-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexpressions.h
1360 lines (1135 loc) · 40.2 KB
/
expressions.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#pragma once
#include "tuple.h"
#include "Number.h"
#include <array>
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <numeric>
#include <span>
#include <ostream>
#include <sstream>
namespace d_rive::detail {
template <typename T1, typename T2>
struct is_same_tpl;
template <template<class...> typename T1, template<class...> typename T2, typename... Args1, typename... Args2>
struct is_same_tpl<T1<Args1...>, T2<Args2...>> {
constexpr bool static value = (type_index<T1<>> == type_index<T2<>>);
};
template <typename T1, typename T2>
inline constexpr bool is_same_tpl_v = is_same_tpl<T1, T2>::value;
enum class PrintType {
Cpp,
WolframAlpha
};
/* Every EntityBase should implement
*
* simplify_impl
* to_string_impl
* some operator for usage
* eval_expr
* derive_impl
* integrate
* isConst_impl
*/
template<typename T, typename ...Ps>
struct EntityBase {
using tuple = std::tuple<Ps...>;
template <typename ...Args>
constexpr auto operator()(Args const&... args) const {
return eval_expr_impl(T{}, args...);
}
template <typename P>
constexpr bool operator==(P const&) const {
auto s1 = full_simplify(T{});
auto s2 = full_simplify(P{});
return std::is_same_v<decltype(s1), decltype(s2)>;
}
friend auto operator<< (std::ostream& stream, EntityBase) -> std::ostream& {
return stream << to_string(T{}, PrintType::Cpp);
}
};
template <typename T = Number<>>
struct Const : EntityBase<Const<T>, Const<T>> {
using N = T;
static_assert(is_same_tpl_v<Number<>, T>);
constexpr static auto value() {
return N::value();
}
};
using ConstZero = Const<>;
using ConstOne = Const<Number<integer<1>>>;
template <typename T = integer<0>>
struct Var : EntityBase<Var<T>, Var<T>> {
using N = T;
};
template <typename TP = ConstOne>
struct Ln : EntityBase<Ln<TP>, Ln<TP>> {
using P = TP;
};
template <typename TP = ConstOne>
struct Sin : EntityBase<Sin<TP>, Sin<TP>> {
using P = TP;
};
template <typename TP = ConstOne>
struct Cos : EntityBase<Cos<TP>, Cos<TP>> {
using P = TP;
};
template <typename TP = ConstOne>
struct Sign : EntityBase<Sign<TP>, Sign<TP>> {
using P = TP;
};
template <typename TP = ConstOne>
struct Abs : EntityBase<Abs<TP>, Abs<TP>> {
using P = TP;
};
template <typename TP1 = ConstZero, typename TP2 = ConstOne>
struct Exp : EntityBase<Exp<TP1, TP2>, Exp<TP1, TP2>> {
using P1 = TP1;
using P2 = TP2;
};
template <typename ...Ps>
struct Mul : EntityBase<Mul<Ps...>, Ps...> {};
template <typename ...Ps>
struct Sum : EntityBase<Sum<Ps...>, Ps...> {};
template <typename ...Ps>
struct Min : EntityBase<Min<Ps...>, Ps...> {};
template <typename ...Ps>
struct Max : EntityBase<Max<Ps...>, Ps...> {};
// ------------------- Parsing, _c option
template <unsigned delCt>
constexpr bool isValidDoubleImpl() {
return delCt == 0 or delCt == 1;
}
template <unsigned delCt, char digit, char... tail>
constexpr bool isValidDoubleImpl() {
if constexpr(digit != '.' and (digit < '0' or digit > '9')) {
return false;
}
return isValidDoubleImpl<delCt + int(digit == '.'), tail...>();
}
template <char... tail>
constexpr bool isValidDouble() {
return isValidDoubleImpl<0, tail...>();
}
constexpr bool isValidDouble(std::span<char const> str) {
