forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsemantic_search_example.py
191 lines (161 loc) Β· 8.46 KB
/
semantic_search_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from pipelines.document_stores import FAISSDocumentStore, MilvusDocumentStore
from pipelines.nodes import DensePassageRetriever, ErnieRanker
from pipelines.utils import (
convert_files_to_dicts,
fetch_archive_from_http,
print_documents,
)
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to run dense_qa system, defaults to gpu.")
parser.add_argument("--index_name", default='dureader_index', type=str, help="The ann index name of ANN.")
parser.add_argument("--search_engine", choices=['faiss', 'milvus'], default="faiss", help="The type of ANN search engine.")
parser.add_argument("--max_seq_len_query", default=64, type=int, help="The maximum total length of query after tokenization.")
parser.add_argument("--max_seq_len_passage", default=256, type=int, help="The maximum total length of passage after tokenization.")
parser.add_argument("--retriever_batch_size", default=16, type=int, help="The batch size of retriever to extract passage embedding for building ANN index.")
parser.add_argument("--query_embedding_model", default="rocketqa-zh-nano-query-encoder", type=str, help="The query_embedding_model path")
parser.add_argument("--passage_embedding_model", default="rocketqa-zh-nano-query-encoder", type=str, help="The passage_embedding_model path")
parser.add_argument("--params_path", default="checkpoints/model_40/model_state.pdparams", type=str, help="The checkpoint path")
parser.add_argument("--embedding_dim", default=312, type=int, help="The embedding_dim of index")
parser.add_argument('--host', type=str, default="localhost", help='host ip of ANN search engine')
parser.add_argument('--port', type=str, default="8530", help='port of ANN search engine')
parser.add_argument('--embed_title', default=False, type=bool, help="The title to be embedded into embedding")
parser.add_argument('--model_type', choices=['ernie_search', 'ernie', 'bert', 'neural_search'], default="ernie", help="the ernie model types")
args = parser.parse_args()
# yapf: enable
def get_faiss_retriever(use_gpu):
faiss_document_store = "faiss_document_store.db"
if os.path.exists(args.index_name) and os.path.exists(faiss_document_store):
# connect to existed FAISS Index
document_store = FAISSDocumentStore.load(args.index_name)
retriever = DensePassageRetriever(
document_store=document_store,
query_embedding_model=args.query_embedding_model,
passage_embedding_model=args.passage_embedding_model,
params_path=args.params_path,
output_emb_size=args.embedding_dim if args.model_type in ["ernie_search", "neural_search"] else None,
max_seq_len_query=args.max_seq_len_query,
max_seq_len_passage=args.max_seq_len_passage,
batch_size=args.retriever_batch_size,
use_gpu=use_gpu,
embed_title=args.embed_title,
)
else:
doc_dir = "data/dureader_dev"
dureader_data = "https://paddlenlp.bj.bcebos.com/applications/dureader_dev.zip"
fetch_archive_from_http(url=dureader_data, output_dir=doc_dir)
dicts = convert_files_to_dicts(dir_path=doc_dir, split_paragraphs=True, encoding="utf-8")
if os.path.exists(args.index_name):
os.remove(args.index_name)
if os.path.exists(faiss_document_store):
os.remove(faiss_document_store)
document_store = FAISSDocumentStore(embedding_dim=args.embedding_dim, faiss_index_factory_str="Flat")
document_store.write_documents(dicts)
retriever = DensePassageRetriever(
document_store=document_store,
query_embedding_model=args.query_embedding_model,
passage_embedding_model=args.passage_embedding_model,
params_path=args.params_path,
output_emb_size=args.embedding_dim if args.model_type in ["ernie_search", "neural_search"] else None,
max_seq_len_query=args.max_seq_len_query,
max_seq_len_passage=args.max_seq_len_passage,
batch_size=args.retriever_batch_size,
use_gpu=use_gpu,
embed_title=args.embed_title,
)
# update Embedding
document_store.update_embeddings(retriever)
# save index
document_store.save(args.index_name)
return retriever
def get_milvus_retriever(use_gpu):
milvus_document_store = "milvus_document_store.db"
if os.path.exists(milvus_document_store):
document_store = MilvusDocumentStore(
embedding_dim=args.embedding_dim,
host=args.host,
index=args.index_name,
port=args.port,
index_param={"M": 16, "efConstruction": 50},
index_type="HNSW",
)
# connect to existed Milvus Index
retriever = DensePassageRetriever(
document_store=document_store,
query_embedding_model=args.query_embedding_model,
passage_embedding_model=args.passage_embedding_model,
params_path=args.params_path,
output_emb_size=args.embedding_dim if args.model_type in ["ernie_search", "neural_search"] else None,
max_seq_len_query=args.max_seq_len_query,
max_seq_len_passage=args.max_seq_len_passage,
batch_size=args.retriever_batch_size,
use_gpu=use_gpu,
embed_title=args.embed_title,
)
else:
doc_dir = "data/dureader_dev"
dureader_data = "https://paddlenlp.bj.bcebos.com/applications/dureader_dev.zip"
fetch_archive_from_http(url=dureader_data, output_dir=doc_dir)
dicts = convert_files_to_dicts(dir_path=doc_dir, split_paragraphs=True, encoding="utf-8")
document_store = MilvusDocumentStore(
embedding_dim=args.embedding_dim,
host=args.host,
index=args.index_name,
port=args.port,
index_param={"M": 16, "efConstruction": 50},
index_type="HNSW",
)
retriever = DensePassageRetriever(
document_store=document_store,
query_embedding_model=args.query_embedding_model,
passage_embedding_model=args.passage_embedding_model,
params_path=args.params_path,
output_emb_size=args.embedding_dim if args.model_type in ["ernie_search", "neural_search"] else None,
max_seq_len_query=args.max_seq_len_query,
max_seq_len_passage=args.max_seq_len_passage,
batch_size=args.retriever_batch_size,
use_gpu=use_gpu,
embed_title=args.embed_title,
)
document_store.write_documents(dicts)
# update Embedding
document_store.update_embeddings(retriever)
return retriever
def semantic_search_tutorial():
use_gpu = True if args.device == "gpu" else False
if args.search_engine == "milvus":
retriever = get_milvus_retriever(use_gpu)
else:
retriever = get_faiss_retriever(use_gpu)
# Ranker
ranker = ErnieRanker(model_name_or_path="rocketqa-zh-dureader-cross-encoder", use_gpu=use_gpu)
# Pipeline
from pipelines import SemanticSearchPipeline
pipe = SemanticSearchPipeline(retriever, ranker)
prediction = pipe.run(query="δΊι©¬ιζ²³ζ΅ηδ»η»", params={"Retriever": {"top_k": 50}, "Ranker": {"top_k": 5}})
print_documents(prediction)
# Batch prediction
predictions = pipe.run_batch(queries=["δΊι©¬ιζ²³ζ΅ηδ»η»", "ζ货亀ζζη»θ΄Ήζηζ―δ»δΉ?"], params={"Retriever": {"top_k": 10}})
for i in range(len(predictions["queries"])):
result = {"documents": predictions["documents"][i], "query": predictions["queries"][i]}
print_documents(result)
pipe = SemanticSearchPipeline(retriever)
prediction = pipe.run(query="dev621.txtοΌδΊη¬", params={"Retriever": {"top_k": 20}})
print_documents(prediction)
if __name__ == "__main__":
semantic_search_tutorial()