forked from lvdmaaten/bhtsne
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sptree.cpp
428 lines (350 loc) · 13.5 KB
/
sptree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
/*
*
* Copyright (c) 2014, Laurens van der Maaten (Delft University of Technology)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the Delft University of Technology.
* 4. Neither the name of the Delft University of Technology nor the names of
* its contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY LAURENS VAN DER MAATEN ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL LAURENS VAN DER MAATEN BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
*/
#include <math.h>
#include <float.h>
#include <stdlib.h>
#include <stdio.h>
#include <cmath>
#include "sptree.h"
// Constructs cell
Cell::Cell(unsigned int inp_dimension) {
dimension = inp_dimension;
corner = (double*) malloc(dimension * sizeof(double));
width = (double*) malloc(dimension * sizeof(double));
}
Cell::Cell(unsigned int inp_dimension, double* inp_corner, double* inp_width) {
dimension = inp_dimension;
corner = (double*) malloc(dimension * sizeof(double));
width = (double*) malloc(dimension * sizeof(double));
for(int d = 0; d < dimension; d++) setCorner(d, inp_corner[d]);
for(int d = 0; d < dimension; d++) setWidth( d, inp_width[d]);
}
// Destructs cell
Cell::~Cell() {
free(corner);
free(width);
}
double Cell::getCorner(unsigned int d) {
return corner[d];
}
double Cell::getWidth(unsigned int d) {
return width[d];
}
void Cell::setCorner(unsigned int d, double val) {
corner[d] = val;
}
void Cell::setWidth(unsigned int d, double val) {
width[d] = val;
}
// Checks whether a point lies in a cell
bool Cell::containsPoint(double point[])
{
for(int d = 0; d < dimension; d++) {
if(corner[d] - width[d] > point[d]) return false;
if(corner[d] + width[d] < point[d]) return false;
}
return true;
}
// Default constructor for SPTree -- build tree, too!
SPTree::SPTree(unsigned int D, double* inp_data, unsigned int N)
{
// Compute mean, width, and height of current map (boundaries of SPTree)
int nD = 0;
double* mean_Y = (double*) calloc(D, sizeof(double));
double* min_Y = (double*) malloc(D * sizeof(double)); for(unsigned int d = 0; d < D; d++) min_Y[d] = DBL_MAX;
double* max_Y = (double*) malloc(D * sizeof(double)); for(unsigned int d = 0; d < D; d++) max_Y[d] = -DBL_MAX;
for(unsigned int n = 0; n < N; n++) {
for(unsigned int d = 0; d < D; d++) {
mean_Y[d] += inp_data[n * D + d];
if(inp_data[nD + d] < min_Y[d]) min_Y[d] = inp_data[nD + d];
if(inp_data[nD + d] > max_Y[d]) max_Y[d] = inp_data[nD + d];
}
nD += D;
}
for(int d = 0; d < D; d++) mean_Y[d] /= (double) N;
// Construct SPTree
double* width = (double*) malloc(D * sizeof(double));
for(int d = 0; d < D; d++) width[d] = fmax(max_Y[d] - mean_Y[d], mean_Y[d] - min_Y[d]) + 1e-5;
init(NULL, D, inp_data, mean_Y, width);
fill(N);
// Clean up memory
free(mean_Y);
free(max_Y);
free(min_Y);
free(width);
}
// Constructor for SPTree with particular size and parent -- build the tree, too!
SPTree::SPTree(unsigned int D, double* inp_data, unsigned int N, double* inp_corner, double* inp_width)
{
init(NULL, D, inp_data, inp_corner, inp_width);
fill(N);
}
// Constructor for SPTree with particular size (do not fill the tree)
SPTree::SPTree(unsigned int D, double* inp_data, double* inp_corner, double* inp_width)
{
init(NULL, D, inp_data, inp_corner, inp_width);
}
// Constructor for SPTree with particular size and parent (do not fill tree)
SPTree::SPTree(SPTree* inp_parent, unsigned int D, double* inp_data, double* inp_corner, double* inp_width) {
init(inp_parent, D, inp_data, inp_corner, inp_width);
}
// Constructor for SPTree with particular size and parent -- build the tree, too!