str = str.first(str.size()-1);
bool hasPoint{};
for (auto c : str) {
if (c == '.' and !hasPoint) {
hasPoint = true;
continue;
}
if (c < '0' or '9' < c) return false;
}
return true;
}
static_assert(isValidDouble("1.2"));
static_assert(isValidDouble(".2"));
static_assert(isValidDouble("."));
static_assert(isValidDouble(""));
static_assert(isValidDouble("1"));
static_assert(isValidDouble("1."));
static_assert(not isValidDouble("1.."));
static_assert(isValidDouble<'1', '.', '2'>());
static_assert(isValidDouble<'.', '2'>());
static_assert(isValidDouble<'.'>());
static_assert(isValidDouble<>());
static_assert(isValidDouble<'1' >());
static_assert(isValidDouble<'1', '.' >());
static_assert(not isValidDouble<'1', '.', '.' >());
template <char... args>
struct char_tuple {
const static std::string value;
const static size_t size = sizeof...(args);
};
template <char... args>
const std::string char_tuple<args...>::value{args...};
template <bool hasSplit, char del, typename P1, typename P2, char... args>
struct split;
template <bool hasSplit, char del, char ...args1, char ...args2>
struct split<hasSplit, del, char_tuple<args1...>, char_tuple<args2...>> {
using P1 = char_tuple<args1...>;
using P2 = char_tuple<args2...>;
};
template<char del, char ...args1, char ...args2, char head, char ...tail>
struct split<false, del, char_tuple<args1...>, char_tuple<args2...>, head, tail...> {
using NextSplit = split<false, del, char_tuple<args1..., head>, char_tuple<args2...>, tail...>;
using P1 = typename NextSplit::P1;
using P2 = typename NextSplit::P2;
};
template<char del, char ...args1, char ...args2, char ...tail>
struct split<false, del, char_tuple<args1...>, char_tuple<args2...>, del, tail...> {
using NextSplit = split<true, del, char_tuple<args1...>, char_tuple<args2...>, tail...>;
using P1 = typename NextSplit::P1;
using P2 = typename NextSplit::P2;
};
template<char del, char ...args1, char ...args2, char head, char ...tail>
struct split<true, del, char_tuple<args1...>, char_tuple<args2...>, head, tail...> {
using NextSplit = split<true, del, char_tuple<args1...>, char_tuple<args2..., head>, tail...>;
using P1 = typename NextSplit::P1;
using P2 = typename NextSplit::P2;
};
template <typename value, typename P1>
struct stoi;
template <typename Integer>
struct stoi<Integer, char_tuple<>> {
using type = Integer;
};
template <typename Integer, char head, char... tail>
struct stoi<Integer, char_tuple<head, tail...>> {
using type = typename stoi<integer<Integer::value * 10 + (head - '0')>, char_tuple<tail...>>::type;
};
template <char... args>
constexpr auto operator "" _c() {
constexpr auto a = std::array{args...};
static_assert(isValidDouble(a));
using Split = split<false, '.', char_tuple<>, char_tuple<>, args...>;
using I1 = typename stoi<integer<0>, typename Split::P1>::type;
using I2 = typename stoi<integer<0>, typename Split::P2>::type;
using Shift = decltype(pow(Number<integer<10>>{}, integer<Split::P2::size>{}));
auto constexpr shift = Shift::N::value;
using N = decltype(normalize(Number<integer<I1::value * shift + I2::value>, integer<shift>>{}));
return Const<N>{};
}
// ------------------- to_string
template <typename T>
auto to_string_impl(Const<T>, PrintType type) {
std::string valueAsStr = [&] () {
