-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodelfunctions.cpp
316 lines (267 loc) · 12.7 KB
/
modelfunctions.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#include <iostream>
#include <cmath>
#include <algorithm>
#include "modelfunctions.hpp"
using namespace std;
/*Likelihood ratio on log scale for Binomial model with success probability on logit scale
modelled by monotonic function
INPUT:
level_proposed - Proposed level of the point
level_current - Currently assigned level of the point
baseline - Currently assigned baseline level
response - Number of successes
number_trials - Number of trials
param - Empty entry
result - Current likelihood difference
OUTPUT:
Updated likelihood ratio of proposed and current point process
*/
void Binomial_model(const double &level_proposed, const double &level_current,
const double &baseline, const double &response, const int &number_trials,
const double ¶m, double &result){
result = result + (level_proposed - level_current) * response - number_trials *
( log(1 + exp(level_proposed + baseline)) - log(1 + exp(level_current + baseline)) );
}
/*Likelihood ratio on log scale for Poisson model with rate on log scale modelled by monotonic
function
INPUT:
level_proposed - Proposed level of the point
level_current - Currently assigned level of the point
baseline - Currently assigned baseline level
response - Number of cases
number_trials - Empty
param - Empty entry
result - Current likelihood difference
OUTPUT:
Updated likelihood ratio of the proposed and current point process
*/
void Poisson_model(const double &level_proposed, const double &level_current,
const double &baseline, const double &response, const int &number_trials,
const double ¶m, double &result){
result = result + response * (level_proposed - level_current) -
( exp(level_proposed + baseline) - exp(level_current + baseline) );
}
/*Likelihood ratio on log scale for Gaussian model with mean modelled by monotonic function
INPUT:
level_proposed - Proposed level of the point
level_current - Currently assigned level of the point
baseline - Currently assigned baseline level
response - Observation of the response variable
number_trials - Empty entry
variance - Estimated variance of the Gaussian random variable (constant)
result - Current likelihood difference
OUTPUT:
Updated likelihood ratio of the proposed and current point process
*/
void Gaussian_model(const double &level_proposed, const double & level_current,
const double &baseline, const double &response, const int &number_trials,
const double &variance, double &result){
result = result - 1/(2*variance) * ( pow(response - level_proposed - baseline, 2.0) -
pow(response - level_current - baseline, 2.0) );
}
/*Likelihood ratio on log scale for Binomial model truncated at 0 with success probability on
logit scale modelled by monotonic function
INPUT:
level_proposed - Proposed level of the point
level_current - Currently assigned level of the point
baseline - Currently assigned baseline level
response - Number of successes
number_trials - Number of trials
param - Empty entry
result - Current likelihood difference
OUTPUT:
Updated likelihood ratio of proposed and current point process
*/
void trBinomial_model(const double &level_proposed, const double &level_current,
const double &baseline, const double &response, const int &number_trials,
const double ¶m, double &result){
double prob_prop = 1 - exp( -number_trials * log(1 + exp(level_proposed + baseline)) );
double prob_curr = 1 - exp( -number_trials * log(1 + exp(level_current + baseline)) );
result = result + (level_proposed - level_current) * response - number_trials *
(log(1+exp(level_proposed + baseline)) - log(1+exp(level_current + baseline))) -
log(prob_prop) + log(prob_curr);
}
/*Likelihood ratio on log scale for Generalized Pareto model with scale on log scale modelled
by monotonic function
INPUT:
level_proposed - Proposed level of the point
level_current - Currently assigned level of the point
baseline - Currently assigned baseline level
response - Observation of response variable
number_trials - Empty
shape - Shape parameter of the GPD random variable
result - Current likelihood difference
OUTPUT:
Updated likelihood ratio of proposed and current point process
*/
void GPD_model(const double &level_proposed, const double &level_current,
const double &baseline, const double &response, const int &number_trials,
const double &shape, double &result){
result = result - level_proposed + level_current -
(1/shape + 1) * ( log( 1 + shape * response/exp(level_proposed + baseline) ) -
log( 1 + shape * response/exp(level_current + baseline) ) );
}
/*Likelihood ratio on log scale for Bernoulli model with succes probability on logit scale modelled
by monotonic function
INPUT:
level_proposed - Proposed level of the point
level_current - Currently assigned level of the point
baseline - Currently assigned baseline level
response - 1 if success and 0 otherwise
number_trials - Number of trials for 0-1 observations
param - Empty entry
result - Current likelihood ratio on log scale
OUTPUT:
Updated likelihood ratio of proposed and current point process
*/
void Bernoulli_model(const double &level_proposed, const double &level_current,
const double &baseline, const double &response,
const int &number_trials, const double ¶m, double &result){
result = result +
response * ( log(1 - exp(-number_trials * log(1 + exp(level_proposed + baseline)))) -
log(1 - exp(-number_trials * log(1 + exp(level_current + baseline)))) ) +
(1 - response) * number_trials * ( log(1 + exp(level_current + baseline)) -
log(1 + exp(level_proposed + baseline)) );
}
/*Likelihood ratio on log scale for Binomial model with success probability on logit scale
modelled by monotonic function for proposed new baseline
INPUT:
n - Number of observations
level - Vector of currently assigned levels to the responses
baseline_current - Currently assigned baseline
baseline_proposed - Proposed baseline
response - Observations of the response variable
