Skip to content

Latest commit

 

History

History
194 lines (161 loc) · 8.49 KB

README.md

File metadata and controls

194 lines (161 loc) · 8.49 KB

SC_ONN_SIM (Stochastic Computing Optical Neural Network Simulator)

This is a transaction-level, event-driven python-based simulator for evaluation of stochastic computing based optical neural network accelerators for various quantized Convolutional Neural Network models.

ArXiv Preprint

https://arxiv.org/abs/2302.07036

Installation and Execution

git clone https://github.com/Sairam954/SC_ONN_SIM.git
python main.py

Bibtex

Please cite us if you use SC_ONN_SIM

@inproceedings{DBLP:conf/ipps/VatsavaiKTSH23,
  author       = {Sairam Sri Vatsavai and
                  Venkata Sai Praneeth Karempudi and
                  Ishan G. Thakkar and
                  Sayed Ahmad Salehi and
                  Jeffrey Todd Hastings},
  title        = {{SCONNA:} {A} Stochastic Computing Based Optical Accelerator for Ultra-Fast,
                  Energy-Efficient Inference of Integer-Quantized CNNs},
  booktitle    = {{IEEE} International Parallel and Distributed Processing Symposium,
                  {IPDPS} 2023, St. Petersburg, FL, USA, May 15-19, 2023},
  pages        = {546--556},
  publisher    = {{IEEE}},
  year         = {2023},
  url          = {https://doi.org/10.1109/IPDPS54959.2023.00061},
  doi          = {10.1109/IPDPS54959.2023.00061},
  timestamp    = {Tue, 25 Jul 2023 16:27:14 +0200},
  biburl       = {https://dblp.org/rec/conf/ipps/VatsavaiKTSH23.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

Video Tutorial

https://youtu.be/fjjq4jv_iCk

Accelerator Configuration

The accelerator configuration can be provided in main.py file. The configuration dictionary looks like below:

ACCELERATOR = [
{
    ELEMENT_SIZE: 176, # The supported dot product size of the processing unit, generally equal to number of wavelengths multiplexed in weight bank/activation bank 
    ELEMENT_COUNT: 176, # Number of parallel dot products that can be performed by one processing unit, generally equal to the number of output waveguides in a processing unit  
    UNITS_COUNT: 512, # Number of processing unit present in an accelerator
    RECONFIG: [], # Useful if the processing unit element size can be reconfigured according to the convolution computation need
    VDP_TYPE: "AMM", # More information abour vector dot product can be found in our paper ([https://ieeexplore.ieee.org/abstract/document/9852767]
    NAME: "SCONNA", # Name of the accelerator 
    ACC_TYPE: "STOCHASTIC", # Accelerator Type for example, ANALOG, STOCHASTIC accelerator
    PRECISION: 8, # The bit precision supported  by the accelerator, this value along with ***accelerator_required_precision*** determines whether bit-slicing needs to be implemented
    BITRATE: 30, # The bit rate of the accelerator 
}
]

