-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalign-to-score.py
220 lines (182 loc) · 10.9 KB
/
align-to-score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import json
import argparse, os, sys
from pprint import pprint
import numpy as np
import pandas as pd
import librosa.display
import matplotlib.pyplot as plt
import scipy.interpolate
import pretty_midi
from libfmp.b.b_plot import plot_signal, plot_chromagram
from libfmp.c3.c3s2_dtw_plot import plot_matrix_with_points
import libfmp.c1
from synctoolbox.dtw.mrmsdtw import sync_via_mrmsdtw
from synctoolbox.dtw.utils import compute_optimal_chroma_shift, shift_chroma_vectors, make_path_strictly_monotonic, evaluate_synchronized_positions
from synctoolbox.feature.csv_tools import read_csv_to_df, df_to_pitch_features, df_to_pitch_onset_features
from synctoolbox.feature.chroma import pitch_to_chroma, quantize_chroma, quantized_chroma_to_CENS
from synctoolbox.feature.dlnco import pitch_onset_features_to_DLNCO
from synctoolbox.feature.pitch import audio_to_pitch_features
from synctoolbox.feature.pitch_onset import audio_to_pitch_onset_features
from synctoolbox.feature.utils import estimate_tuning
# synctool defaults
Fs = 22050
feature_rate = 50
step_weights = np.array([1.5, 1.5, 2.0])
threshold_rec = 10 ** 6
# other hardwired defaults
midiTempo = 120 # as generated by Verovio
def bulk_align(files, ref_ix):
audios = [librosa.load(f, sr=Fs)[0] for f in files]
#features_df = pd.DataFrame({"audio_ix":{}, "chroma":{}, "onsets":{}})
features = []
# generate reference annotations
# ref_isochronic_annotations = np.arange(0, librosa.get_duration(audios[ref_ix]), 0.1)
ref_isochronic_annotations = np.arange(0, librosa.get_duration(audios[ref_ix]), 0.02)
import libfmp.c2
tuning_offset1 = estimate_tuning(audios[0], Fs)
tuning_offset2 = estimate_tuning(audios[1], Fs)
chroma1, onsets1 = get_features_from_audio(audios[0], tuning_offset1, Fs, feature_rate)
chroma2, onsets2 = get_features_from_audio(audios[1], tuning_offset2, Fs, feature_rate)
wp = sync_via_mrmsdtw(f_chroma1=chroma1, f_onset1=onsets1, f_chroma2=chroma2, f_onset2=onsets2, input_feature_rate=feature_rate, step_weights=step_weights, threshold_rec=threshold_rec, verbose=False, dtw_implementation="librosa")
for ix, audio in enumerate(audios):
#generate tuning offset df
tuning_offset = estimate_tuning(audio, Fs)
# tuning_offsets_df.insert(ix, "audio_" + str(ix), [tuning_offset])
# calculate chroma and onset features
f_chroma_quantized, f_DLNCO = get_features_from_audio(audio, tuning_offset, Fs, feature_rate)
features.append({'chroma':f_chroma_quantized, 'onsets':f_DLNCO})
#'features_df.loc[ix] = ["audio_"+str(ix), f_chroma_quantized_audio, f_DLNCO_audio]
# generate all warp paths to reference
# ref_chroma = features_df.iloc[ref_ix]['chroma']
# ref_onsets = features_df.iloc[ref_ix]['onsets']
ref_chroma = features[ref_ix]['chroma']
