generated from SMPTE/General-Repository-Template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.py
290 lines (248 loc) · 8.69 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#!/usr/bin/env python3
#
# Common functions used by the Python scripts for processing metadata.
import os
from lxml import etree
# Namespace for the XML metadata files
namespace = {'metadata' : 'https://www.vc5codec.org/xml/metadata'}
def create_xml_root():
"""Create the root element for the XML representation of metadata."""
root = etree.Element('metadata')
#root.set("xmlns", "https://www.vc5codec.org/xml/metadata")
root.set("xmlns", namespace['metadata'])
return root
# Maximum size in a tuple with a repeat count and the maximum repeat count
tuple_repeat_size_max = 255
tuple_repeat_count_max = 65535
# Dictionary that maps a data type to information about the data type.
#
# Data type zero for nested tuples is represented in XML by the character zero.
#
# The size for a scalar with the specified data type is listed only if the data type has a fixed size.
#
data_type_dict = {
'0': {'repeat': False},
'c': {'repeat': False},
'b': {'repeat': True, 'size': 1},
'B': {'repeat': True, 'size': 1},
'h': {'repeat': True, 'size': 2},
'f': {'repeat': True, 'size': 4},
'd': {'repeat': True, 'size': 8},
'E': {'repeat': False},
'F': {'repeat': True, 'size': 4},
'G': {'repeat': True, 'size': 16},
'l': {'repeat': True, 'size': 4},
'L': {'repeat': True, 'size': 4},
'j': {'repeat': True, 'size': 8},
'J': {'repeat': True, 'size': 8},
'P': {'repeat': False},
'q': {'repeat': True, 'size': 4},
'Q': {'repeat': True, 'size': 8},
'r': {'repeat': True, 'size': 4},
'R': {'repeat': True, 'size': 4},
's': {'repeat': True, 'size': 2},
'S': {'repeat': True, 'size': 2},
'x': {'repeat': False},
'u': {'repeat': False},
'w': {'repeat': False},
'U': {'repeat': True, 'size': 16}
#'X': {'repeat': 0}
}
# Dictionary that maps nested tuples tags to the list of children in that nested tuple
nested_tuple_dict = {
# Intrinsic metadata
'CFHD': {
'ROWI': {'required': False},
'COLI': {'required': False},
'NCOL': {'required': False},
'NROW': {'required': False},
'PFMT': {'required': False},
'ALPH': {'required': False},
'ALPM': {'required': False},
'CFAP': {'required': False},
'CLSY': {'required': False},
'CMIN': {'required': False},
'CMAX': {'required': False},
'AMIN': {'required': False},
'AMAX': {'required': False},
'BLKR': {'required': False},
'WHTR': {'required': False},
'COLR': {'required': False},
'CDCS': {'required': False},
'RATE': {'required': False},
'SCAL': {'required': False},
'FRMN': {'required': False},
'TIMB': {'required': False},
'TIMD': {'required': False},
'TIMS': {'required': False},
'FRMZ': {'required': False},
'LAYR': {'required': False},
'ICCP': {'required': False},
'LOGA': {'required': False},
'GAMA': {'required': False},
'LINR': {'required': False},
'FSLG': {'required': False},
'LOGC': {'required': False},
'PQEC': {'required': False},
'HLGE': {'required': False}
},
# Encoding curve metadata (ST 2073-7 Annex B.9 and Table 10)
'LOGA': {
'LOGb': {'required': True}
},
'GAMA': {
'GAMp': {'required': True}
},
#'LINR': [],
'FSLG': {
'FSCL': {'required': True}
},
'LOGC': {
'LOGt': {'required': True},
'LOGa': {'required': True},
'LOGb': {'required': True},
'LOGc': {'required': True},
'LOGd': {'required': True},
'LOGe': {'required': True},
'LOGf': {'required': True}
},
#'PQEC': [],
#'HLGE': [],
# Layer metadata (ST 2073-7 Annex B.13)
'LAYR': {
'LAYN': {'required': True},
'LAYD': {'required': True}
},
# Streaming metadata (ST 2073-7 Annex C)
'GPMF': {
'DEVC': {'required': True}
},
'DEVC': {
'DVID': {'required': False},
'DVNM': {'required': False},
'TICK': {'required': False},
'STRM': {'required': True}
},
'STRM': {
'STID': {'required': False},
'STNM': {'required': False},
'SCAL': {'required': False},
'SIUN': {'required': False},