using TT = decltype(Const<T>::value());
if constexpr(std::is_same_v<TT, double> or std::is_same_v<TT, float>) {
std::stringstream ss;
ss << Const<T>::value();
return ss.str();
} else {
using std::to_string;
return to_string(Const<T>::value());
}
}();
if (type == PrintType::Cpp) {
return valueAsStr + "_c";
} else if (type == PrintType::WolframAlpha) {
return valueAsStr;
}
throw std::runtime_error("Unknown print type");
}
template <typename T>
auto to_string_impl(Var<T>, PrintType type) -> std::string {
using std::to_string;
constexpr auto n = int(Var<T>::N::value);
if (type == PrintType::Cpp) {
return "x<" + to_string(n) + ">";
} else if (type == PrintType::WolframAlpha) {
if (n != 0) {
return "c_" + to_string(n);
}
return "x";
}
throw std::runtime_error("Unknown print type");
}
template <typename TP>
auto to_string_impl(Ln<TP>, PrintType type) {
return "ln(" + to_string(TP{}, type) + ")";
}
template <typename TP>
auto to_string_impl(Sin<TP>, PrintType type) {
return "sin(" + to_string(TP{}, type) + ")";
}
template <typename TP>
auto to_string_impl(Cos<TP>, PrintType type) {
return "cos(" + to_string(TP{}, type) + ")";
}
template <typename TP>
auto to_string_impl(Sign<TP>, PrintType type) {
return "sign(" + to_string(TP{}, type) + ")";
}
template <typename TP>
auto to_string_impl(Abs<TP>, PrintType type) {
return "abs(" + to_string(TP{}, type) + ")";
}
template <typename TP1, typename TP2>
auto to_string_impl(Exp<TP1, TP2>, PrintType type) {
return "(" + to_string(TP1{}, type) + "^" + to_string(TP2{},type) + ")";
}
template <typename ...Ps>
auto to_string_multi_impl(std::string_view op, std::tuple<Ps...>, PrintType type) {
return "(" + std::apply([&](auto e1, auto... tail) {
auto s = to_string(e1, type);
[[maybe_unused]] auto f = [&](auto e) {
return std::string(op) + to_string(e, type);
};
return (s + ... + f(tail));
}, std::tuple<Ps...>{}) +")";
}
template <typename ...Ps>
auto to_string_impl(Mul<Ps...>, PrintType type) {
if constexpr (sizeof...(Ps) == 0) {
return to_string_impl(1_c, type);
} else {
return to_string_multi_impl(" * ", std::tuple<Ps...>{}, type);
}
}
template <typename ...Ps>
auto to_string_impl(Sum<Ps...>, PrintType type) {
if constexpr (sizeof...(Ps) == 0) {
return to_string_impl(0_c, type);
} else {
return to_string_multi_impl(" + ", std::tuple<Ps...>{}, type);
}
}
template <typename ...Ps>
auto to_string_impl(Min<Ps...>, PrintType type) {
if constexpr (sizeof...(Ps) == 0) {
return to_string_impl(0_c, type);
} else {
return "min" + to_string_multi_impl(", ", std::tuple<Ps...>{}, type);
}
}
template <typename ...Ps>
auto to_string_impl(Max<Ps...>, PrintType type) {
if constexpr (sizeof...(Ps) == 0) {
return to_string_impl(0_c, type);
} else {
return "max" + to_string_multi_impl(", ", std::tuple<Ps...>{}, type);
}
}
template <typename Expr>
auto to_string(Expr e, PrintType type = PrintType::Cpp) {
return to_string_impl(e, type);
}
// -------------- some helper functions for simplify
template <typename Tuple, template<class...> typename Op>
struct TupleTo;
template <typename ...Ps, template<class...> typename Op>
struct TupleTo<std::tuple<Ps...>, Op> {
using type = Op<Ps...>;
};
template <template<class...> typename Op, typename Tuple>
using tuple_to_t = typename TupleTo<Tuple, Op>::type;