ref_onsets = features[ref_ix]['onsets']
annotations_map = dict()
for ix, _ in enumerate(features):
chroma = features[ix]['chroma']
onsets = features[ix]['onsets']
wp = sync_via_mrmsdtw(f_chroma1=ref_chroma, f_onset1=ref_onsets, f_chroma2=chroma, f_onset2=onsets, input_feature_rate=feature_rate, step_weights=step_weights, threshold_rec=threshold_rec, verbose=False, dtw_implementation="librosa")
# make wp strictly monotonic (better for transferring annotations according to synctoolbox)
wp = make_path_strictly_monotonic(wp)
# transfer reference annotations
transferred_anno = scipy.interpolate.interp1d(wp[0] / feature_rate, wp[1] / feature_rate, kind='linear')(ref_isochronic_annotations)
annotations_map[files[ix]] = np.ndarray.tolist(transferred_anno)
return annotations_map
def get_features_from_audio(audio, tuning_offset, Fs, feature_rate, visualize=False):
f_pitch = audio_to_pitch_features(f_audio=audio, Fs=Fs, tuning_offset=tuning_offset, feature_rate=feature_rate, verbose=visualize)
f_chroma = pitch_to_chroma(f_pitch=f_pitch)
f_chroma_quantized = quantize_chroma(f_chroma=f_chroma)
# if visualize:
# plot_chromagram(f_chroma_quantized, title='Quantized chroma features - Audio', Fs=feature_rate, figsize=(9,3))
f_pitch_onset = audio_to_pitch_onset_features(f_audio=audio, Fs=Fs, tuning_offset=tuning_offset, verbose=visualize)
f_DLNCO = pitch_onset_features_to_DLNCO(f_peaks=f_pitch_onset, feature_rate=feature_rate, feature_sequence_length=f_chroma_quantized.shape[1], visualize=visualize)
return f_chroma_quantized, f_DLNCO
def get_features_from_annotation(df_annotation, feature_rate):
f_pitch = df_to_pitch_features(df_annotation, feature_rate=feature_rate)
f_chroma = pitch_to_chroma(f_pitch=f_pitch)
f_chroma_quantized = quantize_chroma(f_chroma=f_chroma)
f_pitch_onset = df_to_pitch_onset_features(df_annotation)
f_DLNCO = pitch_onset_features_to_DLNCO(f_peaks=f_pitch_onset,
feature_rate=feature_rate,
feature_sequence_length=f_chroma_quantized.shape[1],
visualize=False)
return f_chroma_quantized, f_DLNCO
def score_align(audio, midi):
# convert MIDI to libfmp format
# load audio
audio, _ = librosa.load(audio, Fs)
# create annotation dataframe for score
midi_data = pretty_midi.PrettyMIDI(midi)
midi_list = []
for instrument in midi_data.instruments:
for note in instrument.notes:
start = note.start
duration = note.end - note.start
pitch = note.pitch
velocity = note.velocity
midi_list.append([start, duration, pitch, velocity, instrument.name])
midi_list = sorted(midi_list, key=lambda x: (x[0], x[2]))
score_annotation = pd.DataFrame(midi_list, columns=['start', 'duration', 'pitch', 'velocity', 'instrument'])
score_annotation = score_annotation[score_annotation['pitch'] != 0] # Filter out percussion. TODO is there a better way that doesn't lose this information?