number_trials - Number of trials
param - Empty entry
result - Current likelihood ratio on log scale
OUTPUT:
Updated likelihood ratio of proposed and current point process
*/
void Binomial_model_re(const int &n, const vector<double> &level, const double &baseline_current,
const double &baseline_proposed, const vector<double> &response,
const vector<int> &number_trials, const double ¶m, double &result){
for(int i=0; i<n; ++i){
result = result + (baseline_proposed - baseline_current) * response[i] -
number_trials[i]*( log(1 + exp(level[i] + baseline_proposed)) -
log(1 + exp(level[i] + baseline_current )) );
}
}
/*Likelihood ratio on log scale for Poisson model with rate on log scale modelled by monotonic
function for proposed new baseline
INPUT:
n - Number of observations
level - Vector of currently assigned levels to the responses
baseline_current - Currently assigned baseline
baseline_proposed - Proposed baseline
response - Observations of the response variable
number_trials - Number of trials
param - Empty entry
result - Current likelihood ratio on log scale
OUTPUT:
Updated likelihood ratio of proposed and current point process
*/
void Poisson_model_re(const int &n, const vector<double> &level, const double &baseline_current,
const double &baseline_proposed, const vector<double> &response,
const vector<int> &number_trials, const double ¶m, double &result){
for(int i=0; i<n; ++i){
result = result + response[i] * (baseline_proposed - baseline_current) -
(exp(level[i] + baseline_proposed) - exp(level[i] + baseline_current));
}
}
/*Likelihood ratio on log scale for Gaussian model with mean modelled by monotonic function
for proposed new baseline
INPUT:
n - Number of observations
level - Vector of currently assigned levels to the responses
baseline_current - Currently assigned baseline
baseline_proposed - Proposed baseline
response - Observation of the response variable
number_trials - Empty entry
variance - Estimated variance of the Gaussian random variable (constant)
result - Current likelihood ratio on log scale
OUTPUT:
Updated likelihood ratio of the proposed and current point process
*/
void Gaussian_model_re(const int &n, const vector<double> &level, const double &baseline_current,
const double &baseline_proposed, const vector<double> &response,
const vector<int> &number_trials, const double &variance, double &result){
for(int i=0; i<n; ++i){
result = result - 1/(2*variance) * ( pow(response[i] - level[i] - baseline_proposed, 2) -
pow(response[i] - level[i] - baseline_current , 2) );
}
}
/*Likelihood ratio on log scale for Binomial model truncated at 0 with success probability on
logit scale modelled by monotonic function for proposed new baseline
INPUT:
n - Number of observations
level - Vector of currently assigned levels to the responses
baseline_current - Currently assigned baseline
baseline_proposed - Proposed baseline
response - Observations of the response variable
number_trials - Number of trials
param - Empty entry
result - Current likelihood ratio on log scale
OUTPUT:
Updated likelihood ratio of proposed and current point process
*/
void trBinomial_model_re(const int &n, const vector<double> &level, const double &baseline_current,
const double &baseline_proposed, const vector<double> &response,
const vector<int> &number_trials, const double ¶m, double &result){
for(int i=0; i<n; ++i){
// Derive probabilities for Binomial exceeding 0 for proposed and current levels
double prob_prop = 1 - exp(-number_trials[i] * log(1 + exp(level[i] + baseline_proposed)));
double prob_curr = 1 - exp(-number_trials[i] * log(1 + exp(level[i] + baseline_current )));
//Update likelihood ratio
result = result - log(prob_prop) + log(prob_curr) +
(baseline_proposed - baseline_current) * response[i] - number_trials[i] *
( log(1 + exp(level[i] + baseline_proposed)) - log(1 + exp(level[i] + baseline_current)) );
}
}
/*Likelihood ratio on log scale for Generalized Pareto model with scale on log scale modelled
by monotonic function for proposed new baseline
INPUT:
n - Number of observations
level - Vector of currently assigned levels to the responses
baseline_current - Currently assigned baseline
baseline_proposed - Proposed baseline
response - Observations of response variable
number_trials - Empty
shape - Shape parameter of the GPD random variable
result - Current likelihood ratio on log scale
OUTPUT:
Updated likelihood ratio of proposed and current point process
*/
void GPD_model_re(const int &n, const vector<double> &level, const double &baseline_current,
const double &baseline_proposed, const vector<double> &response,
const vector<int> &number_trials, const double &shape, double &result){
for(int i=0; i<n; ++i){
result = result - baseline_proposed + baseline_current -
(1/shape + 1) * ( log(1 + shape * response[i]/exp(level[i] + baseline_proposed)) -
log(1 + shape * response[i]/exp(level[i] + baseline_current )) );
}
}
/*Likelihood ratio on log scale for Bernoulli model with succes probability on logit scale modelled
by monotonic function for proposed new baseline
INPUT:
n - Number of observations
level - Vector of currently assigned levels
baseline_current - Currently assigned random effect
baseline_proposed - Proposed random effect
response - Observations of the response variable
number_trials - Number of trials
param - Empty entry
result - Current likelihood ratio on log scale
OUTPUT:
Updated likelihood ratio of proposed and current point process
*/
void Bernoulli_model_re(const int &n, const vector<double> &level, const double &baseline_current,
const double &baseline_proposed, const vector<double> &response,
const vector<int> &number_trials, const double ¶m, double &result){
for(int i=0; i<n; ++i){
result = result +
response[i] * (log(1 - exp(-number_trials[i] * log(1 + exp(level[i]+baseline_proposed)))) -
log(1 - exp(-number_trials[i] * log(1 + exp(level[i]+baseline_current)))) ) +
(1 - response[i]) * number_trials[i] * ( log(1 + exp(level[i] + baseline_current )) -
log(1 + exp(level[i] + baseline_proposed)) );
}
}