-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation.py
285 lines (244 loc) · 14 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import numpy as np
import pandas as pd
from FRCM import FRCM
from FRMV import FRMV
from FRSD import FRSD
from FRIGATE import FRIGATE
from FRIGATE import get_elbow_k
import logging
def build_numeric_simulation(mu, sigma, number_of_informative_vars, number_of_noise_vars,
number_of_samples_in_each_cluster, k_clusters):
"""
Creates a DataFrame of simulated numeric values
:param mu: parameter for the mean of the multivariate normal distribution
:param sigma: parameter for the std of the multivariate normal distribution
:param number_of_informative_vars: number of variables that differ between clusters
:param number_of_noise_vars: number of variables that don't differ between clusters
:param number_of_samples_in_each_cluster: number of samples in each_cluster
:param k_clusters: number of clusters
:return: Creates a DataFrame of simulated numeric values
"""
mu, sigma = mu, sigma # mean and standard deviation
# The covariances matrix
cov = (1 - sigma) * np.identity(number_of_informative_vars + number_of_noise_vars) + sigma * (
np.matrix([1] * (number_of_informative_vars + number_of_noise_vars)).T) * (
np.matrix([1] * (number_of_informative_vars + number_of_noise_vars)))
arr_of_data_to_concat = []
# create data with different mu values for each cluster
for i in range(k_clusters):
ci = np.random.multivariate_normal([0] * number_of_noise_vars + [i * mu] * number_of_informative_vars, cov,
number_of_samples_in_each_cluster)
arr_of_data_to_concat.append(ci)
sim_df = pd.DataFrame(np.concatenate(arr_of_data_to_concat, axis=0))
return sim_df
def build_categorical_simulation(df_cat, number_of_informative_vars, number_of_cat_vars, k_clusters, cat_epsilon,
number_of_samples_in_each_cluster):
"""
Alter the input variable df_cat into a DataFrame with simulated categorical data
:param df_cat: empty DataFrame in the right shape for the simulated categorical data
:param number_of_informative_vars: number of informative categorical variables
:param number_of_cat_vars: total number of categorical variables
:param k_clusters: k number of clusters
:param cat_epsilon: the probability of choosing the wrong value
:param number_of_samples_in_each_cluster: number of samples in each cluster
:return: None
"""
for i in range(number_of_informative_vars):
informative_cat = []
for k in range(k_clusters):
p = [cat_epsilon / (k_clusters - 1)] * k_clusters
p[k] = 1 - cat_epsilon
informative_cat += list(
np.random.choice(list(range(k_clusters)), size=number_of_samples_in_each_cluster, replace=True, p=p))
df_cat.iloc[:, i] = informative_cat
for i in range(number_of_cat_vars - number_of_informative_vars):
p = [1 / k_clusters] * k_clusters
df_cat.iloc[:, number_of_informative_vars + i] = list(
np.random.choice(list(range(k_clusters)), size=number_of_samples_in_each_cluster * k_clusters, replace=True, p=p))
def z_normalization(df):
"""
Transforming the input DafaFrame to be z-score normalized
:param df: DataFrame of continuous data
:return: None
"""
for col in df.columns:
df[col] = (df[col] - df[col].mean()) / df[col].std()
def full_simulation(logger, sigma, mu, gamma=2, number_of_informative_num_vars=20, number_of_noise_num_vars=80,
number_of_informative_cat_vars=20, number_of_noise_cat_vars=80, use_cat=False, is_normalized=True,
k_clusters=4, number_of_samples_in_each_cluster=50, cat_epsilon=0.05, paral=True, path=''):
"""
Creates simulated data and test the performance of five algorithms: Frigate, Frigate with MW, FRCM, FRSD, FRMV.
The measurement is the fraction true informative features in the top "number_of_informative_vars" in the final
ranking of each algorithm.
:param logger: A logger object.
:param gamma: A weighing parameter when categorical data in presented.
:param sigma: A std parameter for the multivariate normal distribution
:param mu: A mean parameter for the multivariate normal distribution
:param number_of_informative_num_vars: number of informative continuous variables
:param number_of_noise_num_vars: number of non-informative continuous variables
:param number_of_informative_cat_vars: number of informative categorical variables
:param number_of_noise_cat_vars: number of non-informative categorical variables
:param use_cat: Boolean parameter for using categorical variables, or only continuous
:param is_normalized: Boolean parameter for performing z-score normalization on the continuous data
:param k_clusters: k number of clusters
:param number_of_samples_in_each_cluster: number of samples in each cluster
:param cat_epsilon: parameter for creating the categorical simulation. account for the probability of choosing a
wrong value for the informative features.