# Estimate tuning
tuning_offset = estimate_tuning(audio, Fs)
# get audio features
chroma_audio, onsets_audio = get_features_from_audio(audio, tuning_offset, Fs, feature_rate)
pprint(score_annotation)
# get annotation features
chroma_anno, onsets_anno = get_features_from_annotation(score_annotation, feature_rate)
# determine optimal chroma shift (in case performance is in different key to score)
f_cens_1hz_audio = quantized_chroma_to_CENS(chroma_audio, 201, 50, feature_rate)[0]
f_cens_1hz_annotation = quantized_chroma_to_CENS(chroma_anno, 201, 50, feature_rate)[0]
opt_chroma_shift = compute_optimal_chroma_shift(f_cens_1hz_audio, f_cens_1hz_annotation)
f_chroma_quantized_annotation = shift_chroma_vectors(chroma_anno, opt_chroma_shift)
onsets_anno = shift_chroma_vectors(onsets_anno, opt_chroma_shift)
# do the warp
wp = sync_via_mrmsdtw(f_chroma1=chroma_audio,
f_onset1=onsets_audio,
f_chroma2=chroma_anno,
f_onset2=onsets_anno,
input_feature_rate=feature_rate,
step_weights=step_weights,
threshold_rec=threshold_rec,
verbose=False)
# make warping path strictly monotonic (better for transferring annotations accordign to synctoolbox)
wp = make_path_strictly_monotonic(wp)
score_annotation["warped-end"] = score_annotation["start"] + score_annotation["duration"]
score_annotation[['warped-start', 'warped-end']] = scipy.interpolate.interp1d(wp[1] / feature_rate,
wp[0] / feature_rate, kind='linear', fill_value="extrapolate")(score_annotation[['start', 'end']])
score_annotation["warped-duration"] = score_annotation["warped-end"] - score_annotation["warped-start"]
# deduplicate
onsets = score_annotation[["start", "warped-start"]].drop_duplicates()
offsets = score_annotation[["end", "warped-end"]].drop_duplicates()
return {
"score_onset": onsets["start"].tolist(),
"ref_onset": onsets["warped-start"].tolist(),
"score_offset": offsets["end"].tolist(),
"ref_offset": offsets["warped-end"].tolist()
}
def alignment_ix_to_score_time(alignment_grids, ref_name, ix):
return alignment_grids[ref_name][ix] / ((60 / midiTempo) * 1000)
def calculate_tempi(alignment_grids, ref_name):
tempi = dict()
for file_name, grid in alignment_grids.items():
print("## CALCULATING TEMPO FOR: " + file_name)
tempi[file_name] = list()
for ix, perf_time in enumerate(grid):
if ix == 0:
tempi[file_name].append(0) # 0 bmp at very start of track
else:
delta_perf_time = perf_time - grid[ix-1]
delta_score_time = alignment_ix_to_score_time(alignment_grids, ref_name, ix) - alignment_ix_to_score_time(alignment_grids, ref_name, ix-1)
tempi[file_name].append((delta_score_time / delta_perf_time) * 60000) # beats per minute
return tempi
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--audioDirectory', help="Directory containing recordings to be matched", required=True)
parser.add_argument('-r', '--referenceAudio', help="Filename of reference recording in directory. If omited, I'll use the first file I find", required=False)
parser.add_argument('-m', '--referenceMidi', help="Filename of reference MIDI in directory.", required=True)
parser.add_argument('-u', '--meiUri', help="URI of MEI file used to generate reference MIDI.", required=True)
parser.add_argument('-o', '--output', help="Filename for output file", required=True)
args = parser.parse_args()
audio_files = [f for f in os.listdir(args.audioDirectory) if f.endswith('.wav') or f.endswith('.mp3')]
ref_index = 0
if len(audio_files) < 2:
sys.exit("Specified audio directory must contain at least two audio (.wav or .mp3) files")
if args.referenceAudio:
if args.referenceAudio not in audio_files:
sys.exit("Cannot find specified reference audio in specified audio directory")
else:
ref_index = audio_files.index(args.referenceAudio)
files = [os.path.join(args.audioDirectory, f) for f in audio_files]
print(files)
annotations_map = dict()
annotations_map["body"] = dict()
annotations_map["body"]["audio"] = bulk_align(files, ref_index)
annotations_map["body"]["score"] = score_align(os.path.join(args.audioDirectory, audio_files[ref_index]), args.referenceMidi)
annotations_map["header"] = dict()
annotations_map["header"]["ref"] = os.path.join(args.audioDirectory, audio_files[ref_index])
annotations_map["header"]["meiUri"] = args.meiUri
#annotations_map["header"]["tempi"] = calculate_tempi(annotations_map["body"]["audio"], files[ref_index])
with open(args.output, 'w',encoding="utf-8") as out:
json.dump(annotations_map, out, indent = 2)
print(files)