template <template<class...> typename Op, typename Tuple>
constexpr auto tuple_to(Tuple const&) {
return tuple_to_t<Op, Tuple>{};
}
// tuple size
template <typename Tuple>
struct size {
constexpr static size_t value = 1;
};
template<class ...Args>
struct size<Mul<Args...>> {
constexpr static size_t value = sizeof...(Args);
};
template<class ...Args>
struct size<Sum<Args...>> {
constexpr static size_t value = sizeof...(Args);
};
template<typename T>
inline constexpr size_t size_v = size<T>::value;
// tuple element type
template <size_t I, typename T>
struct element {
using type = T;
};
template<size_t I, class ...Args>
struct element<I, Mul<Args...>> {
using type = typename std::tuple_element_t<I, std::tuple<Args...>>;
};
template<size_t I, class ...Args>
struct element<I, Sum<Args...>> {
using type = typename std::tuple_element_t<I, std::tuple<Args...>>;
};
template<size_t I, typename T>
using element_t = typename element<I, T>::type;
struct MergeSum {
template <typename ...Args>
constexpr auto operator()(Sum<Args...> sum) const {
return typename Sum<Args...>::tuple{};
}
};
struct MergeMul {
template <typename ...Args>
constexpr auto operator()(Mul<Args...> mul) const {
return typename Mul<Args...>::tuple{};
}
};
template<typename Data, typename L, typename ...Ls>
constexpr auto chain(Data const& data, L l, Ls... ls) {
auto r = l(data);
if constexpr(not std::is_same_v<decltype(r), Data>) {
return r;
} else {
return chain(data, ls...);
}
}
template<typename Data>
constexpr auto chain(Data const& data) {
return data;
}
// ------------------- simplify
template <typename T>
constexpr auto simplify(Const<T> v) {
return v;
}
template <typename N>
constexpr auto simplify(Var<N>) {
return Var<N>{};
}
template <typename T>
constexpr auto simplify(Ln<T> v) {
if constexpr(is_same_tpl_v<T, Const<>>) {
using N = typename T::N;
return Const<decltype(ln(N{}))>{};
} else {
return Ln<decltype(simplify(T{}))>{};
}
}
template <typename T>
constexpr auto simplify(Sin<T>) {
if constexpr(is_same_tpl_v<T, Const<>>) {
using N = typename T::N;
return Const<decltype(sin(N{}))>{};
} else {
return Sin<decltype(simplify(T{}))>{};
}
}
template <typename T>
constexpr auto simplify(Cos<T>) {
if constexpr(is_same_tpl_v<T, Const<>>) {
using N = typename T::N;
return Const<decltype(cos(N{}))>{};
} else {
return Cos<decltype(simplify(T{}))>{};
}
}
template <typename T>
constexpr auto simplify(Sign<T>) {
if constexpr(is_same_tpl_v<T, Const<>>) {
using N = typename T::N;
return Const<decltype(number::sign(N{}))>{};
} else {
return Sign<decltype(simplify(T{}))>{};
}
}
template <typename T>
constexpr auto simplify(Abs<T>) {
if constexpr(is_same_tpl_v<T, Const<>>) {
using N = typename T::N;
return Const<decltype(number::abs(N{}))>{};
} else {
return Abs<decltype(simplify(T{}))>{};
}
}
template <typename P1, typename P2>
constexpr auto simplify_impl(Exp<P1, P2> value) {
auto simplified_p1 = simplify(P1{});
auto simplified_p2 = simplify(P2{});
auto p1 = simplified_p1;
auto p2 = simplified_p2;
return Exp<decltype(p1), decltype(p2)>{};
}
template <typename P1, typename P2>
constexpr auto simplify([[maybe_unused]] Exp<P1, P2> value) {
static_assert(not std::is_same_v<P1, ConstZero> or not std::is_same_v<P2, ConstZero>);
if constexpr(std::is_same_v<P1, ConstZero>) {
return ConstZero{};
