-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmpx_inference.jl
170 lines (140 loc) · 6.72 KB
/
mpx_inference.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
## Idea is to have both fitness and SBM effects in sexual contact
using Distributions, StatsBase, StatsPlots
using LinearAlgebra, RecursiveArrayTools
using OrdinaryDiffEq, ApproxBayes
using JLD2, MCMCChains, Roots, Dates
using CSV, DataFrames, StatsPlots, Plots.PlotMeasures
import MpoxUK
## MSM data with data inference
past_mpxv_data_inferred = CSV.File("data/weekly_data_imputation_2022-09-30.csv",
missingstring = "NA") |> DataFrame
colname = "seqn_fit5"
inferred_prop_na_msm = past_mpxv_data_inferred[:, colname] |> x -> x[.~ismissing.(x)]
mpxv_wkly =
past_mpxv_data_inferred[1:size(inferred_prop_na_msm, 1), ["gbmsm", "nongbmsm"]] .+
past_mpxv_data_inferred[1:size(inferred_prop_na_msm, 1), "na_gbmsm"] .*
hcat(inferred_prop_na_msm, 1.0 .- inferred_prop_na_msm) |> Matrix
wks = Date.(past_mpxv_data_inferred.week[1:size(mpxv_wkly, 1)], DateFormat("dd/mm/yyyy"))
# Leave out first two weeks because reporting changed in early May
mpxv_wkly = mpxv_wkly[3:end, :]
wks = wks[3:end]
## Set up model
include("setup_model.jl");
## Define different priors for different models
# Main model
prior_vect_no_ngbmsm_chg = [
Gamma(1,1), # α_choose 1
Beta(5, 5), #p_detect 2
Beta(1, 1), #p_trans 3
LogNormal(log(0.25), 1), #R0_other 4
Gamma(3, 1000 / 3),# M 5
LogNormal(log(5), 1),#init_scale 6
Uniform(135, 199),# chp_t 7
Beta(1.5,1.5),#trans_red 8
Uniform(0.0,1e-10),#trans_red_other 9
Beta(1.5,1.5),#trans_red WHO 10
Uniform(0.0,1e-10),#trans_red_other WHO 11
]
# Model with only one metapopulation
prior_vect_one_metapop = [
Uniform(1e-11,1e-10), # α_choose 1
Beta(5, 5), #p_detect 2
Beta(1, 1), #p_trans 3
LogNormal(log(0.25), 1), #R0_other 4
Gamma(3, 1000 / 3),# M 5
LogNormal(log(5), 1),#init_scale 6
Uniform(135, 199),# chp_t 7
Beta(1.5,1.5),#trans_red 8
Uniform(0.0,1e-10),#trans_red_other 9
Beta(1.5,1.5),#trans_red WHO 10
Uniform(0.0,1e-10),#trans_red_other WHO 11
]
# Model with behaviour change for GBMSM and non-GBMSM
prior_vect = [
Gamma(1,1), # α_choose 1
Beta(5, 5), #p_detect 2
Beta(1, 1), #p_trans 3
LogNormal(log(0.25), 1), #R0_other 4
Gamma(3, 1000 / 3),# M 5
LogNormal(log(5), 1),#init_scale 6
Uniform(135, 199),# chp_t 7
Beta(1.5,1.5),#trans_red 8
Beta(1.5,1.5),#trans_red_other 9
Beta(1.5,1.5),#trans_red WHO 10
Beta(1.5,1.5),#trans_red_other WHO 11
]
# Model with no behaviour change for GBMSM and non-GBMSM
prior_vect_no_bv_cng = [
Gamma(1,1), # α_choose 1
Beta(5, 5), #p_detect 2
Beta(1, 1), #p_trans 3
LogNormal(log(0.25), 1), #R0_other 4
Gamma(3, 1000 / 3),# M 5
LogNormal(log(5), 1),#init_scale 6
Uniform(135, 199),# chp_t 7
Uniform(0.0,1e-10),#trans_red 8
Uniform(0.0,1e-10),#trans_red_other 9
Uniform(0.0,1e-10),#trans_red WHO 10
Uniform(0.0,1e-10),#trans_red_other WHO 11
]
model_str_to_prior = Dict("no_ngbmsm_chg" => prior_vect_no_ngbmsm_chg,
"no_bv_cng" => prior_vect_no_bv_cng,
"one_metapop" => prior_vect_one_metapop,
"" => prior_vect)
## Choose model
description_str = "no_ngbmsm_chg" #<---- This is the main model
