-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
96 lines (78 loc) · 3.38 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from glob import glob
import os
import torch
import torchio as tio
import json
from torchio import ScalarImage, LabelMap
class Datasets3D():
def __init__(self, dataset_dir, training_split_ratio=0.9):
images_dir = os.path.join(dataset_dir, 'image')
labels_dir = os.path.join(dataset_dir, 'label')
self.image_paths = sorted(glob(os.path.join(images_dir, '*.nii.gz')))
self.label_paths = sorted(glob(os.path.join(labels_dir, '*.nii.gz')))
assert len(self.image_paths) == len(self.label_paths)
subjects = []
for (image_path, label_path) in zip(self.image_paths, self.label_paths):
subject = tio.Subject(
mri=ScalarImage(image_path),
brain=LabelMap(label_path),
)
subjects.append(subject)
self.dataset = tio.SubjectsDataset(subjects)
print('Dataset size:', len(self.dataset), 'subjects')
num_subjects = len(self.dataset)
num_training_subjects = int(training_split_ratio * num_subjects)
num_validation_subjects = num_subjects - num_training_subjects
num_split_subjects = num_training_subjects, num_validation_subjects
self.training_subjects, self.validation_subjects = torch.utils.data.random_split(subjects, num_split_subjects)
self._transform()
def _transform(self):
self.landmarks = tio.HistogramStandardization.train(self.image_paths)
self.training_transform = tio.Compose([
tio.ToCanonical(),
tio.Resample(4),
tio.CropOrPad((48, 60, 48)),
tio.RandomMotion(p=0.2),
tio.HistogramStandardization({'mri': self.landmarks}),
tio.RandomBiasField(p=0.3),
tio.ZNormalization(masking_method=tio.ZNormalization.mean),
tio.RandomNoise(p=0.5),
tio.RandomFlip(),
tio.OneOf({
tio.RandomAffine(): 0.8,
tio.RandomElasticDeformation(): 0.2,
}),
tio.OneHot(),
])
self.validation_transform = tio.Compose([
tio.ToCanonical(),
tio.Resample(4),
tio.CropOrPad((48, 60, 48)),
tio.HistogramStandardization({'mri': self.landmarks}),
tio.ZNormalization(masking_method=tio.ZNormalization.mean),
tio.OneHot(),
])
def get_landmarks(self):
return self.landmarks
def train_set(self):
training_set = tio.SubjectsDataset(
self.training_subjects, transform=self.training_transform)
print('Training set:', len(training_set), 'subjects')
return training_set
def val_set(self):
validation_set = tio.SubjectsDataset(
self.validation_subjects, transform=self.validation_transform)
print('Validation set:', len(validation_set), 'subjects')
return validation_set
def read_param(path):
with open(path,'r') as load_f:
load_dict = json.load(load_f)
return load_dict
if __name__ == "__main__":
# d = Datasets3D("/home/zhaozixiao/projects/datasets/flare21/FLARE21/imagesTr/", "/home/zhaozixiao/projects/datasets/flare21/FLARE21/labelsTr/")
# print(len(d.train_set()))
# print(len(d.val_set()))
# print(os.getcwd())
dl = Datasets3D('/home/zhaozixiao/projects/singa_local/singa-auto/test/dataset/ixi_tiny', 0.9)
tr = dl.train_set()
va = dl.val_set()