-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathndlutil.cpp
417 lines (377 loc) · 11.6 KB
/
ndlutil.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
#include "ndlutil.h"
#ifdef _MSC_VER
extern "C" double erf(double);
#endif /* _MSC_VER */
namespace ndlutil {
const double ROBUSTADD=1e-300; // added in various points to prevent log of zero.
double ngaussian(double x)
{
x *= x;
x = exp(-.5*x);
x = x/SQRTTWOPI;
return x;
}
double cumGaussian(double x)
{
x *= HALFSQRTTWO;
x = erf(x);
x++;
x*=0.5;
return x;
}
double invCumGaussian(double x)
{
return -sqrt(2.0)*erfcinv(2.0*x);
}
double gradLnCumGaussian(double x)
{
if(x>0)
x = ngaussian(x)/cumGaussian(x);
else
x = 1.0/(SQRTTWOPI*0.5*derfcx_(-HALFSQRTTWO*x));
return x;
}
double lnCumGaussian(double x)
{
if(x<0)
x = -.5*x*x + log(0.5) + log(derfcx_(-HALFSQRTTWO*x));
else
x = log(cumGaussian(x));
return x;
}
double lnCumGaussSum(double u1, double u2, double w1, double w2)
{
if(u1 > 0 && u2 > 0)
return log(w1*cumGaussian(u1)+ w2*cumGaussian(u2));
else if(u1>u2)
return log(w1) + lnCumGaussian(u1)
+ log(1.0 + w2/w1*exp(lnCumGaussian(u2)
-lnCumGaussian(u1)));
else
return log(w2) + lnCumGaussian(u2)
+ log(1.0 + w1/w2*exp(lnCumGaussian(u1)
-lnCumGaussian(u2)));
}
// f = log(\phi(u) - phi(uprime))
double lnDiffCumGaussian(double u, double uprime)
{
double arg = gaussOverDiffCumGaussian(u, uprime, 1) + ROBUSTADD;
double retVal = -log(arg) - .5*u*u - HALFLOGTWOPI;
return retVal;
}
double gaussOverDiffCumGaussian(double x, double xp, int order)
{
double xp2 = xp*xp;
double x2 = x*x;
double expRatio = 0.0;
switch(order)
{
case 1:
expRatio = exp(.5*(x2-xp2));
if(x<=0)
return 2/(SQRTTWOPI*(derfcx_(-HALFSQRTTWO*x)-expRatio*derfcx_(-HALFSQRTTWO*xp)+ROBUSTADD));
else
return 2/(SQRTTWOPI*(expRatio*derfcx_(HALFSQRTTWO*xp)-derfcx_(HALFSQRTTWO*x)+ROBUSTADD));
break;
case 2:
expRatio = exp(.5*(xp2-x2));
if(x<=0)
return 2/(SQRTTWOPI*(expRatio*derfcx_(-HALFSQRTTWO*x)-derfcx_(-HALFSQRTTWO*xp)+ROBUSTADD));
else
return 2/(SQRTTWOPI*(derfcx_(HALFSQRTTWO*xp)-expRatio*derfcx_(HALFSQRTTWO*x)+ROBUSTADD));
break;
default:
throw ndlexceptions::Error("Incorrect order parameter in gaussOverDiffCumGaussian");
}
}
double invSigmoid(double x)
{
return log(x/(1.0-x));
}
double sigmoid(double x)
{
return 1.0/(1.0+exp(-x));
}
double erfcinv(double x)
{
double s, t, u, w, y, z;
z = x;
if (x > 1.0)
{
z = 2 - x;
}
w = 0.916461398268964 - log(z);
u = sqrt(w);
s = (log(u) + 0.488826640273108) / w;
t = 1.0 / (u + 0.231729200323405);
y = u * (1.0 - s * (s * 0.124610454613712 + 0.5)) -
((((-0.0728846765585675 * t + 0.269999308670029) * t +
0.150689047360223) * t + 0.116065025341614) * t +
0.499999303439796) * t;
t = 3.97886080735226 / (y + 3.97886080735226);
u = t - 0.5;
s = (((((((((0.00112648096188977922 * u +
1.05739299623423047e-4) * u - 0.00351287146129100025) * u -
7.71708358954120939e-4) * u + 0.00685649426074558612) * u +
0.00339721910367775861) * u - 0.011274916933250487) * u -
0.0118598117047771104) * u + 0.0142961988697898018) * u +
0.0346494207789099922) * u + 0.00220995927012179067;
s = ((((((((((((s * u - 0.0743424357241784861) * u -
0.105872177941595488) * u + 0.0147297938331485121) * u +
0.316847638520135944) * u + 0.713657635868730364) * u +
1.05375024970847138) * u + 1.21448730779995237) * u +
1.16374581931560831) * u + 0.956464974744799006) * u +
0.686265948274097816) * u + 0.434397492331430115) * u +
0.244044510593190935) * t -
z * exp(y * y - 0.120782237635245222);
y += s * (y * s + 1.0);
if (x > 1.0)
{
y = -y;
}
return y;
}
double gamma(double x)
{
double y;
lgama_(1, x, y);
return y;
}
double gammaln(double x)
{
double y;
lgama_(0, x, y);
return y;
}
double digamma(double x)
{
double y;
psi_(x, y);
return y;
}
double xlogy(double x, double y)
{
if(x==0.0)
return 0.0;
else
return x*log(y);
}
double rand()
{
return genrand_real3();
}
double randn()
{
// uses the polar form of the Box-Mueller transform.
