forked from ultraeric/training
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrain.py
154 lines (124 loc) · 5.36 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""Training and validation code for bddmodelcar."""
import traceback
import logging
from Parameters import ARGS
import Data
import Batch
import Utils
import matplotlib.pyplot as plt
from nets.SqueezeNet import SqueezeNet
import torch
def main():
logging.basicConfig(filename='training.log', level=logging.DEBUG)
logging.debug(ARGS) # Log arguments
# Set Up PyTorch Environment
# torch.set_default_tensor_type('torch.FloatTensor')
print ARGS.no_gpu
if not ARGS.no_gpu:
torch.cuda.set_device(ARGS.gpu)
torch.cuda.device(ARGS.gpu)
if not ARGS.no_gpu:
net = SqueezeNet().cuda()
else:
net = SqueezeNet()
criterion = torch.nn.MSELoss().cuda()
optimizer = torch.optim.Adadelta(net.parameters())
if ARGS.resume_path is not None:
cprint('Resuming w/ ' + ARGS.resume_path, 'yellow')
save_data = torch.load(ARGS.resume_path)
net.load_state_dict(save_data)
epoch = 0
data = None
batch = Batch.Batch(net)
if ARGS.bkup is not None:
save_data = torch.load(ARGS.bkup)
net.load_state_dict(save_data['net'])
data = save_data['data']
data.get_segment_data()
epoch = save_data['epoch']
else:
data = Data.Data()
# Maitains a list of all inputs to the network, and the loss and outputs for
# each of these runs. This can be used to sort the data by highest loss and
# visualize, to do so run:
# display_sort_trial_loss(data_moment_loss_record , data)
data_moment_loss_record = {}
rate_counter = Utils.RateCounter()
def run_net(data_index):
batch.fill(data, data_index) # Get batches ready
batch.forward(optimizer, criterion, data_moment_loss_record)
try:
backup1 = True
avg_val_loss = Utils.LossLog()
while True:
logging.debug('Starting training epoch #{}'.format(epoch))
net.train() # Train mode
print_counter = Utils.MomentCounter(ARGS.print_moments)
save_counter = Utils.MomentCounter(ARGS.save_moments)
while not data.train_index.epoch_complete: # Epoch of training
run_net(data.train_index) # Run network
batch.backward(optimizer) # Backpropagate
# Logging Loss
rate_counter.step()
if save_counter.step(data.train_index):
save_state = {'data' : data, 'net' : net.state_dict(), 'epoch' : epoch}
if backup1:
torch.save(save_state, 'backup1.bkup')
backup1 = False
else:
torch.save(save_state, 'backup2.bkup')
backup1 = True
if print_counter.step(data.train_index):
print('mode = train\n'
'ctr = {}\n'
'most recent loss = {}\n'
'epoch progress = {} \n'
'epoch = {}\n'
.format(data.train_index.ctr,
batch.loss.data[0],
100. * data.train_index.ctr /
len(data.train_index.valid_data_moments),
epoch))
if ARGS.display:
batch.display()
plt.figure('loss')
plt.clf() # clears figure
print_timer.reset()
data.train_index.epoch_complete = False
logging.debug('Finished training epoch #{}'.format(epoch))
logging.debug('Starting validation epoch #{}'.format(epoch))
epoch_val_loss = Utils.LossLog()
print_counter = Utils.MomentCounter(ARGS.print_moments)
net.eval() # Evaluate mode
while not data.val_index.epoch_complete:
run_net(data.val_index) # Run network
epoch_val_loss.add(data.train_index.ctr, batch.loss.data[0])
if print_counter.step(data.val_index):
epoch_val_loss.export_csv(
'logs/epoch%02d_val_loss.csv' %
(epoch,))
print('mode = validation\n'
'ctr = {}\n'
'average val loss = {}\n'
'epoch progress = {} %\n'
'epoch = {}\n'
.format(data.val_index.ctr,
epoch_val_loss.average(),
100. * data.val_index.ctr /
len(data.val_index.valid_data_moments),
epoch))
data.val_index.epoch_complete = False
avg_val_loss.add(epoch, epoch_val_loss.average())
avg_val_loss.export_csv('logs/avg_val_loss.csv')
logging.debug('Finished validation epoch #{}'.format(epoch))
logging.info('Avg Val Loss = {}'.format(epoch_val_loss.average()))
Utils.save_net(
"epoch%02d_save_%f" %
(epoch, epoch_val_loss.average()), net)
epoch += 1
except Exception:
logging.error(traceback.format_exc()) # Log exception
# Interrupt Saves
Utils.save_net('interrupt_save', net)
if __name__ == '__main__':
main()