SPTree::SPTree(SPTree* inp_parent, unsigned int D, double* inp_data, unsigned int N, double* inp_corner, double* inp_width)
{
init(inp_parent, D, inp_data, inp_corner, inp_width);
fill(N);
}
// Main initialization function
void SPTree::init(SPTree* inp_parent, unsigned int D, double* inp_data, double* inp_corner, double* inp_width)
{
parent = inp_parent;
dimension = D;
no_children = 2;
for(unsigned int d = 1; d < D; d++) no_children *= 2;
data = inp_data;
is_leaf = true;
size = 0;
cum_size = 0;
boundary = new Cell(dimension);
for(unsigned int d = 0; d < D; d++) boundary->setCorner(d, inp_corner[d]);
for(unsigned int d = 0; d < D; d++) boundary->setWidth( d, inp_width[d]);
children = (SPTree**) malloc(no_children * sizeof(SPTree*));
for(unsigned int i = 0; i < no_children; i++) children[i] = NULL;
center_of_mass = (double*) malloc(D * sizeof(double));
for(unsigned int d = 0; d < D; d++) center_of_mass[d] = .0;
buff = (double*) malloc(D * sizeof(double));
}
// Destructor for SPTree
SPTree::~SPTree()
{
for(unsigned int i = 0; i < no_children; i++) {
if(children[i] != NULL) delete children[i];
}
free(children);
free(center_of_mass);
free(buff);
delete boundary;
}
// Update the data underlying this tree
void SPTree::setData(double* inp_data)
{
data = inp_data;
}
// Get the parent of the current tree
SPTree* SPTree::getParent()
{
return parent;
}
// Insert a point into the SPTree
bool SPTree::insert(unsigned int new_index)
{
// Ignore objects which do not belong in this quad tree
double* point = data + new_index * dimension;
if(!boundary->containsPoint(point))
return false;
// Online update of cumulative size and center-of-mass
cum_size++;
double mult1 = (double) (cum_size - 1) / (double) cum_size;
double mult2 = 1.0 / (double) cum_size;
for(unsigned int d = 0; d < dimension; d++) center_of_mass[d] *= mult1;
for(unsigned int d = 0; d < dimension; d++) center_of_mass[d] += mult2 * point[d];
// If there is space in this quad tree and it is a leaf, add the object here
if(is_leaf && size < QT_NODE_CAPACITY) {
index[size] = new_index;
size++;
return true;
}
// Don't add duplicates for now (this is not very nice)
bool any_duplicate = false;
for(unsigned int n = 0; n < size; n++) {
bool duplicate = true;
for(unsigned int d = 0; d < dimension; d++) {
if(point[d] != data[index[n] * dimension + d]) { duplicate = false; break; }
}
any_duplicate = any_duplicate | duplicate;
}
if(any_duplicate) return true;
// Otherwise, we need to subdivide the current cell
if(is_leaf) subdivide();
// Find out where the point can be inserted
for(unsigned int i = 0; i < no_children; i++) {
if(children[i]->insert(new_index)) return true;
}
// Otherwise, the point cannot be inserted (this should never happen)
return false;
}
// Create four children which fully divide this cell into four quads of equal area
void SPTree::subdivide() {
// Create new children
double* new_corner = (double*) malloc(dimension * sizeof(double));
double* new_width = (double*) malloc(dimension * sizeof(double));
for(unsigned int i = 0; i < no_children; i++) {
unsigned int div = 1;
for(unsigned int d = 0; d < dimension; d++) {
new_width[d] = .5 * boundary->getWidth(d);
if((i / div) % 2 == 1) new_corner[d] = boundary->getCorner(d) - .5 * boundary->getWidth(d);
else new_corner[d] = boundary->getCorner(d) + .5 * boundary->getWidth(d);
div *= 2;
}
children[i] = new SPTree(this, dimension, data, new_corner, new_width);
}
free(new_corner);
free(new_width);
// Move existing points to correct children
for(unsigned int i = 0; i < size; i++) {
bool success = false;
for(unsigned int j = 0; j < no_children; j++) {
if(!success) success = children[j]->insert(index[i]);
}
index[i] = -1;
}
// Empty parent node
size = 0;