:param paral: Boolean parameter for running in parallel
:param path: the path to save the results
:return: None
"""
logger.info(f"number of samples in cluster:{number_of_samples_in_each_cluster}")
logger.info(f"number of informative numeric variables:{number_of_informative_num_vars}")
logger.info(f"number of noise numeric variables:{number_of_noise_num_vars}")
logger.info(f"use categorical features = {use_cat}")
logger.info(f"number of informative catigorical variables:{number_of_informative_cat_vars}")
logger.info(f"number of noise catigorical variables:{number_of_noise_cat_vars}")
logger.info(f"gamma = {gamma}")
logger.info(f"categorical epsilon is {cat_epsilon}")
logger.info(f"number k of clusters = {k_clusters}")
logger.info(f"normalize data = {is_normalized}")
logger.info(f"is parallel = {paral}")
logger.info(f"sigma is {sigma}")
logger.info(f"mu is {mu}")
number_of_num_vars = number_of_informative_num_vars+number_of_noise_num_vars
number_of_cat_vars = number_of_informative_cat_vars+number_of_noise_cat_vars
number_of_informative_vars = number_of_informative_num_vars + number_of_informative_cat_vars if use_cat \
else number_of_informative_num_vars
frigate_scores_num = []
frigate_scores_cat = []
frigate_mw_scores_num = []
frigate_mw_scores_cat = []
frsd_scores = []
frcm_scores = []
frmv_scores = []
# generate 10 solution for each set of parameters
for n in range(10):
df_num = build_numeric_simulation(mu, sigma, number_of_informative_num_vars, number_of_noise_num_vars,
number_of_samples_in_each_cluster, k_clusters)
if is_normalized:
z_normalization(df_num)
# k is an input for Frigate, Frigate with MW and FRMV. We produce it with Elbow method.
k_frigate = get_elbow_k(df_num)
cat_cols = None
if use_cat:
df_cat = pd.DataFrame(columns=range(len(df_num.columns), len(df_num.columns) + number_of_cat_vars),
index=range(k_clusters * number_of_samples_in_each_cluster))
build_categorical_simulation(df_cat, number_of_informative_cat_vars, number_of_cat_vars, k_clusters,
cat_epsilon,
number_of_samples_in_each_cluster)
cat_cols = df_cat.columns
df_num_cat = pd.DataFrame(np.concatenate([df_num, df_cat], axis=1))
else:
df_num_cat = df_num
if not use_cat:
# when we don't use categorical features we test all algorithms.
frmv_obj = FRMV(df=df_num_cat, k_clusters=k_frigate, parallel=paral)
results_frmv = frmv_obj.get_results()
# Test the fraction of top features in the solution that are truly informative.
results_frmv = [1 for x in results_frmv[:(number_of_informative_num_vars)] if x in list(
range(number_of_noise_num_vars, number_of_num_vars))]
results_frmv = np.sum(results_frmv) / number_of_informative_num_vars
logger.debug(f"frmv result is {results_frmv}")
frmv_scores.append(results_frmv)
frcm_obj = FRCM(df_num_cat, parallel=paral)
frcm_results = frcm_obj.get_results()
frcm_results = [1 for x in frcm_results[:(number_of_informative_num_vars)] if x in list(
range(number_of_noise_num_vars, number_of_num_vars))]
frcm_results = np.sum(frcm_results) / number_of_informative_num_vars
logger.debug(f"frcm result is {frcm_results}")
frcm_scores.append(frcm_results)
frsd_obj = FRSD(df_num_cat, parallel=paral)
frsd_results = frsd_obj.get_results()
frsd_results = [1 for x in frsd_results[:(number_of_informative_num_vars)] if x in list(
range(number_of_noise_num_vars, number_of_num_vars))]
frsd_results = np.sum(frsd_results) / number_of_informative_num_vars
logger.debug(f"frsd result is {frsd_results}")
frsd_scores.append(frsd_results)