'UNIT': {'required': False},
'TIMO': {'required': False},
'TYPE': {'required': False},
'ACCL': {'required': False},
'GYRO': {'required': False},
'MTRX': {'required': False},
'ORIN': {'required': False},
'ORIO': {'required': False},
'STMP': {'required': False},
'TMPC': {'required': False},
'TSMP': {'required': False},
'GPS5': {'required': False},
'GPSF': {'required': False},
'GPSP': {'required': False},
'GPSU': {'required': False},
'ISOG': {'required': False},
'MAGN': {'required': False},
'SHUT': {'required': False},
'EMPT': {'required': False},
'FCNM': {'required': False},
'FWVS': {'required': False},
'ISOE': {'required': False},
'WBAL': {'required': False},
'WRGB': {'required': False},
'MFGI': {'required': False},
'UNIF': {'required': False},
'YAVG': {'required': False},
'acc1': {'required': False},
'CORI': {'required': False},
'VPTS': {'required': False},
'SROT': {'required': False},
'IORI': {'required': False},
'GRAV': {'required': False}
},
# Dark metadata (ST 2073-7 Annex D)
'DARK': {
'VENI': {'required': False},
'VENS': {'required': False},
'VEND': {'required': True}
},
# XMP extrinsic metadata (ST 2073-7 Annex E)
'XMPD': {
'XMPd': {'required': True},
'PATH': {'required': False},
'FCDT': {'required': False},
'FMDT': {'required': False}
},
# DPX extrinsic metadata (ST 2073-7 Annex F)
'DPXF': {
'DPXh': {'required': True},
'PATH': {'required': False},
'FCDT': {'required': False},
'FMDT': {'required': False}
},
# MXF Annex F and G essence descriptors (ST 2073-7 Annex G)
'MXFD' : {
'MXFd': {'required': True}
},
# ACES attributes (ST 2073-7 Annex H)
'ACES': {
'ACEh': {'required': True},
'PATH': {'required': False},
'FCDT': {'required': False},
'FMDT': {'required': False}
},
# ALE metadata (ST 2073-7 Annex I)
'ALEM': {
'ALEd': {'required': True},
'PATH': {'required': False},
'FCDT': {'required': False},
'FMDT': {'required': False}
},
# Dynamic Metadata for Color Volume Transform (ST 2073-7 Annex J)
'DMCT': {
'CVTS': {'required': True},
'CVTD': {'required': True}
}
}
def has_repeat_count(type):
"""Return true of the data type has a repeat count."""
data_type_info = data_type_dict.get(type, None)
return data_type_info and data_type_info['repeat']
def file_extension(pathname):
"""Return the file extension as a string without the file extension separator."""
return os.path.splitext(pathname)[1][1:].lower()
def indentation(level):
"""Return a string to indent a printed line for the specified nesting level."""
spaces_per_indent = 2
return ' ' * (spaces_per_indent * level)
# def remove_namespace(tree, namespace):
# """Remove namespace from all elements in the XML tree using in place computation."""
# ns = u'{%s}' % namespace
# for element in tree.getiterator():
# if element.tag.startswith(ns):
# # Strip the namespace prefix from the element tag
# element.tag = element.tag[len(ns):]
def remove_namespace(tree, args=None):
"""Remove namespace from all elements in the XML tree using in place computation."""
if args and args.debug: print("Remove namespace:", tree)
for element in tree.getiterator():
element.tag = etree.QName(element).localname
etree.cleanup_namespaces(tree)
if args and args.debug: print("Result namespace:", tree)
def get_attribute(tuple, attribute):
"""Get the specified attribute from the tuple attributes (return None if not present in the tuple)."""
return tuple.attrib.get(attribute, None)
def compute_padding(size, count=1):
"""Compute the tuple padding required for the specified metadata size and count."""
assert(size != None)
size = int(size)
count = int(count) if count != None else 1
actual_count = max(count, 1)
value_size = size * actual_count
segment_count = int((value_size + 3) / 4)
payload_size = 4 * segment_count
payload_padding = payload_size - value_size
#print(size, actual_count, value_size, payload_size, payload_padding)
return payload_padding