SCONNA Accelerator

The below image shows SCONNA accelerator processing unit. image

SC_ONN_Simulator Project Structure

├── CNN_Inference - *Contains Files Necessary for Stochastic Computing based CNN inference *
│   ├── 8_bit_MUL.zip - * Contains a CSV with values corresponding stochastic bit stream for all combination of 8 bit integers and their multiplication result
│   ├── helperfunction.py - *Accuracy Evaluation functions*
│   ├── inference.py - *Inference Evaluation Script*
│   ├── sc_conv.py - *Convolution layer performing stochastic computing based convolutions with the help of look up table*
│   ├── sc_linear.py - *Convolution layer performing stochastic computing based convolutions with the help of look up table*
│   └── sc_lut.npy - *Stochastic Computing based look up table*
├── CNNModels - *Folder contains various CNN models available for performing simulations.
│   ├── DenseNet121.csv
│   ├── GoogLeNet.csv
│   ├── Inception_V3.csv
│   ├── MobileNet_V2.csv
│   ├── ResNet50.csv
│   ├── Sample
│   ├── ShuffleNet_V2.csv
│   ├── VGG16.csv
│   └── VGG19.csv
├── constants.py
├── Controller - *This contains the logic for scheduling the convolutions and corresponding dot product operations on to the accelerator hardware*
│   │   controller.py
│   ├── controller.py
│   └── __init__.py
├── Exceptions - *Accelerator Custom Exceptions*
│   └── AcceleratorExceptions.py
├── Hardware - *Different classes corresponding to the accelerator*
│   ├── Accelerator.py
│   ├── Accumulator_TIA.py
│   ├── Activation.py
│   ├── ADC.py
│   ├── Adder.py
│   ├── BtoS.py
│   ├── bus.py
│   ├── DAC.py
│   ├── eDram.py
│   ├── __init__.py
│   ├── io_interface.py
│   ├── MRR.py
│   ├── MRRVDP.py
│   ├── PD.py
│   ├── Pheripheral.py
│   ├── Pool.py
│   ├── router.py
│   ├── Serializer.py
│   ├── stochastic_MRRVDP.py
│   ├── TIA.py
│   ├── vdpelement.py
│   └── VDP.py
├── __init__.py
├── main.py
├── PerformanceMetrics
│   └── metrics.py - *Class to calculate various peformance metrics like FPS, FPS/W and FPS/W/mm2*
├── Plots 
│   ├── _Area(mm^2)_.png
│   ├── Area.png
│   ├── FPS.png
│   ├── _FPS_W_mm^2_.png
│   ├── FPS_W.png
│   ├── IPDPS
│   ├── Sample
│   ├── Sample.png
│   └── TPC_Utilization.png
├── projectstruct.txt
├── README.md
├── Result
│   ├── IPDPS
│   └── Sample
├── StochasticADCError.py - *ADC error calculation*
├── StochasticGateAnalysis.py -*Test the stochastic compututation versus conventional computation of operations like addition, substraction and multiplication* 
├── utils - *Stochastic Computing Utils*
│   ├── ADC.py
│   ├── modelmetrics.py
│   ├── SCONNALayers.py
│   ├── SCONNAOps.py
│   ├── SCONNAUtils.py
│   ├── UnarySimLayers.py
│   └── UnarySimUtils.py
└── visualization.py  

Simulation Result CSV:

After the simulations are completed, the results are stored in the form of a csv file containing information as shown below :

image

The performance metrics are calculated by using PeformanceMetrics/metrics.py, currently it provides the above values. Users can change the file to reflect their accelerator components energy and power parameters.

Evaluation Visualization:

The visualization.py can take the generated simulation csv and plot barplot for the results. It also prints useful information in the console about the top two accelerators. Result

Simulation Results Analysis:

The accelerator SCONNA achieves 1.0x times better fps than SCONNA
The accelerator SCONNA achieves 66.56219184599667x times better fps than MAM (HOLYLIGHT [6])
The accelerator SCONNA achieves 146.4465119184254x times better fps than AMM (DEAPCNN [8])
Details of second best accelerator
The accelerator MAM (HOLYLIGHT [6]) achieves 1.0x times better fps than MAM (HOLYLIGHT [6])
The accelerator MAM (HOLYLIGHT [6]) achieves 2.200145575993879x times better fps than AMM (DEAPCNN [8])

Device Level Simulations:

Please refer this repository for device level simulation files: https://github.com/uky-UCAT/MRR-PEOLG

Accuracy Drop Estimation

To evaluate accuracy drop due to ADC error in SCONNA, we modified the PyTorch quantized conv and linear modules at torch/ao/nn/quantized/ to introduce error during the forward pass of CNN inference We follow the steps recommended by the community of PyTorch Forum to introduce error : https://discuss.pytorch.org/t/adding-an-offset-to-qint8-tensor/164846 Note: Below steps are only applicable to 8-bit integer quantized CNNs and for SCONNA evalautions we use pre-trained 8-bit integer quantized CNNs from TorchVision Example of how linear layer forward method is updated to introduce error:

error = 0.001
output = torch.ops.quantized.linear(x, self._packed_params._packed_params, self.scale, self.zero_point)
output = torch.quantize_per_tensor(output.dequantize(), output.q_scale()*(1+error), output.q_zero_point(), output.dtype)
return output