 10.7 KB
/
agentBatchVFA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# Implementation of the following batch methods for value function approximation
# with policy iteration, using linear combination of features and table lookup features:
# - Least Squares TD(0) [1]
# - Least Squares TD(lamda) [1]
# - Least Squares TDQ [2]
# - Least Squares Policy Iteration TD [3]
# to be used with OpenAI Gym environments. Demonstrations are included with the
# following environments: GridWorld-v0.
#
# The control implementation for this batch methods are not efficient, but rather
# demonstrate their ability to be used for function value evaluation given some
# training experience.
#
# [1] - David Silver (2015), COMPM050/COMPGI13 Lecture 6, slide 45
# [2] - David Silver (2015), COMPM050/COMPGI13 Lecture 6, slide 50
# [3] - David Silver (2015), COMPM050/COMPGI13 Lecture 6, slide 51
#
# By Ricardo Dominguez Olmedo, Aug-2017
# Import necessary libraries and functions
import numpy as np
from util import Agent
from util import Featurize
from util import LinearVFA
from util import EGreedyPolicyVFA
# Implements the specific functionality of a batch value function approximation
# agent, such as to initialize the agent or run episodes.
class BatchAgent(Agent):
def __init__(self, env, policy, VFA, featurize, alpha, batchSize = 100,
lamda = 0, gamma = 1, eps = 1, horizon = 1000, verbosity = 0):
# Inputs:
# -env: openAI gym environment object
# -policy: object containing a policy from which to sample actions
# -VFA: object containing the value function approximator
# -featurize: object which featurizes states
# -alpha: step size parameter
# -batchSize: number of episodes of experience before policy evaluation
# -lamda: trace discount paramater
# -gamma: discount-rate parameter
# -eps: minimum difference in a weight update for methods that require
# convergence
# -horizon: finite horizon steps
# -verbosity: if TRUE, prints to screen additional information
self.env = env
self.policy = policy
self.featurize = featurize
self.VFA = VFA
self.alpha = alpha
self.batchSize = batchSize
self.lamda = lamda
self.gamma = gamma
self.eps = eps
self.horizon = horizon
self.verbosity = verbosity
self.nS = env.observation_space.n # Number of states
self.nA = env.action_space.n # Number of actions
self.policy.setNActions(self.nA)
self.featurize.set_nSnA(self.nS, self.nA)
self.featDim = featurize.featureStateAction(0,0).shape # Dimensions of the
# feature vector
self.VFA.setUpWeights(self.featDim) # Initialize weights for the VFA
self.learn = 0 # Initially prevent agent from learning
self.batch_i = 0 # To keep track of the number of stored experience episodes
self.sequence = [] # Array to store episode sequences
def setUpTrace(self):
self.E = np.zeros(self.featDim)
# Computes a single episode.
# Returns the episode reward return.
def episode(self):
episodeReward = 0
self.setUpTrace()
# Initialize S, A
state = self.env.reset()
action = self.policy.getAction(self.VFA, self.featurize, state)
# Repeat for each episode
for t in range(self.horizon):
# Take action A, observe R, S'
state, action, reward, done = self.step(state, action)
# Update the total episode return
episodeReward += reward
# Finish the loop if S' is a terminal state
if done: break
# Update the policy if the agent is learning and the amount of required
# experience is met.
if self.learn:
self.batch_i += 1
if (self.batch_i+1) % self.batchSize == 0: self.batchUpdate()
return episodeReward
def step(self, state, action):
# Take A, observe R and S'
state_prime, reward, done, info = self.env.step(action)
# Choose A' using a policy derived from S'
action_prime = self.policy.getAction(self.VFA, self.featurize, state_prime)
# Store experience
if self.learn:
# If traces are being used, update them
if self.lamda != 0:
features = self.featurize.featureStateAction(state, action)
self.E = (self.gamma * self.lamda * self.E) + self.VFA.getGradient(features)
# Store experience
self.sequence.append((state, action, reward, state_prime, action_prime, self.E))
return state_prime, action_prime, reward, done
# Implementation of the Linear Least Squares TD batch prediction algorithm
class LeastSquaresTD(BatchAgent):
def batchUpdate(self):
A = np.zeros((self.nA * self.nS, self.nA * self.nS))
b = np.zeros((self.nA * self.nS, 1))
for di, dn in enumerate(self.sequence):
# Get data from array
state, action, reward, state_prime, action_prime, E = dn
# Compute the pertinent feature vectors
features = self.featurize.featureStateAction(state, action)
features_prime = self.featurize.featureStateAction(state_prime, action_prime)
A_delta = np.matmul(features, (features - self.gamma * features_prime).T)
A += A_delta
b_delta = reward * features
b += b_delta
if np.linalg.det(A) != 0: self.VFA.updateWeightsMatrix(A, b)