} else if constexpr(std::is_same_v<P1, ConstOne>) {
return ConstOne{};
} else if constexpr(std::is_same_v<P2, ConstZero>) {
return ConstOne{};
} else if constexpr(std::is_same_v<P2, ConstOne>) {
return P1{};
} else if constexpr(is_same_tpl_v<P1, Const<>> and is_same_tpl_v<P2, Const<>>) {
using N1 = typename P1::N;
using N2 = typename P2::N;
return Const<decltype(pow(N1{}, N2{}))>{};
} else if constexpr(is_same_tpl_v<P1, Mul<>>){
return tuple_to<Mul>(tuple_apply_each(typename P1::tuple{}, [](auto e) {
return std::tuple<Exp<decltype(e), P2>>{};
}));
} else if constexpr(is_same_tpl_v<P2, Mul<>> and is_same_tpl_v<P1, Const<>>){
if constexpr (std::tuple_size_v<typename P2::tuple> > 0){
using E2 = std::tuple_element_t<0, typename P2::tuple>;
using Tail2 = tuple_drop_t<1, typename P2::tuple>;
if constexpr(is_same_tpl_v<E2, Const<>>) {
return Exp<Exp<P1, E2>, tuple_to_t<Mul, Tail2>>{};
} else {
return simplify_impl(value);
}
} else {
return simplify_impl(value);
}
} else if constexpr (is_same_tpl_v<P1, Exp<>>) {
using E1 = typename P1::P1;
using E2 = typename P1::P2;
if constexpr (is_same_tpl_v<E2, Const<>> and is_same_tpl_v<P2, Const<>>) {
return Exp<E1, Mul<E2, P2>>{};
} else {
return simplify_impl(value);
}
} else {
return simplify_impl(value);
}
}
template <typename ...Ps>
constexpr auto simplify(Mul<Ps...> const& value) {
if constexpr (sizeof...(Ps) == 0) {
return ConstOne {};
} else if constexpr (sizeof...(Ps) == 1) {
return std::get<0>(typename Mul<Ps...>::tuple{});
} else {
return tuple_to<Mul>(chain(typename Mul<Ps...>::tuple{},
[](auto ps) {
return tuple_apply_each(ps, overloaded {
[](ConstOne) { return std::make_tuple(); },
[](auto x) { return std::make_tuple(simplify(x)); },
MergeMul{},
});
},
[](auto ps) {
return tuple_type_sort(ps);
},
[](auto ps) {
return tuple_apply_first_pair(ps, overloaded {
[](ConstZero x, auto) { return std::make_tuple(x); },
[](auto t1, auto t2) {
using T1 = decltype(t1);
using T2 = decltype(t2);
if constexpr(is_same_tpl_v<T1, Const<>> and is_same_tpl_v<T2, Const<>>) {
using N1 = typename T1::N;
using N2 = typename T2::N;
return std::tuple<Const<decltype(N1{} * N2{})>>{};
} else if constexpr(is_same_tpl_v<T1, Sum<>>) {
return std::make_tuple(tuple_to<Sum>(tuple_apply_each(typename T1::tuple{}, [&](auto e) {
return std::tuple<Mul<decltype(e), T2>>{};
})));
} else if constexpr(is_same_tpl_v<T1, Exp<>>) {
if constexpr (std::is_same_v<typename T1::P1, T2>) {
return std::tuple<Exp<T2, Sum<typename T1::P2, ConstOne>>>{};
} else if constexpr (is_same_tpl_v<T2, Exp<>>) {
if constexpr (std::is_same_v<typename T1::P1, typename T2::P1>) {
return std::tuple<Exp<typename T1::P1, Sum<typename T1::P2, typename T2::P2>>>{};
}
}
} else if constexpr (std::is_same_v<T1, T2>) {
return std::tuple<Exp<T1, Const<Number<integer<2>>>>>{};
}
},
});
}
));
}
}
template <typename ...Ps>
constexpr auto simplify(Sum<Ps...> const& value) {
if constexpr (sizeof...(Ps) == 0) {
return ConstZero {};
} else if constexpr (sizeof...(Ps) == 1) {
return std::get<0>(typename Sum<Ps...>::tuple{});
} else {
return tuple_to<Sum>(chain(typename Sum<Ps...>::tuple{},
[](auto ps) {
return tuple_apply_each(ps, overloaded {
[](ConstZero) { return std::make_tuple(); },
[](auto x) { return std::make_tuple(simplify(x)); },
MergeSum{},
