diff --git a/R/Cross_vadiation.R b/R/Cross_vadiation.R index 2bc8c8b..b640e69 100644 --- a/R/Cross_vadiation.R +++ b/R/Cross_vadiation.R @@ -1,8 +1,4 @@ #' Cross Vadidation and Genomic Prediction Cross environments -#' @description -#' The GP_CV function carries out cross-validation using genotypic and phenotypic data from a reference population, -#' with result for Genomic Prediction for different environments, genomic breeding value estimation for each env and -#' cross R2 for all envs. #' #' @param geno Matrix (n x m) of genotypes for the training population: n lines with m markers. #' Genotypes should be coded -1, 0, 1. Missing data are not allowed. @@ -67,12 +63,12 @@ #' The most relevant environmental silvers to the subject's phenotype, #' obtained after stepwise correlation calculations, are referred to for more details: #' +#' @export #' -#' -#' @examples out<-GE_CV(pheno=pheno,geno=geno,env=env_info,para=envMeanPara,Para_Name="PTT", +#' @examples out<-MMGP(pheno=pheno,geno=geno,env=env_info,para=envMeanPara,Para_Name="PTT", #' depend="maker",fold=2,reshuffle=5,methods="RM.G", #' ms1=ms1,ms2=ms2) -GP_CV<-function(pheno,geno,env,para,Para_Name,depend=NULL,fold=NULL,reshuffle=NULL, +MMGP<-function(pheno,geno,env,para,Para_Name,depend=NULL,fold=NULL,reshuffle=NULL, model,methods=NULL,ms1=NULL,ms2=NULL,ENalpha=NULL,GBM_params=NULL, nIter=NULL,burnIn=NULL,thin=NULL,SVM_cost=NULL,gamma=NULL,GBM_rounds=NULL){ if(is.null(depend)){