-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclustering_pipeline.py
411 lines (332 loc) · 15.9 KB
/
clustering_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import numpy as np
import math
from sklearn.cluster import DBSCAN, OPTICS
from hdbscan import HDBSCAN
from collections import defaultdict, Counter
from file_manager import FileManager
import os
import sys
class DBSCANClustering(object):
"""
Class to perform DBSCAN clustering
"""
def __init__(self, distances, neighborhood_size=5, digits=1, num_seq=0, matrix=False, ids=None):
if not matrix:
# construct distance matrix
if num_seq == 0:
self.num_seq = int((1 + math.sqrt(1 + 8 * len(distances[:, 0]))) / 2)
else:
self.num_seq = num_seq
self.distance_matrix = np.zeros((self.num_seq, self.num_seq))
self.seq_order = []
# print(self.num_seq)
# print(np.shape(self.distance_matrix))
for d in distances:
pair = d[0]
dist = float(d[1])
split_pair = pair.split('!!')
a = split_pair[0]
b = split_pair[1]
if a not in self.seq_order:
self.seq_order.append(a)
if b not in self.seq_order:
self.seq_order.append(b)
ind_a = self.seq_order.index(a)
ind_b = self.seq_order.index(b)
self.distance_matrix[ind_a][ind_b] = dist
self.distance_matrix[ind_b][ind_a] = dist
else:
self.distance_matrix = distances
self.seq_order = ids
self.num_seq = len(ids)
self.max_dist = round(float(np.amax(self.distance_matrix)), 3)
self.epsilons = np.arange(0.1, 1.1, 0.1).tolist()
# self.neighborhood_size = max(neighborhood_size, math.ceil(0.01 * len(self.seq_order)))
self.neighborhood_size = neighborhood_size
self.digits = digits
def calc_outliers_and_clustering(self, dist_cutoff, method='dbscan'):
"""
Get clustering and outlier probabilites using a certain distance cutoff
:param dist_cutoff: cutoff to use for clustering
:param method: to specify cluster methods, default: dbscan
:return: clusters
"""
if method == 'dbscan':
cluster_result, outliers = self._calc_outliers_and_clustering_dbscan(dist_cutoff)
elif method == 'optics':
cluster_result, outliers = self._calc_outliers_and_clustering_optics()
elif method == 'hdbscan':
cluster_result, outliers = self._calc_outliers_and_clustering_hdbscan()
else:
sys.exit("Not a valid clustering")
return cluster_result, outliers
def _calc_outliers_and_clustering_dbscan(self, dist_cutoff):
outliers = dict()
outliers_clustering = {-1: []}
sequence_clusters = {0: self.seq_order}
size_list = '[{}]'.format(self.num_seq)
num_clusters = 1
num_outliers = 0
for e in self.epsilons:
if round(e, self.digits) <= self.max_dist:
clustering = DBSCAN(eps=e, min_samples=self.neighborhood_size,
metric="precomputed").fit(self.distance_matrix)
# scale distance at which a sequence gets classified as an outlier by the maximum distance to represent
# a probability
proba = round(e / self.max_dist, 5)
for index, label in enumerate(clustering.labels_):
if label == -1: # outlier
seq = self.seq_order[index]
if (seq in outliers.keys() and outliers[seq] < proba) or \
(seq not in outliers.keys()):
outliers[seq] = proba
# save clustering if clustering is at right threshold
if math.isclose(round(e, self.digits), round(dist_cutoff, self.digits)):
print("Perform clustering")
c = ClusterAnalysis(clustering.labels_)
sequence_clusters, outliers_clustering = c.get_sequence_clusters(self.seq_order)
size_list, num_clusters, num_outliers = c.get_num_clusters_outliers()
print('{}\t{}'.format(num_clusters, num_outliers))
cluster_result = ClusteringResults(sequence_clusters, outliers_clustering, num_clusters,
num_outliers, size_list)
return cluster_result, outliers
def _calc_outliers_and_clustering_hdbscan(self):
outliers = dict()
print("Perform clustering")
clustering = HDBSCAN(metric='precomputed')
clustering.fit(self.distance_matrix)
c = ClusterAnalysis(clustering.labels_)
sequence_clusters, outliers_clustering = c.get_sequence_clusters(self.seq_order)
size_list, num_clusters, num_outliers = c.get_num_clusters_outliers()
cluster_result = ClusteringResults(sequence_clusters, outliers_clustering, num_clusters, num_outliers,
size_list)
return cluster_result, outliers
def _calc_outliers_and_clustering_optics(self):
outliers = dict()
clustering = OPTICS(min_samples=math.ceil(0.1*len(self.seq_order))).fit(self.distance_matrix)