});
},
[](auto ps) {
return tuple_type_sort(ps);
},
[](auto ps) {
return tuple_apply_first_pair(ps, overloaded {
[](auto t1, auto t2) {
using T1 = decltype(t1);
using T2 = decltype(t2);
if constexpr(std::is_same_v<T1, T2>){
return std::tuple<Mul<Const<Number<integer<2>>>, T1>>{};
} else if constexpr(size_v<T1> >= 1 and size_v<T2> >= 1) {
using E1 = element_t<0, T1>;
using E2 = element_t<0, T2>;
if constexpr(is_same_tpl_v<E1, Const<>> and is_same_tpl_v<E2, Const<>>) {
using Tail1 = tuple_drop_t<1, typename T1::tuple>;
using Tail2 = tuple_drop_t<1, typename T2::tuple>;
using N1 = typename E1::N;
using N2 = typename E2::N;
if constexpr(std::is_same_v<Tail1, Tail2>) {
if constexpr(std::tuple_size_v<Tail1> > 0) {
return std::tuple<Mul<Const<decltype(N1{} + N2{})>, tuple_to_t<Mul, Tail1>>>{};
} else {
return std::tuple<Const<decltype(N1{} + N2{})>>{};
}
}
} else if constexpr(is_same_tpl_v<E1, Const<>>) {
using Tail1 = tuple_drop_t<1, typename T1::tuple>;
using Tail2 = typename T2::tuple;
if constexpr(std::is_same_v<Tail1, Tail2>) {
return std::tuple<Mul<decltype(E1{} + ConstOne{}), tuple_to_t<Mul, Tail1>>>{};
}
}
}
},
});
}
));
}
}
template <typename ...Ps>
constexpr auto simplify(Min<Ps...> const& value) {
static_assert(sizeof...(Ps) > 0);
if constexpr (sizeof...(Ps) == 1) {
return std::get<0>(typename Min<Ps...>::tuple{});
} else {
auto tuple = tuple_type_sort(std::tuple<decltype(simplify(Ps{}))...>{});
return tuple_to<Min>(tuple_apply_first_pair(tuple, overloaded {
[](auto t1, auto t2) {
if constexpr (std::is_same_v<decltype(t1), decltype(t2)>) {
return std::tuple<decltype(t1)>{};
} else if constexpr (is_same_tpl_v<decltype(t1), Const<>> and is_same_tpl_v<decltype(t2), Const<>>) {
if constexpr (decltype(t1)::value() < decltype(t2)::value()) {
return std::tuple<decltype(t1)>{};
} else {
return std::tuple<decltype(t2)>{};
}
}
}
}));
}
}
template <typename ...Ps>
constexpr auto simplify(Max<Ps...> const& value) {
static_assert(sizeof...(Ps) > 0);
if constexpr (sizeof...(Ps) == 1) {
return std::get<0>(typename Max<Ps...>::tuple{});
} else {
auto tuple = tuple_type_sort(std::tuple<decltype(simplify(Ps{}))...>{});
return tuple_to<Max>(tuple_apply_first_pair(tuple, overloaded {
[](auto t1, auto t2) {
if constexpr (std::is_same_v<decltype(t1), decltype(t2)>) {
return std::tuple<decltype(t1)>{};
} else if constexpr (is_same_tpl_v<decltype(t1), Const<>> and is_same_tpl_v<decltype(t2), Const<>>) {
if constexpr (decltype(t1)::value() > decltype(t2)::value()) {
return std::tuple<decltype(t1)>{};
} else {
return std::tuple<decltype(t2)>{};
}
}
}
}));
}
}
template <typename Expr>
constexpr auto full_simplify(Expr const& expr) {
auto ret = simplify(expr);
if constexpr(std::is_same_v<decltype(ret), Expr>) {
return ret;
} else {
return full_simplify(ret);
}
}
template <typename Expr>
constexpr auto list_simplify(Expr const& expr) {
auto ret = simplify(expr);
if constexpr(std::is_same_v<decltype(ret), Expr>) {
return std::make_tuple(ret);
} else {
auto r = list_simplify(ret);
return std::tuple_cat(std::make_tuple(expr), r);
}
}
template <typename T1, typename T2, typename V>
constexpr auto replace([[maybe_unused]] V var) {
if constexpr(std::is_same_v<T1, V>) {
return T2{};
} else if constexpr(is_same_tpl_v<Exp<>, V>) {