is_leaf = false;
}
// Build SPTree on dataset
void SPTree::fill(unsigned int N)
{
for(unsigned int i = 0; i < N; i++) insert(i);
}
// Checks whether the specified tree is correct
bool SPTree::isCorrect()
{
for(unsigned int n = 0; n < size; n++) {
double* point = data + index[n] * dimension;
if(!boundary->containsPoint(point)) return false;
}
if(!is_leaf) {
bool correct = true;
for(int i = 0; i < no_children; i++) correct = correct && children[i]->isCorrect();
return correct;
}
else return true;
}
// Build a list of all indices in SPTree
void SPTree::getAllIndices(unsigned int* indices)
{
getAllIndices(indices, 0);
}
// Build a list of all indices in SPTree
unsigned int SPTree::getAllIndices(unsigned int* indices, unsigned int loc)
{
// Gather indices in current quadrant
for(unsigned int i = 0; i < size; i++) indices[loc + i] = index[i];
loc += size;
// Gather indices in children
if(!is_leaf) {
for(int i = 0; i < no_children; i++) loc = children[i]->getAllIndices(indices, loc);
}
return loc;
}
unsigned int SPTree::getDepth() {
if(is_leaf) return 1;
int depth = 0;
for(unsigned int i = 0; i < no_children; i++) depth = fmax(depth, children[i]->getDepth());
return 1 + depth;
}
// Compute non-edge forces using Barnes-Hut algorithm
void SPTree::computeNonEdgeForces(unsigned int point_index, double theta, double neg_f[], double* sum_Q)
{
// Make sure that we spend no time on empty nodes or self-interactions
if(cum_size == 0 || (is_leaf && size == 1 && index[0] == point_index)) return;
// Compute distance between point and center-of-mass
double D = .0;
unsigned int ind = point_index * dimension;
for(unsigned int d = 0; d < dimension; d++) buff[d] = data[ind + d] - center_of_mass[d];
for(unsigned int d = 0; d < dimension; d++) D += buff[d] * buff[d];
// Check whether we can use this node as a "summary"
double max_width = 0.0;
double cur_width;
for(unsigned int d = 0; d < dimension; d++) {
cur_width = boundary->getWidth(d);
max_width = (max_width > cur_width) ? max_width : cur_width;
}
if(is_leaf || max_width / sqrt(D) < theta) {
// Compute and add t-SNE force between point and current node
D = 1.0 / (1.0 + D);
double mult = cum_size * D;
*sum_Q += mult;
mult *= D;
for(unsigned int d = 0; d < dimension; d++) neg_f[d] += mult * buff[d];
}
else {
// Recursively apply Barnes-Hut to children
for(unsigned int i = 0; i < no_children; i++) children[i]->computeNonEdgeForces(point_index, theta, neg_f, sum_Q);
}
}
// Computes edge forces
void SPTree::computeEdgeForces(unsigned int* row_P, unsigned int* col_P, double* val_P, int N, double* pos_f)
{
// Loop over all edges in the graph
unsigned int ind1 = 0;
unsigned int ind2 = 0;
double D;
for(unsigned int n = 0; n < N; n++) {
for(unsigned int i = row_P[n]; i < row_P[n + 1]; i++) {
// Compute pairwise distance and Q-value
D = 1.0;
ind2 = col_P[i] * dimension;
for(unsigned int d = 0; d < dimension; d++) buff[d] = data[ind1 + d] - data[ind2 + d];
for(unsigned int d = 0; d < dimension; d++) D += buff[d] * buff[d];
D = val_P[i] / D;
// Sum positive force
for(unsigned int d = 0; d < dimension; d++) pos_f[ind1 + d] += D * buff[d];
}
ind1 += dimension;
}
}
// Print out tree
void SPTree::print()
{
if(cum_size == 0) {
printf("Empty node\n");
return;
}
if(is_leaf) {
printf("Leaf node; data = [");
for(int i = 0; i < size; i++) {
double* point = data + index[i] * dimension;
for(int d = 0; d < dimension; d++) printf("%f, ", point[d]);
printf(" (index = %d)", index[i]);
if(i < size - 1) printf("\n");
else printf("]\n");
}
}
else {
printf("Intersection node with center-of-mass = [");
for(int d = 0; d < dimension; d++) printf("%f, ", center_of_mass[d]);
printf("]; children are:\n");
for(int i = 0; i < no_children; i++) children[i]->print();
}
}