print("Perform clustering")
c = ClusterAnalysis(clustering.labels_)
sequence_clusters, outliers_clustering = c.get_sequence_clusters(self.seq_order)
size_list, num_clusters, num_outliers = c.get_num_clusters_outliers()
# print(num_clusters)
# print(num_outliers)
cluster_result = ClusteringResults(sequence_clusters, outliers_clustering, num_clusters, num_outliers,
size_list)
return cluster_result, outliers
def calc_clustering(self, dist_cutoff, method='dbscan'):
"""
Get DBSCAN clustering at a certain distance cutoff
:param dist_cutoff:
:param method:
:return:
"""
outliers_clustering = {-1: []}
sequence_clusters = {0: self.seq_order}
size_list = '[{}]'.format(self.num_seq)
num_clusters = 1
num_outliers = 0
if method == 'dbscan':
if dist_cutoff <= self.max_dist:
clustering = DBSCAN(eps=dist_cutoff, min_samples=self.neighborhood_size,
metric="precomputed").fit(self.distance_matrix)
c = ClusterAnalysis(clustering.labels_)
sequence_clusters, outliers_clustering = c.get_sequence_clusters(self.seq_order)
size_list, num_clusters, num_outliers = c.get_num_clusters_outliers()
elif method == 'hdbscan':
clustering = HDBSCAN(metric="precomputed")
clustering.fit(self.distance_matrix)
c = ClusterAnalysis(clustering.labels_)
sequence_clusters, outliers_clustering = c.get_sequence_clusters(self.seq_order)
size_list, num_clusters, num_outliers = c.get_num_clusters_outliers()
else:
sys.exit('Not a valid clustering method')
cluster_result = ClusteringResults(sequence_clusters, outliers_clustering, num_clusters, num_outliers,
size_list)
return cluster_result
class ClusterAnalysis(object):
"""
Class to analyse generated clustering
"""
def __init__(self, clusters):
self.clusters = clusters
self.size_clusters = Counter(self.clusters)
def get_sequence_clusters(self, seq_order):
"""
Get mapping which sequences were assigned to which cluster
:param seq_order: sequences that were clustered
:return: dictionary with key=cluster number, value=sequences in this cluster
"""
clusters = defaultdict(list)
outliers = defaultdict(list)
for c in self.size_clusters.keys():
indices = [i for i, x in enumerate(self.clusters) if x == c]
sequences = [seq_order[i] for i in indices]
if c == -1:
outliers[-1] = sequences
else:
clusters[c] = sequences
return clusters, outliers
def get_cluster_sizes(self):
"""
Get sizes of each cluster and format them as string with the numbers occurring in the right order
(size at position i = size of cluster i)
:return: formatted string of cluster sizes
"""
size_list = ''
for c in sorted(list(self.size_clusters.keys())):
if c != -1:
size_list += ',{}'.format(self.size_clusters[c])
size_list = size_list[1:]
if size_list == '':
size_list = '0'
size_list = '[{}]'.format(size_list)
return size_list
def get_num_clusters_outliers(self):
"""
Get the list of sizes, the number of clusters and the number of outliers for this clustering
Outliers are not counted as clusters
:return: size list, number of clusters, number of outliers
"""
size_list = self.get_cluster_sizes()
num_clusters = len(self.size_clusters.keys())
num_outliers = 0
if -1 in self.size_clusters.keys():
num_outliers = self.size_clusters[-1]
num_clusters += -1
return size_list, num_clusters, num_outliers
class ClusteringResults(object):
"""
Wrapper for interesting results of clustering
"""
def __init__(self, clusters, outliers, num_clusters, num_outliers, size_list):
self.clusters = clusters
self.outliers = outliers
self.num_clusters = num_clusters
self.num_outliers = num_outliers
self.size_list = size_list
self.sizes = self._calc_relative_sizes()
def write_clustering_results(self, funfam, out_prefix, out_suffix, file_action):
# define output files
cluster_summary_out = '{}cluster_summary{}'.format(out_prefix, out_suffix)
clusters_out = '{}clusters{}'.format(out_prefix, out_suffix)
cluster_outliers_out = '{}outliers{}'.format(out_prefix, out_suffix)
cluster_sizes_out = '{}cluster_relative_sizes{}'.format(out_prefix, out_suffix)
# convert clusters and outliers to string
cluster_str = ClusteringResults._clusters_to_string(self.clusters)
outliers_str = ClusteringResults._clusters_to_string(self.outliers)
# write output
FileManager.write_cluster_summary(cluster_summary_out, funfam, self.num_clusters, self.num_outliers,