auto p1 = replace<T1, T2>(typename V::P1{});
auto p2 = replace<T1, T2>(typename V::P2{});
return Exp<decltype(p1), decltype(p2)>{};
} else if constexpr(is_same_tpl_v<Ln<>, V>) {
auto p = replace<T1, T2>(typename V::P{});
return Ln<decltype(p)>{};
} else if constexpr(is_same_tpl_v<Sin<>, V>) {
auto p = replace<T1, T2>(typename V::P{});
return Sin<decltype(p)>{};
} else if constexpr(is_same_tpl_v<Cos<>, V>) {
auto p = replace<T1, T2>(typename V::P{});
return Cos<decltype(p)>{};
} else if constexpr(is_same_tpl_v<Mul<>, V>) {
return tuple_to<Mul>(std::apply([](auto... e) {
return std::make_tuple(replace<T1, T2>(e)...);
}, typename V::tuple{}));
} else if constexpr(is_same_tpl_v<Sum<>, V>) {
return tuple_to<Sum>(std::apply([](auto... e) {
return std::make_tuple(replace<T1, T2>(e)...);
}, typename V::tuple{}));
} else {
return V{};
}
}
// ------------------- operator
template <typename T1, typename T2, typename ...Ps1, typename... Ps2>
constexpr auto operator+(EntityBase<T1, Ps1...> const&, EntityBase<T2, Ps2...> const&) {
return full_simplify(Sum<T1, T2>{});
}
template <typename T1, typename T2, typename ...Ps1, typename ...Ps2>
constexpr auto operator*(EntityBase<T1, Ps1...> const&, EntityBase<T2, Ps2...> const&) {
return full_simplify(Mul<T1, T2>{});
}
template <typename T1, typename T2, typename ...Ps1, typename ...Ps2>
constexpr auto operator/(EntityBase<T1, Ps1...> const&, EntityBase<T2, Ps2...> const&) {
return full_simplify(Mul<T1, Exp<T2, Const<Number<integer<-1>>>>>{});
}
template <typename T1, typename ...Ps>
constexpr auto operator-(EntityBase<T1, Ps...> const&) {
return full_simplify(Mul<Const<Number<integer<-1>>>, T1>{});
}
template <typename T1, typename T2, typename ...Ps1, typename ...Ps2>
constexpr auto operator-(EntityBase<T1, Ps1...> const&, EntityBase<T2, Ps2...> const&) {
return full_simplify(Sum<T1, Mul<Const<Number<integer<-1>>>, T2>>{});
}
template <typename T1, typename T2, typename ...Ps1, typename ...Ps2>
constexpr auto pow(EntityBase<T1, Ps1...> const&, EntityBase<T2, Ps2...> const&) {
return full_simplify(Exp<T1, T2>{});
}
template <typename T1, typename T2, typename ...Ps1, typename ...Ps2>
constexpr auto operator^(EntityBase<T1, Ps1...> const p1, EntityBase<T2, Ps2...> const& p2) {
return pow(p1, p2);
}
template <typename T1, typename ...Ps>
constexpr auto ln(EntityBase<T1, Ps...> const&) {
return full_simplify(Ln<T1>{});
}
template <typename T1, typename ...Ps>
constexpr auto sin(EntityBase<T1, Ps...> const&) {
return full_simplify(Sin<T1>{});
}
template <typename T1, typename ...Ps>
constexpr auto cos(EntityBase<T1, Ps...> const&) {
return full_simplify(Cos<T1>{});
}
template <typename T1, typename ...Ps>
constexpr auto sign(EntityBase<T1, Ps...> const&) {
return full_simplify(Sign<T1>{});
}
template <typename T1, typename ...Ps>
constexpr auto abs(EntityBase<T1, Ps...> const&) {
return full_simplify(Abs<T1>{});
}
template <typename ...Ts>
constexpr auto min(Ts const&...) {
return full_simplify(Min<Ts...>{});
}
template <typename ...Ts>
constexpr auto max(Ts const&...) {
return full_simplify(Max<Ts...>{});
}
// ------------------- eval expressions
template<integer<>::type nr, typename T>
auto set(T) {
return std::tuple<Var<integer<nr>>, T>{};
}
template <typename Expr, typename Var, typename Const, typename ...Args>
