-
Notifications
You must be signed in to change notification settings - Fork 78
/
user_config.yaml
86 lines (77 loc) · 2.99 KB
/
user_config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
general:
project_name: human_activity_recognition
model_path: #../pretrained_models/ign/ST_pretrainedmodel_custom_dataset/mobility_v1/ign_wl_24/ign_wl_24.h5
logs_dir: logs
saved_models_dir: saved_models
display_figures: True
global_seed: 123
gpu_memory_limit: 4
operation_mode: chain_tb
#choices=['benchmarking', 'deployment', 'evaluation', 'training', 'chain_tb']
dataset:
name: wisdm # wisdm or mobility_v1
class_names: [Jogging,Stationary,Stairs,Walking] #[Stationary,Walking,Jogging,Biking] for mobility_v1 #[Jogging,Stationary,Stairs,Walking] for WISDM
training_path: ../datasets/WISDM_ar_v1.1/WISDM_ar_v1.1_raw.txt # Mandatory for all but deployment, and benchmarking
validation_path: # ../datasets/mobility_v1/train.pkl # Optional
validation_split: 0.2 # Optional, default value is 0.2
test_path:
test_split: 0.25 # Optional, default value is 0.25
seed: 123 # Optional, there is a default seed
preprocessing:
gravity_rot_sup: True
normalization: False
training:
model: # Use it if you want to use a model from the zoo, mutually exclusive with 'general.model_path'
name: ign
input_shape: (24, 3, 1)
pretrained_model_path: # Optional, available for transfer learning with cnn models
resume_training_from: # Optional, use to resume a training from a previous experiment.
# Example: experiments_outputs/YYYY_MM_DD_HH_mm_ss/saved_models/last_augmented_model.h5
# frozen_layers: (0:-1) # Optional, use if you want to freeze some layers (by default all layers are trainable)
dropout: 0.5 # Optional, only used for `ign` or `gmp` model use it if you want a dropout layer to be included in the model
batch_size: 256
epochs: 200
optimizer:
Adam:
learning_rate: 0.001
callbacks: # Optional section
ReduceLROnPlateau:
monitor: val_accuracy
mode: max
factor: 0.5
patience: 40
min_lr: 1.0e-05
# LRWarmupCosineDecay:
# initial_lr: 0.0001
# warmup_steps: 100
# max_lr: 0.005
# hold_steps: 100
# decay_steps: 800
# end_lr: 5.0e-05
EarlyStopping:
monitor: val_accuracy
mode: max
restore_best_weights: true
patience: 60
# trained_model_path: trained.h5 # Optional, use it if you want to save the best model at the end of the training to a path of your choice
tools:
stedgeai:
version: 9.1.0
optimization: balanced
on_cloud: True
path_to_stedgeai: C:/Users/<XXXXX>/STM32Cube/Repository/Packs/STMicroelectronics/X-CUBE-AI/<*.*.*>/Utilities/windows/stedgeai.exe
path_to_cubeIDE: C:/ST/STM32CubeIDE_1.15.0/STM32CubeIDE/stm32cubeide.exe
benchmarking:
board: B-U585I-IOT02A
deployment:
c_project_path: ../../stm32ai_application_code/sensing_thread_x/
IDE: GCC
verbosity: 1
hardware_setup:
serie: STM32U5
board: B-U585I-IOT02A
mlflow:
uri: ./experiments_outputs/mlruns
hydra:
run:
dir: ./experiments_outputs/${now:%Y_%m_%d_%H_%M_%S}