self.size_list, file_action)
FileManager.write_clusters(clusters_out, funfam, cluster_str, file_action)
FileManager.write_clusters(cluster_outliers_out, funfam, outliers_str, file_action)
FileManager.write_relative_sizes(cluster_sizes_out, funfam, self.sizes, file_action)
def get_consensus_sequences(self, sequences, binding_residues):
all_sequences = defaultdict(set)
cluster_sequences = defaultdict(set)
all_seqs = self._get_all_sequences()
# check whether there exist cluster with sequences with binding annotations
for c in self.clusters.keys():
cluster_seqs = self._get_sequences_in_cluster(self.clusters[c])
for s in self.clusters[c]:
seq = s.split('/')[0].split('.')[0]
if seq in sequences:
binding_res = binding_residues[seq]
seq_range = s.split('/')[1].split('-')
start = int(seq_range[0])
end = int(seq_range[1])
for r in range(start, end + 1):
if r in binding_res:
# seq is a query sequence with binding annotations
# add all sequences for consensus prediction for FunFam
all_sequences[s] = all_seqs
# add sequences in cluster for consensus prediction of cluster
cluster_sequences[s] = cluster_seqs
# check whether there exist outliers with binding annotations
for o in self.outliers.keys():
for s in self.outliers[o]:
seq = s.split('/')[0].split('.')[0]
if seq in sequences:
binding_res = binding_residues[seq]
seq_range = s.split('/')[1].split('-')
start = int(seq_range[0])
end = int(seq_range[1])
for r in range(start, end + 1):
if r in binding_res:
# seq is a query sequence with binding annotations
# add all sequences for consensus prediction for FunFam
all_sequences[s] = all_seqs
# add only this sequence for consensus prediction of cluster (cluster of 1 sequence)
seq_set = set()
seq_set.add(s)
cluster_sequences[s] = seq_set
return all_sequences, cluster_sequences
@staticmethod
def _clusters_to_string(clusters):
cluster_str = ''
cluster_keys = sorted(list(clusters.keys()))
for c in cluster_keys:
cluster_ids = clusters[c]
c_str = ''
for i in cluster_ids:
c_str += ',{}'.format(i)
c_str = c_str[1:]
c_str = '[{}]'.format(c_str)
cluster_str += ';{}'.format(c_str)
cluster_str = cluster_str[1:]
return cluster_str
def _calc_relative_sizes(self):
sizes = dict()
size = self.size_list[1:-1].split(',')
size = np.array(size, dtype=np.int)
sum_size = np.sum(size)
for i, s in enumerate(size):
rel_size = round(s / sum_size, 3)
sizes[i] = rel_size
return sizes
def _get_all_sequences(self):
all_sequences = set()
for c in self.clusters.keys():
sequences = self._get_sequences_in_cluster(self.clusters[c])
all_sequences.update(sequences)
if -1 in self.outliers.keys():
sequences = self._get_sequences_in_cluster(self.outliers[-1])
all_sequences.update(sequences)
return all_sequences
@staticmethod
def _get_sequences_in_cluster(cluster):
sequences = set()
for s in cluster:
# seq = s.split('/')[0].split('.')[0]
sequences.add(s)
return sequences
def main():
print("Read data")
path = 'data/'
superfamilies_in = '{}funfam_binding_stats_test.txt'.format(path)
superfamilies = FileManager.read_funfam_ids_with_family(superfamilies_in, 0, 1)
cutoffs_in = '{}distance_cutoffs_median.txt'.format(path)
cutoffs = FileManager.read_dictionary(cutoffs_in, 'float')
fm = FileManager(ungapped_aln_path='funfam_data')
file_action = 'w'
print("Define output files")
cluster_out_prefix = 'clustering_results/binding_test/'
outliers_out = '{}outliers_binding_test.txt'.format(cluster_out_prefix)
cluster_out_suffix = '_median_seq_tucker.txt'
print("Run DBSCAN")
for s in superfamilies:
funfams = superfamilies[s]
dist_cutoff = cutoffs[s]
for f in funfams:
distance_file = '{}/{}/{}/{}_tucker_dist.npz'.format(fm.ungapped_aln_path, s, fm.dist_path_funfam, f)
if os.path.exists(distance_file):
distances = dict(np.load(distance_file, mmap_mode='r'))['dist']
if len(distances) > 0:
clustering = DBSCANClustering(distances)
print('{}\t{}\t{}\t{}'.format(s, f, clustering.max_dist, dist_cutoff))
cluster_results, outliers = clustering.calc_outliers_and_clustering(dist_cutoff)
# write output
FileManager.write_outliers(outliers_out, f, outliers, file_action)
cluster_results.write_clustering_results(f, cluster_out_prefix, cluster_out_suffix, file_action)
file_action = 'a'
if __name__ == '__main__':
main()