double x1, x2, w;
static bool stored=false;
static double storeVal;
if(stored)
{
stored = false;
return storeVal;
}
else
{
do {
x1 = 2.0 * genrand_real1() - 1.0;
x2 = 2.0 * genrand_real1() - 1.0;
w = x1 * x1 + x2 * x2;
} while ( w >= 1.0 );
w = sqrt( (-2.0 * log( w ) ) / w );
storeVal = x1 * w;
stored=true;
return x2 * w;
}
}
// Give a random perumation of numbers.
vector<unsigned long> randpermTrunc(unsigned long maxVal, unsigned long length)
{
BOUNDCHECK(length<=maxVal);
vector<unsigned long> perm;
vector<unsigned long> indices;
for(unsigned long i=0; i < maxVal; i++)
{
indices.push_back(i);
}
for(unsigned long i=0; i<length; i++)
{
unsigned long ind = (unsigned long)(ndlutil::rand()*indices.size());
perm.push_back(indices[ind]);
indices.erase(indices.begin()+ind);
}
return perm;
}
// give a truncation of a random permutation of numbers
vector<unsigned long> randperm(unsigned long maxVal)
{
return randpermTrunc(maxVal, maxVal);
}
/******* Mersenne Twister Random number generator. **************/
/*
A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.
Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
*/
/* initializes mt[N] with a seed */
void init_genrand(unsigned long s)
{
mt[0]= s & 0xffffffffUL;
for (mti=1; mti<N; mti++) {
mt[mti] =
(1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
/* In the previous versions, MSBs of the seed affect */
/* only MSBs of the array mt[]. */
/* 2002/01/09 modified by Makoto Matsumoto */
mt[mti] &= 0xffffffffUL;
/* for >32 bit machines */
}
}
/* initialize by an array with array-length */
/* init_key is the array for initializing keys */
/* key_length is its length */
/* slight change for C++, 2004/2/26 */
void init_by_array(unsigned long init_key[], int key_length)
{
int i, j, k;
init_genrand(19650218UL);
i=1; j=0;
k = (N>key_length ? N : key_length);
for (; k; k--) {
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL))
+ init_key[j] + j; /* non linear */
mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
i++; j++;
if (i>=N) { mt[0] = mt[N-1]; i=1; }
if (j>=key_length) j=0;
}
for (k=N-1; k; k--) {
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL))
- i; /* non linear */
mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
i++;
if (i>=N) { mt[0] = mt[N-1]; i=1; }
}
mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
}
/* generates a random number on [0,0xffffffff]-interval */
unsigned long genrand_int32(void)
{
unsigned long y;
static unsigned long mag01[2]={0x0UL, MATRIX_A};
/* mag01[x] = x * MATRIX_A for x=0,1 */
if (mti >= N) { /* generate N words at one time */
int kk;
if (mti == N+1) /* if init_genrand() has not been called, */
init_genrand(5489UL); /* a default initial seed is used */
for (kk=0;kk<N-M;kk++) {
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL];
}
for (;kk<N-1;kk++) {
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL];
}
y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL];
mti = 0;
}
y = mt[mti++];
/* Tempering */
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680UL;
y ^= (y << 15) & 0xefc60000UL;
y ^= (y >> 18);
return y;
}
/* generates a random number on [0,0x7fffffff]-interval */
long genrand_int31(void)
{
return (long)(genrand_int32()>>1);
}
/* generates a random number on [0,1]-real-interval */
double genrand_real1(void)
{
return genrand_int32()*(1.0/4294967295.0);
/* divided by 2^32-1 */
}
/* generates a random number on [0,1)-real-interval */
double genrand_real2(void)
{
return genrand_int32()*(1.0/4294967296.0);
/* divided by 2^32 */
}
/* generates a random number on (0,1)-real-interval */
double genrand_real3(void)
{
return (((double)genrand_int32()) + 0.5)*(1.0/4294967296.0);
/* divided by 2^32 */
}
/* generates a random number on [0,1) with 53-bit resolution*/
double genrand_res53(void)
{
unsigned long a=genrand_int32()>>5, b=genrand_int32()>>6;
return(a*67108864.0+b)*(1.0/9007199254740992.0);
}
/* These real versions are due to Isaku Wada, 2002/01/09 added */
/*int main(void)
{
int i;
unsigned long init[4]={0x123, 0x234, 0x345, 0x456}, length=4;
init_by_array(init, length);
printf("1000 outputs of genrand_int32()\n");
for (i=0; i<1000; i++) {
printf("%10lu ", genrand_int32());
if (i%5==4) printf("\n");
}
printf("\n1000 outputs of genrand_real2()\n");
for (i=0; i<1000; i++) {
printf("%10.8f ", genrand_real2());
if (i%5==4) printf("\n");
}
return 0;
}*/
}
//#ifdef _MSC_VER
extern "C" double rand_(const int &flag)
{
// Generate random numbers using MersenneTwister code from
// http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
if (flag == 1) {
ndlutil::init_genrand(0);
}
if (flag != 0) {
ndlutil::init_genrand(flag);
}
return ndlutil::genrand_real2();
}
//#endif