constexpr auto eval(Expr e, std::tuple<Var, Const>, Args... args) {
return full_simplify(eval(replace<Var, Const>(e), args...));
}
template <typename Expr>
constexpr auto eval(Expr) {
return Expr{};
}
template <typename Expr, typename ...Args>
constexpr auto eval_expr_impl(Expr e, Args... args) {
return eval_expr(e, std::make_tuple(args...));
}
template <typename Tuple, typename T>
constexpr auto eval_expr(Const<T>, Tuple const&) {
return Const<T>::value();
}
template <typename Tuple, typename T>
constexpr auto eval_expr(Var<T>, Tuple const& tuple) {
return std::get<T::value>(tuple);
}
template <typename Tuple, typename T>
constexpr auto eval_expr(Ln<T>, Tuple const& tuple) {
using std::log;
return log(eval_expr(T{}, tuple));
}
template <typename Tuple, typename T>
constexpr auto eval_expr(Sin<T>, Tuple const& tuple) {
using std::sin;
return sin(eval_expr(T{}, tuple));
}
template <typename Tuple, typename T>
constexpr auto eval_expr(Cos<T>, Tuple const& tuple) {
using std::cos;
return cos(eval_expr(T{}, tuple));
}
template <typename Tuple, typename T>
constexpr auto eval_expr(Sign<T>, Tuple const& tuple) {
auto r = eval_expr(T{}, tuple);
if (r > 0) {
return 1.;
} else if (r < 0) {
return -1.;
} else {
return 0.;
}
}
template <typename Tuple, typename T>
constexpr auto eval_expr(Abs<T> e, Tuple const& tuple) {
using std::abs;
return abs(eval_expr(T{}, tuple));
}
template <typename Tuple, typename P1, typename P2>
constexpr auto eval_expr(Exp<P1, P2> e, Tuple const& tuple) {
using std::pow;
return pow(eval_expr(P1{}, tuple), eval_expr(P2{}, tuple));
}
template <typename Tuple, typename ...Ps>
constexpr auto eval_expr(Mul<Ps...> e, Tuple const& tuple) {
return std::apply([&](auto ...e) {
return (eval_expr(e, tuple) * ...);
}, typename Mul<Ps...>::tuple{});
}
template <typename Tuple, typename ...Ps>
constexpr auto eval_expr(Sum<Ps...> e, Tuple const& tuple) {
return std::apply([&](auto ...e) {
return (eval_expr(e, tuple) + ...);
}, typename Mul<Ps...>::tuple{});
}
template <typename Tuple, typename ...Ps>
constexpr auto eval_expr(Min<Ps...> e, Tuple const& tuple) {
using std::min;
return min({eval_expr(Ps{}, tuple)...});
}
template <typename Tuple, typename ...Ps>
constexpr auto eval_expr(Max<Ps...> e, Tuple const& tuple) {
using std::max;
return max({eval_expr(Ps{}, tuple)...});
}
// ------------------- is const
template<int nr, typename Expr>
constexpr auto isConst();
template <int nr, typename N>
constexpr auto isConst_impl(Const<N>) {
return true;
}
template <int nr, integer<>::type n>
constexpr auto isConst_impl(Var<integer<n>>) {
return n != nr;
}
template <int nr, typename T>
constexpr auto isConst_impl(Ln<T> l) {
return isConst_impl<nr>(T{});
}
template <int nr, typename T>
constexpr auto isConst_impl(Sin<T> l) {
return isConst_impl<nr>(T{});
}
template <int nr, typename T>
constexpr auto isConst_impl(Cos<T> l) {
return isConst_impl<nr>(T{});
}
template <int nr, typename T>
constexpr auto isConst_impl(Sign<T> l) {
return isConst_impl<nr>(T{});
}
template <int nr, typename T>
constexpr auto isConst_impl(Abs<T> l) {
return isConst_impl<nr>(T{});
}
template <int nr, typename P1, typename P2>
constexpr auto isConst_impl(Exp<P1, P2> value) {
return isConst_impl<nr>(P1{}) and isConst_impl<nr>(P2{});
}