-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathMerge Intervals
46 lines (36 loc) · 1.47 KB
/
Merge Intervals
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals [1,3],[6,9] insert and merge [2,5] would result in [1,5],[6,9].
Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16], insert and merge [4,9] would result in [1,2],[3,10],[12,16].
This is because the new interval [4,9] overlaps with [3,5],[6,7],[8,10].
Make sure the returned intervals are also sorted.
*******************************************************************************************************
/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
static bool myfunc(const Interval &a, const Interval &b){
return (a.start < b.start);
}
vector<Interval> Solution::insert(vector<Interval> &intervals, Interval newInterval) {
intervals.push_back(newInterval);
vector<Interval> res;
if (intervals.size()==0){return res;}
sort(intervals.begin(),intervals.end(),myfunc);
res.push_back(intervals[0]);
for (int i=1;i<intervals.size();i++){
if (res.back().end>=intervals[i].start){
res.back().end=max(res.back().end,intervals[i].end);
}else{
res.push_back(intervals[i]);
}
}
return res;
}