-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathposterior_plots.jl
264 lines (226 loc) · 7.83 KB
/
posterior_plots.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
using Distributions, StatsBase, StatsPlots, Plots.PlotMeasures
using LinearAlgebra, RecursiveArrayTools
using OrdinaryDiffEq, ApproxBayes, CSV, DataFrames, Dates
using JLD2, MCMCChains
using MpoxUK
## Grab UK data and setup model
past_mpxv_data_inferred =
CSV.File("data/weekly_data_imputation_2022-10-26.csv", missingstring = "NA") |>
DataFrame
colname = "seqn_fit7"
inferred_prop_na_msm = past_mpxv_data_inferred[:, colname] |> x -> x[.~ismissing.(x)]
mpxv_wkly =
past_mpxv_data_inferred[1:size(inferred_prop_na_msm, 1), ["gbmsm", "nongbmsm"]] .+
past_mpxv_data_inferred[1:size(inferred_prop_na_msm, 1), "na_gbmsm"] .*
hcat(inferred_prop_na_msm, 1.0 .- inferred_prop_na_msm) |> Matrix
wks = Date.(past_mpxv_data_inferred.week[1:size(mpxv_wkly, 1)], DateFormat("dd/mm/yyyy"))
# Leave out first two weeks because reporting changed in early May
mpxv_wkly = mpxv_wkly[3:end, :]
wks = wks[3:end]
## Set up model
include("setup_model.jl");
##Load posterior draws and structure
# Main model
param_names = [
:metapop_size_dispersion,
:prob_detect,
:prob_transmission,
:R0_other,
:detect_dispersion,
:init_infs,
:chg_pnt,
:sex_trans_red,
:other_trans_red,
:sex_trans_red_post_WHO,
:other_trans_red_post_WHO,
]
transformations = [
fill(x -> x, 4)
x -> 1 / (x + 1) #Translate "effective sample size" for Beta-Binomial on sampling to overdispersion parameter
fill(x -> x, 4)
fill(x -> x, 2)
]
function col_transformations(X, f_vect)
for j = 1:size(X, 2)
X[:, j] = f_vect[j].(X[:, j])
end
return X
end
prior_vect_no_ngbmsm_chg = [
Gamma(1,1), # α_choose 1
Beta(5, 5), #p_detect 2
Beta(1, 1), #p_trans 3
LogNormal(log(0.25), 1), #R0_other 4
Gamma(3, 1000 / 3),# M 5
LogNormal(log(5), 1),#init_scale 6
Uniform(135, 199),# chp_t 7
Beta(1.5,1.5),#trans_red 8
Uniform(0.0,1e-10),#trans_red_other 9
Beta(1.5,1.5),#trans_red WHO 10
Uniform(0.0,1e-10),#trans_red_other WHO 11
]
param_idxs_no_ngbmsm_chg = [trues(7);true;false;true;false]
# Model with only one metapopulation
prior_vect_one_metapop = [
Uniform(1e-11,1e-10), # α_choose 1
Beta(5, 5), #p_detect 2
Beta(1, 1), #p_trans 3
LogNormal(log(0.25), 1), #R0_other 4
Gamma(3, 1000 / 3),# M 5
LogNormal(log(5), 1),#init_scale 6
Uniform(135, 199),# chp_t 7
Beta(1.5,1.5),#trans_red 8
Uniform(0.0,1e-10),#trans_red_other 9
Beta(1.5,1.5),#trans_red WHO 10
Uniform(0.0,1e-10),#trans_red_other WHO 11
]
param_idxs_one_metapop = [false;trues(6);true;false;true;false]
# Model with behaviour change for GBMSM and non-GBMSM
prior_vect = [
Gamma(1,1), # α_choose 1
Beta(5, 5), #p_detect 2
Beta(1, 1), #p_trans 3
LogNormal(log(0.25), 1), #R0_other 4
Gamma(3, 1000 / 3),# M 5
LogNormal(log(5), 1),#init_scale 6
Uniform(135, 199),# chp_t 7
Beta(1.5,1.5),#trans_red 8
Beta(1.5,1.5),#trans_red_other 9
Beta(1.5,1.5),#trans_red WHO 10
Beta(1.5,1.5),#trans_red_other WHO 11
]
param_idxs = trues(11)
# Model with no behaviour change for GBMSM and non-GBMSM
prior_vect_no_bv_cng = [
Gamma(1,1), # α_choose 1
Beta(5, 5), #p_detect 2
Beta(1, 1), #p_trans 3
LogNormal(log(0.25), 1), #R0_other 4
Gamma(3, 1000 / 3),# M 5
LogNormal(log(5), 1),#init_scale 6
Uniform(135, 199),# chp_t 7
Uniform(0.0,1e-10),#trans_red 8
Uniform(0.0,1e-10),#trans_red_other 9
Uniform(0.0,1e-10),#trans_red WHO 10
Uniform(0.0,1e-10),#trans_red_other WHO 11
]
param_idxs_no_bv_cng = [trues(7);falses(4)]
model_str_to_prior = Dict("no_ngbmsm_chg" => (prior_vect_no_ngbmsm_chg, param_idxs_no_ngbmsm_chg),
"no_bv_cng" => (prior_vect_no_bv_cng, param_idxs_no_bv_cng),
"one_metapop" => (prior_vect_one_metapop, param_idxs_one_metapop),