# the frigate algorithms are tested on both types of data.
FRIGATE_obj = FRIGATE(df=df_num_cat, k_clusters=k_frigate, MW=False, cat_cols=cat_cols, parallel=paral)
results_FRIGATE = FRIGATE_obj.get_results()
results_FRIGATE_num = [1 for x in results_FRIGATE[:(number_of_informative_vars)] if x in list(
range(number_of_noise_num_vars, number_of_num_vars))]
results_FRIGATE_num = np.sum(results_FRIGATE_num) / number_of_informative_num_vars
logger.debug(f"frigate num result is {results_FRIGATE_num}")
frigate_scores_num.append(results_FRIGATE_num)
if use_cat:
results_FRIGATE_cat = [1 for x in results_FRIGATE[:(number_of_informative_vars)] if x in
list(range(number_of_num_vars, number_of_num_vars + number_of_informative_cat_vars))]
results_frigate_cat = np.sum(results_FRIGATE_cat) / number_of_informative_cat_vars
logger.debug(f"results frigate cat = {results_frigate_cat}")
frigate_scores_cat.append(results_frigate_cat)
FRIGATE_MW_obj = FRIGATE(df=df_num_cat, k_clusters=k_frigate, MW=True, cat_cols=cat_cols, parallel=paral)
results_FRIGATE = FRIGATE_MW_obj.get_results()
results_FRIGATE_MW_num = [1 for x in results_FRIGATE[:(number_of_informative_vars)] if x in list(
range(number_of_noise_num_vars, number_of_num_vars))]
results_FRIGATE_MW_num = np.sum(results_FRIGATE_MW_num) / number_of_informative_num_vars
logger.debug(f"frigate num result is {results_FRIGATE_MW_num}")
frigate_mw_scores_num.append(results_FRIGATE_MW_num)
if use_cat:
results_FRIGATE_MW_cat = [1 for x in results_FRIGATE[:(number_of_informative_vars)] if x in
list(range(number_of_num_vars, number_of_num_vars + number_of_informative_cat_vars))]
results_frigate_mw_cat = np.sum(results_FRIGATE_MW_cat) / number_of_informative_cat_vars
logger.debug(f"results frigate mw cat = {results_frigate_mw_cat}")
frigate_mw_scores_cat.append(results_frigate_mw_cat)
# Create a DataFrame with the mean and std of the results of each algorithm.
df_results = pd.DataFrame(columns=["FRIGATE", "FRIGATE with MW", "FRMV", "FRCM", "FRSD"], index=["mean", "std"])
logger.info("frigate_scores_num")
logger.info(np.mean(frigate_scores_num))
logger.info(np.std(frigate_scores_num))
df_results.loc["mean"]["FRIGATE"] = np.mean(frigate_scores_num)
df_results.loc["std"]["FRIGATE"] = np.std(frigate_scores_num)
logger.info("frigate_mw_scores_num")
logger.info(np.mean(frigate_mw_scores_num))
logger.info(np.std(frigate_mw_scores_num))
df_results.loc["mean"]["FRIGATE with MW"] = np.mean(frigate_mw_scores_num)
df_results.loc["std"]["FRIGATE with MW"] = np.std(frigate_mw_scores_num)
if use_cat:
logger.info("frigate_scores_cat")
logger.info(np.mean(frigate_scores_cat))
logger.info(np.std(frigate_scores_cat))
logger.info("frigate_mw_scores_cat")
logger.info(np.mean(frigate_mw_scores_cat))
logger.info(np.std(frigate_mw_scores_cat))
logger.info("frmv")
logger.info(np.mean(frmv_scores))
logger.info(np.std(frmv_scores))
df_results.loc["mean"]["FRMV"] = np.mean(frmv_scores)
df_results.loc["std"]["FRMV"] = np.std(frmv_scores)
logger.info("frcm")
logger.info(np.mean(frcm_scores))
logger.info(np.std(frcm_scores))
df_results.loc["mean"]["FRCM"] = np.mean(frcm_scores)
df_results.loc["std"]["FRCM"] = np.std(frcm_scores)
logger.info("frsd")
logger.info(np.mean(frsd_scores))
logger.info(np.std(frsd_scores))
df_results.loc["mean"]["FRSD"] = np.mean(frsd_scores)
df_results.loc["std"]["FRSD"] = np.std(frsd_scores)
# saves the results to a file
file_name = f'{path}simulation_results.mu-{mu},sigma-{sigma},use_cat-{use_cat},k_clusters-{k_clusters},'\
f'is_normalized-{is_normalized}.csv'
df_results.to_csv(file_name)
return
if __name__ == '__main__':
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.DEBUG, format='%(message)s')
# #not in use now - can add another loop for testing values of gamma
# gamma_list = [0.5, 1, 2, 3, 5, 10]
mu_list = [1, 2, 4]
sigma_list = [0, 0.05, 0.2]
normalized_list = [True, False]
k_list = [2, 4]
parallel=False
for norm in normalized_list:
for mu in mu_list:
for sigma in sigma_list:
for k in k_list:
full_simulation(logger,
mu=mu,
sigma=sigma,
use_cat=False,
k_clusters=k, number_of_samples_in_each_cluster=50,
is_normalized=norm,
paral=parallel)