-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmanDep.r
64 lines (55 loc) · 2.29 KB
/
manDep.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
###################### A rapid gene-based genomewide association test with multivariate traits in nuclear families or in unrelated individuals
######################
###################### Implementation of RMMLR or Manova on the transformed phenotype, covariate and genotype data
###########Reference: Basu S, Zhang Y, Ray D, Miller MB, Iacono WG, McGue M. (2013).A rapid gene-based genome-wide association test with multivariate traits. Hum Hered. 2013;76(2):53-63.
######################Saonli Basu, Division of Biostatistics, U of Minnesota
######################Email: [email protected]
####
library("MASS")
mpinv <- function(A, eps = 1e-13) {
s <- svd(A)
e <- s$d
e[e > eps] <- 1/e[e > eps]
return(s$v %*% diag(e) %*% t(s$u))
}
## dat is a list of standarized data for all phenotypes; 1 element for 1 phenotype
manDep<-function(dat,phes,covname,rs){
## omit na!! very important!
dat<-lapply(dat,na.omit)
res<-total<-NULL
n=nrow(dat[[1]])
#covname<-c("intercept",covname)
for (t in 1:length(phes)){
form0<-as.formula(paste(phes[t],"~0+",paste(c(covname),collapse="+"),sep="") )
form1<-as.formula(paste(phes[t],"~0+",paste(c(covname,rs),collapse="+"),sep="") )
ff0<-lm(form0,data=dat[[t]])
ff1<-lm(form1,data=dat[[t]])
total0<-resid(ff0)
res0<-resid(ff1)
total<-cbind(total,total0)
res<-cbind(res,res0)
}
E=cov(res)
T=cov(total)
if (det(E)==0|det(T)==0) print("Alert! Singular covariance matrix")
################################################################## Wilks' Lambda
######## There will be problems using F approximation i T is singular
lambda<-ifelse(det(T)==0, NA, det(E%*%ginv(T)) )
################################################################## using F approximation
#q: number of predictors that we are interested in (rank of L)
# p: rank of total variance matrix: T
# k: df of regression (number of predictors in the model not including intercept)
# n : number of observation
q=length(rs) # or length(rs)-1
p=qr(T)$rank
k=q+length(covname)-1
r=(n-k-1)-(p-q+1)/2
u=(q*p-2)/4
t=ifelse(p^2+q^2-5>0,sqrt((q^2*p^2-4)/(p^2+q^2-5)),1)
F=(1-lambda^(1/t))/lambda^(1/t)*(r*t-2*u)/(p*q)
df1=p*q
df2=r*t-2*u
pval<-1-pf(F,df1,df2)
out0<-data.frame(lambda=lambda,F=F,df1=df1,df2=df2,p.val=pval)
return(out0)
}