# description_str = "no_bv_cng" #<---- This is the version of the model with no behavioural change
# description_str = "one_metapop" #<--- This is the version of the model with no metapopulation structure
# description_str = "" #<--- this is the older version main model
prior_vect_cng_pnt = model_str_to_prior[description_str] # Chooses the appropriate priors for the model choice
#Use simulation-based calibration for defining the ABC error target and generate prior predictive plots
ϵ_target, plt_prc, hist_err = MpoxUK.simulation_based_calibration(
prior_vect_cng_pnt,
wks,
mpxv_wkly,
constants;
target_perc = 0.25,
)
setup_cng_pnt = ABCSMC(
MpoxUK.mpx_sim_function_chp, #simulation function
length(prior_vect_cng_pnt), # number of parameters
ϵ_target, #target ϵ derived from simulation based calibration
Prior(prior_vect_cng_pnt); #Prior for each of the parameters
ϵ1 = 1000,
convergence = 0.05,
nparticles = 2000,
α = 0.3,
kernel = gaussiankernel,
constants = constants,
maxiterations = 5 * 10^5,
)
##Run ABC and save results
smc_cng_pnt = runabc(setup_cng_pnt, mpxv_wkly, verbose = true, progress = true)
param_draws = [particle.params for particle in smc_cng_pnt.particles]
@save("posteriors/posterior_param_draws_" * string(wks[end]) * description_str * ".jld2", param_draws)
detected_cases = [particle.other.detected_cases for particle in smc_cng_pnt.particles]
@save("posteriors/posterior_detected_cases_" * string(wks[end]) * description_str * ".jld2", detected_cases)
onsets = [particle.other.onsets for particle in smc_cng_pnt.particles]
@save("posteriors/posterior_onsets_" * string(wks[end]) * description_str * ".jld2", onsets)
incidences = [particle.other.incidence for particle in smc_cng_pnt.particles]
@save("posteriors/posterior_incidences_" * string(wks[end]) * description_str * ".jld2", incidences)
susceptibilities = [particle.other.susceptibility for particle in smc_cng_pnt.particles]
@save("posteriors/posterior_susceptibilities_" * string(wks[end]) * description_str * ".jld2", susceptibilities)
end_states = [particle.other.end_state for particle in smc_cng_pnt.particles]
@save("posteriors/posterior_end_states_" * string(wks[end]) * description_str * ".jld2", end_states)
start_states = [particle.other.start_state for particle in smc_cng_pnt.particles]
@save("posteriors/posterior_start_states_" * string(wks[end]) * description_str * ".jld2", start_states)
begin_vac_states = [particle.other.state_pre_vaccine for particle in smc_cng_pnt.particles]
@save("posteriors/posterior_begin_vac_states_" * string(wks[end]) * description_str * ".jld2", begin_vac_states)
begin_sept_states = [particle.other.state_sept for particle in smc_cng_pnt.particles]
@save("posteriors/posterior_begin_sept_states_" * string(wks[end]) * description_str * ".jld2", begin_sept_states)
vac_effectivenesses = [particle.other.vac_effectiveness for particle in smc_cng_pnt.particles]
@save("posteriors/posterior_vac_effectivenesses_" * string(wks[end]) * description_str * ".jld2", vac_effectivenesses)
##posterior predictive checking - simple plot to see coherence of model with data
post_preds = [part.other.detected_cases for part in smc_cng_pnt.particles]
plt = plot(; ylabel = "Weekly cases", title = "Posterior predictive checking")
for pred in post_preds
plot!(plt, wks[1:end], pred[1:end,2], lab = "", color = [1 2], alpha = 0.1)
end
scatter!(plt, wks[1:end], mpxv_wkly[1:end,2], lab = ["Data: (MSM)" "Data: (non-MSM)"])#, ylims = (0, 800))
display(plt)