# Implementation of the Linear Least Squares TD batch prediction algorithm using
# eligibility traces.
class LSTDlamda(BatchAgent):
def batchUpdate(self):
A = np.zeros((self.nA * self.nS, self.nA * self.nS))
b = np.zeros((self.nA * self.nS, 1))
for di, dn in enumerate(self.sequence):
# Get data from array
state, action, reward, state_prime, action_prime, E = dn
# Compute the pertinent feature vectors
features = self.featurize.featureStateAction(state, action)
features_prime = self.featurize.featureStateAction(state_prime, action_prime)
A_delta = np.matmul(E, (features - self.gamma * features_prime).T)
A += A_delta
b_delta = reward * E
b += b_delta
if np.linalg.det(A) != 0: self.VFA.updateWeightsMatrix(A, b)
# Implementation of the Linear Least Squares TDQ batch prediction algorithm
class LSTDQ(BatchAgent):
def batchUpdate(self):
A = np.zeros((self.nA * self.nS, self.nA * self.nS))
b = np.zeros((self.nA * self.nS, 1))
for di, dn in enumerate(self.sequence):
# Get data from array
state, action, reward, state_prime, action_prime, E = dn
# Compute A' greedily from S'
action_star = self.policy.greedyAction(self.VFA, self.featurize, state_prime)
# Compute the pertinent feature vectors
features = self.featurize.featureStateAction(state, action)
features_prime = self.featurize.featureStateAction(state_prime, action_star)
A_delta = np.matmul(features, (features - self.gamma * features_prime).T)
A += A_delta
b_delta = reward * features
b += b_delta
if np.linalg.det(A) != 0: self.VFA.updateWeightsMatrix(A, b)
# Implementation of the Linear Least Squares Policy Iteration with LSTDQ
# batch evaluation method
class LSPITD(BatchAgent):
def batchUpdate(self):
pi_prime = self.policy.getDetArray(self.VFA, self.featurize, self.nS)
while 1:
pi = pi_prime
self.updateWeights()
pi_prime = self.policy.getDetArray(self.VFA, self.featurize, self.nS)
if np.array_equal(pi, pi_prime): break
def updateWeights(self):
A = np.zeros((self.nA * self.nS, self.nA * self.nS))
b = np.zeros((self.nA * self.nS, 1))
for di, dn in enumerate(self.sequence):
# Get data from array
state, action, reward, state_prime, action_prime, E = dn
# Compute A' greedily from S'
action_star = self.policy.greedyAction(self.VFA, self.featurize, state_prime)
# Compute the pertinent feature vectors
features = self.featurize.featureStateAction(state, action)
features_prime = self.featurize.featureStateAction(state_prime, action_star)
A_delta = np.matmul(features, (features - self.gamma * features_prime).T)
A += A_delta
b_delta = reward * features
b += b_delta
if np.linalg.det(A) != 0: self.VFA.updateWeightsMatrix(A, b)
# This function demonstrates how the above methods can be used with OpenAI gym
# environments, while also demonstrating the differences in performance between
# these methods.
def compareMethods():
import gym
import matplotlib.pyplot as plt
env = gym.make('GridWorld-v0')
policy = EGreedyPolicyVFA(0.1)
VFA = LinearVFA()
feature = Featurize()
training_episodes = 1000
n_plot_points = 100
eps_benchmark = 100
fixedHorizon = 20
# Initialize agents
alpha1 = 0.4
agent1 = LeastSquaresTD(env, policy, VFA, feature, alpha1, horizon = fixedHorizon)
alpha2 = 0.4
lamda2 = 0.8
agent2 = LSTDlamda(env, policy, VFA, feature, alpha2, lamda2, horizon = fixedHorizon)
alpha3 = 0.4
agent3 = LSTDQ(env, policy, VFA, feature, alpha3, horizon = fixedHorizon)
alpha4 = 0.4
agent4 = LSPITD(env, policy, VFA, feature, alpha4, horizon = fixedHorizon)
agents = [agent1, agent2, agent3, agent4]
eps_per_point = int(training_episodes / n_plot_points)
benchmark_data = np.zeros((4, n_plot_points))
# Benchmark agents without training
for agent_i in range(4): benchmark_data[agent_i][0] = agents[agent_i].benchmark(eps_benchmark)
# Train and benchmark agents
for point_i in range(1, n_plot_points):
for agent_i in range(4):
print('Agent ' + str(agent_i) + ', Episode ' + str((point_i+1)*eps_per_point))
agents[agent_i].train(eps_per_point)
benchmark_data[agent_i][point_i] = agents[agent_i].benchmark(eps_benchmark)
# Plot results
plt.figure(figsize=(12, 10))
xaxis = [eps_per_point*(i+1) for i in range(n_plot_points)]
title1 = 'LSTD(0), a = ' + str(alpha1)
title2 = 'LSTD(lamda), a = ' + str(alpha2) + ', l = ' + str(lamda2)
title3 = 'LSTDQ, a = ' + str(alpha3)
title4 = 'LSPITD, a = ' + str(alpha4)
titles = [title1, title2, title3, title4]
for i in range(4):
plt.subplot(221+i)
plt.plot(xaxis, benchmark_data[i])
plt.xlabel('Training episodes')
plt.ylabel('Average reward per episode')
plt.title(titles[i])
plt.show()
compareMethods()