"" => (prior_vect, param_idxs))
##Load posterior draws and structure
date_str = "2022-09-26"
description_str = "no_ngbmsm_chg" #<---- This is the main model
# description_str = "no_bv_cng" #<---- This is the version of the model with no behavioural change
# description_str = "one_metapop" #<--- This is the version of the model with no metapopulation structure
# description_str = "" #<--- this is the older version main model
param_draws = load("posteriors/posterior_param_draws_" * date_str * description_str * ".jld2")["param_draws"]
## Create size distribution plot for the meta population sizes
n_metapop = 50
α_metapop_draws = [θ[1] for θ in param_draws]
size_distribution =
α_metapop_draws .|>
α -> rand(DirichletMultinomial(N_msm, α * ones(n_cliques))) |> x -> sort(x, rev = true)
size_distribution_mat = [
size_distribution[i][j] for i = 1:length(size_distribution),
j = 1:length(size_distribution[1])
]
mean_sizes = mean(size_distribution_mat, dims = 1)[:] #mean(size_distribution_mat,dims = 1)[:]
lb =
mean_sizes .- [
quantile(size_distribution_mat[:, metapop], 0.025) for
metapop = 1:size(size_distribution_mat, 2)
]
ub =
[
quantile(size_distribution_mat[:, metapop], 0.975) for
metapop = 1:size(size_distribution_mat, 2)
] .- mean_sizes
plt_grp_size = bar(
mean_sizes ./ N_msm,
yerrors = (lb, ub) ./ N_msm,
lab = "Posterior mean group size",
title = "Ordered metapopulation clique sizes",
xlabel = "Clique size rank",
ylabel = "Proportion of GBMSM in clique",
xticks = [1; 5:5:50],
size = (800, 600),
dpi = 250,
left_margin = 5mm,
guidefont = 16,
tickfont = 13,
titlefont = 24,
legendfont = 16,
right_margin = 5mm,
)
display(plt_grp_size)
savefig(plt_grp_size, "plots/metapopulation_sizes" * date_str * description_str * ".png")
##Create transformations to more interpetable parameters
all_priors, idxs = model_str_to_prior[description_str]
priors = all_priors[idxs]
param_mat = [p[j] for p in param_draws, j = findall(idxs)]
names = param_names[idxs]
val_mat =
param_mat |>
X ->
col_transformations(X, transformations) |>
X -> [X[i, j] for i = 1:size(X, 1), j = 1:size(X, 2), k = 1:1]
chn = Chains(val_mat, names)
CSV.write("posteriors/posterior_chain_" * date_str * description_str * ".csv", DataFrame(chn))
##
pretty_parameter_names = [
"Metapop. size dispersion",
"Prob. of case detection",
"Prob. trans. per sexual contact",
"Other R0",
"Prob. of detect. dispersion",
"Init. Infs scale",
"Timing: 1st change point",
"Sex. trans. reduction: 1st cng pnt",
"Other trans. reduction: 1st cng pnt",
"Sex. trans. reduction: WHO cng pnt",
"Other. trans. reduction: WHO cng pnt",
]
pretty_names = pretty_parameter_names[idxs]
detection_dispersion_prior_draws = rand(priors[5], 10_000) .|> x -> 1 / (x + 1)
post_plt = plot(;
layout = length(priors) > 9 ? (4, 3) : (3, 3),
size = (1500, 1500),
dpi = 250,
left_margin = 10mm,
right_margin = 10mm,
)
for (j, prior) in enumerate(priors)
histogram!(
post_plt[j],
val_mat[:, j, 1][:],
norm = :pdf,
fillalpha = 0.3,
nbins = 100,
lw = 0.5,
alpha = 0.1,
lab = "",
color = 1,
title = string(pretty_names[j]),
titlefont = 18,
legendfont = 14,
)
density!(post_plt[j], val_mat[:, j], lw = 3, color = 1, lab = "Posterior")
if j != 5
plot!(post_plt[j], prior, lw = 3, color = 2, lab = "Prior")
else
density!(post_plt[j], detection_dispersion_prior_draws, lw = 3, color = 2, lab = "Prior")
end
end
##
plot!(post_plt[4], xlims = (0,1.5))
plot!(post_plt[5], xlims = (0,0.025))
plot!(post_plt[6], xlims = (0,50))
display(post_plt)
##
savefig(post_plt, "plots/post_plot" * date_str * description_str * ".png")
##
crn_plt = corner(chn, size = (2000, 2000), left_margin = 5mm, right_margin = 5mm)
savefig(crn_plt, "plots/post_crnplot" * date_str * description_str * ".pdf")
##